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Abstract

We introduce TFM-Tokenizer, a novel tokenization framework tailored for EEG1

analysis that transforms continuous, noisy brain signals into a sequence of dis-2

crete, well-represented tokens for various EEG tasks. Conventional approaches3

typically rely on continuous embeddings and inter-channel dependencies, which4

are limited in capturing inherent EEG features such as temporally unpredictable5

patterns and diverse oscillatory waveforms. In contrast, we hypothesize that critical6

time-frequency features can be effectively captured from a single channel. By7

learning tokens that encapsulate these intrinsic patterns within a single channel,8

our approach yields a scalable tokenizer adaptable across diverse EEG settings.9

We integrate the TFM-Tokenizer with a transformer-based TFM-Encoder, lever-10

aging established pretraining techniques from natural language processing, such11

as masked token prediction, followed by downstream fine-tuning for various EEG12

tasks. Experiments across four EEG datasets show that TFM-Token outperforms13

state-of-the-art methods in single dataset settings. Comprehensive analysis shows14

that the learned tokens capture class-specific features, preserve frequency content,15

and encode interpretable time–frequency motifs.16

1 Introduction17

Electroencephalograms (EEGs) captures real-time neuronal activity with millisecond precision,18

reflecting the responses to various event stimuli. This makes EEGs essential for fundamental research19

[1, 2] and diverse clinical applications[3–10]. Deep learning (DL) models have shown remarkable20

success in automating EEG analysis across various tasks [11–13], driven by their ability to project21

noisy signals into discriminative latent spaces that aligns with neurophysiological events.22

Despite their success, effectively representing EEGs remains a primary challenge. Real-world EEGs23

vary widely due to diverse devices, channel configurations and lengths[14]. Unfortunately, most24

existing methods typically learn representations on a case-by-case basis with specific architectures or25

fixed channel settings. These methods exhibit limited generalization across tasks and poor scalability26

to different data formats. There is thus an urgent need to develop an EEG analysis method that serves27

broader research objectives.28

Recently, the transformative impact of large foundation models[15, 16] has elevated EEG represen-29

tation learning to new heights. Several foundation EEG models have been proposed [17–19, 14],30

demonstrating both enhanced performance and generalization. Researchers often tokenize EEGs into31

short-duration snapshots across different data formats and model their dependencies using powerful32

Transformers. However, this direction remains nascent, and several limitations remain:33

• Inappropriate Tokenization Representation. One reason large language models (LLMs) succeed34

is their effective tokenization and similar benefits have been shown in image [20] and video [21,35

22] tokenization. However, existing foundation EEG models generally do not adopt a discrete36
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tokenization paradigm. Although some methods claim to provide an EEG “tokenizer,” they typically37

lack a discrete approach similar to NLP. We hypothesize that EEGs consist of recurring motifs38

distorted by noise, scaling, and temporal warping. Discretizing these into invariant tokens reduces39

data complexity and simplifies downstream task learning. Empirically, we show that our fully40

discrete approach outperforms continuous baselines across multiple tasks, with fewer parameters.41

• Insufficient Frequency Representation. Capturing eventful EEG features, which are character-42

ized by distinct frequencies, is a primary focus of EEG analysis. However, tokenizing raw EEGs43

often lead to a loss of frequency diversity. This frequency representation collapse is a common issue44

in time-series modeling, as low-frequency components typically dominate the EEG data, biasing45

models toward lower frequencies while overlooking critical high-frequency features (e.g.spikes).46

• Scalability and Generalization. EEG-related tasks vary in channel configurations. For example,47

seizure detection typically uses 16 channels, whereas sleep studies often require only 1–2 channels.48

However, existing models are primarily designed for multi-channel settings, heavily relying on49

cross-channel prediction. This design limits their scalability and adaptability to configurations with50

fewer or even single channels, as well as to varying acquisition setups.51

Therefore, in this paper, we propose TFM-Token, an effective, fully discretized EEG tokenization52

framework that captures time-frequency motifs from single-channel EEG signals into distinct tokens.53

Technically, our contributions are as follows:54

• TFM-Tokenizer and TFM-Encoder: We introduce a scalable discrete tokenization framework for55

EEG, transforming single-channel EEG into discrete token sequences akin to NLP. TFM-Tokenizer56

converts EEG into discrete tokens, and TFM-Encoder uses them for downstream tasks.57

• Joint Modeling of Frequency and Temporal Dynamics: Our tokenizer integrates raw EEG58

patches with time-frequency representations, using frequency band and temporal masking to59

capture essential frequency patterns while disentangling temporal variations.60

• Scable tokenization: Our single-channel approach enables flexible adaptation across EEG tasks61

and channel configurations. TFM-Tokenizer further enhances existing EEG models, such as62

LaBraM [23] (Appendix C.4).63

• Empirical Validation and Token Quality Analysis: We evaluate our framework on four EEG64

downstream tasks, demonstrating state-of-the-art performance. Additionally, we analyze token65

quality, including token visualization, class-specific uniqueness, and frequency learning analysis66

2 Preliminaries67

EEG Data: Let X ∈ RC×T be a multi-channel EEG. Each channel xc ∈ RT is segmented into raw68

patches {xi}Ni=1 and corresponding spectrogram windows {Si}Ni=1 using STFT (window L, hop H).69

For simplicity, we omit the channel index and denote x as a single-channel EEG.70

Problem Statement 1 (EEG Tokenization): Given a single channel EEG x, we aim to learn a71

tokenization function ftokenizer : RT → VN×D that maps x (or transformations) to a sequence72

of discrete tokens {vi}Ni=1, where each from a learnable EEG token vocabulary V of size k and73

embedding size of D. These tokens should represent various time-frequency “motifs” derived from74

both xi and Si. Remark: We here hold several expectations for the learned motif tokens. First, these75

tokens are expected to reduce redundancy, noise, and complexity, providing a compact, sparse, and76

informative representation of EEGs. Second, these motifs should capture key neurophysiological77

patterns from temporal and frequency domains. Third, the tokens should generalize across EEG tasks.78

Problem Statement 2 (Multi-Channel EEG Classification): Given EEGs X and a fixed, learned79

single-channel tokenizer ftokenizer, we apply ftokenizer independently to each channel c to obtain a token80

sequences
{
{vci }Ni=1

}C

c=1
. These tokens are aggregated and mapped to output labels by:fclassifier :81

(VD)N×C → Y where Y is the target labels (e.g., EEG events, seizure types). Notably, fclassifier can82

be any downstream model, and its training is performed separately from the EEG tokenizer ftokenizer.83

3 TFM-Token84

TFM-Token comprises two components: (1) TFM-Tokenizer (ftokenizer): converts continuous EEG85

signals into discrete tokens, capturing key time-frequency motifs, and (2) TFM-Encoder fclassifier:86

leverages these tokens for downstream EEG tasks. To mitigate the quadratic complexity of standard87
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Figure 1: Overview of the TFM-Token framework. (a) TFM-Tokenizer Pretraining: through dual-
path encoding and masked prediction, learns to capture time-frequency motifs into discrete tokens.
(b) TFM-Encoder Pretraining: uses masked token prediction on learned tokens. (c) Masking:
combination of frequency band and temporal masking. (d) Localized Spectral Window Encoder:
extracts and aggregates frequency band features from spectral windows into compact embedding.

Transformers [24], we employ a linear attention mechanism [25, 26]. To train TFM-Token, we88

first conduct an unsupervised pretraining of TFM-Tokenizer in a single-channel setting (Figure 1a,89

Sec 3.1). The tokenizer is then frozen, and TFM-Encoder undergoes masked token prediction90

pretraining (Figure 1b, Sec 3.2), followed by fine-tuning for downstream tasks.91

3.1 Single Channel TFM-Tokenizer92

We introduce the TFM-Tokenizer, a scalable module for tokenizing single-channel EEG signals x93

by capturing their temporal and frequency dynamics. Our design is inspired by the Vector-Quantized94

Variational Autoencoder (VQ-VAE) [20], which has been widely adopted for tokenization efforts in95

other domains, such as video processing [22]. At a high level, TFM-Tokenizer adopts a frequency-96

then-time paradigm and comprises three components as illustrated in Figure 1a: (1) Localized Spectral97

Window Encoder, (2) Temporal Encoder, and (3) Temporal Transformer.98

Localized Spectral Window Encoder. EEG signals often contain distinct oscillatory patterns (e.g.,99

alpha, beta bands). To capture such frequency-band structures, each spectral window Si is patched100

along the frequency axis into P non-overlapping patches spanning ∆f frequency bins such that101

P.∆f = F (Figure 1d). Each patch S(i,p) is projected: e(i,p) = GroupNorm
(
GeLU

(
WpS(i,p)

))
,102

where Wp ∈ RD×∆f is a learnable matrix. Then, a frequency transformer operates along the103

frequency axis to model intra-spectral window cross-frequency band dependencies. In many EEG104

scenarios, large portions of the frequency spectrum can be irrelevant. To emphasize task-relevant105

frequency patches, we apply a gated aggregation mechanism to obtain a single embedding for each106

Si: EF
i = Concat

[
σ
(
Wg1e(i,p)

)
Wg2e(i,p)

]
, where Wg1,Wg2 are learnable matrices and σ(·) is107

the element-wise sigmoid function.108

Temporal Encoder and Temporal Transformer: To capture temporal dynamics from the raw109

EEG patches {xi}Ni=1, we perform a linear projection followed by GELU[27] activation and group110

normalization, producing {ET
i }Ni=1. We then concatenated each aggregated frequency embedding EF

i111

with its corresponding temporal embedding ET
i , and input the sequence into a temporal transformer.112

The output is then quantized into discrete tokens {vi}Ni=1 using a learnable codebook Vk.113

Tokenizer Codebook. Our tokenizer captures temporal–frequency motifs by applying vector quanti-114

zation along the time axis, treating each short-duration patch as a discrete unit. This contrasts with115

conventional visual tokenizers, which typically operate on the embedding dimension [20, 28]. As a116

result, each token represents a short-duration waveform segment, enabling interpretability(Section 4).117

Frequency Masking Prediction for Tokenizer Learning. To facilitate frequency learning, we apply118

frequency-band and temporal masking during TFM-Tokenizer training. S is split into NF = ⌊ F
δf
⌋119

frequency groups of size δf . We apply a random frequency mask MF and temporal mask MT ,120

combining them as M = MF ∧MT to produce the masked spectrogram SM . The masked input SM121
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and raw EEG patch x are encoded, quantized, and passed through a transformer + linear decoder to122

reconstruct masked regions: Lrec =
∑

(f,t)

∥∥S(f, t)− Ŝ(f, t)
∥∥2
2

, where Ŝ is the reconstructed output.123

Additionally, we apply the codebook and commitment losses [20].124

3.2 Token-Wise TFM-Encoder125

The TFM-Encoder aggregates EEG tokens across channels for downstream tasks. Given a126

multi-channel recording X ∈ RC×T , the pretrained TFM-Tokenizer produces token sequences127 {
{vci }Ni=1

}C

c=1
for each channel c independently. A [CLS] token is prepended [29], and the se-128

quence is processed by transformer layers. The [CLS] output is used for classification. We pretrain129

TFM-Encoder using masked token prediction and then it is finetuned to downstream tasks.130

4 Experiments and Results131

Table 1: EEG classification performance on TUEV and TUAB datasets under single dataset settings
(Results on CHB-MIT and IIIC Seizure are provided in Table 4 and 5 in Appendix C.1 ).

Models Number TUEV (event type classification) TUAB (abnormal detection)
of Params Balanced Acc. Cohen’s Kappa Weighted F1 Balanced Acc. AUC-PR AUROC

SPaRCNet[30] 0.79M 0.4161 ± 0.0262 0.4233 ± 0.0181 0.7024 ± 0.0104 0.7896 ± 0.0018 0.8414 ± 0.0018 0.8676 ± 0.0012
ContraWR[4] 1.6M 0.4384 ± 0.0349 0.3912 ± 0.0237 0.6893 ± 0.0136 0.7746 ± 0.0041 0.8421 ± 0.0104 0.8456 ± 0.0074
CNN-Transformer[31] 3.2M 0.4087 ± 0.0161 0.3815 ± 0.0134 0.6854 ± 0.0293 0.7777 ± 0.0022 0.8433 ± 0.0039 0.8461 ± 0.0013
FFCL[32] 2.4M 0.3979 ± 0.0104 0.3732 ± 0.0188 0.6783 ± 0.0120 0.7848 ± 0.0038 0.8448 ± 0.0065 0.8569 ± 0.0051
ST-Transformer[33] 3.5M 0.3984 ± 0.0228 0.3765 ± 0.0306 0.6823 ± 0.0190 0.7966 ± 0.0023 0.8521 ± 0.0026 0.8707 ± 0.0019
Vanilla BIOT[14] 3.2M 0.4682 ± 0.0125 0.4482 ± 0.0285 0.7085 ± 0.0184 0.7959 ± 0.0057 0.8792 ± 0.0023 0.8815 ± 0.0043
BIOT∗[14] 3.2M 0.4679 ± 0.0354 0.4890 ± 0.0407 0.7352 ± 0.0236 0.7955 ± 0.0047 0.8819 ± 0.0046 0.8834 ± 0.0041
LaBraM-Base∗[23] 5.8M 0.4682 ± 0.0856 0.5067 ± 0.0413 0.7466 ± 0.0202 0.7720 ± 0.0046 0.8498 ± 0.0036 0.8534 ± 0.0027

TFM-Token-R 1.8M 0.4898 ± 0.0105 0.5194 ± 0.0195 0.7518 ± 0.0095 0.8033 ± 0.0021 0.8908 ± 0.0027 0.8849 ± 0.0024
TFM-Token-S 1.9M 0.4708 ± 0.0339 0.5275 ± 0.0314 0.7538 ± 0.0152 0.7927 ± 0.0044 0.8814 ± 0.0095 0.8836 ± 0.0052
TFM-Token 1.9M 0.4943 ± 0.0516 0.5337 ± 0.0306 0.7570 ± 0.0163 0.8152 ± 0.0014 0.8946 ± 0.0008 0.8897 ± 0.0008

1. Best results are bolded, second-best are underlined. 2. LaBraM’s parameter count includes only the classifier. The size of their neural

tokenizer was 8.6M. 3. TFM-Token-R and S use only raw EEG or STFT as inputs. 4. * indicates single dataset setting

Performance comparison: We evaluate on four EEG datasets, including: (1)TUEV[34,132

35], (2)TUAB[36], (3)IIIC Seizure sourced from [30, 37] and (4)CHB-MIT[38]. Full ex-133

perimental details are provided in Appendix B. Table 1 presents EEG event classifica-134

tion results on TUEV and abnormal detection performance on TUAB. Our TFM-Token135

consistently outperforms baselines on all datasets and metrics in the single-dataset setting.136

a) PLED b) GPED

(1)

(2)

(3)

(1)

(2)

(3)

4035 4882 6634 3751 5096 1097

6283

Figure 2: Motifs captured by
TFM-Tokenizer on TUEV: (a) shows
three samples from the PLED class and (b)
shows three samples from the GPED class.

TFM-Token achieves better performance with fewer137

parameters, 3× smaller than LaBraM (5.8M → 1.9M)138

and 1.5× smaller than BIOT (3.2M → 1.9M). Em-139

pirically, this reduction can be attributed to the dis-140

crete tokenization approach, which compresses the141

EEG into a token sequence, reducing data complex-142

ity. Additional results and token quality analysis are143

provided in Appendix C.144

Interpretability of Learned Tokens: We visually145

examine whether TFM-Tokenizer captures mean-146

ingful time–frequency motifs. Figure 2 shows some147

representative tokens learned by TFM-Tokenizer on148

the TUEV. Each token corresponds to a 1s EEG patch149

(0.5s overlap) and its spectral window. For clarity,150

we highlight the most frequent tokens per class. The151

results shows that TFM-Tokenizer encodes class-152

specific patterns into discrete tokens. For instance,153

token 4035 in the PLED class consistently captures a154

characteristic drop followed by a rise waveform, maintaining its structure across different samples155

despite variations in noise, amplitude, and minor shifts within the window.156

5 Conclusion157

We introduced TFM-Token, a fully discrete tokenization framework consisting of TFM-Tokenizer158

and TFM-Encoder modules. Comprehensive evaluations across multiple datasets demonstrate that159

TFM-Token outperforms existing baselines with fewer parameters in single dataset settings.160
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A Related work320

EEG Representation Learning. To learn general representations and address issues of label321

scarcity in EEG data, self-supervised learning (SSL) has emerged as a prominent paradigm, and322

existing works can be categorized into two main approaches: contrastive learning and self-prediction.323

Contrastive learning methods [39, 40, 6], leverage augmentation or transformation of EEG inputs324

to learn consistent representations. In contrast, self-prediction methods[41, 42, 14, 19] aim to325

accurately reconstruct masked or corrupted input. However, their learning objectives heavily rely326

on cross-channel prediction to focus on spatial characteristics. In contrast, our method emphasizes327

inherent time-frequency features within a single-channel setting and can later adapt to any channel328

configuration.329

Foundation EEG Models. Inspired by the success of foundation models in NLP, recent efforts330

have sought to develop foundation models for EEG analysis. These models can be categorized331

into decoding and encoder-based methods. Decoding-only methods focus on generative tasks like332

EEG-to-text translation, with representative works including DeWave [17], EEG2Text [43], and333

E2T-PTR [44]. In contrast, encoder-only methods concentrate on fundamental EEG classification334

tasks and representation learning. Notable models include LaBraM [23], BIOT [14], BRANT [45],335

and MMM [18]. Our work aligns with this latter category, focusing on enhancing the representation336

quality to improve classification performance.337

EEG Tokenization. Tokenization has been instrumental in NLP, where discrete subword units have338

proven to reduce data complexity and improve model performance and interoperability. Although339

time-series tokenization methods have shown promise [46, 47], they do not scale well to EEGs’340

higher sampling rates and other artifacts. Existing attempts for EEGs include patch-based continuous341

tokenization, such as BIOT [14] and BRANT [45], and vector quantization (VQ)-based methods like342

DeWave [17]. Patch-based methods do not involve encoding or quantization, leading to unbounded343

and continuous representations that lack distinctiveness and interpretability. In contrast, VQ-based344

tokenizers, traditionally successful in tokenizing continuous images [28], have recently been adapted345
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for EEG by LaBraM [23], However, LaBraM employs its neural tokenizer only during pretraining but346

relies on raw EEG signals during inference. Conceptually, its primary role is to pre-train classification347

layers, rather than encoding inputs and reducing data complexity. Here, our method is explicitly348

VQ-based, treating the codebook as a real tokenizer for EEG data. Moreover, we enforce each token349

to capture time-frequency motifs[48] in EEG inputs, ensuring a more structured and interpretable350

representation.351

B Experiment Setup352

B.1 Datasets:353

• TUH EEG Events (TUEV) [34]: TUEV is a subset of the TUH EEG Corpus [35], which354

comprises clinical EEG recordings collected at Temple University Hospital between 2002 and355

2017. The dataset is annotated for six EEG event types: spike and sharp wave (SPSW), generalized356

periodic epileptiform discharges (GPED), periodic lateralized epileptiform discharges (PLED), eye357

movement (EYEM), artifact (ARTF), and background (BCKG).358

• TUH Abnormal EEG Corpus (TUAB) [36]: TUAB comprises EEG recordings collected at359

Temple University Hospital, which are labeled for normal and abnormal EEG activity.360

• IIIC Seizure [30, 37]: The IIIC Seizure dataset is curated for the detection of six distinct ic-361

tal–interictal–injury continuum (IIIC) patterns and is sourced from [30, 37]. The annotations362

include: (1) others (OTH), (2) seizure types (ESZ), (3) lateralized periodic discharge (LPD), (4)363

generalized periodic discharge (GPD), (5) lateralized rhythmic delta activity (LRDA), and (6)364

generalized rhythmic delta activity (GRDA).365

• CHB-MIT [38]: The CHB-MIT dataset is a widely used benchmark for epilepsy seizure detection.366

It comprises EEG recordings from 23 pediatric subjects with intractable seizures.367

B.2 Dataset Statistics and Splits368

Table 2: Dataset Summary
Dataset # of Recordings # of Samples Duration (s) Task
TUEV 11, 914 112, 491 5 EEG Event Classification
IIIC Seizure 2, 689 135, 096 10 Seizure Type Classification
CHB-MIT 686 326, 993 10 Seizure Detection
TUAB 2, 339 409, 455 10 Abnoral EEG Detection

This section provides detailed information on the datasets used in our experiments and their respective369

splits. Table 2 summarizes key statistics, including the number of recordings, the total number of370

samples after preprocessing, their duration, and the corresponding downstream tasks. For TUEV and371

TUAB, we utilized the official training and test splits provided by the dataset and further divided the372

training splits into 80% training and 20% validation sets. We performed a subject-wise split into 60%373

training, 20% validation, and 20% test on the IIIC Seizure dataset. In the CHB-MIT dataset, we used374

1-19 subjects for training, 20-21 for validation, and 22-23 for testing.375

B.3 Preprocessing:376

We follow the preprocessing setup of BIOT [14]. Unlike LaBraM [23], which utilized 23 channels in377

the TUEV and TUAB datasets, we adhere to the 16-channel bipolar montage from the international378

10–20 system, as used in [14]. All EEG recordings are resampled to 200 Hz. For TUEV and379

TUAB, we apply a bandpass filter (0.1–75 Hz) and a notch filter (50 Hz), following the preprocessing380

pipeline of LaBraM [23]. STFT computation of the signals is performed using PyTorch, with381

detailed parameters provided in Appendix B.4. For training, validation, and test splits, we follow382

the recommendations from [14]. Additional details on dataset statistics and splits are provided in383

Appendix B.2.384
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B.4 STFT parameters385

To extract frequency-domain representations of the EEG, we utilized the STFT function from PyTorch.386

The recommendations of [14] guided our parameter selection and empirical analysis of different387

configurations to optimize the time-frequency resolution tradeoff. The final parameters are as follows:388

Table 3: STFT parameters
Parameter Value Description
FFT size (nfft, L) 200 Number of frequency bins (equal to resampling rate)
Hop length H 100 Step size for sliding window (50% overlap)
Window type Hann A smoothing window function to reduce spectral leakage
Output representation Magnitude Only the absolute values of the STFT are retained
Centering False The STFT is computed without implicit zero-padding
One-sided output True Only the positive frequency components are kept

B.5 Baselines and Metrics:389

We evaluated our approach against the baselines from [14] as well as the current state-of-the-art390

methods, including BIOT [14] and LaBraM [23]. BIOT and LaBraM were reproduced using their391

respective open-source GitHub repositories. For other baselines we use the reported best results392

from [14]. To ensure a fair comparison, our experiments follow a single-dataset settings, where we393

reproduced BIOT and LaBraM. Specifically for BIOT, we conducted their proposed unsupervised394

pretraining followed by fine-tuning on the same dataset. Similarly, for LaBraM, we used their base395

model and conducted neural tokenizer training, masked EEG modeling, and fine-tuning within the396

same dataset. For performance evaluation, we used balanced accuracy, Cohen’s Kappa coefficient,397

and weighted-F1 score for multi-class classification tasks, while balanced accuracy, AUC-PR, and398

AUROC were used for binary classification tasks. For TUAB, we used binary cross-entropy loss for399

fine-tuning, while the cross-entropy loss was applied to the TUEV and IIIC datasets. Given the class400

imbalance in the CHB-MIT dataset, we employed focal loss for all experiments. All experiments401

were conducted using five different random seeds, and we report the mean and standard deviation402

for each metric. Also, we used Cohen’s Kappa and AUROC as monitoring metric for multiclass and403

binary classification tasks respectively.404

C More Experiment Results405

C.1 Performance on CHB-MIT and IIIC Seizure406

Table 4 and 5 presents the performance comparison of TFM-Token with baselines on seizure detection407

(CHB-MIT) and seizure type classification (IIIC Seizure) tasks. TFM-Token outperforms all baselines408

across all metrics in both datasets. On the CHB-MIT dataset with a highly imbalanced binary409

classification task, BIOT is the only baseline with an AUC-PR above 0.25. However, TFM-Token410

surpasses BIOT, achieving an 8% improvement in AUC-PR (0.3127 → 0.3379) and a 4.5% increase411

in AUROC (0.8456 → 0.8839), demonstrating better robustness to class imbalance. For the IIIC412

Seizure dataset, where the task is to classify 10-second, 16-channel EEG segments into six classes,413

TFM-Token improves Cohen’s Kappa by 9.5% (0.4549 → 0.4985) and Weighted F1 by 8.5%414

(0.5387 → 0.5847) over ContraWR, which achieves second best results.415

The superior performance of TFM-Token across four EEG datasets shows the promise of a fully416

discretized framework that has the potential to enhance future EEG foundation models. These results417

also underscore the importance of capturing both temporal and frequency information, highlighting418

the critical role of frequency learning in EEG analysis.419

C.2 Importance of Joint Frequency and Temporal Modeling:420

To evaluate the importance of joint frequency-temporal modeling, we conducted an ablation study421

comparing three tokenization variants: (1) TFM-Token-Raw Signal Only (TFM-Token-R), which uses422

only raw EEG patches {xi}Ni=1 to predict the spectrum S, (2) TFM-Token-STFT Only (TFM-Token-423

S), and (3) TFM-Token, which jointly models both temporal and frequency features. Masked modeling424
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Table 4: Seizure detection performance comparison on the CHB-MIT dataset
Models Number CHB-MIT (seizure detection)

of Params Balanced Acc. AUC-PR AUROC
SPaRCNet[30] 0.79M 0.5876 ± 0.0191 0.1247 ± 0.0119 0.8143 ± 0.0148
ContraWR[4] 1.6M 0.6344 ± 0.0002 0.2264 ± 0.0174 0.8097 ± 0.0114
CNN-Transformer[31] 3.2M 0.6389 ± 0.0067 0.2479 ± 0.0227 0.8662 ± 0.0082
FFCL[32] 2.4M 0.6262 ± 0.0104 0.2049 ± 0.0346 0.8271 ± 0.0051
ST-Transformer[33] 3.5M 0.5915 ± 0.0195 0.1422 ± 0.0094 0.8237 ± 0.0491
Vanilla BIOT[14] 3.2M 0.6640 ± 0.0037 0.2573 ± 0.0088 0.8646 ± 0.0030
BIOT∗[14] 3.2M 0.6582 ± 0.0896 0.3127 ± 0.0890 0.8456 ± 0.0333
LaBraM-Base∗[23] 5.8M 0.5035 ± 0.0078 0.1032 ± 0.0660 0.6944 ± 0.0612

TFM-Token 1.9M 0.6750 ± 0.0392 0.3379 ± 0.0515 0.8839 ± 0.0173
1. Best results are bolded. 2. * indicates single dataset setting

Table 5: Seizure type classification performance comparison on the IIIC Seizure dataset
Models Number IIIC Seizure (seizure type classification)

of Params Balanced Acc. Cohen’s Kappa Weighted F1
SPaRCNet[30] 0.79M 0.5546 ± 0.0161 0.4679 ± 0.0228 0.5569 ± 0.0184
ContraWR[4] 1.6M 0.5519 ± 0.0058 0.4623 ± 0.0148 0.5486 ± 0.0137
CNN-Transformer[31] 3.2M 0.5476 ± 0.0103 0.4481 ± 0.0139 0.5346 ± 0.0127
FFCL[32] 2.4M 0.5617 ± 0.0117 0.4704 ± 0.0130 0.5617 ± 0.0171
ST-Transformer[33] 3.5M 0.5423 ± 0.0056 0.4492 ± 0.0056 0.5440 ± 0.0014
Vanilla BIOT[14] 3.2M 0.5762 ± 0.0034 0.4932 ± 0.0046 0.5773 ± 0.0031
BIOT∗[14] 3.2M 0.4458 ± 0.0183 0.3418 ± 0.0228 0.4511 ± 0.0207
LaBraM-Base∗[23] 5.8M 0.4736 ± 0.0101 0.3716 ± 0.0128 0.4765 ± 0.0097

TFM-Token (Ours - Single Dataset) 1.9M 0.5775 ± 0.0042 0.4985 ± 0.0039 0.5847 ± 0.0050

1. Best results are bolded. 2. * indicates single dataset setting

was applied for token learning in the latter two, with consistent TFM-Encoder training across all425

variants. Results are shown in Table 6. In event classification, TFM-Token-S improves Cohen’s426

Kappa over TFM-Token-R (0.5194 → 0.5275). However, in abnormal detection, TFM-Token-R427

achieves a higher AUC-PR (0.8814 → 0.8908). These results indicate that different EEG tasks rely428

on distinct feature domains, underscoring the necessity of joint modeling. The primary TFM-Token429

consistently outperforms both single-domain approaches across all settings, further underscoring the430

importance of joint modeling.431

C.3 EEG Token Quality Analysis and Frequency Learning432

We study the quality of the EEG tokens learned by our TFM-Tokenizer by analyzing four key433

aspects: (1) token utilization, (2) class-specific distinctiveness, (3) similar class retrieval, and (4)434

frequency learning capability. We conducted our analysis using all three TFM-Tokenizer variants435

and the neural tokenizer from LaBraM [23], testing them on the test splits of both the TUEV and436

IIIC datasets, which have multiple classes. All tokenizers employed a fixed vocabulary size of 8, 192437

tokens for consistency and fair comparison.438

Token utilization and Class uniqueness: Token utilization (%) score was calculated as the per-
centage of unique tokens activated from the total available vocabulary size. To quantify whether the
tokenizers capture class-distinctive representations, we introduce the Class-Token Uniqueness Score,
defined as:

Class-Token Uniqueness % =
# Unique Tokens in Class

# Tokens Utilized by Class
× 100

Figure 3a visualizes the class-token uniqueness scores for each class in both datasets. A robust439

tokenizer should capture class-distinctive tokens across all dataset classes through unsupervised440

pretraining. To assess this, we computed the geometric mean (GM) of class-token uniqueness441

scores, as shown in Table 7. Our TFM-Tokenizer reduces token utilization by more than two-442

11



Table 6: Ablation study on input representation to TFM-Tokenizer
Models Number TUEV (event type classification) TUAB (abnormal detection)

of Params Balanced Acc. Cohen’s Kappa Weighted F1 Balanced Acc. AUC-PR AUROC
TFM-Token-R 1.8M 0.4898± 0.0105 0.5194± 0.0195 0.7518± 0.0095 0.8033± 0.0021 0.8908± 0.0027 0.8849± 0.0024
TFM-Token-S 1.9M 0.4708± 0.0339 0.5275± 0.0314 0.7538± 0.0152 0.7927± 0.0044 0.8814± 0.0095 0.8836± 0.0052
TFM-Token 1.9M 0.4943 ± 0.0516 0.5337 ± 0.0306 0.7570 ± 0.0163 0.8152 ± 0.0014 0.8946 ± 0.0008 0.8897 ± 0.0008

1. The best results are bolded, while the second-best are underlined.

Table 7: Token Utilization and class-token uniqueness comparison
Tokenization Method # Params Utilization Class-Token

% Uniqueness (GM) %
TUEV IIIC TUEV IIIC

Neural Tokenizer (LaBraM) 8.6M 21.13 15.25 0.034 0.000
TFM-Tokenizer-R 1.1M 5.29 7.87 0.000 0.000
TFM-Tokenizer-S 1.1M 13.93 11.04 0.004 0.619
TFM-Tokenizer 1.2M 9.78 8.26 2.14 1.429

fold compared to the neural tokenizer on TUEV (21.13% → 9.78%) and nearly two-fold on IIIC443

(15.25% → 8.26%). It also significantly improves learning of class-unique tokens compared to neural444

tokenizer (0.034% → 2.14%on TUEV, 0.0% → 1.429% on IIIC). These results demonstrate that the445

TFM-Tokenizer captures more compact and useful tokens than the neural tokenizer. Additionally,446

TFM-Tokenizer achieves a higher class-token uniqueness score across all classes compared to447

TFM-Tokenizer-R (0.0% → 1.429% on IIIC) and TFM-Tokenizer-S (0.619% → 1.429% on448

IIIC), as depicted in Figure 3a. This further validates joint frequency-temporal modeling in EEG449

analysis.450

Tokens for Similar-Class Sample Mining: We conducted an EEG signal mining experiment based451

on similar-class sample retrieval. Given a multi-channel EEG sample, we first obtain its discrete452

token representation. Using the Jaccard similarity score, we then retrieve the top K most similar453

samples from the dataset and compute the precision score for correctly retrieving samples of the454

same class. For this study, we constructed a balanced subset from the IIIC and TUEV datasets and455

tested all four tokenization methods. The retrieval performance, illustrated in Figure 3b, shows that456

all TFM-Tokenizer variants significantly outperform neural tokenizer. Notably, TFM-Tokenizer-S457

and TFM-Tokenizer achieve nearly 60% precision on the TUEV for K = 1. While the Jaccard458

similarity measure demonstrates initial feasibility, further research is needed to identify optimal459

metrics for token-based EEG retrieval.460

Evaluating the Frequency Learning of TFM-Tokenizer Tokens: In this experiment, we compare461

the frequency and temporal-domain encoders of the TFM-Tokenizer to evaluate their ability to462

capture diverse frequency features in EEG signals. Specifically, we arrange all tokens in temporal463

order and perform a discrete Fourier transform on the token sequence. This process decomposes464

the tokens into frequencies, where each frequency reflects the degree of change between tokens465

at various scales. Larger changes indicate more diverse token representations. Then, we compute466

spectral entropy, defined as the normalized Shannon entropy of the amplitude values, to quantify how467

energy is distributed across the spectrum. Higher spectral entropy means that the model has learned468

a broader range of frequency features, capturing differences from both large-scale trends and fine469

details. Figure 4 shows that on the TUEV, TUAB, and CHBMIT datasets, the frequency encoder470

produces tokens with significantly higher spectral entropy than the temporal encoder. For example,471

on the TUEV dataset, the frequency encoder achieved an average spectral entropy of 0.26, while the472

temporal encoder reached only 0.14. This multi-scale sensitivity benefits downstream tasks such as473

classification, where learning detailed differences in EEG tokens can improve performance.474

C.4 Does TFM-Tokenizer Enhance LaBraM?475

To assess the scalability of TFM-Tokenizer, we investigated its ability to enhance an existing EEG476

foundation model. We selected LaBraM [23], which employs a neural tokenizer solely for pretraining.477

This setup makes it an ideal candidate for this study. We replaced LaBraM neural tokenizer with478
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Figure 3: Analysis of token quality across three TFM-Tokenizer variants and the neural tokenizer.
(a) Comparison of class-token uniqueness scores across all classes. (b) Retrieval performance
comparison of tokenizers in a similar-class sample mining task.

Table 8: Performance Comparison of LaBraM with their neural tokenizer vs TFM-Tokenizer
Dataset Tokenizer Performance Metrics

Balanced Acc. Cohen’s Kappa Weighted F1

TUEV Neural Tokenizer 0.4682 ± 0.0856 0.5067 ± 0.0413 0.7466 ± 0.0202
TFM-Tokenizer 0.5147 ± 0.0174 ↑ 0.5220 ± 0.0153 ↑ 0.7533 ± 0.0094 ↑

Balanced Acc. AUC-PR AUROC

TUAB Neural Tokenizer 0.7720± 0.0046 0.8498 ± 0.0036 0.8534 ± 0.0027
TFM-Tokenizer 0.7765 ± 0.0016 ↑ 0.8518 ± 0.0051 ↑ 0.8584 ± 0.0022 ↑

TFM-Tokenizer during the masked EEG modeling stage and evaluated its performance on TUEV479

and TUAB, presented in Table 8. On TUEV, LaBraM with TFM-Tokenizer achieves a 9% increase480

in balanced accuracy (0.4682 → 0.5147) and a 3% increase in Cohen’s Kappa (0.5067 → 0.5220).481

On TUAB, TFM-Tokenizer consistently outperforms the neural tokenizer. These results confirm the482

capability of TFM-Token in enhancing the performance of EEG foundation models. The increase in483

balanced accuracy suggests that our tokenizer learns more class-discriminative tokens than the neural484

tokenizer.485
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Figure 4: An analysis of how the proposed frequency and temporal-domain encoders capture
frequency features, by using the spectral entropy of the learned token sequences from randomly
selected samples. Higher values indicate that the tokens contain richer frequency information.

C.5 Ablation on Masking486

Table 9: Ablation on masking used for the pretraining of TFM-Tokenizer on TUEV Dataset
Masking Strategy Balanced Acc. Cohen’s Kappa Weighted F1
Random Masking 0.4351± 0.0462 0.4772± 0.0140 0.7296± 0.0076
Frequency Bin Masking 0.4673± 0.0540 0.5193± 0.0243 0.7536± 0.0125
Frequency Bin

0.4946± 0.0392 0.5045± 0.0221 0.7462± 0.0116+ Temporal Masking
Frequency Bin

0.4943± 0.0516 0.5337± 0.0306 0.7570± 0.0163+ Temporal Masking
+ Symmetric Masking

We conducted an ablation study on masking strategies during TFM-Tokenizer pretraining to assess487

their impact on performance. Results shown in Table 9 indicate that random masking on the488

spectrogram S performs poorly compared to other strategies, underscoring the need for effective489

masking to capture frequency and temporal features from EEG. Frequency bin masking significantly490

improves performance over random masking, with an 8% increase in Cohen’s Kappa (0.4772 →491

0.5193) and a 7% increase in balanced accuracy (0.4351 → 0.4673), highlighting the importance492

of modeling frequency band dynamics. The addition of temporal masking further boosts balanced493

accuracy by 5% (0.4673 → 0.4946), underscoring the importance of joint temporal-frequency494

modeling. However, temporal masking results in a decline in Cohen’s Kappa and Weighted F1, which495

is then resolved by introducing symmetric masking, achieving the overall best performance.496

D TFM-Token Implementation and Hyperparameter Tuning497
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Figure 5: TFM-Token Overview
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Figure 5 presents an overview of TFM-Token during inference. This section provides additional498

details on the implementation and training of the framework.499

D.1 Training Pipeline:500

For all experiments, we follow a single-dataset setting, where all processes in each experiment501

are conducted within the same dataset. The training process of our framework is as follows: (1)502

TFM-Tokenizer unsupervised pretraining, (2) TFM-Encoder pretraining using masked token pre-503

diction, and finally (3) fine-tuning on the same dataset for downstream tasks.504
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