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Abstract

This study evaluates the generalisation capabilities of state-of-the-art histopathol-
ogy foundation models on out-of-distribution (OOD) multi-stain autoimmune
Immunohistochemistry (IHC) datasets. We compare 13 feature extractor models,
including ImageNet-pretrained networks, and histopathology foundation models
trained on both public and proprietary data, on Rheumatoid Arthritis (RA) subtyp-
ing and Sjogren’s Disease (SD) diagnostic tasks. Using a simple Attention-Based
Multiple Instance Learning classifier, we assess the transferability of learned rep-
resentations from cancer H&E images to autoimmune IHC images. Contrary
to expectations, histopathology-pretrained models did not significantly outper-
form ImageNet-pretrained models. Furthermore, there was evidence of both au-
toimmune feature misinterpretation and biased feature importance. Our findings
highlight the challenges in transferring knowledge from cancer to autoimmune
histopathology and emphasise the need for careful evaluation of AI models across
diverse histopathological tasks. The code to run this benchmark is available at
https://github.com/AmayaGS/ImmunoHistoBench

1 Introduction

Recent advancements in digital pathology have led to the development of powerful foundation models
trained on large-scale H&E cancer datasets [2, 18, 26, 24, 6, 11, 22]. These models have shown
remarkable performance in various cancer-related tasks [1, 14, 6, 2, 26, 18]. However, their ability to
generalise to other histopathological domains, particularly immunohistochemistry (IHC) staining
and autoimmune diseases, remains largely unexplored. This gap is particularly significant given the
fundamental differences between cancer and autoimmune pathologies. Indeed, cancer and autoim-
mune diseases represent two ends of the immune spectrum, with distinct histopathological features
reflecting their underlying pathogenesis [19]. In cancer, the immune response is often suppressed or
evaded, leading to uncontrolled growth of malignant cells [15]. Conversely, autoimmune diseases
are characterised by an overactive immune response against self-tissues [16]. These fundamental
differences manifest in contrasting histopathological patterns, aspects of which we exemplify in
Figure 1.

1.1 H&E and IHC provide complementary, yet contrasting information

H&E staining, a traditional and widely used technique, offers a broad view of tissue architecture
and cellular morphology. Hematoxylin stains cell nuclei a deep blue-purple, while eosin stains
cytoplasm and extracellular matrix in shades of pink (see Fig.1 D). In contrast, IHC is a more
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Figure 1: Differences in histological patterns between cancer and autoimmune pathologies. A-C:
IHC staining, D: H&E staining. A: Breast cancer tumours (A1), heavily infiltrated with immune
cells throughout (A2), B: Breast cancer tumour (B1), characterised by TMEs (B2). Tumours with
immune infiltrate show better prognosis. C: Tissue with strong presence of immune infiltrates in
autoimmune disease (C1) such as ELS (C2), which can correlate to poor prognosis. Note A2 shows
good prognosis, while C2 shows poor. D: differences in H&E staining between cancer (D1) and
autoimmune (D2). In D1, we see examples of TMEs surrounded by more darkly stained immune
cells unable to infiltrate the tumour. Cancer cells show enlarged cytoplasm to nuclear ratio. D2 shows
darkly stained immune cells.

specialised technique that uses antibodies tagged with visual markers to identify specific proteins
or antigens within tissue samples, allowing for precise localisation and visualisation of immune
cell population (see Fig.1 A-C). In cancer diagnostics, H&E staining remains the foundation for
initial assessment and general diagnosis. However, IHC plays a crucial role in tumour classification,
prognosis determination, and treatment selection by pinpointing specific cancer markers and assessing
treatment responsiveness indicators. For autoimmune diseases, while H&E staining identifies general
patterns of inflammation and tissue damage, IHC becomes essential for a more nuanced understanding
of the disease process. It highlights the types of immune cells present in inflammatory infiltrates,
detects autoantibody deposits, and visualises specific autoantigens targeted by the immune system.

1.2 Cancer and Autoimmunity: two sides of the immune coin

The immune cell composition and organisation differ significantly between cancer and autoimmune
conditions, reflecting their distinct pathogenic mechanisms. In H&E-stained cancer samples, one
typically observes striking alterations in cellular and tissue architecture. Cancer cells exhibit uncon-
trolled proliferation, leading to disorganised growth patterns and invasion into surrounding tissues.
These cells often display abnormal morphology, including enlarged nuclei with irregular shapes and
altered nuclear-to-cytoplasmic ratios (Fig.1 D1). Furthermore, the immune landscape in cancers
forming solid tumours is often characterized by an immunosuppressive tumour microenvironment
(TME) that dampens the immune response, allowing cancer cells to evade destruction (Fig.1 A-B).
Conversely, autoimmune pathology is characterized by dense inflammatory cell infiltrates, such as
Ectopic Lymphoid Structure (ELS), composed of immune cells such as lymphocytes, plasma cells,
and macrophages (Fig.1 C1/2) [15, 17, 19, 5]. As shown in Figure 1, these marked differences are
reflected in often opposing patterns, with patterns which can indicate a good prognosis in cancer,
often indicating a poor one in autoimmune pathologies.

1.3 Why does autoimmunity matter?

These contrasting histopathological patterns reflect the underlying immunological processes at
play in cancer and autoimmune diseases, providing valuable insights into their pathogenesis and
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potential therapeutic approaches. The intersection of autoimmunity and cancer research offers a rich
landscape for knowledge discovery and therapeutic innovation. While these conditions represent
opposite ends of the immune dysfunction spectrum, insights from one field often inform the other
[15]. For instance, the study of immune checkpoints, originally investigated in autoimmunity, has
revolutionised cancer immunotherapy [20]. The presence of ELS structures, typically associated
with autoimmunity, has also been linked to improved prognosis in some cancers, highlighting the
complex role of immune organisation in disease outcomes [17, 27]. In turn, understanding how
cancers evade immune surveillance provides clues about regulating overactive immune responses in
autoimmune diseases. Importantly, knowledge gained from treating autoimmune conditions helps
manage immune-related adverse events in cancer immunotherapy. This bidirectional flow of insights
not only deepens our understanding of immune system dynamics but also paves the way for more
nuanced and effective treatments in both cancer and autoimmune diseases. In the decades to come,
novel treatment combinations and newly identified druggable targets will only expand the role of
immunotherapy in the treatment of cancer and vice versa [23].

1.4 Challenges for H&E generalisation

The distinct pathogenic mechanisms, immune responses, and tissue alterations in cancer versus
autoimmune diseases result in characteristically different histopathological patterns that reflect their
underlying biology. Histopathology foundation models trained primarily on cancer-related H&E data
might face certain challenges when applied to autoimmune conditions and IHC analysis. We outline
some potential pitfalls:

1. Misinterpretation of unique autoimmune features: these models may fail to recognise or
correctly interpret distinctive autoimmune patterns, such as ELSs or specific inflammatory
infiltrates, leading to potential misdiagnosis.

2. Difficulty with complex IHC staining patterns: The diverse and intricate staining patterns
in IHC, especially in autoimmune diseases, could prove challenging for models trained
mainly on H&E images, resulting in inaccurate interpretation of immune cell interactions
and signalling molecules.

3. Bias in feature importance: These models might inappropriately recognise cancer-related
features (e.g., nuclear atypia, TMEs) when analysing autoimmune conditions, potentially
skewing diagnosis or disease severity assessment.

1.5 Contribution

This study aims to assess the generalisation capabilities of state-of-the-art histopathology foundation
models on out-of-distribution (OOD) multi-stain autoimmune datasets. We compare their performance
against traditional ImageNet pretrained feature extraction models using simple Attention-Based
Multiple Instance Learning algorithm (ABMIL) [10]. This straightforward, zero-shot approach
allows us to directly evaluate the transferability of learned representations from cancer H&E images
to autoimmune IHC images without the confounding effects of complex downstream tasks. It
serves as an initial step to understanding if cancer-trained models can capture relevant features in
autoimmune tissues, despite differences in disease processes and staining techniques.

By bridging the gap between cancer and autoimmune histopathology, this report aims to contribute to
the broader goal of developing more comprehensive and versatile AI tools for medical image analysis,
ultimately supporting advancements in precision medicine and improved patient care across a wider
spectrum of immune-mediated diseases.

2 Methodology

2.1 Pipeline

Figure 2 illustrates our analytical pipeline. The input comprises a set of multi-stain Whole Slide
Images (WSIs) per patient, including H&E and various IHC stains listed in Table 1. We apply
adaptive thresholding to identify tissue areas and extract 224x224 pixel non-overlapping patches.
These patches are then processed through a feature extractor network, generating a matrix of feature
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Figure 2: Schematic representation of the multi-stain whole slide image (WSI) analysis pipeline.
The process encompasses (1) tissue thresholding and patch extraction, (2) feature extraction yielding
patient-level feature matrices, and (3) attention-based multiple instance learning (ABMIL) classifica-
tion. This study primarily focuses on comparing feature extraction methodologies.

vectors representing each patient’s WSI set. For downstream classification, we employ the Attention-
Based Multiple Instance Learning (ABMIL) [10] algorithm, chosen for its simplicity and strong
benchmark performance. Notably, this study concentrates on comparing different feature extraction
techniques within this framework.

2.2 Datasets

To provide a benchmark on autoimmune multi-stain datasets, we use two clinical datasets. One
dataset derives from the clinical trial R4RA [9], where patients with difficult to treat Rheumatoid
Arthritis (RA) were recruited for treatment with rituximab [13]. The other derives from the routine
diagnostic of patients presenting with dry eyes and mouth (sicca) and investigated for Sjogren’s
Disease (SD). Each dataset is composed of H&E slides, with approximately 3 IHC slides of different
immune biomarkers per patient. In Table 1, we give further information on the stains present in each
dataset.

Table 1: Metadata and dataset characteristics for Sjogren’s Disease and Rheumatoid Arthritis cohorts,
including number of patients, WSIs, stains present and average number of stains per patient. We
highlight in pink H&E staining and blue IHC.

Sjogren Rheumatoid Arthritis
No. Patients 93 153

No. Slides 347 607
No. Stains 5 4

Av. Stains per patient 3.7 3.97
Magnification 20x 10x

Total no. patches 237k 275k
Av. Patches per patient 2 530 1800

Patches per stain Mean Total Mean Total
HE 650 61055 434 66511

CD3 625 58712 0 0
CD138 377 35416 481 73624

CD20 626 58805 351 53768
CD21 254 23843 0 0
CD68 0 0 535 81915

ML problem type Diagnosis Subtyping

Labels Negative 46 Low
inflammatory 66

Positive 47 High
inflammatory 87

2.2.1 Rheumatoid Arthritis

This clinical trial dataset comprises 607 Whole Slide Images (WSIs) from 153 Rheumatoid Arthritis
patients, categorised into low (N=66) and high (N=87) inflammatory subtypes [9]. As exemplified in
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Figure 3, samples were stained with H&E and the IHC markers CD20+ B cells, CD68+ macrophages
and CD138+ macrophages. The dataset features a variable number of stains, averaging 3.9 per
patient. We perform binary classification on low (N=66) and high (N=87) inflammatory subtypes. We
extract non-overlapping patches at a 10x magnification, keeping those with over 40% tissue coverage,
totalling approximately 275k patches.

Figure 3: Rheumatoid Arthritis inflammatory pathotypes based on semi-quantitative analysis of
synovial tissue biopsies stained with H&E, CD20+ B cells, CD68+ macrophages and IHC+ CD138
plasma cells [9, 7].

2.2.2 Sjogren

Diagnostic dataset consisting of 347 WSIs of labial salivary gland biopsies sampled from 93 patients,
with 46 cases of non-specific sicca and 47 cases of Sjogren’s Disease (SD). As shown in Figure 4 the
samples were stained with H&E and the IHC stains CD20+ B cells, CD3+ T cells, CD21+ follicular
dendritic cell network and CD138+ plasma cells. Each patient has a variable set of multi-stain WSIs,
averaging 3.7 stains per patient. We perform binary classification on the detection of sicca vs SD+
biopsies. We extract non-overlapping patches at a 20x magnification, keeping those with over 30%
tissue coverage, totalling approximately 237k patches.

Figure 4: Example of sicca vs Sjogren’s Disease presentation in H&E and IHC stains. On top, a
patient diagnosed with sicca, on bottom a patient diagnosed with Sjogren’s disease. Here we show
samples stained with IHC stains CD3+ T cells, CD20+ B cells and CD138+ plasma cells.

2.3 Feature Extraction Models

We evaluate a comprehensive and diverse set of 13 feature extractor models to assess their efficacy on
Autoimmune IHC datasets. As detailed in Table 2.3, these models span three distinct categories: 5
general computer vision models pretrained on ImageNet [21, 8, 25, 4], 5 histopathology-specific foun-
dation models trained on publicly available data SSL_ResNet18 [3], SSL_ResNet50 [11], CTransPath
[24], Lunit [11] and Phikon-v2 [6], as well as three of the latest, largest models trained on propri-
etary data UNI, H-Optimus-0 and GigaPath [2, 18, 26]. This selection enables us to systematically
compare the performance of generic visual features against domain-specific representations learned
from histopathological data. Our analysis encompasses both Convolutional Neural Network (CNN)
architectures and Self-Attention (SA) based models, including state-of-the-art Vision Transformers.
The models vary significantly in scale, ranging from 11 million to 1.1 billion parameters, and in
their pretraining data, from generic image datasets to specialised collections of up to 1.3 billion
histopathology image patches.
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Model Operation
type

Backbone
Architecture Parameters Training

type
Training

Data Origin
Tissue
types Magnifications WSIs

(patches) Stains

VGG16 [21] CNN - 138M Supervised ImageNet-1k - - - -
ResNet18 [8] CNN - 11M Supervised ImageNet-1k - - - -
ResNet50 [8] CNN - 23M Supervised ImageNet-1k - - - -

ConvNeXt [25] CNN - 88M Supervised ImageNet-1k - - - -
ViT [4] SA - 86M Supervised ImageNet-21k/1k - - - -

SSL_ResNet18 [3] CNN ResNet18 11.1M SimCLR TCGA, CPTAC,
Multiple Public

Cancer
Normal Multiple 25 000

(400K)
H&E
IHC

SSL_ResNet50 [11] CNN ResNet50 23.5M Barlow Twins TCGA/Internal Cancer 20/40x 36 666
(32M) H&E

CTransPath [24] CNN-SA SwinT 27.5M MoCO-v3 TCGA/PAIP Cancer
Normal 20x 32 220

(15M) H&E

Lunit [11] SA ViT-S 21.6M DINO TCGA/Internal Cancer 20/40x 36 666
(32M) H&E

Phikon-v2 [6] SA ViT-L 307M DINOv2 TCGA, CPTAC, GTeX,
Multiple Public

Cancer
Normal 20x 58 359

(456M) H&E

H-Optimus-0 [18] SA ViT-G 1.1B DINOv2 Internal Cancer 20x 500 000 H&E

UNI [2] SA ViT-L 307M DINOv2 Internal/GTeX Cancer
Normal 20x 100 426

(100M) H&E

GigaPath [26] SA ViT-G 1.1B DINOv2 Internal Cancer 20x 171 189
(1.3B) H&E

Table 2: Comparative analysis of feature extractor models for digital pathology, contrasting ImageNet-
pretrained models with histopathology-specific foundation models. Models are categorised into
three groups: (orange) general computer vision models pretrained solely on ImageNet; (blue)
histopathology foundation models pretained on publicly available datasets; and (green) large-scale
histopathology foundation models trained on proprietary datasets. This classification facilitates
comparison between generic visual features and domain-specific representations. The table details
backbone architecture, CNN vs Self-Attention (SA), parameter number, training paradigms and the
origin, tissue and staining type of training data.

2.4 Implementation Details

Feature Extraction. In total we extract 26 patient level feature representations for the RA and SD
datasets, obtained from each of the 13 feature extraction networks with frozen weights. We maintain
the embedding dimension of each feature extraction network. See Appendix 5 for further details.

Experimental Setup and Evaluation Metrics. We separate a random label stratified 20% hold out
test set and perform 5-fold random label stratified cross validation on the remaining data (train:val:test
/ 60:20:20). Models were trained for a maximum 200 epochs, with a patience set to 15 such that
early stopping was called if no change was observed in either the loss, accuracy or AUC score for 15
epochs. Weights were kept for the model obtaining the best accuracy score on each validation set
while ensuring there was no under-fitting or over-fitting of the models. Each of the 5 trained model
was applied to the hold-out test. We report the mean and standard error (SE) of the results obtained
on the hold-out test set for Accuracy, Macro F1-score, Precision, Recall, AUC and Average Precision.

ABMIL. For classification we use the original one-layer ABMIL implementation [10], with input
embeddings projected to a hidden layer of dimensions 128 and sigmoid activation function.

Training schedule. All models were trained using cross-entropy loss, with the AdamW optimizer
set to β1 = 0.9, β2 = 0.98 and ϵ = 10−9, with a learning rate 1e−5 and weight decay L2 = 0.01.
No learning scheduler was used. We conducted an initial search on learning rate (1e−2, 1e−3, 1e−4,
1e−5, settling for 1e−5 as we observed the smoothest loss on average across models and datasets.
Training was conducted on an NVidia A100 GPU (40Gb) [12].

3 Results

3.1 Rheumatoid Arthritis

In Figure 5 and Table 3, we show the results of our comparative analysis for RA, with scores organised
from most to least performant within each type of model (here labelled as ImageNet, TCGA and
Internal for convenience). For each metric, the top three performers are highlighted with a red box.
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The top three performers are SSL_ResNet18 [3], UNI [2] and VGG16 [21] across Accuracy, AUC
and Average Precision, however there are no significant differences between the three. Overall, there
are no substantial performance gain between ImageNet and histopathology-pretrained networks in
general, contrary to findings from cancer-based benchmarking studies [1, 14, 6, 2].
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Figure 5: Performance comparison of feature extractor models on Rheumatoid Arthritis Subtyping.
ImageNet pretrained models are shown in orange, Histopathology pretrained models in blue for
models trained on publicly available datasets and green for proprietary data .Within each category and
metric models are organised from most to least performant, with the top three performers highlighted
with a red box .

Table 3: Detailed performance metrics for various feature extraction models on Rheumatoid Arthritis
classification tasks. Results include Accuracy, Macro F1-score, Precision, Recall, AUC, and Average
Precision for each model, with standard errors in parentheses. Models are grouped into ImageNet-
pretrained (orange), publicly available histopathology-pretrained (blue), and large-scale proprietary
histopathology-pretrained (green) categories. Top performing models highlighted in a gradient of
blue.

Rheumatoid Arthritis

Accuracy Macro
F1-score Precision Recall AUC Average Precision

VGG16 0.78 (0.02) 0.77 (0.02) 0.79 (0.02) 0.76 (0.01) 0.86 (0.02) 0.90 (0.02)
ResNet18 0.73 (0.05) 0.68 (0.07) 0.73 (0.05) 0.69 (0.06) 0.79 (0.04) 0.82 (0.03)
ResNet50 0.63 (0.02) 0.54 (0.05) 0.58 (0.07) 0.58 (0.03) 0.74 (0.05) 0.82 (0.04)
ConvNext 0.72 (0.03) 0.65 (0.06) 0.80 (0.02) 0.67 (0.04) 0.85 (0.01) 0.88 (0.01)

ViT 0.74 (0.04) 0.69 (0.06) 0.76 (0.05) 0.70 (0.05) 0.85 (0.03) 0.88 (0.03)
ssl_ResNet18 0.79 (0.03) 0.76 (0.04) 0.86 (0.01) 0.76 (0.04) 0.91 (0.01) 0.93 (0.01)
ssl_ResNet50 0.72 (0.04) 0.66 (0.07) 0.67 (0.09) 0.69 (0.05) 0.77 (0.06) 0.86 (0.03)
CTransPath 0.72 (0.05) 0.67 (0.07) 0.77 (0.05) 0.69 (0.05) 0.84 (0.04) 0.88 (0.03)

Lunit 0.73 (0.03) 0.71 (0.04) 0.73 (0.04) 0.71 (0.04) 0.82 (0.04) 0.87 (0.03)
Phikon-v2 0.69 (0.03) 0.65 (0.05) 0.69 (0.03) 0.67 (0.04) 0.81 (0.03) 0.87 (0.02)

H-Optimus-0 0.73 (0.03) 0.69 (0.04) 0.77 (0.04) 0.69 (0.03) 0.85 (0.01) 0.90 (0.01)
UNI 0.79 (0.03) 0.78 (0.03) 0.80 (0.02) 0.79 (0.03) 0.89 (0.03) 0.92 (0.02)

GigaPath 0.75 (0.05) 0.71 (0.06) 0.77 (0.05) 0.73 (0.06) 0.81 (0.04) 0.86 (0.04)

3.2 Sjogren’s Disease

For Sjogren’s Disease, Gigapath [26], ConvNext [25] and CTransPath [24] are the top three overall
performers. However, as with RA we observe a similar trend of marginal differences between models,
with considerable overlap in error bars and no significant differences between top performers for
ImageNet vs histopathology pretrained models indicating the learned feature representation extracted
from histopathology foundation models are not conferring real downstream benefits for diagnosis or
subtyping of autoimmune diseases.
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Figure 6: Performance comparison of feature extractor models on Rheumatoid Arthritis Subtyping and
Sjogren’s Disease Diagnostic tasks. ImageNet pretrained models are shown in orange, Histopathology
pretrained models in blue for models trained on publicly available datasets and green for proprietary
data.Within each category and metric models are organised from most to least performant, with the
top three performers highlighted with a red box .

Table 4: Detailed performance metrics for various feature extraction models on Sjogren’s Disease
classification tasks. Results include Accuracy, Macro F1-score, Precision, Recall, AUC, and Average
Precision for each model, with standard errors in parentheses. Models are grouped into ImageNet-
pretrained (orange), publicly available histopathology-pretrained (blue), and large-scale proprietary
histopathology-pretrained (green) categories. Top performing models highlighted in a gradient of
blue.

Sjogren

Accuracy Macro
F1-score Precision Recall AUC Average Precision

VGG16 0.57 (0.02) 0.57 (0.02) 0.57 (0.02) 0.57 (0.02) 0.60 (0.05) 0.65 (0.05)
ResNet18 0.63 (0.03) 0.62 (0.03) 0.63 (0.03) 0.63 (0.03) 0.66 (0.04) 0.68 (0.04)
ResNet50 0.70 (0.03) 0.68 (0.04) 0.71 (0.03) 0.69 (0.04) 0.77 (0.03) 0.82 (0.02)
ConvNext 0.76 (0.03) 0.75 (0.04) 0.78 (0.03) 0.75 (0.03) 0.81 (0.01) 0.82 (0.01)

ViT 0.58 (0.01) 0.55 (0.03) 0.63 (0.04) 0.58 (0.02) 0.54 (0.05) 0.58 (0.04)
ssl_ResNet18 0.66 (0.02) 0.66 (0.02) 0.67 (0.02) 0.66 (0.02) 0.73 (0.03) 0.78 (0.03)
ssl_ResNet50 0.72 (0.04) 0.71 (0.04) 0.72 (0.04) 0.72 (0.04) 0.73 (0.04) 0.77 (0.05)
CTransPath 0.74 (0.03) 0.73 (0.03) 0.76 (0.03) 0.74 (0.03) 0.80 (0.03) 0.82 (0.03)

Lunit 0.58 (0.06) 0.57 (0.07) 0.57 (0.07) 0.58 (0.07) 0.61 (0.07) 0.65 (0.06)
Phikon-v2 0.62 (0.01) 0.62 (0.01) 0.64 (0.02) 0.62 (0.01) 0.73 (0.02) 0.72 (0.02)

H-Optimus-0 0.60 (0.02) 0.59 (0.02) 0.62 (0.02) 0.61 (0.02) 0.69 (0.04) 0.73 (0.03)
UNI 0.73 (0.02) 0.72 (0.02) 0.74 (0.02) 0.73 (0.02) 0.80 (0.03) 0.79 (0.04)

GigaPath 0.77 (0.02) 0.77 (0.02) 0.77 (0.02) 0.77 (0.02) 0.75 (0.03) 0.76 (0.04)

3.3 Attention heatmaps highlight misinterpretation and bias in feature importance

In Figure 7 we show an example of a SD+ set of multi-stain WSIs (H&E, CD3 and CD21), with
attention heatmaps obtained from the ABMIL models trained with features extracted from ConvNext
(left) and GigaPath (right), the two top performer models for SD. Observing these heatmaps we see
clear evidence of the pitfalls mentioned in the introduction: in all three WSIs we see inflammatory
aggregates present throughout the tissue being explicitly less attended to by the GigaPath foundation
model. This is particularly clear in the H&E stained slide, were for GigaPath we see inflammatory
aggregates appear as darker areas of low attention scores in the middle of highly attented areas.
In contrast, ConvNext has a more evenly spread out attention map covering areas of immune cell
infiltration. In CD3 and CD21, we again see this pattern of more spread out attention covering areas
with immune cells in ConvNexT, whereas GigaPath is picking up strongly on areas which appear
to bear high level similarities to TMEs, but which are not structures present in autoimmune disease.
This is particularly striking in the top 5 patches with highest and lowest attentions scores plotted
below each WSIs: GigaPath consistently assigns low attention scores to areas with immune cell
populations and high attention scores to tissue with morphologies which bear some resemblance
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Figure 7: Attention heatmaps obtained from the ABMIL models trained with features extracted from
ConvNext (left) and GigaPath (right) for a multi-stain (H&E, CD3 and CD21) set of SD+ WSIs.
These results highlight bias in feature importance, with immune cell populations being less attended
to by the foundation model, as well as misinterpretation of features, with the foundation model
concentrating instead on areas which bear a high level resemblance to TMEs and abnormal cancer
cells. See Appendix 8 9 10 for higher resolution images

to abnormal cancer cells, while ConvNexT more accurately assigns low attention scores to areas
with little tissue coverage or with WSIs artefacts present and higher attention scores to areas with
immune cell populations. We further explore attention heatmaps for UNI and CTransPath, as well as
show higher resolution images in appendix 8 9 10. Notably, both UNI and CTransPath show similar
attention patterns, with attention scores which are less spread out and which do focus on immune cell
populations. This indicates GigaPath is focusing on more cancer specific patterns, in line with its
very large and highly specialised training corpus. For researchers working on IHC and non-cancer
datasets wishing to use a histopathology foundation model, UNI and CTransPath might therefore
currently represent a good compromise choice.

3.4 Conclusion

Our findings highlight the complexity of transferring knowledge from cancer histopathology to the
autoimmune context and underscores the need for careful evaluation of model performance across
diverse histopathological tasks, as this will be key for use in clinical practice. We believe future work
should focus on incorporating a broader scope of immune-mediated diseases into histopathological
foundation models, and handling complex IHC staining patterns to develop more versatile and
accurate AI tools for a broader spectrum of diseases.
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By understanding how the immune system behaves in these different contexts, we can gain deeper
insights into immune evasion, surveillance, and modulation. This knowledge not only bridges the
gap between cancer biology and immunology but also opens new avenues for disease prevention,
diagnosis, and treatment in both fields. Future AI models in digital pathology should be designed to
capture and interpret these complex immunological features across different disease states, enhancing
our ability to leverage insights from both autoimmunity and cancer research.
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A Supplemental material

A.1 Model feature size & extraction time

Table 5: We show vector feature size and extraction time, as well as peak RAM and VRAM usage for
each model on both datasets.

Feature vector
size Sjogren RA

Extraction time
(m)

Peak RAM
(GB)

Peak VRAM
(GB)

Extraction time
(m)

Peak RAM
(GB)

Peak VRAM
(GB)

VGG16 [21] 4096 39 40 1.7 49 45 1.7
ResNet18 [8] 512 38 40 1.2 43 33 1.2
ResNet50 [8] 2048 59 20 1.2 64 45 1.2

ConvNeXt [25] 1024 99 22 2.7 118 37 2.6
ViT [4] 768 79 45 0.4 87 45 0.4

SSL_ResNet18 [3] 512 39 40 1.2 43 34 1.2
SSL_ResNet50 [11] 2048 57 38 1.2 64 30 1.2

CTransPath [24] 768 88 34 0.3 99 40 0.3
Lunit [11] 384 60 46 0.1 99 40 0.3

Phikon-v2 [6] 1024 156 37 1.2 190 50 1.2
H-Optimus-0 [18] 1536 300 64 4.6 336 50 4.6

UNI [2] 1024 123 43 1.2 150 50 1.2
GigaPath [26] 1536 300 64 4.6 325 52 4.6

A.2 Attention heatmaps

We show higher resolution images for ConvNexT and GigaPath in 8 and 9, as well as further heatmaps
for CTransPath and UNI models in 10 and 11.
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Figure 8: Attention heatmaps obtained from the ABMIL models trained with features extracted from
ConvNext for a multi-stain (H&E, CD3 and CD21) set of SD+ WSIs. Overall we see a more spread
out attention pattern, covering areas of immune cell populations.
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Figure 9: Attention heatmaps obtained from the ABMIL models trained with features extracted from
GigaPath for a multi-stain (H&E, CD3 and CD21) set of SD+ WSIs. We notice attention score tend
to cluster more tightly around areas with no inflammatory aggregates.
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Figure 10: Attention heatmaps obtained from the ABMIL models trained with features extracted
from CTransPath for a multi-stain (H&E, CD3 and CD21) set of SD+ WSIs. The attention score
pattern is very focused, with emphasis on a few well delimitated immune cell aggregates.
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Figure 11: Attention heatmaps obtained from the ABMIL models trained with features extracted from
UNI for a multi-stain (H&E, CD3 and CD21) set of SD+ WSIs. Similarly to CTransPath, the attention
score pattern is very focused, with emphasis on a few well delimitated immune cell aggregates.

16


	Introduction
	H&E and IHC provide complementary, yet contrasting information
	Cancer and Autoimmunity: two sides of the immune coin
	Why does autoimmunity matter?
	Challenges for H&E generalisation
	Contribution

	Methodology
	Pipeline
	Datasets
	Rheumatoid Arthritis
	Sjogren

	Feature Extraction Models
	Implementation Details

	Results
	Rheumatoid Arthritis
	Sjogren's Disease
	Attention heatmaps highlight misinterpretation and bias in feature importance
	Conclusion

	Supplemental material
	Model feature size & extraction time
	Attention heatmaps


