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Abstract

We introduce TFM-Tokenizer, a novel tokenization framework tailored for EEG
analysis that transforms continuous, noisy brain signals into a sequence of dis-
crete, well-represented tokens for various EEG tasks. Conventional approaches
typically rely on continuous embeddings and inter-channel dependencies, which
are limited in capturing inherent EEG features such as temporally unpredictable
patterns and diverse oscillatory waveforms. In contrast, we hypothesize that critical
time-frequency features can be effectively captured from a single channel. By
learning tokens that encapsulate these intrinsic patterns within a single channel,
our approach yields a scalable tokenizer adaptable across diverse EEG settings.
We integrate the TFM-Tokenizer with a transformer-based TFM-Encoder, lever-
aging established pretraining techniques from natural language processing, such
as masked token prediction, followed by downstream fine-tuning for various EEG
tasks. Experiments across four EEG datasets show that TFM-Token outperforms
state-of-the-art methods in single dataset settings. Comprehensive analysis shows
that the learned tokens capture class-specific features, preserve frequency content,
and encode interpretable time—frequency motifs.

1 Introduction

Electroencephalograms (EEGs) captures real-time neuronal activity with millisecond precision,
reflecting the responses to various event stimuli. This makes EEGs essential for fundamental research
[1, 2] and diverse clinical applications[3—10]. Deep learning (DL) models have shown remarkable
success in automating EEG analysis across various tasks [11-13], driven by their ability to project
noisy signals into discriminative latent spaces that aligns with neurophysiological events.

Despite their success, effectively representing EEGs remains a primary challenge. Real-world EEGs
vary widely due to diverse devices, channel configurations and lengths[14]. Unfortunately, most
existing methods typically learn representations on a case-by-case basis with specific architectures or
fixed channel settings. These methods exhibit limited generalization across tasks and poor scalability
to different data formats. There is thus an urgent need to develop an EEG analysis method that serves
broader research objectives.

Recently, the transformative impact of large foundation models[15, 16] has elevated EEG represen-
tation learning to new heights. Several foundation EEG models have been proposed [17-19, 14],
demonstrating both enhanced performance and generalization. Researchers often fokenize EEGs into
short-duration snapshots across different data formats and model their dependencies using powerful
Transformers. However, this direction remains nascent, and several limitations remain:

 Inappropriate Tokenization Representation. One reason large language models (LLMs) succeed
is their effective tokenization and similar benefits have been shown in image [20] and video [21,
22] tokenization. However, existing foundation EEG models generally do not adopt a discrete
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tokenization paradigm. Although some methods claim to provide an EEG “tokenizer,” they typically
lack a discrete approach similar to NLP. We hypothesize that EEGs consist of recurring motifs
distorted by noise, scaling, and temporal warping. Discretizing these into invariant tokens reduces
data complexity and simplifies downstream task learning. Empirically, we show that our fully
discrete approach outperforms continuous baselines across multiple tasks, with fewer parameters.

* Insufficient Frequency Representation. Capturing eventful EEG features, which are character-
ized by distinct frequencies, is a primary focus of EEG analysis. However, tokenizing raw EEGs
often lead to a loss of frequency diversity. This frequency representation collapse is a common issue
in time-series modeling, as low-frequency components typically dominate the EEG data, biasing
models toward lower frequencies while overlooking critical high-frequency features (e.g.spikes).

* Scalability and Generalization. EEG-related tasks vary in channel configurations. For example,
seizure detection typically uses 16 channels, whereas sleep studies often require only 1-2 channels.
However, existing models are primarily designed for multi-channel settings, heavily relying on
cross-channel prediction. This design limits their scalability and adaptability to configurations with
fewer or even single channels, as well as to varying acquisition setups.

Therefore, in this paper, we propose TFM-Token, an effective, fully discretized EEG tokenization
framework that captures time-frequency motifs from single-channel EEG signals into distinct tokens.
Technically, our contributions are as follows:

e TFM-Tokenizer and TFM-Encoder: We introduce a scalable discrete tokenization framework for
EEG, transforming single-channel EEG into discrete token sequences akin to NLP. TFM-Tokenizer
converts EEG into discrete tokens, and TFM-Encoder uses them for downstream tasks.

* Joint Modeling of Frequency and Temporal Dynamics: Our tokenizer integrates raw EEG
patches with time-frequency representations, using frequency band and temporal masking to
capture essential frequency patterns while disentangling temporal variations.

* Scable tokenization: Our single-channel approach enables flexible adaptation across EEG tasks
and channel configurations. TFM-Tokenizer further enhances existing EEG models, such as
LaBraM [23] (Appendix C.4).

* Empirical Validation and Token Quality Analysis: We evaluate our framework on four EEG
downstream tasks, demonstrating state-of-the-art performance. Additionally, we analyze token
quality, including token visualization, class-specific uniqueness, and frequency learning analysis

2 Preliminaries

EEG Data: Let X € R*T be a multi-channel EEG. Each channel 2¢ € R” is segmented into raw
patches {z;}¥ | and corresponding spectrogram windows {S;}; using STFT (window L, hop H).
For simplicity, we omit the channel index and denote z as a single-channel EEG.

Problem Statement 1 (EEG Tokenization): Given a single channel EEG z, we aim to learn a
tokenization function fiokenizer : RY — VNXP that maps x (or transformations) to a sequence
of discrete tokens {v;}¥ ,, where each from a learnable EEG token vocabulary V of size k and
embedding size of D. These tokens should represent various time-frequency “motifs” derived from
both x; and S;. Remark: We here hold several expectations for the learned motif tokens. First, these
tokens are expected to reduce redundancy, noise, and complexity, providing a compact, sparse, and
informative representation of EEGs. Second, these motifs should capture key neurophysiological
patterns from temporal and frequency domains. Third, the tokens should generalize across EEG tasks.

Problem Statement 2 (Multi-Channel EEG Classification): Given EEGs X and a fixed, learned

single-channel tokenizer fiokenizer» W€ apply fiokenizer independently to each channel ¢ to obtain a token
c

sequences {{vf Z]\Ll} . These tokens are aggregated and mapped to output labels by: foiasifier :
c=1

(VP)NXC Y where Y is the target labels (e.g., EEG events, seizure types). Notably, fejassifier can

be any downstream model, and its training is performed separately from the EEG tokenizer fiokenizer-

3 TFM-Token

TFM-Token comprises two components: (1) TFM-Tokenizer (fiokenizer): cOnverts continuous EEG
signals into discrete tokens, capturing key time-frequency motifs, and (2) TFM-Encoder fyassifier:
leverages these tokens for downstream EEG tasks. To mitigate the quadratic complexity of standard
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Figure 1: Overview of the TFM-Token framework. (a) TFM-Tokenizer Pretraining: through dual-
path encoding and masked prediction, learns to capture time-frequency motifs into discrete tokens.
(b) TFM-Encoder Pretraining: uses masked token prediction on learned tokens. (c) Masking:
combination of frequency band and temporal masking. (d) Localized Spectral Window Encoder:
extracts and aggregates frequency band features from spectral windows into compact embedding.

Transformers [24], we employ a linear attention mechanism [25, 26]. To train TFM-Token, we
first conduct an unsupervised pretraining of TFM-Tokenizer in a single-channel setting (Figure 1a,
Sec 3.1). The tokenizer is then frozen, and TFM-Encoder undergoes masked token prediction
pretraining (Figure 1b, Sec 3.2), followed by fine-tuning for downstream tasks.

3.1 Single Channel TFM-Tokenizer

We introduce the TFM-Tokenizer, a scalable module for tokenizing single-channel EEG signals z
by capturing their temporal and frequency dynamics. Our design is inspired by the Vector-Quantized
Variational Autoencoder (VQ-VAE) [20], which has been widely adopted for tokenization efforts in
other domains, such as video processing [22]. At a high level, TFM-Tokenizer adopts a frequency-
then-time paradigm and comprises three components as illustrated in Figure 1a: (1) Localized Spectral
Window Encoder, (2) Temporal Encoder, and (3) Temporal Transformer.

Localized Spectral Window Encoder. EEG signals often contain distinct oscillatory patterns (e.g.,
alpha, beta bands). To capture such frequency-band structures, each spectral window S; is patched
along the frequency axis into P non-overlapping patches spanning A f frequency bins such that
P.Af = F (Figure 1d). Each patch S(; y is projected: e(; ,,) = GroupNorm (GeLU (WPS(M)))),
where W), € RP*AS is a learnable matrix. Then, a frequency transformer operates along the
frequency axis to model intra-spectral window cross-frequency band dependencies. In many EEG
scenarios, large portions of the frequency spectrum can be irrelevant. To emphasize task-relevant
frequency patches, we apply a gated aggregation mechanism to obtain a single embedding for each
S;: E = Concat [U (nge(1 p) Wgze(hp)] , where W1, Wy are learnable matrices and o (+) is
the element wise sigmoid function.

Temporal Encoder and Temporal Transformer: To capture temporal dynamics from the raw
EEG patches {z;}¥,, we perform a linear projection followed by GELU[27] activation and group
normalization, producing {E7 } ¥ | . We then concatenated each aggregated frequency embedding EF
with its corresponding temporal embedding E7’, and input the sequence into a temporal transformer.
The output is then quantized into discrete tokens {v;}¥ | using a learnable codebook V¥,

Tokenizer Codebook. Our tokenizer captures temporal-frequency motifs by applying vector quanti-
zation along the time axis, treating each short-duration patch as a discrete unit. This contrasts with
conventional visual tokenizers, which typically operate on the embedding dimension [20, 28]. As a
result, each token represents a short-duration waveform segment, enabling interpretability(Section 4).

Frequency Masking Prediction for Tokenizer Learning. To facilitate frequency learning, we apgly
frequency-band and temporal masking during TFM-Tokenizer training. S is split into Ny = | 5- |

frequency groups of size ;. We apply a random frequency mask Mp and temporal mask My,
combining them as M = My A My to produce the masked spectrogram S . The masked input S™
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and raw EEG patch x are encoded, quantized, and passed through a transformer + linear decoder to
reconstruct masked regions: Lrec = f’t)HS( £,t)=S(f.t) H; , where S is the reconstructed output.
Additionally, we apply the codebook and commitment losses [20].

3.2 Token-Wise TFM-Encoder

The TFM-Encoder aggregates EEG tokens across channels for downstream tasks. Given a
multi-channel recording X € RE*T, the pretrained TFM-Tokenizer produces token sequences

c
{{qﬁ N } for each channel ¢ independently. A [CLS] token is prepended [29], and the se-
=1

quence is processed by transformer layers. The [CLS] output is used for classification. We pretrain
TFM-Encoder using masked token prediction and then it is finetuned to downstream tasks.

4 Experiments and Results

Table 1: EEG classification performance on TUEV and TUAB datasets under single dataset settings
(Results on CHB-MIT and IIIC Seizure are provided in Table 4 and 5 in Appendix C.1 ).

Models Number TUEYV (event type classification) TUAB (abnormal detection)
of Params  Balanced Acc.  Cohen’s Kappa Weighted F1 Balanced Acc. AUC-PR AUROC

SPaRCNet[30] 0.79M 0.4161 £0.0262 0.4233 +0.0181 0.7024 + 0.0104 0.7896 £+ 0.0018  0.8414 + 0.0018 0.8676 + 0.0012
ContraWR[4] 1.6M 0.4384 £0.0349  0.3912 +0.0237 0.6893 +0.0136  0.7746 = 0.0041  0.8421 £ 0.0104  0.8456 £ 0.0074
CNN-Transformer([31] 3.2M 0.4087 £ 0.0161  0.3815 +0.0134  0.6854 +0.0293  0.7777 +0.0022  0.8433 £ 0.0039  0.8461 =+ 0.0013
FFCL[32] 2.4M 03979 £0.0104  0.3732 +0.0188 0.6783 +0.0120 0.7848 & 0.0038  0.8448 £ 0.0065 0.8569 =+ 0.0051
ST-Transformer[33] 3.5M 0.3984 £ 0.0228 0.3765 = 0.0306  0.6823 £ 0.0190  0.7966 £ 0.0023  0.8521 +0.0026  0.8707 £ 0.0019
Vanilla BIOT[14] 32M 0.4682 £ 0.0125 0.4482 +0.0285 0.7085 = 0.0184  0.7959 & 0.0057  0.8792 & 0.0023  0.8815 =+ 0.0043
BIOT*[14] 32M 0.4679 £+ 0.0354  0.4890 + 0.0407  0.7352 +0.0236  0.7955 + 0.0047 0.8819 & 0.0046  0.8834 =+ 0.0041
LaBraM-Base* (23] 5.8M 0.4682 £ 0.0856  0.5067 + 0.0413  0.7466 + 0.0202  0.7720 & 0.0046  0.8498 £ 0.0036  0.8534 =+ 0.0027
TFM-Token-R 1.8M 0.4898 +0.0105 0.5194 +0.0195 0.7518 +0.0095 0.8033 + 0.0021  0.8908 + 0.0027  0.8849 =+ 0.0024
TFM-Token-S 1.9M 0.4708 £ 0.0339  0.5275 +0.0314  0.7538 +0.0152  0.7927 & 0.0044  0.8814 £ 0.0095 0.8836 =+ 0.0052
TFM-Token 1.9M 0.4943 +0.0516  0.5337 + 0.0306  0.7570 = 0.0163  0.8152 = 0.0014  0.8946 + 0.0008  0.8897 -+ 0.0008

1. Best results are bolded, second-best are underlined. 2. LaBraM’s parameter count includes only the classifier. The size of their neural

tokenizer was 8.6M. 3. TFM-Token-R and S use only raw EEG or STFT as inputs. 4. * indicates single dataset setting

Performance comparison: We evaluate on four EEG datasets, including: (1)TUEV[34,
35], (2)TUAB[36], (3)IIIC Seizure sourced from [30, 37] and (4)CHB-MIT[38]. Full ex-
perimental details are provided in Appendix B. Table 1 presents EEG event classifica-
tion results on TUEV and abnormal detection performance on TUAB. Our TFM-Token
consistently outperforms baselines on all datasets and metrics in the single-dataset setting.
TFM-Token achieves better performance with fewer
parameters, 3 x smaller than LaBraM (5.8M — 1.9M)
and 1.5x smaller than BIOT (3.2M — 1.9M). Em- ®PLED b) GPED

pirically, this reduction can be attributed to the dis- W W
crete tokenization approach, which compresses the
EEG into a token sequence, reducing data complex-
ity. Additional results and token quality analysis are
provided in Appendix C.

4035 [0 4882 [ 6634 771 3751 [ 5096 1097

Interpretability of Learned Tokens: We visually
examine whether TFM-Tokenizer captures mean-
ingful time—frequency motifs. Figure 2 shows some
representative tokens learned by TFM-Tokenizer on
the TUEV. Each token corresponds to a 1s EEG patch
(0.5s overlap) and its spectral window. For clarity, .
we highlight the most frequent tokens per class. The Figure — 2: Motifs  captured by
results shows that TFM-Tokenizer encodes class- LFM-Tokenizer on TUEV: (a) shows
specific patterns into discrete tokens. For instance, three samples from the PLED class and (b)
token 4035 in the PLED class consistently captures a ShoWs three samples from the GPED class.
characteristic drop followed by a rise waveform, maintaining its structure across different samples
despite variations in noise, amplitude, and minor shifts within the window.

5 Conclusion

We introduced TFM-Token, a fully discrete tokenization framework consisting of TFM-Tokenizer
and TFM-Encoder modules. Comprehensive evaluations across multiple datasets demonstrate that
TFM-Token outperforms existing baselines with fewer parameters in single dataset settings.
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A Related work

EEG Representation Learning. To learn general representations and address issues of label
scarcity in EEG data, self-supervised learning (SSL) has emerged as a prominent paradigm, and
existing works can be categorized into two main approaches: contrastive learning and self-prediction.
Contrastive learning methods [39, 40, 6], leverage augmentation or transformation of EEG inputs
to learn consistent representations. In contrast, self-prediction methods[41, 42, 14, 19] aim to
accurately reconstruct masked or corrupted input. However, their learning objectives heavily rely
on cross-channel prediction to focus on spatial characteristics. In contrast, our method emphasizes
inherent time-frequency features within a single-channel setting and can later adapt to any channel
configuration.

Foundation EEG Models. Inspired by the success of foundation models in NLP, recent efforts
have sought to develop foundation models for EEG analysis. These models can be categorized
into decoding and encoder-based methods. Decoding-only methods focus on generative tasks like
EEG-to-text translation, with representative works including DeWave [17], EEG2Text [43], and
E2T-PTR [44]. In contrast, encoder-only methods concentrate on fundamental EEG classification
tasks and representation learning. Notable models include LaBraM [23], BIOT [14], BRANT [45],
and MMM [18]. Our work aligns with this latter category, focusing on enhancing the representation
quality to improve classification performance.

EEG Tokenization. Tokenization has been instrumental in NLP, where discrete subword units have
proven to reduce data complexity and improve model performance and interoperability. Although
time-series tokenization methods have shown promise [46, 47], they do not scale well to EEGs’
higher sampling rates and other artifacts. Existing attempts for EEGs include patch-based continuous
tokenization, such as BIOT [14] and BRANT [45], and vector quantization (VQ)-based methods like
DeWave [17]. Patch-based methods do not involve encoding or quantization, leading to unbounded
and continuous representations that lack distinctiveness and interpretability. In contrast, VQ-based
tokenizers, traditionally successful in tokenizing continuous images [28], have recently been adapted
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for EEG by LaBraM [23], However, LaBraM employs its neural tokenizer only during pretraining but
relies on raw EEG signals during inference. Conceptually, its primary role is to pre-train classification
layers, rather than encoding inputs and reducing data complexity. Here, our method is explicitly
VQ-based, treating the codebook as a real tokenizer for EEG data. Moreover, we enforce each token
to capture time-frequency motifs[48] in EEG inputs, ensuring a more structured and interpretable
representation.

B Experiment Setup

B.1 Datasets:

* TUH EEG Events (TUEYV) [34]: TUEV is a subset of the TUH EEG Corpus [35], which
comprises clinical EEG recordings collected at Temple University Hospital between 2002 and
2017. The dataset is annotated for six EEG event types: spike and sharp wave (SPSW), generalized
periodic epileptiform discharges (GPED), periodic lateralized epileptiform discharges (PLED), eye
movement (EYEM), artifact (ARTF), and background (BCKG).

* TUH Abnormal EEG Corpus (TUAB) [36]: TUAB comprises EEG recordings collected at
Temple University Hospital, which are labeled for normal and abnormal EEG activity.

e IIIC Seizure [30, 37]: The IIIC Seizure dataset is curated for the detection of six distinct ic-
tal-interictal-injury continuum (IIIC) patterns and is sourced from [30, 37]. The annotations
include: (1) others (OTH), (2) seizure types (ESZ), (3) lateralized periodic discharge (LPD), (4)
generalized periodic discharge (GPD), (5) lateralized rhythmic delta activity (LRDA), and (6)
generalized rhythmic delta activity (GRDA).

* CHB-MIT [38]: The CHB-MIT dataset is a widely used benchmark for epilepsy seizure detection.
It comprises EEG recordings from 23 pediatric subjects with intractable seizures.

B.2 Dataset Statistics and Splits

Table 2: Dataset Summary

Dataset # of Recordings # of Samples Duration (s) Task

TUEV 11,914 112,491 5 EEG Event Classification
IIIC Seizure 2,689 135,096 10 Seizure Type Classification
CHB-MIT 686 326,993 10 Seizure Detection
TUAB 2,339 409, 455 10 Abnoral EEG Detection

This section provides detailed information on the datasets used in our experiments and their respective
splits. Table 2 summarizes key statistics, including the number of recordings, the total number of
samples after preprocessing, their duration, and the corresponding downstream tasks. For TUEV and
TUAB, we utilized the official training and test splits provided by the dataset and further divided the
training splits into 80% training and 20% validation sets. We performed a subject-wise split into 60%
training, 20% validation, and 20% test on the IIIC Seizure dataset. In the CHB-MIT dataset, we used
1-19 subjects for training, 20-21 for validation, and 22-23 for testing.

B.3 Preprocessing:

We follow the preprocessing setup of BIOT [14]. Unlike LaBraM [23], which utilized 23 channels in
the TUEV and TUAB datasets, we adhere to the 16-channel bipolar montage from the international
10-20 system, as used in [14]. All EEG recordings are resampled to 200 Hz. For TUEV and
TUAB, we apply a bandpass filter (0.1-75 Hz) and a notch filter (50 Hz), following the preprocessing
pipeline of LaBraM [23]. STFT computation of the signals is performed using PyTorch, with
detailed parameters provided in Appendix B.4. For training, validation, and test splits, we follow
the recommendations from [14]. Additional details on dataset statistics and splits are provided in
Appendix B.2.
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B.4 STFT parameters
To extract frequency-domain representations of the EEG, we utilized the STFT function from PyTorch.

The recommendations of [14] guided our parameter selection and empirical analysis of different
configurations to optimize the time-frequency resolution tradeoff. The final parameters are as follows:

Table 3: STFT parameters

Parameter Value Description

FFT size (ng, L) 200 Number of frequency bins (equal to resampling rate)
Hop length H 100 Step size for sliding window (50% overlap)
Window type Hann A smoothing window function to reduce spectral leakage
Output representation  Magnitude Only the absolute values of the STFT are retained
Centering False The STFT is computed without implicit zero-padding
One-sided output True Only the positive frequency components are kept

B.5 Baselines and Metrics:

We evaluated our approach against the baselines from [14] as well as the current state-of-the-art
methods, including BIOT [14] and LaBraM [23]. BIOT and LaBraM were reproduced using their
respective open-source GitHub repositories. For other baselines we use the reported best results
from [14]. To ensure a fair comparison, our experiments follow a single-dataset settings, where we
reproduced BIOT and LaBraM. Specifically for BIOT, we conducted their proposed unsupervised
pretraining followed by fine-tuning on the same dataset. Similarly, for LaBraM, we used their base
model and conducted neural tokenizer training, masked EEG modeling, and fine-tuning within the
same dataset. For performance evaluation, we used balanced accuracy, Cohen’s Kappa coefficient,
and weighted-F1 score for multi-class classification tasks, while balanced accuracy, AUC-PR, and
AUROC were used for binary classification tasks. For TUAB, we used binary cross-entropy loss for
fine-tuning, while the cross-entropy loss was applied to the TUEV and IIIC datasets. Given the class
imbalance in the CHB-MIT dataset, we employed focal loss for all experiments. All experiments
were conducted using five different random seeds, and we report the mean and standard deviation
for each metric. Also, we used Cohen’s Kappa and AUROC as monitoring metric for multiclass and
binary classification tasks respectively.

C More Experiment Results

C.1 Performance on CHB-MIT and IIIC Seizure

Table 4 and 5 presents the performance comparison of TFM-Token with baselines on seizure detection
(CHB-MIT) and seizure type classification (IIIC Seizure) tasks. TFM-Token outperforms all baselines
across all metrics in both datasets. On the CHB-MIT dataset with a highly imbalanced binary
classification task, BIOT is the only baseline with an AUC-PR above 0.25. However, TFM-Token
surpasses BIOT, achieving an 8% improvement in AUC-PR (0.3127 — 0.3379) and a 4.5% increase
in AUROC (0.8456 — 0.8839), demonstrating better robustness to class imbalance. For the IIIC
Seizure dataset, where the task is to classify 10-second, 16-channel EEG segments into six classes,
TFM-Token improves Cohen’s Kappa by 9.5% (0.4549 — 0.4985) and Weighted F1 by 8.5%
(0.5387 — 0.5847) over ContraWR, which achieves second best results.

The superior performance of TFM-Token across four EEG datasets shows the promise of a fully
discretized framework that has the potential to enhance future EEG foundation models. These results
also underscore the importance of capturing both temporal and frequency information, highlighting
the critical role of frequency learning in EEG analysis.

C.2 Importance of Joint Frequency and Temporal Modeling:

To evaluate the importance of joint frequency-temporal modeling, we conducted an ablation study
comparing three tokenization variants: (1) TFM-Token-Raw Signal Only (TFM-Token-R), which uses
only raw EEG patches {z;}¥ ; to predict the spectrum S, (2) TFM-Token-STFT Only (TFM-Token-
S), and (3) TFM-Token, which jointly models both temporal and frequency features. Masked modeling

10
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Table 4: Seizure detection performance comparison on the CHB-MIT dataset

Models Number CHB-MIT (seizure detection)
of Params  Balanced Acc. AUC-PR AUROC

SPaRCNet[30] 0.79M 0.5876 +=0.0191 0.1247 =0.0119 0.8143 4 0.0148
ContraWR[4] 1.6M 0.6344 +0.0002 0.2264 +0.0174 0.8097 £ 0.0114
CNN-Transformer[31] 3.2M 0.6389 + 0.0067 0.2479 4+ 0.0227 0.8662 =+ 0.0082
FFCL[32] 2.4M 0.6262 £+ 0.0104 0.2049 4+ 0.0346 0.8271 £ 0.0051
ST-Transformer[33] 3.5M 0.5915 £ 0.0195 0.1422 +0.0094 0.8237 £ 0.0491
Vanilla BIOT[14] 3.2M 0.6640 + 0.0037 0.2573 4+ 0.0088 0.8646 =+ 0.0030
BIOT*[14] 3.2M 0.6582 +0.0896 0.3127 +=0.0890 0.8456 & 0.0333
LaBraM-Base*[23] 5.8M 0.5035 +0.0078 0.1032 4 0.0660 0.6944 £ 0.0612
TFM-Token 1.9M 0.6750 + 0.0392 0.3379 £+ 0.0515 0.8839 + 0.0173

—_

. Best results are bolded. 2. * indicates single dataset setting

Table 5: Seizure type classification performance comparison on the IIIC Seizure dataset

Models Number IIIC Seizure (seizure type classification)
of Params  Balanced Acc.  Cohen’s Kappa Weighted F1

SPaRCNet[30] 0.79M 0.5546 £ 0.0161 0.4679 £ 0.0228 0.5569 + 0.0184
ContraWR[4] 1.6M 0.5519 £ 0.0058 0.4623 +0.0148 0.5486 £+ 0.0137
CNN-Transformer[31] 3.2M 0.5476 £ 0.0103  0.4481 + 0.0139  0.5346 £ 0.0127
FFCL[32] 2.4M 0.5617 £0.0117 0.4704 +0.0130 0.5617 £ 0.0171
ST-Transformer[33] 3.5M 0.5423 £0.0056  0.4492 + 0.0056  0.5440 £+ 0.0014
Vanilla BIOT[14] 3.2M 0.5762 £ 0.0034 0.4932 + 0.0046  0.5773 £+ 0.0031
BIOT*[14] 3.2M 0.4458 £ 0.0183  0.3418 £ 0.0228 0.4511 £ 0.0207
LaBraM-Base*[23] 5.8M 0.4736 £0.0101 0.3716 = 0.0128  0.4765 £ 0.0097
TFM-Token (Ours - Single Dataset) 1.9M 0.5775 £ 0.0042  0.4985 + 0.0039  0.5847 + 0.0050

1. Best results are bolded. 2. * indicates single dataset setting

was applied for token learning in the latter two, with consistent TFM-Encoder training across all
variants. Results are shown in Table 6. In event classification, TFM-Token-S improves Cohen’s
Kappa over TFM-Token-R (0.5194 — 0.5275). However, in abnormal detection, TFM-Token-R
achieves a higher AUC-PR (0.8814 — 0.8908). These results indicate that different EEG tasks rely
on distinct feature domains, underscoring the necessity of joint modeling. The primary TFM-Token
consistently outperforms both single-domain approaches across all settings, further underscoring the
importance of joint modeling.

C.3 EEG Token Quality Analysis and Frequency Learning

We study the quality of the EEG tokens learned by our TFM-Tokenizer by analyzing four key
aspects: (1) token utilization, (2) class-specific distinctiveness, (3) similar class retrieval, and (4)
frequency learning capability. We conducted our analysis using all three TFM-Tokenizer variants
and the neural tokenizer from LaBraM [23], testing them on the test splits of both the TUEV and
ITIC datasets, which have multiple classes. All tokenizers employed a fixed vocabulary size of 8, 192
tokens for consistency and fair comparison.

Token utilization and Class uniqueness: Token utilization (%) score was calculated as the per-
centage of unique tokens activated from the total available vocabulary size. To quantify whether the
tokenizers capture class-distinctive representations, we introduce the Class-Token Uniqueness Score,
defined as:

# Unique Tokens in Class

# Tokens Utilized by Class %

Figure 3a visualizes the class-token uniqueness scores for each class in both datasets. A robust
tokenizer should capture class-distinctive tokens across all dataset classes through unsupervised
pretraining. To assess this, we computed the geometric mean (GM) of class-token uniqueness
scores, as shown in Table 7. Our TFM-Tokenizer reduces token utilization by more than two-

100

Class-Token Uniqueness % =

11



443
444
445
446
447
448
449
450

451
452
453
454
455
456
457
458
459
460

461
462
463
464
465

467
468
469
470
471
472
473
474

475

476
477
478

Table 6: Ablation study on input representation to TFM-Tokenizer

Models Number TUEV (event type classification) TUAB (abnormal detection)

of Params  Balanced Acc.  Cohen’s Kappa Weighted F1 Balanced Acc. AUC-PR AUROC
TFM-Token-R 1.8M 0.4898 4 0.0105  0.5194 £0.0195  0.7518 +0.0095  0.8033 & 0.0021  0.8908 + 0.0027  0.8849 + 0.0024
TFM-Token-S 1.9M 0.4708 £ 0.0339  0.5275 +0.0314  0.7538 +0.0152  0.7927 £ 0.0044  0.8814 +0.0095  0.8836 + 0.0052
TFM-Token 1.9M 0.4943 + 0.0516  0.5337 +0.0306 0.7570 + 0.0163  0.8152 + 0.0014  0.8946 + 0.0008  0.8897 + 0.0008

1. The best results are bolded, while the second-best are underlined.

Table 7: Token Utilization and class-token uniqueness comparison

Tokenization Method # Params Utilization Class-Token
% Uniqueness (GM) %
TUEV IIIC TUEV IIIC

Neural Tokenizer (LaBraM) 8.6M 21.13 1525 0.034 0.000

TFM-Tokenizer-R 1.1IM 5.29 7.87 0.000 0.000
TFM-Tokenizer-S 1.1IM 13.93 11.04 0.004 0.619
TFM-Tokenizer 1.2M 9.78 8.26 2.14 1.429

fold compared to the neural tokenizer on TUEV (21.13% — 9.78%) and nearly two-fold on IIIC
(15.25% — 8.26%). It also significantly improves learning of class-unique tokens compared to neural
tokenizer (0.034% — 2.14%on TUEV, 0.0% — 1.429% on IIIC). These results demonstrate that the
TFM-Tokenizer captures more compact and useful tokens than the neural tokenizer. Additionally,
TFM-Tokenizer achieves a higher class-token uniqueness score across all classes compared to
TFM-Tokenizer-R (0.0% — 1.429% on IIIC) and TFM-Tokenizer-S (0.619% — 1.429% on
ITIC), as depicted in Figure 3a. This further validates joint frequency-temporal modeling in EEG
analysis.

Tokens for Similar-Class Sample Mining: We conducted an EEG signal mining experiment based
on similar-class sample retrieval. Given a multi-channel EEG sample, we first obtain its discrete
token representation. Using the Jaccard similarity score, we then retrieve the top K most similar
samples from the dataset and compute the precision score for correctly retrieving samples of the
same class. For this study, we constructed a balanced subset from the IIIC and TUEV datasets and
tested all four tokenization methods. The retrieval performance, illustrated in Figure 3b, shows that
all TFM-Tokenizer variants significantly outperform neural tokenizer. Notably, TFM-Tokenizer-S
and TFM-Tokenizer achieve nearly 60% precision on the TUEV for K = 1. While the Jaccard
similarity measure demonstrates initial feasibility, further research is needed to identify optimal
metrics for token-based EEG retrieval.

Evaluating the Frequency Learning of TFM-Tokenizer Tokens: In this experiment, we compare
the frequency and temporal-domain encoders of the TFM-Tokenizer to evaluate their ability to
capture diverse frequency features in EEG signals. Specifically, we arrange all tokens in temporal
order and perform a discrete Fourier transform on the token sequence. This process decomposes
the tokens into frequencies, where each frequency reflects the degree of change between tokens
at various scales. Larger changes indicate more diverse token representations. Then, we compute
spectral entropy, defined as the normalized Shannon entropy of the amplitude values, to quantify how
energy is distributed across the spectrum. Higher spectral entropy means that the model has learned
a broader range of frequency features, capturing differences from both large-scale trends and fine
details. Figure 4 shows that on the TUEV, TUAB, and CHBMIT datasets, the frequency encoder
produces tokens with significantly higher spectral entropy than the temporal encoder. For example,
on the TUEV dataset, the frequency encoder achieved an average spectral entropy of 0.26, while the
temporal encoder reached only 0.14. This multi-scale sensitivity benefits downstream tasks such as
classification, where learning detailed differences in EEG tokens can improve performance.

C4 Does TFM-Tokenizer Enhance LaBraM?
To assess the scalability of TFM-Tokenizer, we investigated its ability to enhance an existing EEG

foundation model. We selected LaBraM [23], which employs a neural tokenizer solely for pretraining.
This setup makes it an ideal candidate for this study. We replaced LaBraM neural tokenizer with

12
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Figure 3: Analysis of token quality across three TFM-Tokenizer variants and the neural tokenizer.
(a) Comparison of class-token uniqueness scores across all classes. (b) Retrieval performance
comparison of tokenizers in a similar-class sample mining task.

Table 8: Performance Comparison of LaBraM with their neural tokenizer vs TFM-Tokenizer

Dataset Tokenizer Performance Metrics
Balanced Acc. Cohen’s Kappa Weighted F1

TUEV Neural Tokenizer  0.4682 + 0.0856 0.5067 £ 0.0413 0.7466 £+ 0.0202
TFM-Tokenizer 0.5147 £ 0.0174 T 0.5220 £+ 0.0153 1 0.7533 + 0.0094

Balanced Acc. AUC-PR AUROC

TUAB Neural Tokenizer  0.7720 £ 0.0046 0.8498 + 0.0036 0.8534 + 0.0027
TFM-Tokenizer 0.7765 + 0.0016 T 0.8518 + 0.0051 T 0.8584 + 0.0022 1

TFM-Tokenizer during the masked EEG modeling stage and evaluated its performance on TUEV
and TUAB, presented in Table 8. On TUEV, LaBraM with TFM-Tokenizer achieves a 9% increase
in balanced accuracy (0.4682 — 0.5147) and a 3% increase in Cohen’s Kappa (0.5067 — 0.5220).
On TUAB, TFM-Tokenizer consistently outperforms the neural tokenizer. These results confirm the
capability of TFM-Token in enhancing the performance of EEG foundation models. The increase in
balanced accuracy suggests that our tokenizer learns more class-discriminative tokens than the neural
tokenizer.

13
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Figure 4: An analysis of how the proposed frequency and temporal-domain encoders capture
frequency features, by using the spectral entropy of the learned token sequences from randomly
selected samples. Higher values indicate that the tokens contain richer frequency information.

C.5 Ablation on Masking

Table 9: Ablation on masking used for the pretraining of TFM-Tokenizer on TUEV Dataset

Masking Strategy Balanced Acc. Cohen’s Kappa Weighted F1
Random Masking 0.4351 4 0.0462 0.4772 +0.0140 0.7296 + 0.0076
Frequency Bin Masking  0.4673 + 0.0540 0.5193 £ 0.0243 0.7536 £ 0.0125
Frequency Bin 0.4946 +0.0392  0.5045+0.0221  0.7462 + 0.0116
+ Temporal Masking

Frequency Bin

+ Temporal Masking 0.4943 £0.0516  0.5337 +£0.0306 0.7570 + 0.0163

+ Symmetric Masking

We conducted an ablation study on masking strategies during TFM-Tokenizer pretraining to assess
their impact on performance. Results shown in Table 9 indicate that random masking on the
spectrogram .S performs poorly compared to other strategies, underscoring the need for effective
masking to capture frequency and temporal features from EEG. Frequency bin masking significantly
improves performance over random masking, with an 8% increase in Cohen’s Kappa (0.4772 —
0.5193) and a 7% increase in balanced accuracy (0.4351 — 0.4673), highlighting the importance
of modeling frequency band dynamics. The addition of temporal masking further boosts balanced
accuracy by 5% (0.4673 — 0.4946), underscoring the importance of joint temporal-frequency
modeling. However, temporal masking results in a decline in Cohen’s Kappa and Weighted F1, which
is then resolved by introducing symmetric masking, achieving the overall best performance.

D TFM-Token Implementation and Hyperparameter Tuning
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Figure 5: TFM-Token Overview
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Figure 5 presents an overview of TFM-Token during inference. This section provides additional
details on the implementation and training of the framework.

D.1 Training Pipeline:

For all experiments, we follow a single-dataset setting, where all processes in each experiment
are conducted within the same dataset. The training process of our framework is as follows: (1)
TFM-Tokenizer unsupervised pretraining, (2) TFM-Encoder pretraining using masked token pre-
diction, and finally (3) fine-tuning on the same dataset for downstream tasks.
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