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Abstract— Off-road navigation of autonomous vehicles re-
quires the use of 6dof models for planning safe paths that
satisfy stability constraints. The existing approaches pose pre-
diction approaches mostly rely on training neural networks
from vehicle motion data. However, these approaches are data
intensive, struggle to generalize to novel scenes and require
navigating the vehicle over potentially dangerous terrains for
data collection.

In this paper, we present a model-based approach that only
requires an elevation map of the terrain (such as pointcloud
obtained from a LiDAR). We formulate the wheel-terrain inter-
action and the resulting 6dof pose prediction of the vehicle as
a non-linear least squares (NLS) problem. Importantly, we can
leverage implicit differentiation rules to compute the gradient
of the predicted pose with respect to the input parameters.
We also briefly discuss how such differentiable models can be
leveraged for gradient-based planning over uneven terrains.

I. INTRODUCTION

Off-road navigation of autonomous wheeled vehicles
forms an important component in applications such as
forestry, construction, and search and rescue. Trajectory
planning over uneven terrains requires predicting the 6dof
pose of the vehicle considering the wheel-terrain interaction.
This can be achieved in two-ways. First, we can employ
complex physics-engines [1], [2], which are computationally
too expensive to be used for online planning. Second, we
can learn the interaction and pose prediction model by
fitting neural networks to vehicle motion data on different
terrains [3]. However, purely learning based approaches are
data-hungry, struggle to generalize to novel scenarios and
may require vehicle to navigate over potentially dangerous
terrains for data collection.
Contributions: We derive a set of coupled non-linear equa-
tions that views the wheel-terrain interaction as a closed-loop
kinematic chain. These equations are solved as a non-linear
least squares (NLS) problem and provides an implicit map-
ping between the yaw-plane motion of the vehicle and pitch,
roll, height and contact-points variation over the terrains.
Importantly, we show implicit gradients from NLS can be
used in downstream trajectory planning. We also demonstrate
that the prediction from our NLS-based approach closely
matches the output from a high-fidelity physics engine.
As a result, our NLS can be viewed as parallelizable and
differentiable world-model, albiet just at the kinematic level.
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Fig. 1: A Husky robot is shown navigating in an uneven terrain. The black
points represent the complete terrain and the multi-color points represent a
local patch. The trajectory (pink) successfully avoids the high-cost regions
to reach the goal.

II. MAIN ALGORITHMIC RESULTS

In this section, we first present a simple approach for
fitting a functional form to a terrain elevation map and
subsequently leveraging it for pose prediction. We also
briefly discuss how the latter can be used in downstream
planning tasks.

A. Modeling the Terrain in a Functional Form

We assume that the elevation data, which maps the height zj

of the terrain to the (xj , yj), can be obtained online as point
clouds with an on-board LiDAR. We derive an analytical
relationships of the form:

zj = f(xj , yj), (1)

by approximating f in terms of Fourier basis functions:

(2)f(xj , yj) =

N∑
n=1

an cos (ω1,nx
j + ω2,ny

j)

+ bn sin (ω3,nx
j + ω4,ny

j),

where ω1,n, ω2,n, ω3,n, ω4,n are the frequencies, N is the
total frequencies, and an, bn are the weights affiliated with
each function, which can be obtained by solving the regres-
sion problem given below.

M∑
j=1

∥f(xj , yj)− zj∥22, (3)

where M is the number of points in the given point-cloud.
An example fit acquired over terrain patches of radius 7m is
shown in Fig.3.
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Fig. 2: The Husky robot and the geometry vectors describing the holo-
nomic constraints.
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Fig. 3: The Red color represents the ground truth, and the green color
represents the prediction.

B. Differentiable Wheel-Terrain Interaction

We define the yaw plane states of the vehicle at time k

using the vector xk =
[
xk yk αk

]T
, where (xk, yk) is the

position, and αk is the yaw angle of the vehicle. For vehicles
with no-active suspension, the evolution of the yaw plane
configuration, i.e., xk, can be directly controlled, whereas
the rest of the attitude variables, i.e., zk coordinate, roll βk,
and pitch γk, is a function of xk and the terrain geometry,
which can be represented as:

zk = s1(xk, yk, αk),

βk = s2(xk, yk, αk), (4)
γk = s3(xk, yk, αk).

We define the following reference frames as shown in
Fig. 2. The global reference frame is {O}, and the reference
frame {G} moves along with the vehicle, attached to its
center. A similar frame {L} is defined with an orientation the
same as the vehicle. The vector defining the wheel-ground
contact point poc,i can be obtained straight from the terrain
equation. Then, the contact points can be devised by first
following through pog that identifies the center of the vehicle
and then moving along pgc,i. This understanding is encoded

using the following equations, similar to the loop closure
equations for parallel manipulators [4] [5].

pog + pgc,i = poc,i, (5)

pgc,i = R
[
δih riw −(li)

]
,∀i = 1, 2, 3, 4, (6)

δi =

{
1, i = 1, 4,

−1, i = 2, 3,

ri =
2.5− i

|2.5− i|
,

pog =
[
xk yk zk

]
, (7)

poc,i =
[
xc,ik yc,ik zc,ik

]
. (8)

The vector pgc,i describes the contact points in the vehicle
local frame {L} multiplied with the rotation matrix between
the {O} and {L} (refer Fig. 2). The constants h and w
are the half-width and half-breadth of the chassis, ri and
δi are variables used to ensure the proper sign of w and h
corresponding to each vertex of the chassis, and li are the
equivalent leg lengths, which also include the radius of the
wheels. Since poc,i also satisfy the terrain equation (1), it is
possible to compose:

zc,ik = f(xc,ik , yc,ik). (9)

Expanding (5) and stacking alongside (9), it is possible to
obtain the following set of coupled non-linear equations.

gi(xk,uk) = 0, (10)

where uk(xk) =
[
zk βk γk xc,ik yc,ik zc,ik

]T
. We

define the pose prediction as a non-linear least squares (NLS)
problem written as follows:

u∗
k(xk) = min

uk

∥gi(xk,uk)∥22 . (11)

Implicit Differentiation For an efficient solution of the
trajectory optimization problem introduced later, it is impor-
tant to compute the Jacobian of u∗

k(xk) with respect to its
input parameter xk. However, the relationship between u∗

k

and xk does not have an analytical form and thus requires
tools from implicit differentiation. The derivation is based on
Dini’s implicit function theorem [6] applied to the first-order
optimality condition. We define the following proposition
that has been adapted from [7] for our pose prediction NLS,
where D(.) represents the differential operator [7].

Proposition 1: Consider the NLS problem (11). We can
define H = D2

ukuk
g(xk,uk(xk)) ∈ Rm×m, where g(.) is

obtained by stacking gi(.) and B = D2
xkuk

g(xk,uk(xk)) ∈
Rm×n. Then, the Jacobian of the optimal pose is

Du∗
k(xk) = −H−1B,

with the assumption that H is non-singular.
Proof: The first-order optimality condition of our NLS

is given by Duk
g(xk,uk) = 01×m. Differentiating both



sides of this optimality condition with respect to xk provides
us the following equation

0m×n = D(Duk
g(xk,uk))

T

= D2
xkuk

g(xk,uk) + D2
ukuk

g(xk,uk)Duk(xk),

which can be rearranged to

Duk(xk) = −(D2
ukuk

g(xk,uk))
−1D2

xkuk
g(xk,uk), (12)

when D2
ukuk

g(xk,uk) is non-singular.

C. Bi-Level Optimization Based Trajectory Planning
The differentiability of our NLS based wheel-terrain in-
teraction and pose prediction can be fully exploited by
formulating trajectory planning as the following bi-level
problem :

min
∑
k

(cr(ẍk, ÿk, ẋk, ẏk) + cs(u
∗
k(xk))) , (13a)

(x0, y0, ẋ0, ẏ0, ẍ0, ÿ0) = b0, (13b)
(xn, yn, ẋn, ẏn, ẍn, ÿn) = bn, (13c)
x ≤ xk ≤ x, (13d)
y ≤ yk ≤ y, (13e)

u∗
k(xk) = min

uk

∥gi(xk,uk)∥22 . (13f)

ca(ẍk, ÿk) = ẍ2
k + ÿ2

k, (13g)

cc(ẍk, ÿk, ẋk, ẏk) = ÿẋ− ẍẏ/(ẋ2 + ẏ2 + ϵ)
3
2 , (13h)

cr(.) = ca(.) + cc(.). (13i)

The term (cr(.)) in the cost function (13a) ensures smooth-
ness in the trajectory and (cs(.)) is the stability cost, which
in our work has been modeled based on tip-over stability
criterion [8]. The vectors b0,bn are the stacked initial and
final positions, velocities, and accelerations. The bounds on
the positions (xk, yk) are given by x, y, x, y.

We can solve the above bi-level problem using projected
gradient descent. The main complexity lies in computing
∇xk

cs(u
∗
k(xk)) but which can be done by using the Jacobian

defined in Proposition 1.

III. RESULTS

In this section, we validate our proposed wheel-terrain in-
teraction and pose predictor along with the bi-level optimizer
based stable trajectory planning on uneven terrain.

A. Validation through the Gazebo physics simulator

We used the Husky robot in Gazebo with a synthetic terrain
model and collected the ground truth attitude data, zgt, βgt,
and γgt. It was then compared with the predicted values
zpred, βpred, and γpred obtained by solving the NLS. The
comparison results are plotted in Figures 4b and 4c. It can
be seen that the accuracy of the prediction is very high
since both the values align closely. Next, we present the
quantitative results of the minimum, maximum, and median
error acquired across several simulations in Figures 4d and
4e. We can see that the error values are low, meaning that the
NLS optimizer can successfully predict the vehicle’s attitude
on different terrains.
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Fig. 4: (a) Trajectory obtained from manually driving Husky on a synthetic
terrain in Gazebo. (b) z Ground truth and predicted values. (c) β and γ
Ground truth vs predicted. (d) Error statistics for z. (e) Error statistics for
β and γ.

B. Validation of the Safe Trajectory Planner

Here, the efficacy of the trajectory planner is validated with
the help of tip-over stability criteria as a metric for the safety
of the trajectories. Two example trajectories generated by the
planner with and without the stability cost cs(.) (based on
tip-over [8]) are shown in Fig 5. It can be seen that the
stability cost helps in generating trajectories that take into
account the terrain gradients while the trajectories without
the stability cost run through ditches and hills. Clearly, a
vehicle going through the former trajectory would be safer
than the latter. We also show the values for the roll angle
β and the pitch angle γ obtained for both the trajectories
in Fig. 6. The stability cost helps reduce the magnitude and
sudden changes in the angles.

IV. CONCLUSIONS

A differentiable wheel-terrain interaction model to predict
safe trajectories in uneven terrains was presented, which
performs equal to that of a high-fidelity physics engine.
The proposed approach has a wide variety of applications in
machine learning and reinforcement learning, since it can be
used for data collection and in learning pipelines due to the



(a) Example 1 (b) Example 2

Fig. 5: Trajectories with (black) and without stability cost(pink). Trajectories without the stability cost cuts across the terrains and move through hills
and ditches since it is primarily motivated by minimizing the acceleration cost. In contrast, the stability cost based on tip-over criterion of [8] aligns the
vehicle motion with the terrain gradient and minimizes sudden changes in pitch, roll and height.

(a) Example 1 (b) Example 2

Fig. 6: Evolution of Roll and pitch angles with and without the stability
cost for the two example trajectories shown in Fig.5

ability to leverage implicit gradients. Our immediate efforts
are to extend the NLS approach to consider the underlying
dynamics of the vehicle-terrain system.
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