
Classifying the Graph Topology of Non-Hermitian Energy Spectra
with Graph Transformer

Xianquan Yan1,2 Hakan Akgün1 Kenji Kawaguchi2

N. Duane Loh3,4* Ching Hua Lee1†

1Department of Physics, National University of Singapore, Singapore 117551
2Department of Computer Science, National University of Singapore, Singapore 117417

3Department of Biological Sciences, National University of Singapore, Singapore 117558
4NUS Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557

Abstract

Classifying non-Hermitian energy spectra under open bound-
ary conditions is an open challenge in physics. This classifi-
cation is a critical prerequisite for the rational inverse design
of systems exhibiting desired dynamics and topological re-
sponses. While graph topology has emerged as a promising
approach for characterizing these spectra, systematic meth-
ods for distilling non-Hermitian spectra into their correspond-
ing graph representations have been lacking. Moreover, the
resulting graphs often exhibit complexities that defy man-
ual classification, necessitating machine learning approaches.
In this work, we introduce a two-step framework for clas-
sifying non-Hermitian spectra based on their graph topolo-
gies. The first step employs Poly2Graph, an automated,
high-performance pipeline that distills non-Hermitian spec-
tra into spectral graphs suitable for graph neural networks
(GNNs). The second step involves generating a large dataset
of these spectral graphs and training a GNN for classification.
We propose GnLTransformer, a novel architecture featur-
ing dual channels that leverage line graphs to explicitly cap-
ture higher-order topological features. GnLTransformer
achieves over 99% classification accuracy on our dataset,
outperforming standard baselines by 32%. Notably, beyond
conventional GNNs, GnLTransformer offers inherent ex-
plainability regarding higher-order topology. As a further
contribution, we release a new multi-graph dataset compris-
ing over 117K spectral graphs.

Code — https://github.com/sarinstein-yan/poly2graph

1 Introduction
Topological physics has revolutionized modern physics, tra-
ditionally focusing on eigenstate homotopy windings in
Hermitian systems. Hermiticity, a core assumption in the
Schrödinger equation, ensures probability conservation and
the reality of energy eigenvalues.

However, real-world systems are frequently non-
Hermitian due to dissipation, gain, or non-conservative
forces (Ashida, Gong, and Ueda 2020; Lin et al. 2023).
Non-Hermiticity is pervasive across diverse domains,
including mechanical materials (Ghatak et al. 2020; Wang,

*duaneloh@nus.edu.sg
†phylch@nus.edu.sg

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Meng, and Chen 2023), biological systems (Sone et al.
2024; Nelson and Shnerb 1998; Shimokawa et al. 2013;
Amir, Hatano, and Nelson 2016), financial markets (Kumar
and Wilmott 2024; Gonzalez-Conde et al. 2023), and
artificial neural networks (Zdeborová 2020; Kerg et al.
2019).

The confluence of topology and non-Hermiticity has
significantly enriched topological physics, unveiling novel
phenomena such as exceptional points (spectral winding)
(Kawabata et al. 2019; Ding, Fang, and Ma 2022; Kawabata,
Bessho, and Sato 2019).

In this study, we investigate a distinct, intricate, and
largely unexplored aspect of non-Hermitian topology: the
graph topology of the non-Hermitian energy spectrum,
termed the spectral graph. Mathematically, this graph is de-
rived as an algebro-geometric property of the system’s char-
acteristic polynomial.

Despite the ubiquity and diversity of non-Hermitian spec-
tral graphs, a systematic methodology for studying the rela-
tionship between the characteristic polynomial and the re-
sulting spectral graph has remained elusive. Three major
challenges have hindered the classification and broader in-
vestigation of these graphs:
1. Exponential complexity with polynomial degree

range. As the degree range1 of the characteristic poly-
nomial increases, the complexity of the spectral graph
grows exponentially. The resulting topologies quickly
become intractable and unidentifiable by human inspec-
tion (Figure 1a).

2. The inverse problem is analytically insoluble and has
no existing solution. A key objective is the inverse
problem: given a spectral graph, determine the class
of its parent characteristic polynomial. Due to the irre-
versible and nonlinear operations involved in the algebro-
geometric transformation from polynomial to graph, this
problem defies explicit analytical solutions and currently
has none.

3. Identification of essential graph features. Even when
complex spectral graphs can be algorithmically identi-

1The degree range is the difference between the maximum and
minimum monomial degrees; e.g., P (z, E) = z2 + z−1 has a de-
gree range of three. A larger degree range may arise from denser or
longer-range hopping, or more energy bands.

(a)

Non-Hermitian
Hamiltonian - 𝐻

Characteristic
Polynomial - 𝑃(𝑧)

Characteristic
Polynomial
Class - 𝐶୔

Spectral Graph - G

poly2graph

GnLTransformer

(b)

(c)

… …

Energy Spectrum

Figure 1: (a) Exotic geometries of spectral graphs, whose complexity quickly becomes difficult to classify by human inspection.
(b) A spectral graph (G) emerges from the eigenspectrum of a non-Hermitian Hamiltonian matrix. It becomes rigorously defined
only in the large-size limit (L→∞). This limiting spectrum can be derived from the characteristic polynomial P (z, E) of the
Hamiltonian. The polynomials P (z, E) are grouped into classes (CP) based on their algebraic form. Poly2Graph automates
the transformation P (z, E) → G, and GnLTransformer solves the inverse classification G → CP . (c) [i-iii] The graph
topology is sensitive to polynomial coefficients; a single CP may encompass multiple distinct topologies. Conversely, [i,iv-vi]
the same graph topology may arise from different CP ; nuanced variations in node and edge locations are necessary to uniquely
identify the spectral graph with its parent CP .

fied, determining which specific patterns (e.g., loops,
branching structures) encode the decisive information
about the parent polynomial remains an open question.

We address these challenges with a two-pronged ap-
proach. First, we develop Poly2Graph, a fast and
memory-efficient Python package that automatically con-
structs spectral graphs from arbitrary characteristic polyno-
mials. This tool enables the systematic exploration of non-
Hermitian spectral topologies at scale. By resolving crit-
ical computational bottlenecks, Poly2Graph achieves a
105 × speedup over previous methods. As a byproduct,
we introduce a large-scale multigraph2 dataset for graph-
level classification, along with its generator. This method-
ology can generate an infinite variety of graph topologies,
providing a novel benchmark resource for multigraph algo-

2In a multigraph, a pair of nodes can be connected by multiple
edges. Conventionally multiedges are aggregated into a vectorized
attribute of a simple-edge; however, in spectral graph the multi-
edges are embedded in a metric space (C-plane), appearing as dis-
tinct continuous paths that can not be straightforwardly aggregated.

rithms.
Second, we propose a novel explainable graph trans-

former, GnLTransformer (Graph and Line Graph
Transformer). This architecture introduces dual channels
that leverage line graphs to explicitly capture higher-order
topology beyond standard node-node interactions. Trained
on the generated dataset, GnLTransformer achieves
99%+ accuracy in predicting the polynomial class from a
given spectral graph, surpassing the best baseline by 32%.
This architecture holds potential for representation learning
in complex systems exhibiting higher-order phenomena, as
well as molecular embedding and drug discovery.

Beyond performance, a primary focus of this work is ex-
plainability. GnLTransformer transcends conventional
graph transformers by being inherently interpretable not
only at the node level but also for higher-order topologi-
cal structures such as edges, triplets, and, more generally,
simplices.

By visualizing attention patterns and similarity matrices
across these higher-order components, the model recovers
critical features identified in prior domain literature, and

moreover uncovers new insights into the critical spectral
features that link a spectral graph to its parent polynomial—
insights elusive to traditional analytical methods.

Together, these contributions bridge non-Hermitian topol-
ogy, algebraic geometry, morphological computer vision,
and graph representation learning, underscoring the poten-
tial of explainable artificial intelligence (XAI) as a powerful
tool for scientific discovery.

2 Preliminaries & Setup
In physical sciences, it is customary to represent and study a
system through its Hamiltonian. The energy spectrum, com-
prising the eigenvalues of the Hamiltonian, reveals the en-
ergy band structure—a central focus in condensed matter
physics. Consider a generic 1D tight-binding Hamiltonian:

H =
∑
x,j

tj ĉ
†
xĉx+j (1)

where x indexes unit cells, j denotes the hopping displace-
ment, and ĉx (ĉ†x) is the annihilation (creation) operator at
the x-th unit cell. The term tj represents the transition am-
plitude for a particle hopping from site x + j to site x, and
the transition probability is given by the squared magnitude,
|tj |2.

The matrix representation in real space, Hreal, is a
Toeplitz matrix (where each descending diagonal from left
to right is constant):

Hreal =



t0 t1 t2 · · · 0
t−1 t0 t1

t−2 t−1 t0
. . .

...
...

. t2
t0 t1

0 · · · t−2 t−1 t0


(2)

For a system with L sites, Hreal ∈ CL×L. The hopping
terms tj can generally be complex or matrix-valued (for
multi-band systems). In general tj ̸= t−j , which breaks the
Hermiticity of the Hamiltonian H† := (H∗)T ̸= H and
the eigenvalues assume complex values.

Diagonalizing Hreal yields the eigenvalues. Even in
finite-size systems, the skeleton of the spectral graph can
be discerned; e.g., the finite energy spectrum in figure 1b re-
sembles a 3-Cayley tree. In the thermodynamic limit (L →
∞), the spectral graph becomes rigorously defined (Tai and
Lee 2023; Xiong and Hu 2023).

These spectral graphs exhibit a kaleidoscope of pretty ge-
ometries, including arcs, loops, and more exotic shapes re-
sembling stars, kites, braids, and even rockets (Figure 1a).
These structures represents an uncharted band topology
which embeds hidden symmetries and graph topological
transitions that lie beyond standard homotopy-based frame-
works. In effect, a new class of topological invariants
appears—those tied to the global geometry of the eigenvalue
loci.

However, accurately diagonalizing large non-Hermitian
matrices is notoriously challenging, and the infinite-size

case is intractable via direct diagonalization (Yang et al.
2020). The standard approach, guided by non-Bloch band
theory, is to first Fourier transform the real-space Hamilto-
nian Hreal to momentum-space:

H(z) =

q∑
j=−p

tj z
j , z := eik (3)

where k ∈ [−π, π) is the quasimomentum. Subsequently,
the celebrated generalized Brillouin zone (GBZ) theory is
applied. We defer mathematical details to appendix A.

The key takeaway is that the spectral graph in the thermo-
dynamic limit can be derived entirely from the roots of the
characteristic polynomial. This polynomial is the determi-
nant of the momentum-space Hamiltonian minus the energy
E (i.e., the energy-momentum dispersion):

P (z, E) := det
[
H(z)− E I

]
=

q∑
n=−p

an(E) zn. (4)

The algebraic form of P (z, E)—which monomials zn are
present—plays a crucial role in classifying spectral graph.

Note that the spectral graph is invariant under parity
transformation—i.e., spatial inversion about the origin (x→
−x), or put differently, flipping the 1D lattice from left to
right. In terms of Hreal, it is equivalent to transpose the ma-
trix (tj → t−j) which does not change eigenvalues. To ac-
count for this invariance, we define the characteristic poly-
nomial class CP . We first define a binary coefficient vector
b indicating the presence of monomials:

b = (b−p, ..., bq)

where bn := 1 if an(E) ̸= 0; bn := 0 otherwise. (5)

The class CP is then defined as the set containing b and its
reverse b′ = (bq, ..., b−p):

CP = {b, b′}. (6)

If b is palindromic (b = b′), the class contains a single ele-
ment CP = {b}. We find CP is the key criterion that classi-
fies spectral graphs, and thus the target of our inverse classi-
fication task.

Example. In figure 1b, the 1D one-band example stems
from the Bloch Hamiltonian H(z) = −z−2 − z + z4,
which is a scalar. Its characteristic polynomial is therefore
P (z, E) = −z−2 − E − z + z4, belonging to the class
CP = b ∪ b′ = (1, 0, 1, 1, 0, 0, 1) ∪ (1, 0, 0, 1, 1, 0, 1).

3 Methods
3.1 Poly2Graph
Poly2Graph is an optimized, end-to-end computational
pipeline designed to automate the extraction of spectral
graphs from one-dimensional non-Hermitian Hamiltonians.
It operationalizes the theoretical constructions described in
appendix A by integrating non-Bloch band theory, algebraic
geometry, and morphological image processing. Full algo-
rithmic details are deferred to appendix B.

The realization of this pipeline required overcoming sig-
nificant computational challenges inherent in calculating
the spectrum in the thermodynamic limit. Poly2Graph
achieves a 105× speedup over prior implementations
(benchmarked in appendix B.5), enabling the systematic,
large-scale exploration of these topologies for the first time.

The core of the procedure involves calculating the Den-
sity of States (DOS), ρ(E), across the complex energy plane
Ω ⊂ C. The spectral graph is defined by the regions where
ρ(E) > 0. The DOS is derived from the Laplacian of the
spectral potential, Φ(E):

ρ(E) = − 1

2π
∇2Φ(E), (7)

where ∇2 = ∂2
ReE + ∂2

ImE . The spectral potential (also
known as the Ronkin function (Wang, Song, and Wang
2024)) itself depends on the roots {zi(E)} of the char-
acteristic polynomial P (z, E) = 0, sorted by magnitude
|z1(E)| ≤ · · · ≤ |zp+q(E)|:

Φ(E) = − log |aq(E)| −
p+q∑

i=p+1

log
∣∣zi(E)

∣∣ , (8)

where aq(E) is the leading coefficient (Tai and Lee 2023;
Xiong and Hu 2023; Wang, Song, and Wang 2024).

High-Throughput Root Finding. The primary bottle-
neck in this process is the need to calculate the roots of
P (z, E) = 0 across a dense grid Ω (often requiring > 106

points for graph extraction quality). Prior methods are pro-
hibitively slow at this stage. Poly2Graph addresses this by
employing a strategy based on Frobenius companion matri-
ces, transforming the root-finding problem into a paralleliz-
able eigenvalue problem. Utilizing optimized eigen-solvers
with automatic GPU acceleration, this approach reduces the
computation time from hours to milliseconds.

Adaptive Resolution Enhancement. A second challenge
involves balancing computational cost with the resolution
required to capture fine topological features (small loops,
adjacent nodes, etc). Since the spectral graph typically oc-
cupies only a small fraction of the domain Ω, uniform high-
resolution sampling is inefficient—evident from figure 1b,
the graph skeleton only occupies a measure-zero area in the
thermodynamic limit (white region), and the majority of the
domain is non-informative (black region). Poly2Graph
hence introduces a two-stage adaptive refinement strategy.
1. Region Identification: The DOS is initially computed

on a coarse grid (e.g., 256× 256). Morphological opera-
tions (binarization and dilation) are applied to this coarse
image to generate a mask that conservatively covers the
spectral graph while excluding 95-99% of the empty do-
main.

2. Targeted Refinement: The spectral potential and DOS
are recalculated at a significantly higher resolution (e.g.,
4× enhancement) exclusively within the masked region.

This approach achieves high effective resolution (e.g.,
1024 × 1024) with minimal overhead. Efficiency is further
improved by exploiting inherent symmetries in the charac-
teristic polynomial (e.g., real coefficients imply symmetry

about the real axis), which can reduce computation by up to
50%.

Morphological Graph Extraction. Finally, the high-
resolution DOS image is converted into a graph structure.
We apply iterative morphological thinning (skeletonization)
algorithms (Lee, Kashyap, and Chu 1994) to reduce the bi-
narized DOS to a one-pixel-wide skeleton while preserving
topology. This skeleton is then processed to identify nodes
(junctions and endpoints) and edges, outputting the result as
a NetworkX MultiGraph object.

3.2 GnLTransformer
The inverse classification from spectral graph to characteris-
tic polynomial class is analytically intractable, due to the ir-
reversible and nonlinear operations in the forward map from
characteristic polynomial to spectral graph. There has been
no attempt to solve this problem.

To address this open problem, we propose
GnLTransformer, a novel graph neural network ar-
chitecture. GnLTransformer leverages both the original
graph structure and its higher-order relationships (captured
by line graphs), and the multi-head attention of transformer
architecture; hence the name GnLTransformer, as in “Graph
and Line graph Transformer”.

Learning independent representations for each higher-
order topological component, combined with the powerful
attentive convolution layers and self-attention pooling, GnL-
Transformer effectively captures complicated geometry in-
herent in spectral graphs. The forward pass is summarized
in algorithm 2.

Notably, transcending traditional graph transformers,
GnLTransformer is by design explainable not only on nodes
but also on higher-order topological components, such as
edges, triplets, and beyond. Visualizing the attention pat-
terns across higher-order topology reveals new insights on
the essential spectral graph features that identify the spectral
graph to its parent polynomial, which are cryptic to tradi-
tional methodologies.

Line Graphs and Higher-Order Topology. The line
graph of G, denoted as L = L(G), is constructed such that
each node in L represents an edge in G. Two nodes in L are
connected if and only if their corresponding edges in G share
a common endpoint (illustrated in figure 2c).

The line graph operator L(·) can be nested to capture
higher-order topology—e.g., L(G) describes how edges in
G are adjacent, and its edge represents a triplet; L2(G) cap-
tures the adjacency of G’s triplets and its edge represents a
3-claw.

In general4, Li(G) captures the interactions within i-
simplices in G (edge is 1-simplex, triangle is 2-simplex,
etc.). The augmentation of higher-order relationship over-
comes the intrinsic limitations of pairwise interactions; e.g.,

3In our experiments, we use only two channels, {G, L(G)},
to demonstrate the architecture’s effectiveness. The translucent
L2(G) channel and ellipses are meant to illustrate that the channels
can be extended indefinitely. Moreover, since G is planar—i.e., it
can be laid out on a 2D plane without edge crossings—adding more
channels provides no additional advantage.

4Li(G) = L(Li−1(G)), L0(G) = G

Potential

Φ(𝐸)

DOS
𝜌(𝐸)

Graph
Skeleton

Spectral
Graph G

Concatenation

MLP

Line Graph
L = 𝐿(G)

Line Graph of Line
Graph 𝐿ଶ(G)

Attentive Convolution
& GRU Readout

……(c)

SAGPooling

P
re

d
ic

ti
o

n
 -

𝐶መ
௉

Truth
𝐶௉

𝑃(𝑧)

(a) Poly2Graph (b) GnLTransformer

Figure 2: (a) Poly2Graph transforms input characteristic polynomials to NetworkX MultiGraphs via a series of algebro-
geometric operations and morphological image processing. (b) GnLTransformer takes spectral graphs {G} as input, creates
line graphs {Li(G) : i = 1, ..., ℓ}, and processes them through parallel channels3. Each channel comprises attentive convolution
blocks and self-attention graph pooling. Their outputs are concatenated to form graph-level embeddings fed into an MLP
classifier. (c) The line graph (blue vertices, green edges) of a spectral graph (red vertices, blue edges). Each vertex of L(G)
represents an edge of G, and two vertices of L(G) are adjacent if the corresponding edges share a common endpoint in G.

it is shown to be responsible for collective behaviors like
explosive transitions (Battiston et al. 2021).

Architecture. GnLTransformer takes spectral graphs {G}
as input, create ℓ line graphs {Li(G) : i = 1, ..., ℓ}, and
forward pass them separately through ℓ parallel channels. In
figure 2b we demonstrate three channels {G, L(G), L2(G)}
to indicate the infinite extensibility of the architecture. But
in the case of classifying spectral graphs, we only use two
channels {G,L(G)} (i.e., set ℓ = 1)—since spectral graphs
are planar5, L(G) already captures edge-edge attention and
triplet feature; higher-level attention (e.g., triplet-triplet) is
only meaningful for 3D objects like molecules and thus of-
fers diminishing returns in capturing additional information.

Each channel is composed of the following components:

1. Attentive Convolution Layers: We adopt two flavors—
TransformerConv (Shi et al. 2021) and GATv2Conv
(Veličković et al. 2018)—to propagate and refine node
features in local neighborhoods.

2. Gated Recurrent Units (GRUs): Interleaved with the
convolution layers, GRUs (Cho et al. 2014) help integrate
information across layers, mitigating oversmoothing and
preserving sequential dependencies.

3. Jumping Knowledge: After passing through all (con-
volution, GRU) blocks, we employ jumping knowledge
(Xu et al. 2018) to produce the final node embeddings,

5Planar graphs are graphs that can be laid out on a 2D plane
without edge crossings.

in order to capture hierarchical information covering all
neighborhood scales.

4. Self-Attention Graph Pooling: An attentive pooling
mechanism that ranks nodes(/edges) and coarse-grain the
graphs by keeping the top-k nodes(/edges) with the high-
est importance (Lee, Lee, and Kang 2019). The pooled
embeddings are then concatenated to form the graph-
level embedding (Zhang et al. 2018).

Finally, the graph-level embeddings from all channels are
concatenated and passed through an multilayer perceptron
(MLP) to produce the final classification logits.

3.3 Related Works
GNNs have demonstrated significant success across diverse
scientific and social domains, including crystallography (Xie
and Grossman 2018; Park and Wolverton 2020), materials
discovery (Merchant et al. 2023; Reiser et al. 2022; Schütt
et al. 2018), high-energy physics (DeZoort et al. 2023),
molecular modeling and drug discovery (Duvenaud et al.
2015; Xiong et al. 2020; Jiang et al. 2021), and social net-
work analysis (Fan et al. 2019).

Several studies have incorporated line graphs into GNN
architectures. CL-GNN (Zhu et al. 2019) uses a coarsened
line graph for heterogeneous graphs. LgaCL (Wang et al.
2023) employs the original and line graphs as positive pairs
in contrastive learning. The most closely related work is
ALIGNN (Choudhary and DeCost 2021), which utilizes al-
ternating message passing on the graph and its line graph for

Figure 3: Ablation study and baseline model comparison
results on a 20% subset of the data. The blue, red, and green
markers denote GnLTransformer, GnLTransformer
(without the line graph channel), and the baseline models,
respectively. In terms of test accuracy, GnLTransformer
outperforms the best baseline model, GIN, by a relative mar-
gin of 32%. Removing the line graph channel decreases the
accuracy by 8%. The ablated GnLTransformer, despite
having fewer parameters, still outperforms the best baseline
by 22%. Table 4 lists the exact numerics corresponding to
this figure.

molecular property prediction.
GnLTransformer differs from ALIGNN in several key

aspects: (1) The use of multi-head attention provides in-
herent explainability; (2) GRU units mitigate oversmooth-
ing; (3) Jumping Knowledge captures hierarchical informa-
tion; (4) SAGPooling preserves richer graph-level informa-
tion. Most significantly, our work explores the application of
nested line graphs and emphasizes the resulting explainabil-
ity regarding higher-order topology.

4 Experiments
We validate the GnLTransformer on the task of inverse
classification: predicting the characteristic polynomial class
CP from a given spectral graph G.

4.1 Dataset Generation
We generated a large dataset, SpectralGraph-117K, by sys-
tematically sampling the space of characteristic polynomi-
als. We focused on single-band systems with a degree range
of 8 (p = q = 4):

P̂ (z, E) = z−4 + a−3z
−3 + a−2z

−2 + a−1z
−1

− E + a1z + a2z
2 + a3z

3 + z4. (9)

We sample the 6 variable real coefficients {a±1, a±2, a±3}
within the 6D hypercube [−1.2, 1.2]6. Each parameter is
sampled at 7 equidistant points: {−1.2,−0.8, ..., 0.8, 1.2}.
We apply Poly2Graph to each resulting P̂ (z, E), gener-

ating a dataset G of 117, 658 pairs of (G, CP)6.
This dataset presents a significant challenge compared to

standard graph-level benchmarks (see table 5). It comprises
117K spectral graphs distributed highly unevenly across 36
CP classes, with class sizes ranging dramatically from 10 to
47K (visualized by the color imbalance in figure 4).

4.2 Input Feature Engineering
The spectral graphs are spatial graphs embedded in the com-
plex energy plane. We design features to capture this geom-
etry explicitly. For the graph G, each node is assigned a dv =
2 feature vector xG containing its coordinates (ReE, ImE).
Each edge has a de = 11 feature vector eG, comprising
the edge length and the 2D positions of 5 equidistant points
along the edge.

For the line graph L, each node corresponds to an edge
in G and inherits its features: xL = eG. Each edge in L
represents a triplet (two connected edges) in G. We define
a dt = 7 feature vector eL capturing the triplet’s geome-
try: the 2D position of the triplet center (average of the three
nodes’ positions) and 5 angles characterizing the branching
structure at the joint node. These angles are derived by con-
sidering vectors formed by the joint node, the two adjacent
nodes, and 2 equidistant points on each connecting edge.

4.3 Performance on Inverse Classification
We trained GnLTransformer on the full dataset using a
90-5-5 train-validation-test split, repeating the process over
5 random seeds. Training utilized the AdamW optimizer
with a cosine annealing learning rate scheduler. The model
state checkpointed at the best validation accuracy was used
for final evaluation. Full training details are provided in ap-
pendix D, and hyperparameters (derived from the architec-
ture detailed in Appendix C) are listed in table 3.

Metric on Dtest Value

Accuracy 99.78% ± 0.05%
F1 (macro) 0.985 ± 0.005
AUROC (macro) 0.99998 ± 0.00001

Table 1: Performance metrics (Accuracy, macro-
averaged F1 score, and macro-averaged AUROC) of
GnLTransformer on the inverse classification task using
the full SpectralGraph-117K dataset, averaged over 5 runs.

GnLTransformer achieves near-perfect classification
results (Table 1). This exceptional performance suggests that
while the mapping from CP to the graph topology (ignor-
ing spatial embedding) is many-to-many, the mapping to the
specific spectral graph geometry (including spatial embed-
ding) is likely injective.

The principled sampling in the dataset generation and the
deterministic nature of the algebro-geometric transforma-

6We slightly augmented the dataset by adding 9 copies of the
sole sample belonging to the class CP = {(1, 0, 0, 0, 1, 0, 0, 0, 1)},
which otherwise would have only one instance under this sampling
strategy.

Figure 4: UMAP visualization of the final graph embed-
dings (logits), colored by the true characteristic polynomial
class. Despite severe dataset skewness, GnLTransformer
clearly separates the spectral graphs into distinct clusters.

tion are likely the key factors enabling the model to effec-
tively distinguish classes based on nuanced geometric fea-
tures. The UMAP visualization of the final graph embed-
dings (Figure 4) confirms the model’s ability to clearly sep-
arate the classes in the latent space, despite the severe class
imbalance.

Misclassification Analysis. A closer analysis of the few
errors reveals they predominantly arise from reciprocal
polynomials, where a−n = an. As detailed in appendix D.1,
reciprocity implies that the parent Hamiltonian is Hermitian,
ensuring real eigenvalues. In the single-band case studied
here, all reciprocal polynomials yield an isomorphic graph:
two nodes connected by a single edge lying on the real axis,
creating degenerate cases that the model finds difficult to
distinguish.

Further analysis of the latent space identifies a decision
boundary where the difference between the top two pre-
diction probabilities is minimal. All misclassified instances
are located near this boundary. Remarkably, this bound-
ary effectively separates graphs originating from Hermi-
tian Hamiltonians (reciprocal polynomials) from those orig-
inating from non-Hermitian ones, indicating the model has
grasped this physical distinction.

Ablation Study & Baseline Comparison. To evaluate
the specific contribution of the line graph channel and to
compare GnLTransformer against established GNN ar-
chitectures, we conducted an ablation study and baseline
comparison. To rigorously test the models’ generalization
capabilities, these comparisons were performed on a random
20% subset of the data (23.5K graphs) over 10 random splits

(details in appendix D).
We compared GnLTransformer (GnL) with an ab-

lated version lacking the line graph channel (GnL w/o L),
and five popular baselines: GCN (Kipf and Welling 2017),
GAT (Veličković et al. 2018), GIN (Xu et al. 2019), Neural
Molecular Fingerprints (MF) (Duvenaud et al. 2015), and
Attentive Fingerprints (AFP) (Xiong et al. 2020).

The results are summarized in figure 3 (numerical details
in table 4). On this challenging subset, GnLTransformer
achieves a test accuracy of 84.6%, significantly outperform-
ing the best baseline, GIN (64.1%), by a relative margin of
32%.

The ablation study demonstrates the critical role of the
line graph channel; removing it decreases the accuracy by
8%. This confirms that explicitly capturing higher-order
topology enhances the model’s ability to discern complex
spectral geometries. Intriguingly, the ablated GnLTrans-
former (w/o L), despite having fewer trainable parameters
than the baselines, still outperforms GIN by 22%, highlight-
ing the effectiveness of the core architecture.

Given the fact that the baseline models are proven to be
powerful in a plethora of real-world applications, GnLTrans-
former’s superior performance on spectral graph suggests
that it may also contribute to and push the boundaries in
other disciplines, such as bioinformatics and social network
analysis, where capturing complicated geometric informa-
tion and higher-order topological interactions is critical for
improving performance.

5 Higher-Order Explainability and Insights
A key advantage of GnLTransformer is its inherent ex-
plainability, derived from the attentive convolution layers
(TransformerConv and GATv2Conv) operating within its
parallel-channel architecture. While standard graph trans-
formers provide node-level attention, the inclusion of the
line graph channel (L) enables the interpretation of higher-
order topological features. For instance, attention weights in
the G channel indicate the significance of neighboring nodes,
while attention weights in the L channel reveal the impor-
tance of adjacent edges (representing triplets in G) during
message passing.

By visualizing these learned attention weights and analyz-
ing the learned embeddings, we can uncover which specific
geometric and topological features the model deems critical
for classification—insights often unattainable to traditional
analytical methods.

5.1 Attention Visualization: Identifying Critical
Features

We visualize the aggregated attention weights (summed
across all layers and heads, as detailed in appendix E) for
a representative spectral graph in Figure 5b-c. A layer-by-
layer breakdown is provided in figure 8. Several key obser-
vations emerge across the dataset, revealing which spectral
features the model prioritizes:

1. Focus on Extremal Features. The model consistently
assigns the highest attention weights to the outermost
leaf nodes and their connecting edges (Figure 5b-c). This

2 0 2 4
Re(E)

3
2

1
0

1
2

3
Im

(E
)

(a) DOS, (E)

0
1

2 3

4
5 6 7

8

910

11
12

(b) Attention Weights of

A
B

C

D
E

F G

H

I J
K

L

M

N
O

(c) Attention Weights of

0 7 2 4 3 1 12 5 6 8 9 10 11

0
7
2
4
3
1

12
5
6
8
9

10
11

(d) S(xG)

0 7 2 4 3 1 12 5 6 8 9 10 11

0
7
2
4
3
1

12
5
6
8
9

10
11

(e) S(H1, G
v)

0 7 2 4 3 1 12 5 6 8 9 10 11

0
7
2
4
3
1

12
5
6
8
9

10
11

(f) S(HG
v)

K D F I B C G H E A J L M O N

K
D
F
I

B
C
G
H
E
A
J
L
M
O
N

(g) S(eG)

K D F I B C G H E A J L M O N

K
D
F
I

B
C
G
H
E
A
J
L
M
O
N

(h) S(H1, L
v)

K D F I B C G H E A J L M O N

K
D
F
I

B
C
G
H
E
A
J
L
M
O
N

(i) S(HL
v)

Figure 5: (a) Density of states for P̂ (z, E) =
z−4+0.8z−3+0.4z−2−1.2z−1−E−0.4z−0.8z2−1.2z3 +
z4. (b-c) Attention visualizations for channels G and L,
where node/edge color, size, and width are scaled by
min-max normalized attention weights. The model focuses
heavily on leaf nodes and short branches. (d-i) Cosine
similarity matrices of embeddings at different stages: raw
input features (d, g), after the first convolution block (e, h),
and final embeddings (f, i). (Upper row: G nodes; lower
row: L nodes, effectively reflecting edge embeddings in G).
The emergence of clear block structures demonstrates the
learning of a geometrically aware similarity kernel.

observation aligns remarkably well with theoretical in-
sights from non-Hermitian physics, where leaf nodes are
known to encode crucial information about the character-
istic polynomial, such as its degree range p + q (Tai and
Lee 2023; Lee et al. 2020).

2. Sensitivity to Topological Transitions. We observe that
short branch edges often receive disproportionately high
attention. Short branches typically occur when the sys-
tem parameters (polynomial coefficients) are near a crit-
ical point where the graph topology is about to change
(e.g., a loop collapsing or a branch disappearing). The
model’s focus on these features suggests it learns to rec-
ognize these precursors to topological transitions as crit-
ical discriminators between classes.

3. Asymmetric Attention. Notably, as discussed in ap-
pendix E.2, the attention weights are often not distributed
symmetrically (e.g., reflection or rotation), even when the
graph geometry appears symmetric. This asymmetry in-
dicates that GnLTransformer is not merely relying on
global topology but is utilizing the precise spatial em-
bedding (geometric information) to distinguish nuanced
variations between spectral graphs arising from different

polynomial classes.

5.2 Embedding Analysis: Learning Geometric
Similarity

To further understand how GnLTransformer processes
information, we analyze the evolution of the learned repre-
sentations by examining the cosine similarity matrices of the
node and edge embeddings at different stages of the network
(Figure 5d-i).

In the initial stage (input features, Figure 5d, g), the sim-
ilarity reflects only the raw spatial proximity or geometric
similarity of the features. However, as the data propagates
through the attentive layers, distinct patterns emerge.

In the final embeddings (Figure 5f, i), clear block
structures are evident (after appropriate permutation). This
demonstrates that GnLTransformer effectively clusters
nodes (in the G channel) and edges (in the L channel) that
share similar geometric and topological roles within the
spectral graph. This confirms that the architecture success-
fully learns a robust, geometrically aware similarity kernel
during the encoding process, which is essential for the high
accuracy. Moreover, it may serve to inspire domain experts
to uncover new physical principles governing spectral graph
topology.

Conclusion
We have introduced a novel framework for the system-
atic exploration and classification of non-Hermitian spec-
tral graph topologies derived from characteristic polynomi-
als. This framework addresses significant challenges con-
cerning the complexity of these graphs, the intractability
of the inverse mapping, and the identification of essen-
tial features. Our contributions include the development of
Poly2Graph, a highly efficient software package that en-
ables the large-scale generation of spectral graphs, and the
release of an extensive spatial multigraph dataset. We pro-
posed GnLTransformer, a line graph-enhanced trans-
former model that achieves over 99% accuracy in identi-
fying the parent polynomial classes. Crucially, the model’s
inherent explainability regarding higher-order topology pro-
vides new insights into the features governing spectral ge-
ometry. This work bridges concepts from non-Hermitian
physics, algebraic geometry, and graph representation learn-
ing, demonstrating the power of explainable AI in decipher-
ing complex physical phenomena and paving the way for
future research across diverse scientific domains.

A Mathematical Foundations
This section provides the mathematical underpinning for the
concepts introduced in the main text, detailing the emer-
gence of spectral graphs from non-Hermitian Hamiltonians
and the theoretical framework used in Poly2Graph.

A.1 From Hamiltonian to Characteristic
Polynomial

We consider a general 1D tight-binding Hamiltonian de-
scribing a system with S internal degrees of freedom (bands)

per unit cell:

H =
∑

x,j;α,β

(tj)αβ ĉ
†
x,αĉx+j,β (10)

where x indexes unit cells, j is the hopping displacement,
and α, β ∈ {1, . . . , S}. The hopping amplitudes tj are S×S
matrices.

In real space, for a system of size L, the Hamilto-
nian Hreal is an (LS × LS) block Toeplitz matrix. Non-
Hermiticity (H† ̸= H) generally leads to complex eigen-
values.

By applying a Fourier transform, we obtain the
momentum-space (Bloch) Hamiltonian:

H(z) =
∑
j

tjz
j , z := eik (11)

where k is the quasimomentum.
The energy spectrum (dispersion relation) is determined

by the roots of the characteristic polynomial:

P (z, E) := det[H(z)− E IS] =

q∑
n=−p

an(E)zn = 0.

(12)
Here, we focus on single-band systems (S = 1), where p and
q correspond directly to the maximum range of backward
and forward hopping. The total degree of the polynomial in
z (after clearing denominators) is dz = p + q. We sort the
roots {zi(E)} of P (z, E) = 0 by magnitude: |z1| ≤ |z2| ≤
· · · ≤ |zp+q|.

A.2 From PBC to OBC: Spectral Collapse and
the GBZ

Under periodic boundary conditions (PBC), the spectrum is
obtained by letting k sweep the Brillouin Zone (BZ), i.e.,
|z| = 1. The PBC spectrum typically forms closed loops in
the complex energy plane.

However, non-Hermitian systems exhibit extreme sensi-
tivity to boundary conditions. Under Open Boundary Con-
ditions (OBC), eigenstates can become exponentially lo-
calized at the boundaries—the non-Hermitian skin effect
(NHSE). Consequently, the OBC spectrum differs dramati-
cally from the PBC spectrum; it collapses inward from loops
to a network of arcs and junctions (figure 6).

The spectral graph G is defined as the locus of the OBC
eigenvalues in the thermodynamic limit (TDL, L→∞).

To determine this spectrum, non-Bloch band theory is em-
ployed. This theory replaces the BZ with the Generalized
Brillouin Zone (GBZ). We define the complex momentum
k = kR + iκ. The imaginary part,

κ := Im(k) = − log |z|, (13)

is the inverse localization length (or inverse skin depth) of
the eigenstates.

The central result of non-Bloch band theory states that an
energy E belongs to the OBC spectrum (G) if and only if
there exist two roots (in magnitude) that are equal:

|zp(E)| = |zp+1(E)|, E ∈ G. (14)

The GBZ is the set of z(E) values satisfying this condition.

2 1 0 1 2
Re(E)

2
1

0
1

2
Im

(E
)

OBC Spectrum
PBC Spectrum

1.0 0.8 0.6 0.4
(E)

Figure 6: Spectral Collapse & Spectral Potential. The
PBC spectrum typically appears as loops. Under OBC, the
spectrum collapses into a graph skeleton. The spectral graph
resides on the ridges of the spectral potential landscape,
Φ(E).

A.3 The Electrostatic Analogy and Spectral
Potential

While equation 14 defines the spectral graph, solving it di-
rectly is computationally challenging. A more efficient ap-
proach leverages a connection to 2D electrostatics (Yang
et al. 2022; Xiong and Hu 2023; Wang, Song, and Wang
2024).

We treat the eigenvalues {ϵn} of Hreal as localized
charges in the complex energy plane. In the TDL, the Den-
sity of States (DOS) is ρ(E). We can define a spectral po-
tential (analogous to the Coulomb potential) Φ(E):

Φ(E) = − lim
L→∞

1

L

∑
n

log |E − ϵn|

= −
∫
G
ρ(E′) log |E − E′| d2E′. (15)

The DOS can be recovered from the potential via the Pois-
son equation:

ρ(E) = − 1

2π
∇2Φ(E), (16)

where ∇2 = ∂2
ReE + ∂2

ImE is the Laplacian. Geometrically,
this implies that the spectral graph G (where ρ(E) > 0)
resides on the ridges (regions of high curvature) of the po-
tential landscape Φ(E) (figure 6).

The crucial step is relating Φ(E) to the characteris-
tic polynomial P (z, E). Note that

∑
log |E − ϵn| =

log |det(EI −Hreal)|. By applying theorems relating the

determinants of large Toeplitz matrices (like Hreal) to the
roots of their symbol (the characteristic polynomial), specif-
ically the Szegő strong limit theorem and its generaliza-
tions, Φ(E) can be expressed directly in terms of the roots
{zi(E)} (Xiong and Hu 2023):

Φ(E) = − log |aq(E)| −
p+q∑

i=p+1

log
∣∣zi(E)

∣∣. (17)

This formulation allows the computation of Φ(E) and sub-
sequently ρ(E) directly from the roots of P (z, E), com-
pletely bypassing the need for large-scale matrix diagonal-
ization.

A.4 Characteristic Polynomial Class
The spectral graph G is determined entirely by the charac-
teristic polynomial P (z, E). To classify these graphs, we
define classes based on the algebraic form of P (z, E), char-
acterized by the presence or absence of specific monomials
zn.

Definition 1 (Binary Coefficient Vector). Given P (z, E) =∑q
n=−p an(E)zn, the binary coefficient vector b is defined

as:

b = (b−p, b−p+1, . . . , bq−1, bq) (18)
where bn := 1 if an(E) ̸= 0; bn := 0 otherwise. (19)

The spectral graph is invariant under spatial inversion
(parity transformation) of the lattice. Physically, this corre-
sponds to flipping the 1D lattice left-to-right, which trans-
poses the real-space Hamiltonian Hreal (tj → t−j). Since
transposition does not change the eigenvalues, the spectral
graph remains the same. In terms of the characteristic poly-
nomial, this corresponds to reversing the order of the coeffi-
cients.

Definition 2 (Characteristic Polynomial Class). The char-
acteristic polynomial class CP is defined as the set con-
taining the binary coefficient vector b and its reverse b′ =
(bq, . . . , b−p):

CP := {b, b′} (20)

If b is palindromic (b = b′), the class contains a single
element CP = {b}.

A.5 The Many-to-Many Mapping
The relationship between the characteristic polynomial class
CP and the resulting spectral graph topology (i.e., the adja-
cency structure, ignoring spatial embedding) is complicated
and many-to-many.

Many Classes to One Topology. Different polynomial
classes can yield isomorphic graph topologies. For exam-
ple, figure 1c(i,iv-vi) in the main text show instances where
distinct CP result in the same topological structure.

One Class to Many Topologies. Conversely, the spectral
graph topology is sensitive to the specific values of the co-
efficients an(E), not just their presence or absence. Small
perturbations in coefficients within the same CP can lead to
discontinuous topological transitions (e.g., figure 1c(i-iii)).

Because of this many-to-many mapping between CP and
graph topology, the inverse classification task is challeng-
ing. However, when considering the full spectral graph ge-
ometry (including the spatial embedding of nodes and edges
in the complex plane), the mapping from P (z, E) to G is
unique. The nuanced variations in these spatial locations are
crucial for distinguishing the parent CP , yet they elude hu-
man inspection, necessitating the use of machine learning
approaches like GnLTransformer.

B Poly2Graph Algorithm Details
This section adapts material from an anonymized compan-
ion work.

Armed with the above theoretical guidance,
Poly2Graph (Characteristic Polynomial to Spectral
Graph) operationalizes the theoretical framework de-
scribed in appendix A by integrating numerical methods
and morphological image processing techniques (Lee,
Kashyap, and Chu 1994; Wang, Yan, and Wei 2018;
Nunez-Iglesias et al. 2018). This appendix complements
section 3.1 and details the implementation, summarized in
algorithm 1.

B.1 Initialization and Input
Poly2Graph accepts diverse input formats for the 1-D tight-
binding systems. It can initialize from a Bloch Hamiltonian
H(z) or directly from its characteristic polynomial P (z, E).
Supported formats for P (z, E) include sympy.Matrix
(for H(z), H(k)), sympy.Poly, or a raw string expres-
sion of the polynomial. During initialization, Poly2Graph
automatically computes a full set of different representations
and properties.

The energy domain Ω ⊂ C, which must fully contain the
spectral graph G, is also required. While users can specify a
custom Ω and its discretization, by default Poly2Graph can
automatically estimate a suitable region by diagonalizing a
small real-space Hamiltonian (typically L = 40 unit cells)
and applying a small padding.

B.2 Accelerated Root Finding
As detailed in section 3.1, solving for the roots {zi(E)} of
P (z, E) = 0 for each energy E in the discretized domain Ω
is the primary computational bottleneck. To achieve the re-
ported performance gains (five orders of magnitude speedup
and higher memory efficiency over previous methods (Tai
and Lee 2023) on default settings), we employ a specialized
root-finding strategy.

Given the characteristic equation
∑q

j=−p aj(E)zj = 0,
we first transform it into a standard polynomial equation by
multiplying by zp: P ′(z, E) =

∑d
k=0 ckz

k = 0, where
d = p + q and ck = ak−p(E). The roots of this polyno-
mial are equivalent to the eigenvalues of its d× d Frobenius
companion matrix F (E):

F (E) =


0 0 · · · 0 −c0/cd
1 0 · · · 0 −c1/cd
0 1 · · · 0 −c2/cd
...

...
. . .

...
...

0 0 · · · 1 −cd−1/cd

 . (21)

Algorithm 1: Poly2Graph: Characteristic Polynomial to Spectral Graph
Input: (1) H(z) or P (z, E) := det[H(z)− E I]
↑ Hamiltonian or its characteristic polynomial
Input: (2) Energy Domain: Ω ⊂ C such that Ω ⊋ G (spectral graph)
Output: Spectral Graph: G ∈ networkx.MultiGraph
begin

Build the characteristic polynomial if only H(z) was given
if input H(z) then

P (z, E) = det[H(z)− E I] =
∑q

n=−p an(E) zn

Stage 1: Coarse computation over initial energy grid Ω
(Parallel) for E ∈ Ω do

Solve roots (via Frobenius companion matrix)
{zi(E)} = Sort[Roots(P (z, E))] s.t. |z1| ≤ · · · ≤ |zp+q|
Compute spectral potential (Equation 17)

Φ(E) = − log |aq(E)| −
∑p+q

i=p+1 log
∣∣zi(E)

∣∣
Compute Density of States (DOS) (Equation 16)
ρ(E) = − 1

2π ∇
2Φ(E)

Identify regions of interest
coarse mask = dilate(binarize({ρ(E)}E∈Ω))
Define refined energy grid
Ω′ = get masked subgrid(coarse mask)

Stage 2: Refined computation within masked regions Ω′

(Parallel) for E ∈ Ω′ do
Re-solve roots at higher resolution
{zi(E)} = Sort[Roots(P (z, E))]
Recompute spectral potential

Φ′(E) = − log |aq(E)| −
∑p+q

i=p+1 log
∣∣zi(E)

∣∣
Recompute DOS
ρ′(E) = − 1

2π ∇
2Φ′(E)

Combine coarse and refined DOS for full high-resolution image
ρfinal(E) = combine({ρ(E)}E∈Ω\Ω′ , {ρ′(E)}E∈Ω′)
Stage 3: Morphological Graph Extraction
Binarize high-resolution DOS

final binarized image = binarize({ρfinal(E)}E∈Ω)
Extract one-pixel-wide skeleton

graph skeleton = skeletonize(final binarized image)
Convert skeleton to graph object
G = skeleton2graph(graph skeleton)
Post-processing
G = merge nearby nodes(G, tolerance)
G = remove isolated nodes(G)

This formulation holds for complex coefficients aj(E) ∈ C.
Poly2Graph constructs a batch of these companion ma-

trices for all E ∈ Ω. This batch is then processed by
a parallelized eigensolver. The implementation leverages
TensorFlow or PyTorch backends for hardware acceler-
ation, including automatic GPU support if available. Calcu-
lations are performed using single precision (float32) to op-
timize memory and computation, which is found sufficient
for high-fidelity spectral graph extraction.

B.3 Adaptive Resolution and Image Processing
The adaptive resolution strategy is crucial for computational
tractability.
1. Coarse Identification: The spectral potential Φ(E)

(equation 17) and DOS ρ(E) (equation 16) are computed
on an initial, coarse grid (e.g., 256× 256). The DOS im-
age is binarized and morphologically dilated to create a
conservative mask covering the potential graph regions.

2. Refined Calculation: Within this masked region, the
grid is refined (e.g., by a factor of 4 in each dimension),
and Φ(E) and ρ(E) are recomputed at this higher reso-
lution.

This two-stage process achieves high effective resolution
(e.g., 1024×1024) while minimizing redundant calculations
in empty regions of the complex energy plane.

The resulting high-resolution DOS image is again bi-
narized. We currently employ a global mean threshold
(ρ(E) > ⟨ρ(E′)⟩E′∈Ω) for binarization, as it has empiri-
cally outperformed a pool of other common global and adap-
tive thresholding heuristics, including Otsu, Li, Yen, Trian-
gle, Isodata, local adaptive, and hysteresis variants for our
datasets. Subsequently, iterative morphological thinning op-
erations (Lee, Kashyap, and Chu 1994) are applied to reduce
the binarized features to a one-pixel-wide skeleton, reveal-
ing the graph topology.

B.4 Graph Extraction and Post-processing
The skeleton2graph submodule converts the binary
skeleton into a graph representation. It identifies pixels as
junction nodes (three or more neighbors), leaf nodes (one
neighbor), or edge points (two neighbors). The output is a
NetworkX MultiGraph object, where each edge in par-
ticular stores its geometric path as an ordered sequence of
(Re(E), Im(E)) coordinates.

To handle numerical artifacts inherent in the discretization
and skeletonization process, two post-processing steps are
applied:
1. merge nearby nodes: Nodes within a predefined

Euclidean distance tolerance are merged. This helps con-
solidate fragmented junctions.

2. remove isolated nodes: Nodes with no connect-
ing edges after the merging step are removed.

B.5 Benchmark: Poly2Graph Performance
The primary innovation is the end-to-end automation of the
spectral graph extraction process, which was previously re-
liant on manual inspection. This automation makes system-
atic research on spectral graphs feasible for the first time.

Since Poly2Graph is the first fully automated tool for
this task, a direct end-to-end comparison with prior work is
not possible. We benchmark the core computational bottle-
neck—the calculation of the spectral potential—against the
best available implementation from Ref. (Tai and Lee 2023),
which does not include automated graph extraction.

The results, summarized in table 2, demonstrate a speedup
exceeding 105 across various polynomial degree ranges
(covering all realistic scenarios where p + q ≤ 5).
Poly2Graph’s time complexity scales polynomially with the
degree range (dz = p+ q).

Table 2: Performance comparison between Poly2Graph and the
implementation from Ref. (Tai and Lee 2023) for the spectral po-
tential calculation bottleneck. We report the time per sample (in-
put P (z, E)) and the resulting speedup. Poly2Graph achieves a
> 105× speedup.

Degree
Range Poly2Graph Ref.

(2023) Speed-up

p+q=2 13.1 ± 0.3 ms 3025 s 2.3e5 ×
p+q=3 20.8 ± 0.1 ms 3423 s 1.6e5 ×
p+q=4 28.6 ± 0.3 ms 3921 s 1.4e5 ×
p+q=5 38.8 ± 0.2 ms 5177 s 1.3e5 ×
p+q=6 50.8 ± 0.3 ms 6199 s 1.2e5 ×

C Details of GnLTransformer Architecture
This section details the components of the
GnLTransformer architecture. The overall forward
pass is summarized in algorithm 2.

We denote a spectral graph as G = (V, E), where V is the
set of nodes and E is the set of edges. Each node v ∈ V has
a feature vector Xv ∈ Rdv , forming the node feature matrix
XG ∈ R|V|×dv . Each edge (u, v) ∈ E has a feature vector
euv ∈ Rde , forming the edge feature matrix KG ∈ R|E|×de .

C.1 Attentive Convolution Layers
We employ two types of attentive message-passing layers:
TransformerConv (Shi et al. 2021) and GATv2Conv
(Brody, Alon, and Yahav 2022). We use a multi-head
TransformerConv as the first layer due to its high ex-
pressivity, followed by several single-head GATv2Conv
layers.

TransformerConv. For each attention head, the forward
pass is defined as:

αij = softmaxj

(
(WqXi)

⊤(WkXj +Weeij)√
dc

)
(22)

H ′
i = WsXi +

∑
j∈N (i)

αij (WvXj +Weeij) (23)

where Xi is the input feature vector of node i,N (i) denotes
the neighbors of node i, W(·) are learnable weight matri-
ces, and dc is the hidden dimension per head. The term αij

represents the attention weight from node i to node j.

Algorithm 2: Forward Pass of GnLTransformer

Input: Spectral Graph G = {AG,XG,KG}
Output: Logits Ĥg ∈ Rdout

L ← L(G) = {AL,XL = KG,KL} # Construct line graph

if EL = ∅ then G̃ ← AddSelfLoops(G), L ← L(G̃)
Forward X ∈ {G,L} through parallel channels

σ denotes an activation function (e.g., ELU, LeakyReLU, ...)
H1

v ← σ(TransformerConv(XX ,AX ,KX)) # Multi-head Attention
H1

v ← σ(Linear(H1
v)) # Down projection

H̄1
v ← σ(GRU(H1

v ,X
X)) # GRU update (using initial features as hidden state)

H̄1
v ← σ(Linear(H̄1

v))
for t = 2 to nconv do

Ht
v ← σ(GATv2Conv(H̄t−1

v ,AX ,KX))

H̄t
v ← σ(GRU(Ht

v, H̄
t−1
v))

HX
v ←

∑nconv

t=1 H̄t
v # Final Node Embedding (Jumping Knowledge)

HX
g ← SAGPooling(HX

v ,AX ,KX) # Graph Pooling

Hg ←
[
HG

g ∥HL
g

]
Graph-level Embedding

Ĥg ← MLP(Hg) # Graph-level Classification

The outputs from C parallel attention heads are concate-
nated and passed through a linear layer with an Exponential
Linear Unit (ELU) activation for down-projection:

H1
i =

[
H

′(1)
i ∥H ′(2)

i ∥ · · · ∥H ′(C)
i

]
(24)

H1
i = Linear(ELU(H1

i)) (25)

GATv2Conv. GATv2 enhances the original graph atten-
tion mechanism (Veličković et al. 2018) by allowing dy-
namic computation of attention coefficients. We disable
the node-level self-attention (self-loops) in GATv2Conv to
avoid obfuscating spectral graphs that inherently possess
self-loops.

The GATv2Conv operation for a node i is defined as:

α̂ij = A⊤LeakyReLU(WsHi +WtHj +Weeij) (26)

αij =
exp(α̂ij)∑

k∈N (i) exp(α̂ik)
(27)

H ′
i =

∑
j∈N (i)

αijWtHj (28)

where H(·), e(·) are the latent features from the preceding
block, A is a learnable attention vector, and W(·) are learn-
able weight matrices.

C.2 Gated Recurrent Unit (GRU)
A Gated Recurrent Unit (GRU) (Cho et al. 2014) is inserted
after each attentive convolution layer to refine node embed-
dings and integrate information across layers. The t-th GRU
takes the embedding Ht

i from the t-th convolution layer and
the embedding H̄t−1

i from the (t − 1)-th GRU cell as in-
put (for t = 1, the initial features Xi are used as the initial

hidden state), updating the latent embedding as follows:

rt = sigmoid(WrH
t
i + bwr

+UrH̄
t−1
i + bur

) (29)

zt = sigmoid(WzH
t
i + bwz +UzH̄

t−1
i + buz) (30)

nt = tanh(WnH
t
i + bwn +Un(r

t ⊙ H̄t−1
i + bun))

(31)

H̄t = (1− zt)⊙ nt + zt ⊙ H̄t−1
i (32)

where zt and rt are the update and reset gates, respectively,
⊙ is the Hadamard product, and W(·),U(·), b(·) are learn-
able parameters. GRUs help capture sequential dependen-
cies across layers and mitigate the oversmoothing effect.

C.3 Jumping Knowledge
We employ Jumping Knowledge (Xu et al. 2018) to pro-
duce the final node embeddings by aggregating the outputs
from all (convolution, GRU) blocks. This captures hierar-
chical information across different neighborhood scales. We
use summation for aggregation:

HX
v =

nconv∑
t=1

H̄t
v (33)

Summation is empirically effective and parameter-efficient
compared to concatenation (Duvenaud et al. 2015).

C.4 Self-Attention Graph Pooling (SAGPooling)
To generate a graph-level embedding, we use Self-Attention
Graph Pooling (SAGPooling) (Lee, Lee, and Kang 2019).
SAGPooling uses a trainable graph convolution operator to
assign importance scores to nodes, selects the top-k nodes,
and uses their embeddings to form a fixed-size graph repre-
sentation (Zhang et al. 2018).

The procedure for each channel (X ∈ {G,L}) is as fol-
lows:
1. Assign attention scores:

sX = Conv(HX
v ,AX ,KX) (34)

where HX
v are the final node embeddings.

2. Select top-k nodes:

iX = top(kX)(s
X) (35)

3. Coarsen graph and obtain pooled embeddings:

H̃X
v =

[
HX

v ⊙ tanh(sX)
]
(iX)

(36)

=
[
HX

(1),H
X
(2), . . . ,H

X
(kX)

]T

where the subscript (·) denotes the rank.
4. Form graph-level readout by concatenating the pooled

node embeddings:

HX
g =

[
HX

(1) ∥H
X
(2) ∥ . . . ∥H

X
(kX)

]
(37)

C.5 Concatenation and Classification
The graph-level embeddings from the G and L channels are
concatenated and passed through a multi-layer perceptron
(MLP) for final classification.

Hg =
[
HG

g ∥HL
g

]
(38)

Ĥg = MLP(Hg) (39)

Ĥg ∈ Rdout represents the logits, where dout is the number
of target polynomial classes. The model is trained using the
cross-entropy loss.

D Training & Evaluation Details
Inverse Classification (Full Dataset). Training was per-
formed on the full SpectralGraph-117K dataset. We used
a 90%-5%-5% train-validation-test split. The model state
checkpointed at the best validation accuracy was used for
evaluation on the test set. This process (random split and
training) was repeated 5 times. The model was trained us-
ing the AdamW optimizer with a batch size of 512 for 40
epochs. A cosine annealing learning rate scheduler was em-
ployed, with no weight decay. Hyperparameters are listed
in Table 3. The training dynamics and confusion matrix are
shown in Figure 7.

Ablation Study and Baseline Comparison (Subset). For
the ablation study and baseline comparison, we used a ran-
dom 20% subset of the data (23.5K graphs) to challenge the
models’ generalization capabilities. We generated 10 ran-
dom splits with a 90%-5%-5% ratio. Training was extended
to 150 epochs, with other settings remaining the same as the
full dataset run. The results are detailed in Table 4.

Hardware and Experimental Environment. All experi-
ments are run on a single NVIDIA A100 Card (40GB). OS:
Red Hat Enterprise Linux 8.4 (Ootpa). GNN models and
training code are implemented via PyTorch and PyTorch Ge-
ometric.

Hyperparameters

Node-level

input node features (G) 2
input edge features (G) 11
input node features (L) 11
input edge features (L) 7
heads of
TransformerConv

4

hidden dimension of
TransformerConv

16

layers of GATv2Conv 3
hidden dimension of
GATv2Conv

32

Graph-level

pooling kG 23
pooling kL 29
layers of MLP 5
hidden dimension of MLP 512
output dimension 36

LR scheduler ηmax (Initial LR) 1e-3
ηmin (Minimum LR) 5e-5

Table 3: Hyperparameters of GnLTransformer. The
hyperparameters used for the experiments in section 4. Pa-
rameters differing between the G andL channels are denoted
explicitly; otherwise, they are shared.

(a) (b)

Figure 7: Training Dynamics and Confusion Matrix. (a)
Confusion matrix of GnLTransformer on the test set,
normalized by the true class count due to dataset skewness.
(b) Training and validation loss and accuracy curves. The
close tracking of validation and training loss indicates no
significant overfitting, likely due to the large size and struc-
tured nature of the dataset.

Model Loss Accuracy F1 Score (Macro) AUROC (Macro) AP (Macro)
Trainable
Parame-

ters
GnL 0.625 ± 0.103 84.59% ± 1.87% 0.845 ± 0.019 0.980 ± 0.005 0.911 ± 0.019 1.776M
GnL (w/o L) 0.761 ± 0.117 77.94% ± 3.32% 0.778 ± 0.033 0.959 ± 0.012 0.848 ± 0.031 1.243M
GCN 1.217 ± 0.041 63.12% ± 0.84% 0.629 ± 0.008 0.895 ± 0.003 0.683 ± 0.008 1.780M
GAT 1.981 ± 0.051 40.16% ± 0.35% 0.253 ± 0.018 0.629 ± 0.035 0.286 ± 0.021 1.781M
GIN 1.350 ± 0.069 64.10% ± 1.03% 0.637 ± 0.011 0.888 ± 0.006 0.675 ± 0.015 1.803M
MF 1.716 ± 0.013 46.55% ± 0.75% 0.427 ± 0.008 0.783 ± 0.003 0.454 ± 0.006 1.844M
AFP 1.371 ± 0.253 52.34% ± 7.09% 0.486 ± 0.099 0.844 ± 0.058 0.545 ± 0.105 1.827M

Table 4: Ablation Study and Baseline Comparison Results. Numerical results corresponding to Figure 3. Experiments were
conducted on a 20% subset (23.5K graphs) with 10 random splits (90-5-5 ratio). Metrics are averaged over the 10 test sets.
GnLTransformer outperforms the best baseline (GIN) by 32% in accuracy. Removing the line graph channel (w/o L)
decreases accuracy by 8%.

D.1 Misclassification Analysis
The few misclassified cases predominantly involve recipro-
cal characteristic polynomials (satisfying a−n = an). Reci-
procity implies that the parent Hamiltonian is Hermitian,
resulting in real eigenvalues. In the single-band case stud-
ied here, all such polynomials yield an isomorphic spectral
graph: two nodes connected by a single edge lying on the
real axis. This degeneracy makes these cases difficult for the
model to distinguish based purely on the graph structure.

Analysis of the latent space reveals a decision bound-
ary where the difference between the top two prediction
probabilities is minimal. All misclassified instances are lo-
cated near this boundary. Notably, this boundary effectively
separates graphs originating from Hermitian Hamiltonians
(reciprocal polynomials) from those originating from non-
Hermitian ones.

E Explainability: Attention Visualization
and Embedding Analysis

The attentive convolution layers (TransformerConv and
GATv2Conv) in GnLTransformer inherently compute
the attention weights (“significance”) of neighboring nodes
(in the G channel) and adjacent edges (in the L channel)
during message passing. Visualizing these weights provides
insights into the model’s focus.

E.1 Attention Visualization Methodology
In Figure 5b-c, we visualize the aggregated attention
weights. During message passing, undirected edges are
treated as pairs of directed edges. The visualized edge atten-
tion weight is the sum of the weights of these two directed
edges. A node’s attention weight is defined as the sum of the
attention weights of all incoming edges. These weights are
accumulated across all heads of TransformerConv and all
layers of GATv2Conv during the forward pass. The weights
are min-max normalized per channel, and visualized such
that color intensity, node size, and edge width are propor-
tional to the normalized attention magnitude. Figure 8 shows
the detailed breakdown of attention weights per head, layer,
and channel.

E.2 Interpretation of Attention Patterns
GnLTransformer consistently focuses on the outermost
leaf nodes and their adjacent edges. This aligns with theo-
retical findings that leaf nodes encode crucial information
about the characteristic polynomial (Tai and Lee 2023). For
example, the number of leaf nodes is closely related to the
degree range p+q of the polynomial (Tai and Lee 2023; Lee
et al. 2020).

Furthermore, shorter leaf edges tend to receive higher
attention. This suggests the model recognizes that short
branches are indicators that the graph is near a topological
transition point.

The attention weights are generally not dis-
tributed symmetrically (e.g., centrosymmetrically or
reflection-symmetrically). This asymmetry reflects how
GnLTransformer balances geometric (location-aware)
features and topological (location-ignorant) information
during encoding. The ability to integrate both aspects is
crucial for distinguishing the nuanced differences between
spectral graphs.

E.3 Embedding Similarity Analysis
We analyze the evolution of the learned representations by
visualizing the cosine similarity matrices of the node em-
beddings at different stages (Figure 5d-i and Figure 8). The
cosine similarity Sij between embeddings of node i (hi) and
node j (hj) is defined as:

Sij =
hi · hj

∥hi∥∥hj∥
= cos θij (40)

By appropriate permutation, these matrices reveal clusters
of nodes with similar roles. The similarity matrices of the
final embeddings show much clearer block structures com-
pared to the input features. This demonstrates that the atten-
tive layers effectively learn a geometrically aware similarity
kernel, successfully clustering nodes and edges with similar
structural roles within the spectral graph.

Acknowledgments
The computational work for this article was partially per-
formed on resources of the National Supercomputing Cen-

0
1

2 3

4
5 6 7

8

910

11
12

Transformer, Layer 1, Head 1

0
1

2 3

4
5 6 7

8

910

11
12

Transformer, Layer 1, Head 2

0
1

2 3

4
5 6 7

8

910

11
12

Transformer, Layer 1, Head 3

0
1

2 3

4
5 6 7

8

910

11
12

Transformer, Layer 1, Head 4

0 7 2 4 3 1 12 5 6 8 9 10 11

0
7
2
4
3
1

12
5
6
8
9

10
11

GRU, Layer 1, G

0 7 2 4 3 1 12 5 6 8 9 10 11

0
7
2
4
3
1

12
5
6
8
9

10
11

Conv, Layer 1, G

A
B

C

D
E

F G

H

I J
K

L

M

N
O

Transformer, Layer 1, Head 1

A
B

C

D
E

F G

H

I J
K

L

M

N
O

Transformer, Layer 1, Head 2

A
B

C

D
E

F G

H

I J
K

L

M

N
O

Transformer, Layer 1, Head 3

A
B

C

D
E

F G

H

I J
K

L

M

N
O

Transformer, Layer 1, Head 4

K D F I B C G H E A J L M O N

K
D
F
I

B
C
G
H
E
A
J
L
M
O
N

GRU, Layer 1, L

K D F I B C G H E A J L M O N

K
D
F
I

B
C
G
H
E
A
J
L
M
O
N

Conv, Layer 1, L

0
1

2 3

4
5 6 7

8

910

11
12

GATv2, Layer 2

0 7 2 4 3 1 12 5 6 8 9 10 11

0
7
2
4
3
1

12
5
6
8
9

10
11

Conv, Layer 2, G

0 7 2 4 3 1 12 5 6 8 9 10 11

0
7
2
4
3
1

12
5
6
8
9

10
11

GRU, Layer 2, G

A
B

C

D
E

F G

H

I J
K

L

M

N
O

GATv2, Layer 2

K D F I B C G H E A J L M O N

K
D
F
I

B
C
G
H
E
A
J
L
M
O
N

Conv, Layer 2, L

K D F I B C G H E A J L M O N

K
D
F
I

B
C
G
H
E
A
J
L
M
O
N

GRU, Layer 2, L

0
1

2 3

4
5 6 7

8

910

11
12

GATv2, Layer 3

0 7 2 4 3 1 12 5 6 8 9 10 11

0
7
2
4
3
1

12
5
6
8
9

10
11

Conv, Layer 3, G

0 7 2 4 3 1 12 5 6 8 9 10 11

0
7
2
4
3
1

12
5
6
8
9

10
11

GRU, Layer 3, G

A
B

C

D
E

F G

H

I J
K

L

M

N
O

GATv2, Layer 3

K D F I B C G H E A J L M O N

K
D
F
I

B
C
G
H
E
A
J
L
M
O
N

Conv, Layer 3, L

K D F I B C G H E A J L M O N

K
D
F
I

B
C
G
H
E
A
J
L
M
O
N

GRU, Layer 3, L

0
1

2 3

4
5 6 7

8

910

11
12

GATv2, Layer 4

0 7 2 4 3 1 12 5 6 8 9 10 11

0
7
2
4
3
1

12
5
6
8
9

10
11

Conv, Layer 4, G

0 7 2 4 3 1 12 5 6 8 9 10 11

0
7
2
4
3
1

12
5
6
8
9

10
11

GRU, Layer 4, G

A
B

C

D
E

F G

H

I J
K

L

M

N
O

GATv2, Layer 4

K D F I B C G H E A J L M O N

K
D
F
I

B
C
G
H
E
A
J
L
M
O
N

Conv, Layer 4, L

K D F I B C G H E A J L M O N

K
D
F
I

B
C
G
H
E
A
J
L
M
O
N

GRU, Layer 4, L

Figure 8: Detailed Attention Visualization and Node Similarity Matrix per head/layer/channel. This figure complements
Figure 5, showing the full breakdown. Attention weights are visualized for each head of the TransformerConv (1st layer)
and each GATv2Conv layer (layers 2-4) in both G and L channels. Cosine similarity matrices are calculated from the output
of each attentive convolution layer and the subsequent GRU update.

Dataset # of Graphs Target Classes
MUTAG 188 2
ENZYMES 600 6
IMDB-BINARY 1000 2
PROTEINS 1113 2
D&D 1178 2
SIDER 1427 2
ClinTox 1477 2
IMDB-MULTI 1500 3
BACE 1513 2
REDDIT-BINARY 2000 2
BBBP 2039 2
REDDIT-MULTI-5K 4999 5
COLLAB 5000 3
Tox21 7831 2
ToxCast 8576 2
DBLP v1 19456 2
molhiv 41127 2
REDDIT-MULTI-12K 11929 11
MUV 93087 2
CIFAR10 60000 10
MNIST 70000 10
SpectralGraph-117K 117658 36
ppa 158100 37
molpcba 437929 2
MALNET 1262024 696

Table 5: Comparison of SpectralGraph-117K with exist-
ing graph-level benchmark datasets. At the time of writ-
ing, SpectralGraph-117K is among the largest datasets for
graph-level tasks and provides a unique benchmark for spa-
tial multigraphs. Statistics adapted from Ref. (Yang et al.
2023).

tre, Singapore https://www.nscc.sg. This research is par-
tially supported by the National Research Foundation Singa-
pore under the AI Singapore Programme (AISG Award No:
AISG2-TC-2023-010-SGIL) and the Singapore Ministry of
Education Academic Research Fund Tier 1 (Award No: T1
251RES2207).

References
Amir, A.; Hatano, N.; and Nelson, D. R. 2016. Non-
Hermitian Localization in Biological Networks. Physical
Review E, 93(4): 042310.
Ashida, Y.; Gong, Z.; and Ueda, M. 2020. Non-Hermitian
Physics. Advances in Physics, 69(3): 249–435.
Battiston, F.; Amico, E.; Barrat, A.; Bianconi, G.; Ferraz
De Arruda, G.; Franceschiello, B.; Iacopini, I.; Kéfi, S.; La-
tora, V.; Moreno, Y.; Murray, M. M.; Peixoto, T. P.; Vac-
carino, F.; and Petri, G. 2021. The Physics of Higher-Order
Interactions in Complex Systems. Nature Physics, 17(10):
1093–1098.
Brody, S.; Alon, U.; and Yahav, E. 2022. How Attentive Are
Graph Attention Networks? arXiv:2105.14491.
Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learn-

ing Phrase Representations Using RNN Encoder-Decoder
for Statistical Machine Translation. arXiv:1406.1078.
Choudhary, K.; and DeCost, B. 2021. Atomistic Line Graph
Neural Network for Improved Materials Property Predic-
tions. npj Computational Materials, 7(1): 185.
DeZoort, G.; Battaglia, P. W.; Biscarat, C.; and Vlimant, J.-
R. 2023. Graph Neural Networks at the Large Hadron Col-
lider. Nature Reviews Physics, 5(5): 281–303.
Ding, K.; Fang, C.; and Ma, G. 2022. Non-Hermitian Topol-
ogy and Exceptional-Point Geometries. Nature Reviews
Physics, 4(12): 745–760.
Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.;
Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; and
Adams, R. P. 2015. Convolutional Networks on Graphs for
Learning Molecular Fingerprints. arXiv:1509.09292.
Fan, W.; Ma, Y.; Li, Q.; He, Y.; Zhao, E.; Tang, J.; and Yin,
D. 2019. Graph Neural Networks for Social Recommenda-
tion. arXiv:1902.07243.
Ghatak, A.; Brandenbourger, M.; Van Wezel, J.; and
Coulais, C. 2020. Observation of Non-Hermitian Topology
and Its Bulk–Edge Correspondence in an Active Mechani-
cal Metamaterial. Proceedings of the National Academy of
Sciences, 117(47): 29561–29568.
Gonzalez-Conde, J.; Rodrı́guez-Rozas, Á.; Solano, E.; and
Sanz, M. 2023. Efficient Hamiltonian Simulation for Solv-
ing Option Price Dynamics. Physical Review Research,
5(4): 043220.
Jiang, D.; Wu, Z.; Hsieh, C.-Y.; Chen, G.; Liao, B.; Wang,
Z.; Shen, C.; Cao, D.; Wu, J.; and Hou, T. 2021. Could
Graph Neural Networks Learn Better Molecular Repre-
sentation for Drug Discovery? A Comparison Study of
Descriptor-Based and Graph-Based Models. Journal of
Cheminformatics, 13(1): 12.
Kawabata, K.; Bessho, T.; and Sato, M. 2019. Classifica-
tion of Exceptional Points and Non-Hermitian Topological
Semimetals. Physical Review Letters, 123(6): 066405.
Kawabata, K.; Shiozaki, K.; Ueda, M.; and Sato, M. 2019.
Symmetry and Topology in Non-Hermitian Physics. Physi-
cal Review X, 9(4): 041015.
Kerg, G.; Goyette, K.; Touzel, M. P.; Gidel, G.; Vorontsov,
E.; Bengio, Y.; and Lajoie, G. 2019. Non-Normal Recurrent
Neural Network (nnRNN): Learning Long Time Dependen-
cies While Improving Expressivity with Transient Dynam-
ics. arXiv:1905.12080.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised
Classification with Graph Convolutional Networks.
arXiv:1609.02907.
Kumar, S.; and Wilmott, C. M. 2024. Simulating the Non-
Hermitian Dynamics of Financial Option Pricing with Quan-
tum Computers. arXiv:2407.01147.
Lee, C. H.; Li, L.; Thomale, R.; and Gong, J. 2020. Unrav-
eling Non-Hermitian Pumping: Emergent Spectral Singular-
ities and Anomalous Responses. Physical Review B, 102(8):
085151.
Lee, J.; Lee, I.; and Kang, J. 2019. Self-Attention Graph
Pooling. arXiv:1904.08082.

Lee, T.; Kashyap, R.; and Chu, C. 1994. Building Skele-
ton Models via 3-D Medial Surface Axis Thinning Algo-
rithms. CVGIP: Graphical Models and Image Processing,
56(6): 462–478.
Lin, R.; Tai, T.; Yang, M.; Li, L.; and Lee, C. H. 2023. Topo-
logical Non-Hermitian Skin Effect. Frontiers of Physics,
18(5): 53605.
Merchant, A.; Batzner, S.; Schoenholz, S. S.; Aykol, M.;
Cheon, G.; and Cubuk, E. D. 2023. Scaling Deep Learning
for Materials Discovery. Nature, 624(7990): 80–85.
Nelson, D. R.; and Shnerb, N. M. 1998. Non-Hermitian
Localization and Population Biology. Physical Review E,
58(2): 1383–1403.
Nunez-Iglesias, J.; Blanch, A. J.; Looker, O.; Dixon, M. W.;
and Tilley, L. 2018. A New Python Library to Analyse
Skeleton Images Confirms Malaria Parasite Remodelling of
the Red Blood Cell Membrane Skeleton. PeerJ, 6: e4312.
Park, C. W.; and Wolverton, C. 2020. Developing an
Improved Crystal Graph Convolutional Neural Network
Framework for Accelerated Materials Discovery. Physical
Review Materials, 4(6): 063801.
Reiser, P.; Neubert, M.; Eberhard, A.; Torresi, L.; Zhou, C.;
Shao, C.; Metni, H.; Van Hoesel, C.; Schopmans, H.; Som-
mer, T.; and Friederich, P. 2022. Graph Neural Networks for
Materials Science and Chemistry. Communications Materi-
als, 3(1): 93.
Schütt, K. T.; Sauceda, H. E.; Kindermans, P.-J.;
Tkatchenko, A.; and Müller, K.-R. 2018. SchNet - a
Deep Learning Architecture for Molecules and Materials.
The Journal of Chemical Physics, 148(24): 241722.
Shi, Y.; Huang, Z.; Feng, S.; Zhong, H.; Wang, W.; and
Sun, Y. 2021. Masked Label Prediction: Unified Mes-
sage Passing Model for Semi-Supervised Classification.
arXiv:2009.03509.
Shimokawa, K.; Ishihara, K.; Grainge, I.; Sherratt, D. J.; and
Vazquez, M. 2013. FtsK-dependent XerCD- Dif Recombi-
nation Unlinks Replication Catenanes in a Stepwise Manner.
Proceedings of the National Academy of Sciences, 110(52):
20906–20911.
Sone, K.; Yokomizo, K.; Kawaguchi, K.; and Ashida, Y.
2024. Hermitian and Non-Hermitian Topology in Active
Matter. arXiv:2407.16143.
Tai, T.; and Lee, C. H. 2023. Zoology of Non-Hermitian
Spectra and Their Graph Topology. Physical Review B,
107(22): L220301.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.;
Liò, P.; and Bengio, Y. 2018. Graph Attention Networks.
arXiv:1710.10903.
Wang, A.; Meng, Z.; and Chen, C. Q. 2023. Non-Hermitian
Topology in Static Mechanical Metamaterials. Science Ad-
vances, 9(27): eadf7299.
Wang, A.; Yan, X.; and Wei, Z. 2018. ImagePy: an open-
source, Python-based and platform-independent software
package for bioimage analysis. Bioinformatics, 34(18):
3238–3240.

Wang, H.-Y.; Song, F.; and Wang, Z. 2024. Amoeba Formu-
lation of Non-Bloch Band Theory in Arbitrary Dimensions.
Physical Review X, 14(2): 021011.
Wang, Y.; Wang, H.; Cao, R.; Liu, T.; and Zhang, X. 2023.
Graph Contrastive Learning with Line Graph Augmentation.
Xie, T.; and Grossman, J. C. 2018. Crystal Graph Convo-
lutional Neural Networks for an Accurate and Interpretable
Prediction of Material Properties. Physical Review Letters,
120(14): 145301.
Xiong, Y.; and Hu, H. 2023. Graph Morphology of Non-
Hermitian Bands. arXiv:2311.14921.
Xiong, Z.; Wang, D.; Liu, X.; Zhong, F.; Wan, X.; Li, X.; Li,
Z.; Luo, X.; Chen, K.; Jiang, H.; and Zheng, M. 2020. Push-
ing the Boundaries of Molecular Representation for Drug
Discovery with the Graph Attention Mechanism. Journal of
Medicinal Chemistry, 63(16): 8749–8760.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful Are Graph Neural Networks? arXiv:1810.00826.
Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.-i.;
and Jegelka, S. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. arXiv:1806.03536.
Yang, R.; Tan, J. W.; Tai, T.; Koh, J. M.; Li, L.; Longhi, S.;
and Lee, C. H. 2022. Designing Non-Hermitian Real Spec-
tra through Electrostatics. Science Bulletin, 67(18): 1865–
1873.
Yang, Z.; Zhang, G.; Wu, J.; Yang, J.; Sheng, Q. Z.; Xue, S.;
Zhou, C.; Aggarwal, C.; Peng, H.; Hu, W.; Hancock, E.; and
Liò, P. 2023. State of the Art and Potentialities of Graph-
level Learning. arXiv:2301.05860.
Yang, Z.; Zhang, K.; Fang, C.; and Hu, J. 2020. Non-
Hermitian Bulk-Boundary Correspondence and Auxiliary
Generalized Brillouin Zone Theory. Physical Review Let-
ters, 125(22): 226402.
Zdeborová, L. 2020. Understanding Deep Learning Is Also
a Job for Physicists. Nature Physics, 16(6): 602–604.
Zhang, M.; Cui, Z.; Neumann, M.; and Chen, Y. 2018. An
End-to-End Deep Learning Architecture for Graph Classi-
fication. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1).
Zhu, S.; Zhou, C.; Pan, S.; Zhu, X.; and Wang, B. 2019.
Relation Structure-Aware Heterogeneous Graph Neural Net-
work. In 2019 IEEE International Conference on Data Min-
ing (ICDM), 1534–1539. Beijing, China: IEEE. ISBN 978-
1-7281-4604-1.

