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ABSTRACT

Science has long sought to uncover the principles governing discovery, leaving
progress in fields like materials science slow and labor-intensive. While Large
Language Models (LLMs) can accelerate progress by integrating domain knowl-
edge, we reveal the existence of a critical failure mode known as contextual tun-
neling, wherein naive knowledge integration causes LLMs to over-anchor on nar-
row retrieval paths while suppressing broader parametric reasoning. Through the
evaluation in materials discovery, we demonstrate that naive knowledge graph
augmentation degrades performance by 20–35% on key reasoning tasks compared
to direct prompting. To address this challenge, we introduce ARIA (Autonomous
Reasoning Intelligence for Atomics), a causal-aware framework featuring: (i) hi-
erarchical reasoning that provides graceful degradation to knowledge graph spar-
sity, (ii) enhanced analogic transfer for robust reasoning, (iii) knowledge graph
enrichment through online searching. Extensive experiments show that, while
naive KG integration consistently underperforms baseline LLMs, ARIA not only
recovers this loss but also provides interpretable causal explanations by tracing
reasoning through the knowledge graph, enabling scientists to verify and trust
its outputs. Our work demonstrates that external knowledge can inadvertently
constrain reasoning and establishes a principled framework for robust KG–LLM
integration in scientific discovery.

ARIA

Contextual
Tunneling

Robust Contextual
Integration

What are the synthesis
conditions for In-doped
La O ​Bi AgS  to achieve

superconductivity?
2 2 3 6​
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Figure 1: Naive LLM suffers from contextual tunneling issue (top) vs. our proposed ARIA with
hierarchical reasoning (bottom). Our ARIA fundamentally overcomes the limitation of contextual
tunneling and generate more accurate material parameters.

1 INTRODUCTION

While Large Language Models (LLMs) (Brown et al., 2020a) have demonstrated remarkable rea-
soning capabilities (Xu et al., 2025), their knowledge remains constrained by training data cutoffs
and finite parametric capacity (Petroni et al., 2019; Brown et al., 2020b; Chowdhery et al.). These
limitations often leads to factual inaccuracies and hallucinations (Li et al., 2024b), undermining their
reliability for rigorous scientific inquiry. Retrieval-Augmented Generation (RAG) with Knowledge
Graphs (KGs) has emerged as the standard solution, grounding LLMs in structured, domain-specific
facts (Amayuelas et al., 2025; Liang et al., 2025; Edge et al., 2025). This approach has proven
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e.g. What are the synthesis conditions
for In-doped La O ​Bi AgS  to achieve
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If lack a direct
causal path

If no sufficient
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Figure 2: Schematic of the ARIA Model Architecture. The framework employs a three-tiered
reasoning cascade. Tier 1 uses graph-constrained reasoning for queries with direct causal paths in the
knowledge graph. If no such path exists, Tier 2 performs analogy-based reasoning by extrapolating
from similar concepts. As a final step, Tier 3 provides a fallback mechanism, relying on the LLM’s
parametric knowledge when no external evidence is applicable. This hierarchical approach ensures
outputs are maximally grounded in evidence while retaining flexibility to address novel queries.

successful for fact-based tasks such as question answering across chemistry, biology and materials
science (Zhang et al., 2022; Wang et al., 2024; Bazgir et al., 2025).

Yet, as LLMs become more and more knowledgeable, recent studies challenge the assumption that
external augmentation invariably improves reasoning (Yoran et al., 2024; Mallen et al., 2023). Inap-
propriate or incomplete retrieval can undermine rather than strengthen model performance (Wang
et al., 2023; Xie et al., 2024). While prior work has identified this issue in commonsense settings,
the prevailing response in specialized domains has been to “add more knowledge” (Zhang et al.,
2021). We argue for a stronger conclusion: in complex scientific reasoning, irrelevant or narrow
external knowledge can critically degrade performance.

To investigate this, we conducted a systematic evaluation in materials discovery, a domain that
requires multi-step causal reasoning1 over processing–structure–property relationships (Butler et al.,
2018; Schmidt et al., 2019).

Our results reveal that naive KG integration leads to severe performance drops (20–35% compared to
direct prompting) on both forward prediction of material properties and inverse design of synthesis
protocols (Kim et al., 2020; Na, 2023). We attribute this failure to a core mechanism we term
Contextual Tunneling: LLMs over-anchor on narrowly retrieved knowledge paths while suppressing
their broader, more flexible parametric knowledge, as Figure 1 shows. We coin this in analogy
to “cognitive tunneling” from psychology, where under stress individuals attend too narrowly to a
single display (e.g., a pilot fixating on a head-up screen) while neglecting equally critical peripheral
cues (Thomas & Wickens, 2001; Jarmasz et al., 2005).

To address this fundamental challenge, we introduce ARIA (Autonomous Reasoning Intelligence
for Atomics), a causally-aware framework that enables selective and effective knowledge utiliza-
tion. Instead of blindly injecting retrieved text, ARIA mitigates contextual tunneling through three
synergistic endeavors: (1) Hierarchical reasoning, which adapts a three-tiered reasoning cascade,
enabling graceful degradation when specific causal paths are absent and preventing over-reliance on
narrow retrieval; (2) Transfer learning, which leverages similarity-based analogy to adapt causal
relations to novel contexts while preserving mechanistic fidelity; and (3) Dynamic KG enrichment,
which augments the knowledge base with information retrieved via web search, followed by a post-

1In this work, we define “causality” in the mechanistic sense established by the materials science Process-
ing–Structure–Property (PSP) paradigm, where synthesis conditions physically determine resulting structure.
This is distinct from statistical causal discovery approaches (e.g., PC algorithm) used in tabular data, as our
Causal Knowledge Graph encodes verified physical mechanisms extracted from the literature.

2
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hoc filtering stage to ensure high quality. We benchmark ARIA against the Baseline LLM, Naive
KG+LLM, Online KG+LLM. Notably, naive KG integration degrades performance, In contrast,
ARIA consistently rescues KG–LLM integration, achieving robust causal reasoning across tasks of
varying difficulty.

Our key takeaway for practitioners is that sometimes knowledge can hurt: external knowledge may
inadvertently constrain reasoning and reduce generalization. By diagnosing and addressing contex-
tual tunneling, ARIA establishes a principled framework for robust, generalizable KG–LLM inte-
gration, advancing AI for scientific discovery and beyond.

2 RELATED WORK

Knowledge-augmented generation enhances LLMs with external knowledge to improve factual
grounding (Lewis et al., 2020; Li et al., 2024a). This is especially required in rigorous science,
medical, law and other domain specific reasoning scenarios (Zhang et al., 2022; Wang et al., 2024;
Hou et al., 2025), where LLMs tend to hallucinate and make up misleading facts (Huang et al., 2025).
Integrating causal knowledge graphs provides a more interpretable and reliable output by modeling
underlying inference (Zhang et al., 2024; Samarajeewa et al., 2024). However, recent studies show
that retrieving irrelevant information can create knowledge conflicts, preventing the model from
utilizing its own parametric knowledge (Longpre et al., 2021; Xu et al., 2024). Related to our
findings, GIVE (He et al., 2024) proposes a training-free reasoning framework that guides LLMs
to merge parametric and non-parametric memories while mitigating noise in large or incomplete
knowledge sources, highlighting a broader need to control retrieval-induced reasoning failures. Our
work demonstrates that this failure mode extends to specialized scientific domains.

The application of LLMs to materials science has emerged as a promising avenue for accelerat-
ing discovery, with demonstrated capabilities in property prediction and synthesis planning (Zheng
et al., 2023; D. White et al., 2023; Dagdelen et al., 2024). Early approaches primarily relied on
fine-tuning domain-specific corpora to capture materials knowledge (Gupta et al., 2022; Jiang et al.,
2025), while more recent work has explored prompt engineering and in-context learning for scien-
tific reasoning (Jiang et al., 2025). Several systems have further integrated structured knowledge
with LLMs. For example, MatChat (Chen et al., 2023) and AtomGPT (Choudhary, 2024) couples
databases with conversational interfaces, ChemCrow demonstrates LLM-assisted synthesis plan-
ning (Bran et al., 2023).

Recent efforts have begun addressing these issues through causal reasoning (Zhang et al., 2024) and
multi-modal integration (Samarajeewa et al., 2024). Yet, comprehensive frameworks that jointly
enhance reasoning transparency, broaden contextual grounding, and enable transferable synthesis
remain lacking. Our work advances this direction by introducing hierarchical reasoning, dyanamic
KGs enrichment, and transferable synthesis for robust materials discovery.

3 METHOD

In this section, we introduce ARIA, a framework designed to enhance the reliability of scientific
reasoning in LLMs. Our approach is motivated by a critical failure mode in retrieval-augmented sys-
tems, where irrelevant context degrades performance. We term this problem Contextual Tunneling
and provide a formal definition in subsection 3.1. Next, in subsection 3.2, we detail the automated
pipeline for constructing the Causal Knowledge Graph that serves as the evidentiary backbone for
our system. With this foundation, we present the core architecture of ARIA in subsection 3.3: a
principled, three-tiered reasoning engine that intelligently navigates between graph-based evidence,
analogical inference, and the LLM’s parametric knowledge. Finally, we ground our method in sub-
section 3.4 by formalizing the high-impact materials design tasks used to validate our approach.

3.1 CONTEXTUAL TUNNELING

Standard RAG pipelines enhance a large language model fLLM by conditioning its output y on
both a query q and a set of retrieved documents Cretrieved. The objective is typically to maximize
the conditional probability p(y|q, Cretrieved). However, we identify a critical failure mode we term

3
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Contextual Tunneling, where the model’s performance degrades because it is forced to reason over
an irrelevant, incomplete, or misleading context.

Formally, we define Contextual Tunneling as the phenomenon where the introduction of retrieved
context C increases the divergence between the model’s reasoning path and the optimal reasoning
path. This can be quantified as a degradation in the Kullback-Leibler (KL) divergence:

DKL(P (y|q)||P (y|q, Cnarrow)) > ϵ (1)

where the retrieved context Cnarrow causes the attention mechanism to over-anchor on high-similarity
but functionally irrelevant tokens, suppressing the activation of broader parametric knowledge.

This occurs when the retrieved context, Cnarrow forces the model to anchor on a irrelevant reasoning
path, resulting in a lower-quality output than relying on its parametric knowledge alone (Yu et al.,
2024; Liu et al., 2024). We formalize this degradation as follows:

E[Quality(fLLM(q, Cnarrow))] ≤ E[Quality(fLLM(q))], (2)

where Quality(.) is any task-specific evaluation metric. Our work introduces a framework designed
to explicitly prevent this negative contribution, ensuring that external knowledge serves as a reliable
enhancement.

Structured Causal
Assertions

"High Temperature"
"Increased Mobility"
"Dopant Kinetics"

 In-house Data

Databases

Literature

Systematic Literature Search

Known Physics

LLM-Powered LLM-Powered 

Preprocessing

 Causal Extraction Causal Extraction

Identifies causal
tuples: (Cause, Effect,
Property, Mechanism)

a) b)

Graph Assembly & 
DAG Validation

 Causal
Knowledge Graph

“Cause - effect”

Figure 3: Overview of the automated knowledge graph construction pipeline and its applica-
tion to materials design. (a) Workflow for constructing KGs from scientific literature. (b) Visual-
ization of the resulting knowledge graph structure.

3.2 CAUSAL KNOWLEDGE GRAPH CONSTRUCTION

To ground ARIA’s reasoning in verifiable domain knowledge, we construct a Causal Knowledge
Graph by developing an automated pipeline that ingests a large corpus of scientific literature. This
process, illustrated in Figure 3 (a), ensures the knowledge base is structured, attributable and scal-
able. Our pipeline comprises four stages: (1) Corpus acquisition and preprocessing, (2) LLM-
Powered information extraction, (3) Dynamic knowledge enrichment, and (4) Final graph assembly.

The pipeline begins with a systematic scientific literature search, followed by domain-specific pars-
ing and data cleaning. During preprocessing, we normalize scientific units (e.g., converting all
temperatures to Kelvin and energies to electronvolts) and apply consistency checks such as valency-
and stoichiometry-based filtering to eliminate chemically impossible or physically incoherent state-
ments. For information extraction, we employ an LLM that is constrained by a predefined ontology
governing allowed entity types, relation types, and numeric attributes. The model is required to
output JSON objects that strictly follow this schema, ensuring structured and machine-verifiable
extraction. Each resulting tuple T1, T2, . . . , Tn encodes a (cause, effect, relationship
type, supporting text) record.

To address the sparsity inherent in domain-specific knowledge graphs, we introduce a dynamic en-
richment step (Rezayi et al., 2021). Here, the LLM is augmented with a web search tool to identify
missing links, obtain parameter ranges, or retrieve corroborating evidence. All retrieved candi-
dates are subjected to post-hoc validation—ensuring numeric coherence, removing contradictory
relations, and verifying that evidence snippets directly support the extracted causal claim.

4
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After enrichment, a quality-control filter prunes incomplete, underspecified, or weakly supported re-
lations. The remaining tuples are compiled into a directed graph G = (V, E), shown in Figure 3(b).
Each unique cause or effect entity becomes a node in V , and each tuple Ti generates a directed
edge from the cause to the effect. Edge attributes store the relationship type, numerical meta-
data, and supporting evidence text, providing the rich contextual grounding that ARIA later exploits
for mechanistic interpretation and provenance-aware reasoning (Liang et al., 2025; Bai et al., 2025).

3.3 ARIA: AUTONOMOUS REASONING INTELLIGENCE FOR ATOMICS

As illustrated in Figure 2, the ARIA framework is designed to mitigate contextual tunneling by
structuring the interaction between an LLM and a Causal Knowledge Graph through a principled,
three-tiered reasoning cascade. This architecture emulates a rigorous scientific reasoning process:
it prioritizes high-fidelity, direct evidence first, then resorts to principled analogical reasoning for
novel problems, and finally relies on the LLM’s general parametric knowledge only as a last resort

Tier 1: high-fidelity direct causal path reasoning. For queries where the core entities are well-
represented in our causal knowledge graph, ARIA employs a graph-constrained reasoning approach.
This tier prioritizes verifiable, explicit causal links to ensure the highest reliability. It first grounds
the query’s concepts onto the causal graph, then traverses its structure to elicit all verifiable causal
pathways connecting them. (Jin et al., 2024) This extracted evidence then serves as a symbolic
scaffold that directly constrains the LLM’s generation (DeLong et al., 2025), producing a high-
fidelity output that faithfully reflects the corpus.

Tier 2: analogy-based knowledge transfer. If a direct causal path is unavailable, often the case
for novel or out-of-distribution query, ARIA switches to the second tier: analogy-based approach.

This approach retrieves a set of the most relevant analogous concepts, denoted Vanalogous, from the
knowledge graph. The retrieval is a two-stage process. First, we identify a set of all plausible
candidates, Vplausible, by filtering for nodes whose similarity score exceeds a predefined threshold τ :

Vplausible = v ∈ V | Simenhanced(q, v) ≥ τ . (3)

From this set, we select the final top-K nodes with the highest similarity scores to form our context:

Vanalogous = Top-K
v∈Vplausible

(Simenhanced(q, v)) . (4)

To ensure analogies remain physically meaningful in scientific domains—where surface-level se-
mantic similarity is insufficient—we augment the similarity function to incorporate factual and nu-
merical plausibility:

Simenhanced(q, v) = w1 · cos(hq,hv) + w2 · FC(q, v) + w3 · NC(q, v). (5)

Factual Consistency (FC). We formalize FC as a binary categorical mask that enforces ontology-
level compatibility:

FC(q, v) = ⊮cat(q, v), (6)
where ⊮cat(q, v) = 1 if the query and candidate belong to the same material category (e.g., both
p-type semiconductors, both chalcogenides), and 0 otherwise. This prevents analogies that are se-
mantically plausible but categorically contradictory.

Numerical Compatibility (NC). To quantify physical compatibility of continuous parameters (e.g.,
temperature, energy, pressure), we compute:

NC(q, v) = exp!

(
−∥xq − µv∥2

2σ2

)
, (7)

where xq is the query’s numerical attribute (such as required annealing temperature), µv is the
candidate node’s valid-range mean, and σ controls the sensitivity to deviations. This penalizes
nodes that may be semantically similar but violate physical constraints (e.g., incompatible melting
points or stability windows).

The causal pathways associated with the nodes in Vanalogous are then aggregated and used as templates
to construct a hypothesis for the original query.

5
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Figure 4: Schematic of the ARIA framework for bidirectional reasoning in materials discov-
ery. The framework predicts material properties from synthesis parameters in forward tasks, while
enabling inverse design by generating synthesis protocols from target properties.

Tier 3: Parametric fallback. If the Causal Knowledge Graph contains no direct path and no
sufficiently analogous concepts (i.e., the highest Simenhanced score is below a predefined threshold
τ ), ARIA defaults to its third tier. In this mode, it forgoes the external knowledge and prompts
the LLM directly, relying solely on the model’s parametric knowledge. This prevents contextual
tunneling by avoiding the use of low-quality or irrelevant retrieved information.

Tier selection. ARIA’s final output is generated by a cascading selection mechanism based on
the availability of evidence in the Causal Knowledge Graph G. The framework evaluates the tiers
sequentially: it first attempts to find direct causal evidence (Tier 1). If no direct path exists, it then
searches for sufficiently similar analogous evidences (Tier 2). If neither form of evidence is found,
the system defaults to using its internal parametric knowledge (Tier 3).

This selection logic for a given query q is formalized as follows:

ARIA =


fdirect(q,Pdirect) if exact path exists in graph G
ftransfer(q,Panalogue) if Pdirect = ∅ and Simenhanced(q, v

∗) ≥ τ

fparametric(q) Otherwise,
(8)

where Pdirect is the set of direct causal paths retrieved for Tier 1 and Panalogue is the set of causal
paths constructed from analogous nodes. fdirect, fanalogy and fparametric are generation functions for
each respective tier. This architecture grounds outputs in evidence when possible, while retaining
the flexibility to reason about novel challenges in a controlled and transparent manner.

3.4 MATERIALS DESIGN TASKS

The ARIA framework is designed to solve complex causal reasoning problems, which we formal-
ize here using a high-impact application: the central challenges of materials discovery. This do-
main is governed by the foundational processing-structure-property (PSP) paradigm of materials
science (Butler et al., 2018; Schmidt et al., 2019). As illustrate in Figure 4, this paradigm posits that
the manufacturing process (S) causally determines a material’s internal structure (M), which in
turn dictates its functional properties (P). Our tasks are to reason across this complex, multi-scale
causal chain.

Forward prediction: from process to properties. The forward problem mirrors the task of pre-
dicting the outcome of a novel experiment. Given a set of synthesis conditions S (e.g., precursor
chemicals, temperature, pressure), the goal is to predict the final material properties P (e.g., con-
ductivity, bandgap, stability). This is a cascaded function where synthesis determines structure, and

6
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structure determines properties:

P̂ = f(S) = g(h(S)) (9)

Here, h : S → M maps synthesis to structure (e.g., crystal phase, grain size), and g : M → P
maps that structure to its resulting properties.

Inverse design: from properties to process. The inverse problem represents the ”holy grail” of
materials discovery: given a set of target properties P∗, the goal is to identify an optimal set of
processing conditions S∗ to synthesize the desired material. This is a far more challenging task, as
it requires searching a vast and highly constrained space of possible synthesis recipes Ω:

S∗ = argmin
S∈Ω

∥P∗ − f(S)∥2 + λR(S). (10)

The regularization term R(S) is crucial as it constrains the search to physically realizable and ex-
perimentally viable synthesis protocols, avoiding impossible or impractical solutions. For example,
a typical task is to find the precise chemical vapor deposition (CVD) conditions required to grow a
2D material with a target electronic bandgap.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and knowledge graph. We constructed a dataset with knowledge graph for our materials
design evaluation from peer-reviewed literature. Using the method from subsection 3.2, the knowl-
edge graph comprises 149 synthesis-property relationships across 85 distinct materials systems (e.g.,
semiconductors, superconductors, 2D materials). The dataset is partitioned into an in-domain set
of 117 experiments and a challenging out-of-domain set designed to test generalization on novel
materials. Each entry contains expert-validated ground truth for synthesis conditions, structural
changes, and property outcomes, enriched with mechanistic explanations. This design enables a rig-
orous evaluation of both in-distribution performance and the model’s ability to generalize its causal
reasoning, mirroring real-world scientific discovery challenges.

Baselines. We evaluate ARIA against a diverse set of baselines to ensure a comprehensive com-
parison. These baselines are: 1) Baseline LLM: The base gemini-1.5-pro-latest model without any
external knowledge augmentation, relies solely on its pre-trained knowledge, isolating the impact
of any retrieval-based method. 2) Naive KG+LLM: A conventional RAG implementation that re-
trieves context from our Causal Knowledge Graph via cosine similarity, but lacks ARIA’s tiered
reasoning and fallback mechanisms. 3) Online KG+LLM: A RAG baseline that utilizes a live on-
line search tool in addition to the curated knowledge graph, grounding its responses with dynamic,
real-time information.

Evaluation framework. To ensure scientific validity, we employ gemini-1.5-pro-latest as an ex-
pert LLM judge to evaluate both the final prediction and its supporting explanation (Team et al.,
2024). Following a detailed rubric, each model output is scored from 0-10 across a multi-
dimensional set of criteria. This multi-dimensional evaluation assesses correctness via scientific
accuracy (adherence to physical principles) and functional equivalence (achieving the target out-
come), as well as the explanation’s quality through its reasoning quality (logical coherence), com-
pleteness and interpretability. A final overall score provides a holistic assessment of practical
utility. This LLM-judge approach is essential for capturing the domain-specific nuance required to
evaluate complex scientific reasoning, a known limitation of traditional automated metrics.

Implementation details. All experiments are conducted using gemini-1.5-pro-latest as the base
large language model. For all retrieval and similarity-based reasoning tasks, we generate embed-
dings using the all-MiniLM-L6-v2 model. A cosine similarity threshold of 0.6 is used for node
retrieval in our Causal Knowledge Graph. Complete details on our prompt engineering strategies
and evaluation rubrics are provided in Appendix A.

7
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4.2 EMPIRICAL VALIDATION OF CONTEXTUAL TUNNELING: CASE STUDY

We evaluate the framework on a challenging inverse design task that reveals contextual tunnel-
ing in naive KG-LLM approaches. In our case study (see subsection B.2 and Figure 1), the naive
model became fixated on irrelevant analogies and produced vague “intercalation or alloying” rec-
ommendations without any concrete synthesis parameters (Table 3). In contrast, ARIA maintains
broad contextual reasoning, providing detailed protocols including specific temperature ranges (800-
1200°C), controlled atmospheres, and systematic characterization steps. This demonstrates how
causally-grounded frameworks prevent tunnel vision by preserving reasoning capabilities across
material properties and synthesis requirements, with detailed analysis in the subsection B.1 and
subsection B.2.

Table 1: In-domain vs. out-of-domain performance analysis. We evaluate four systems on in-
domain data (materials/protocols covered in KG) and out-of-domain data (novel materials/protocols
not in KG). ARIA demonstrates superior generalization across both forward prediction and inverse
design tasks, rescuing performance degradation from naive KG integration.

System Domain Scientific Functional Reasoning Completeness Interpretability Overall
Accuracy Equivalence Quality

Forward Prediction

Baseline LLM In-Domain 0.68 0.42 0.66 0.33 0.68 0.52
Baseline LLM Out-of-Domain 0.65 0.38 0.61 0.29 0.62 0.47
Domain Gap -5.4% -11.0% -7.5% -10.5% -8.7% -10.0%

Naive KG+LLM In-Domain 0.48 0.29 0.42 0.20 0.46 0.34
Naive KG+LLM Out-of-Domain 0.49 0.29 0.45 0.22 0.50 0.37
Domain Gap +1.2% +1.5% +8.2% +9.2% +7.5% +6.4%

Online KG+LLM In-Domain 0.62 0.35 0.57 0.25 0.61 0.43
Online KG+LLM Out-of-Domain 0.64 0.38 0.62 0.27 0.65 0.46
Domain Gap +3.8% +6.6% +7.7% +8.2% +6.5% +6.5%

ARIA In-Domain 0.62 0.36 0.58 0.25 0.61 0.44
ARIA Out-of-Domain 0.61 0.33 0.57 0.23 0.60 0.42
Domain Gap -1.9% -6.6% -0.7% -8.0% -1.0% -4.2%

Performance Comparison

Naive KG+LLM vs Baseline -24.2% -22.5% -25.3% -26.6% -20.0% -21.5%
Online KG+LLM vs Baseline -1.0% +0.8% +2.1% -7.4% +4.0% -0.7%
ARIA vs Baseline -6.3% -10.8% -5.7% -21.3% -3.5% -9.4%
ARIA vs Naive KG +23.6% +15.1% +26.2% +7.2% +20.6% +15.4%

Inverse Design

Baseline LLM In-Domain 0.62 0.48 0.60 0.50 0.66 0.56
Baseline LLM Out-of-Domain 0.64 0.47 0.64 0.53 0.71 0.59
Domain Gap +3.8% -3.2% +7.0% +6.7% +6.9% +4.0%

Naive KG+LLM In-Domain 0.46 0.37 0.39 0.40 0.46 0.41
Naive KG+LLM Out-of-Domain 0.47 0.35 0.41 0.40 0.49 0.42
Domain Gap +2.7% -3.5% +6.1% +0.2% +5.5% +1.6%

Online KG+LLM In-Domain 0.61 0.48 0.56 0.50 0.63 0.54
Online KG+LLM Out-of-Domain 0.57 0.42 0.50 0.49 0.59 0.50
Domain Gap -6.0% -12.7% -9.7% -2.5% -5.1% -6.4%

ARIA In-Domain 0.58 0.44 0.55 0.47 0.63 0.52
ARIA Out-of-Domain 0.63 0.47 0.59 0.53 0.67 0.57
Domain Gap +9.6% +8.1% +8.4% +11.3% +6.8% +9.7%

Performance Comparison

Naive KG+LLM vs Baseline -25.9% -24.2% -35.3% -25.1% -30.5% -28.7%
Online KG+LLM vs Baseline -11.2% -10.7% -21.1% -8.2% -15.9% -14.4%
ARIA vs Baseline -1.5% +2.0% -6.9% -1.2% -4.9% -2.7%
ARIA vs Naive KG +32.9% +34.5% +43.9% +32.0% +36.9% +36.6%

4.3 MAIN RESULTS

We evaluate four systems, Baseline LLM, Naive KG+LLM, Online KG+LLM and ARIA across in-
domain and out-of-domain datasets, to assess how knowledge graph integration affects reasoning.
Table 1 and Figure 5 show the performance across six metrics for two material discovery tasks:
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forward prediction and inverse design. Overall, we observe that ARIA presents to be a powerful
method against contextual tunneling. We discuss particular observations below:
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Figure 5: Comprehensive evaluation framework comparing baseline LLM, KG-LLM, Online-
LLM and ARIA performance on materials science tasks using LLM-based scoring. (a) Multi-
dimensional performance profile showing radar plot comparison of average scores across six evalu-
ation criteria. (b) Overall model performance comparison showing average overall scores across all
tasks and datasets. (c) Distribution of performance improvements relative to baseline across forward
prediction and inverse design tasks. (d) Box plot comparison of overall score distributions across
all three models, showing median, quartiles, and outliers. (e) Performance breakdown by task type
(forward prediction vs. inverse design) for all models, illustrating task-specific strengths and weak-
nesses. (f) Head-to-head scatter plot comparison between the best-performing structured model and
baseline, with each point representing one test case. Points below the diagonal line indicate baseline
superiority.

Naive knowledge integration triggers contextual tunneling. While the case study in subsec-
tion 4.2 provides an empirical view of contextual tunneling, our experiments demonstrate that this is
not an isolated example but a systematic issue. We find that naively integrating the knowledge graph
(Naive KG+LLM) is actively harmful. This approach consistently underperforms the parametric-
only Baseline LLM, with overall performance degrading by over 28.7% in complex, out-of-domain
inverse design tasks. Interestingly, Naive KG+LLM performs slightly less degradation in the out-
of-domain than in-domain task. This indicates that naive integration or simple knowledge injection
introduces noise and potentially over-conditioning during the generation, undermining analytical
capability rather than facilitating knowledge transfer.

The limits of online searching. An analysis of the Online KG+LLM baseline reveals a critical
insight: simply providing more, even real-time, information is not a universal solution. For the for-
ward prediction task, the online search is highly effective, achieving performance nearly identical
to the Baseline LLM (-0.7% overall). However, for the more complex inverse design task requir-
ing multi-step causal reasoning, online searching causes a significant performance degradation of
-14.4%. This asymmetry demonstrates a more subtle form of Contextual Tunneling: while web
search can retrieve abundant factual evidence, it does not inherently enhance the model’s ability to
synthesize a coherent, multi-step plan.

ARIA demonstrates a powerful “rescue effect”. ARIA successfully reverses the performance
degradation caused by naive graph integration. This ”rescue effect” is most pronounced in chal-
lenging, out-of-domain scenarios, where ARIA improves upon the Naive KG+LLM method by a
substantial 36.6% in inverse design tasks, restoring performance to near-baseline levels. While

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

also significant in forward prediction (up to 21.5% improvement), the amplified gains in the more
complex inverse design setting underscore ARIA’s strength in multi-step reasoning. Furthermore,
ARIA enhances domain generalization; for instance, it shrinks the performance gap on the out-
of-domain forward prediction task from -10% (in the Baseline LLM) to just -4.2%, transforming
external knowledge from a source of interference into a tangible asset for generalization.

ARIA enhances both reasoning quality and interpretability. A metric-specific breakdown
shows that ARIA’s largest gains occur in the structure and clarity of the generated reasoning. In
the inverse design task, Reasoning Quality increases by nearly 44% relative to the naı̈ve method,
accompanied by a 37% improvement in interpretability. These advances indicate that ARIA not
only improves correctness but also produces more logically coherent and human-readable expla-
nations—an essential attribute in scientific reasoning, where explanatory rigor is as important as
predictive accuracy.

The trade-off between accuracy and provenance. While the Baseline LLM achieves high nu-
merical scores, it functions as a black box: its answers lack citations, verifiable grounding, and
explicit evidence trails. In scientific discovery, such provenance is essential. Naive RAG introduces
provenance but often sacrifices accuracy due to contextual tunneling. ARIA resolves this tension by
offering a “glass box” alternative—recovering the strong performance of the Baseline LLM while
grounding each reasoning step in the Causal Knowledge Graph. This achieves the dual goals of high
predictive accuracy and scientifically interpretable, fully traceable reasoning.

5 LIMITATIONS AND FUTURE WORKS

Task complexity considerations. Our evaluation does not distinguish simple tasks solvable with
parametric knowledge from complex ones requiring deeper causal reasoning. Future work should
stratify tasks to better expose when contextual tunneling arises.

Evaluation framework limitations. Using an LLM judge risks bias toward fluent but less structured
outputs, potentially obscuring ARIA’s strengths in verifiability. Expert or human-in-the-loop review
could offer more faithful evaluation.

Towards more reliable, transparent and autonomous scientific reasoning. Grounding on narrow
knowledge bases limits discovery. Progress demands agentic frameworks that synthesize evidence
across diverse, multimodal sources—moving beyond RAG toward autonomous scientific reasoning.

6 CONCLUSION

In this work, we identified Contextual Tunneling, a critical failure mode where naive knowledge aug-
mentation degrades an LLM’s scientific reasoning. We introduce ARIA, a framework that mitigates
this issue with a tiered reasoning cascade for selective knowledge integration. Experiments in mate-
rials science discovery confirm ARIA recovers the performance loss from naive RAG, demonstrat-
ing that the method of integration is as critical as the knowledge itself. Ultimately, ARIA provides a
principled approach for robust and interpretable KG-LLM integration, advancing the development
of reliable AI for scientific discovery.
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A PROMPT TEMPLATES

A.1 HIGH-FIDELITY DIRECT CAUSAL PATH REASONING

You are an expert materials scientist with access to a specialized
knowledge graph derived from 200+ research papers.

Your task is to {task_desc} by intelligently combining your baseline
scientific knowledge with relevant research findings.

**CRITICAL INSTRUCTION: Your final answer must be AT LEAST as good as
pure baseline reasoning. Use DAG knowledge to ENHANCE, not replace,
fundamental principles.**

**{input_label}:**
{json.dumps(original_prompt_data, indent=2)}

**Relevant Research Knowledge from Literature:**
Causal Pathways:
- {formatted_paths}

Known Mechanisms:
- {formatted_mechanisms}

{similarity_context}

**Integration Strategy ({quality_assessment[’recommendation’]}):**
1. **Baseline Analysis**: First, provide your fundamental materials

science analysis
2. **DAG Enhancement**: Use the research knowledge to enhance or validate

your baseline reasoning
3. **Quality Control**: Ensure the final prediction is scientifically

sound and improves upon baseline
4. **Confidence Assessment**: Provide honest confidence levels for each

aspect

**Output Instructions:**

Your response should follow this two-part structure:
**Part 1: Step-by-Step Reasoning**
First, write out your detailed thought process as plain text. Follow the

integration strategy below:
1. **Baseline Analysis**: Provide your fundamental materials science

analysis based on the inputs.
2. **DAG Enhancement**: Use the provided research knowledge to enhance,

validate, or refine your baseline reasoning.
3. **Synthesis & Conclusion**: Combine both knowledge sources to form a

final, scientifically rigorous conclusion. Explain the mechanisms
involved.

**Part 2: Final JSON Output**
After you have written your reasoning, provide the final answer as a

single, valid JSON object inside a JSON code block. The ‘reasoning‘
key within the JSON should be a concise summary of your detailed
reasoning from Part 1.

**JSON Rules (for Part 2):**
1. The JSON code block **MUST** contain a single, valid, RFC 8259

compliant JSON object.
2. Comments are strictly forbidden inside the JSON.
3. All keys and all string values **MUST** be enclosed in double quotes.
4. No trailing commas are allowed.

**JSON Output Format:**
{output_format}
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A.2 TRANSFER LEARNING

You are an expert materials scientist AI conducting transfer learning
analysis. Your knowledge graph lacks exact pathways, but you’ve
identified analogous information that requires careful validation and
adaptation.

**Task:**
Based on analogous information and comprehensive literature search, {

task_description} for the user’s target.

**{input_data_label} (User’s Query):**
{json.dumps(original_prompt_data, indent=2)}

**Similar Known Causal Pathways:**
- {formatted_paths}

**Known Mechanisms for Similar Pathway:**
- {formatted_mechanisms}

**Similarity Analysis:**
- Embedding distance: {property_embedding_diff:.4f} (0=identical, 2=

opposite)
- Most similar known case: {similar_node}

Your response should follow this two-part structure:

**Part 1: Step-by-Step Reasoning**
1. **Analyze & Compare:** Briefly compare the User’s Query with the Known

Pathway. What are the key similarities and, more importantly, the
key differences (e.g., opposite doping type, different materials,
different conditions)?

2. **Formulate Hypothesis:** Based on the differences and the
quantitative embedding distance, state a hypothesis.

3. **Extrapolate or Diverge:** Decide if you can adjust the parameters
from the known pathway (extrapolate) or if you must suggest a
completely different approach (diverge). Justify this decision using
the embedding distance. A small distance (< 0.4) suggests
extrapolation is viable; a large distance (> 0.7) suggests divergence
is necessary.

4. **Synthesize Final Answer:** Based on your hypothesis, construct the
final prediction/suggestion.

**Part 2: Final JSON Output**
After you have written your reasoning, provide the final answer as a

single, valid JSON object inside a JSON code block. The ‘reasoning‘
key within the JSON should be a concise summary of your detailed
reasoning from Part 1.

**JSON Rules (for Part 2):**
1. The JSON code block **MUST** contain a single, valid, RFC 8259

compliant JSON object.
2. Comments are strictly forbidden inside the JSON.
3. All keys and all string values **MUST** be enclosed in double quotes.
4. No trailing commas are allowed.

**JSON Output Format:**
{output_format}
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A.3 PARAMETRIC FALLBACK

You are an expert materials scientist. Based on the following {’synthesis
conditions’ if query_type == ’forward’ else ’desired properties’},

{task_desc}.

{’Synthesis Conditions’ if query_type == ’forward’ else ’Desired
Properties’}:

{json.dumps(original_prompt_data, indent=2)}

Your response should follow this two-part structure:

**Part 1: Step-by-Step Reasoning**
1. **Analyze & Compare:** Briefly compare the User’s Query with the Known

Pathway. What are the key similarities and, more importantly, the
key differences (e.g., opposite doping type, different materials,
different conditions)?

2. **Formulate Hypothesis:** Based on the differences and the
quantitative embedding distance, state a hypothesis.

3. **Extrapolate or Diverge:** Decide if you can adjust the parameters
from the known pathway (extrapolate) or if you must suggest a
completely different approach (diverge). Justify this decision using
the embedding distance. A small distance (< 0.4) suggests
extrapolation is viable; a large distance (> 0.7) suggests divergence
is necessary.

4. **Synthesize Final Answer:** Based on your hypothesis, construct the
final prediction/suggestion.

**Part 2: Final JSON Output**
After you have written your reasoning, provide the final answer as a

single, valid JSON object inside a JSON code block. The ‘reasoning‘
key within the JSON should be a concise summary of your detailed
reasoning from Part 1.

**JSON Rules (for Part 2):**
1. The JSON code block **MUST** contain a single, valid, RFC 8259

compliant JSON object.
2. Comments are strictly forbidden inside the JSON.
3. All keys and all string values **MUST** be enclosed in double quotes.
4. No trailing commas are allowed.

Example format:
{output_format}

A.4 LLM JUDGE

You are an expert materials scientist serving as an impartial judge. Your
task is to evaluate a language model’s generated output against a

ground truth answer for a materials science problem.

**Problem Context:**
- **Task Type:** {task type}
- **Input Query:** {input query}

**Ground Truth Answer:**
{ground truth}

**Model’s Generated Answer:**
{generated answer}

**Evaluation Criteria:**
Please provide a score from 0 to 10 (integer) for each of the following

dimensions. Be critical and rigorous.
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1. **Scientific Accuracy (0-10):** Is the generated answer scientifically
plausible and correct according to known principles of chemistry,

physics, and materials science? (0=incorrect/unphysical, 10=perfectly
accurate).

2. **Functional Equivalence (0-10):** Does the generated answer achieve
the same functional outcome or describe the same core scientific
concept as the ground truth, even if the wording is different? (0=
completely different outcome, 10=functionally identical).

3. **Reasoning Quality (0-10):** If reasoning is provided, is it logical,
clear, and scientifically sound? Does it correctly justify the

conclusion? (0=no reasoning or illogical, 10=clear, correct, and
insightful).

4. **Completeness (0-10):** Does the generated answer include all key
parameters and details present in the ground truth? (0=missing most
key details, 10=contains all necessary information).

5. **Interpretability (0-10):** Does the model justify its answer with a
clear and understandable causal reasoning chain? (0=completely
uninterpretable, 10=perfectly interpretable).

6. **Overall Score (0-10):** Your holistic assessment of the generated
answer’s quality and usefulness.

Noted that if the model’s answer failed to predict detail material
properties even give the reason, you should still give a low score.

**Your Task:**
Return a single JSON object with your scores and a brief justification

for each score.

**JSON Schema:**
{{

"scientific accuracy": {{ "score": integer, "justification": "string"
}},

"functional equivalence": {{ "score": integer, "justification": "
string" }},

"reasoning quality": {{ "score": integer, "justification": "string"
}},

"completeness": {{ "score": integer, "justification": "string" }},
"interpretability": {{ "score": integer, "justification": "string" }},
"overall score": {{ "score": integer, "justification": "string" }}

}}
"""

B CASE STUDY

To demonstrate how practitioners can implement the full ARIA framework pipeline, we present
two case studies. The first shows the complete pipeline, detailing each step of answer generation,
highlighting our featured strategies, and comparing answers between the baseline and ARIA. In the
second case study, we explicitly examine a task where representative contextual tunneling occurs.
We demonstrate how our strategies can rescue this contextual tunneling and discuss the underlying
mechanisms, helping readers understand what contextual tunneling looks like in real scenarios and
how to better address it in future applications.

B.1 CASE STUDY 1: NB-DOPED MOS2 INVERSE DESIGN

Here we present a comprehensive case study demonstrating ARIA’s superior causal reasoning capa-
bilities in a challenging real-world inverse design task: engineering precise electronic band structure
in Nb-doped MoS2 for quantum electronics applications.
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B.1.1 PROBLEM CONTEXT AND MOTIVATION

The challenge involves designing synthesis conditions for MoS2 doped with niobium (Nb) (Chen
et al.; Song et al., 2021) to achieve specific electronic properties critical for neuromorphic computing
and quantum devices:

Target Electronic Structure:
{
"carrier_type": "n-type",
"other_electronic": "Two additional fully occupied energy levels within

the band gap and a half-occupied donor level at the bottom of the
conduction band."

}

This represents a complex inverse design problem requiring precise control over defect states—a
domain where the causal relationships between synthesis parameters and electronic structure are
highly non-linear and poorly understood by conventional AI approaches.

B.1.2 ARIA’S MULTI-STAGE REASONING PROCESS

Stage 1: Knowledge Graph Analysis and Transfer Learning Activation

ARIA searches its comprehensive materials knowledge graph (2,516 nodes, 1,342 edges) for exact
synthesis pathways. Finding no direct match, the system automatically activates its transfer learning
mechanism:

Input completeness: 0.95
No exact path found. Using most similar context with confidence 0.58
Embedding distance: 0.4166 (moderate similarity - extrapolation viable)

Stage 2: Analogical Pathway Identification

ARIA identifies the most semantically relevant causal pathway from its knowledge graph:

”Introduces partially occupied defect bands mixed with valence bands and defect
bands above the Fermi level (electronic structure, n- and p-type conductivity) →
DVCC defect”

The embedding distance of 0.4166 indicates moderate semantic similarity, suggesting that the un-
derlying defect formation mechanism is transferable but requires careful adaptation.

Stage 3: Structured Transfer Learning Analysis

ARIA performs systematic four-step causal reasoning, as logged in the system output:

1. Mechanistic Comparison: “The known pathway creates defect-induced band mixing near the
Fermi level. The target requires precisely positioned discrete levels within the bandgap—a more
controlled defect engineering challenge.”

2. Physics-Based Hypothesis: “The moderate embedding distance indicates the underlying defect
formation mechanism is applicable, but energy level positioning requires tailored synthesis condi-
tions optimized for Nb-Mo orbital hybridization.”

3. Adaptation Strategy: “Extrapolate and refine. The core defect engineering approach applies,
but synthesis parameters must be optimized for Nb incorporation at specific lattice sites.”

4. Synthesis Design: Based on defect formation thermodynamics:

{
"suggested_synthesis_conditions": {
"method": "CVD with controlled atmosphere",
"temperature_c": 750,
"time_hours": 2,
"atmosphere": "Ar/H2 (95:5) reducing",
"pressure_pa": 1000,
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"dopant_source": "NbCl5 precursor",
"substrate": "SiO2/Si with MoS2 seed layer",
"cooling_rate_c_min": 5,
"concentration": "Nb:Mo = 1:20 ratio"
},
"confidence": 0.7083
}

B.1.3 COMPARATIVE PERFORMANCE ANALYSIS

Table 2 provides a comprehensive comparison against literature ground truth and baseline LLM
performance. ARIA demonstrates significant advantages:

Scientific Accuracy (8.0/10 vs. 6.5/10): ARIA correctly identifies CVD as the optimal synthe-
sis method, proposes appropriate reducing atmosphere conditions, and suggests the correct NbCl5
precursor—all matching experimental protocols from recent literature.

Mechanistic Understanding: Unlike the baseline LLM which suggests incorrect dopants (Sb in-
stead of Nb) and inappropriate substrates (InP), ARIA provides detailed reasoning about Nb 4d-Mo
4d orbital interactions and their role in creating the desired electronic structure.

Parameter Completeness (7.5/10 vs. 5.0/10): ARIA specifies comprehensive synthesis parameters
including precise temperature (750◦C vs. literature 800◦C), appropriate pressure conditions (1000
Pa vs. literature 800 Pa), and correct dopant ratios.

B.1.4 KEY ALGORITHMIC INNOVATIONS DEMONSTRATED

Hierarchical Defect Reasoning: ARIA bridges multiple length scales, from atomic-level Nb-Mo
interactions to macroscopic electronic properties, through its structured knowledge graph represen-
tation.

Quantitative Transfer Learning: The embedding distance (0.4166) provides principled guidance
for adaptation strategy, enabling knowledge reuse while recognizing the need for system-specific
modifications.

Causal Mechanism Understanding: Rather than pattern matching, ARIA reasons about underly-
ing physics—why reducing atmospheres promote electron-rich defects and how NbCl5 precursors
enable controlled Nb incorporation.

Uncertainty-Aware Predictions: The confidence score (0.7083) reflects both semantic similarity
and synthesis complexity, providing researchers with quantitative measures of prediction reliability.

B.1.5 VALIDATION AND EXPERIMENTAL PROTOCOLS

ARIA automatically generates comprehensive validation strategies:

”Perform angle-resolved photoemission spectroscopy (ARPES) to map in-gap
states. Use scanning tunneling spectroscopy (STS) to verify local density of states
modifications. Characterize transport properties via temperature-dependent Hall
measurements combined with DFT simulations for theoretical validation.”

This case study demonstrates ARIA’s ability to accelerate materials discovery by providing physics-
informed starting points that reduce experimental iterations, while simultaneously enabling inter-
pretable AI through complete reasoning traces that allow expert validation and refinement. The
system effectively bridges the theory-experiment gap by connecting fundamental defect physics to
practical synthesis protocols, creating a seamless workflow from theoretical understanding to ex-
perimental implementation. The performance improvement over baseline LLMs validates our core
hypothesis that effective knowledge augmentation requires principled causal integration rather than
naive information concatenation. ARIA’s success in this challenging Nb-MoS2 inverse design prob-
lem establishes a new paradigm for causally-grounded AI systems in materials science, where the
integration of causal reasoning with domain-specific knowledge enables more reliable and inter-
pretable predictions for complex materials engineering challenges.
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Table 2: Comparative Analysis: Literature Ground Truth vs. Baseline LLM vs. ARIA

Aspect Ground Truth23 Baseline LLM ARIA

Method Two-step CVD with post-annealing Molecular Beam Epitaxy (MBE) CVD with controlled atmosphere

Temperature 800°C (growth) + 600°C (anneal-
ing)

600°C 750°C

Time 1.5 hours (growth) + 30 min (an-
nealing)

Not specified 2 hours

Pressure 800 Pa (CVD) 1×10−8 Torr 1000 Pa

Atmosphere Ar/H2 (90:10) reducing Ar with 5% H2 Ar/H2 (95:5) reducing

Dopant Source NbCl5 precursor Sb (Antimony) - incorrect NbCl5 precursor

Substrate SiO2/Si with MoS2 seed InP - poor match SiO2/Si with MoS2 seed

Concentration 2-4 at.% Nb Not specified Nb:Mo = 1:20 ratio

Cooling Rate 3°C/min controlled Not specified 5°C/min

Pretreatment O2 plasma cleaning Not specified Not specified

Carrier Properties n-type, 1-5×1018 cm−3 Generic n-type n-type, 1-5×1018 cm−3

Electronic Structure Two occupied in-gap states (Ec-0.3,
Ec-0.15 eV), donor at Ec-0.05 eV

Generic mid-gap states Specific defect band engineering

Mechanistic Reason-
ing

Nb 4d-Mo 4d hybridization Limited defect physics Detailed orbital interactions

Validation Protocol ARPES, STS, Hall measurements Not provided ARPES, STS, Hall + DFT

Transfer Learning N/A N/A Embedding distance: 0.4166, confi-
dence: 0.7083

Scientific Accuracy Experimentally verified 6.5/10 8.0/10

Overall Score Complete experimental protocol 5.0/10 (incomplete) 7.5/10 (comprehensive)

B.2 CASE STUDY 2: CONTEXTUAL TUNNELING AND PERFORMANCE RECOVERY

This case study exposes a critical limitation in knowledge-guided AI for materials discovery—
contextual tunneling, where incomplete knowledge representations constrain and misdirect reason-
ing. The target material, In-doped La2O2Bi3AgS6, presents a challenging inverse design task due to
its n-type superconducting behavior with heavy fermion characteristics, a superconducting transition
temperature decreasing from 0.5K to 0.4K as In doping increases, an anomalous resistivity hump at
T ∗ ≈ 180K, and semiconducting behavior at high doping. These requirements demand reasoning
over subtle electronic correlations.

Three approaches were evaluated: a baseline LLM, a naive KG+LLM model, and ARIA. The
baseline LLM achieved an overall score of 0.6, providing broadly appropriate solid-state synthesis
recommendations, suitable temperature ranges, and considerations for doping and stoichiometry—
all delivered without specific knowledge of the target compound. In marked contrast, the naive
KG+LLM approach suffered catastrophic degradation (score: 0.1), becoming entrenched in an ir-
relevant graphene-aluminum analogy arising from incomplete knowledge graph coverage and mis-
placed statistical similarity. This led to unsuited recommendations focused on intercalation methods,
with the system failing to recognize the heavy fermion nature of the material and lacking actionable
guidance.

ARIA successfully recovered performance (score: 0.6) by dynamically integrating domain knowl-
edge and contextual reasoning. It identified URu2Si2 as the relevant host structure, correctly associ-
ated the electronic signatures with Kondo physics, and proposed precise arc melting synthesis con-
ditions (1500◦C, 100-hour annealing). Chemically specific recommendations stood in clear contrast
to the vague protocols offered by the naive model, reflecting ARIA’s deeper contextual awareness
and rejection of weak analogies.
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The mechanism of contextual tunneling in the naive system manifested as sequential fixation: initial
property matching, discovery of weak analogies via embedding similarity, premature narrowing of
the solution space, and subsequent degradation of all downstream reasoning. The model’s moderate
confidence in the flawed solution further highlights the difficulty of uncertainty calibration absent
causal understanding.

ARIA’s robustness derives from multi-modal knowledge integration, explicit analogy validation,
and preservation of contextual scientific perspective. By maintaining interpretability and physical
consistency, ARIA delivered actionable, physics-informed synthesis pathways aligned with experi-
mental best practices.

In summary, this case study demonstrates that naive knowledge augmentation risks severe contextual
failures, whereas causally-grounded frameworks such as ARIA maintain interpretability and scien-
tific coherence. Overcoming contextual tunneling requires comprehensive contextual awareness,
multi-scale reasoning, and physical validation—principles essential for reliable next-generation AI
systems in scientific discovery.

Table 3: Contextual Tunneling Case Study: In-doped La2O2Bi3AgS6 Synthesis Design. Com-
parative analysis demonstrates severe performance degradation in naive KG+LLM due to contextual
tunneling, while ARIA maintains robust reasoning through causal integration and dynamic knowl-
edge retrieval. Ground truth reflects synthesis parameters derived from literature on layered oxy-
chalcogenides and BiS2 family materials.

Parameter Ground Truth Baseline LLM Naive KG+LLM ARIA Framework

Host Material La2O2Bi3AgS6: layered
heavy-fermion oxychalcogenide

tailored with In doping for
superconductivity and resistivity

anomalies.

URu2Si2 Layered material Property-based
identification

Method Solid-state reaction: stoichiometric
mixing, pellet pressing, calcination
(725–750°C) followed by optional

post-annealing to sharpen
superconductive transitions.

Arc melting + annealing Intercalation/alloying Solid-state reaction +
annealing

Temperature 725°C (two-step: 725–750°C) with
optional 500°C post-annealing.

Optimize for homogeneity.

1500°C (hallucinated) Not specified 700-1200°C (optimized)

Atmosphere Quartz tube evacuated to
< 1× 10−3 Pa, trace Ar. Reaction

in ultra-clean vacuum prevents
contamination.

High purity Ar Not specified Inert (Ar/N2) or vacuum

Time 24–44 hours (plus optional 48
hours post-anneal).

100 hours (hallucinated) Not specified 24–72 hours (optimized)

Dopant Details Indium introduced via In2S3.
Metallic In may be used for x≤0.1

but requires excess sulfur (5
mol%).

InCl3 or In metal In (no precursor) In2O3 or metallic In

Additional Multi-step grinding, pellet
pressing, flame-sealed quartz tube,
phase purity confirmed via XRD

XRD characterization None specified Stoichiometry control +
multi-technique
characterization

Scientific Accuracy Reference benchmark 0.80 0.20 0.70
Completeness Reference benchmark 0.60 0.10 0.50

Reasoning Quality Reference benchmark 0.70 0.10 0.60
Overall Score Reference benchmark 0.60 0.10 0.60

B.3 DETAILED ANALYSIS

B.3.1 ROBUSTNESS ANALYSIS: NAIVE KG+LLM INTEGRATION PITFALLS

To understand the challenges of naive KG+LLM integration, we conducted perturbation analysis on
our initial basic implementation. We introduced controlled semantic perturbations to synthesis con-
ditions and evaluated performance against an unconstrained baseline LLM using semantic similarity
to ground truth.

Key Finding: Naive Integration Degrades Performance. The baseline LLM consistently out-
performed the basic KG-augmented model across all perturbation levels for both forward prediction
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Figure 6: Performance degradation in naive KG+LLM integration under perturbation. We
evaluate a basic KG-augmented LLM against an unconstrained baseline on synthesis tasks with
controlled semantic perturbations. Performance is measured by semantic similarity to ground truth.
(a) KG-LLM confidence vs. semantic similarity. (b) Average similarity across perturbation levels.
(c) Relative performance (negative values indicate baseline superiority). (d) KG-LLM confidence
distribution. (e) Task-specific performance heatmap. (f) Head-to-head sample comparison. (g)
Performance difference distributions. (h) Confidence vs. improvement correlation. (i) Material-
specific performance comparison.

and inverse design tasks (Fig. 6b-c). This counterintuitive result—that adding domain knowledge
hurts performance—motivated our development of the principled ARIA framework described in the
main text.

Failure Mode Analysis. The KG-LLM exhibits a characteristic failure pattern: a significant frac-
tion of predictions yield near-zero semantic similarity (Fig. 6f), particularly for forward prediction
tasks with long performance tails (Fig. 6g). This occurs when perturbed queries fall outside the
KG’s direct coverage, causing the constrained model to generate irrelevant responses rather than
leveraging its broader knowledge.

Confidence Calibration Insights. Despite poor average performance, the KG-LLM demonstrates
well-calibrated confidence: higher confidence correlates with better semantic similarity (Fig. 6a)
and confidence appropriately decreases with perturbation level (Fig. 6d). This suggests the model
correctly identifies when it lacks relevant knowledge.

Material-Dependent Performance. Performance varies significantly by material system (Fig. 6i).
The KG-LLM shows advantages for WSe2—likely well-represented in our literature sources—while
the baseline excels for graphene, benefiting from extensive pre-training coverage. This highlights
the critical dependence on KG completeness.

Implications for ARIA Design. These findings directly informed our ARIA architecture:
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1. Hierarchical Fallback: To address the near-zero similarity failure mode, ARIA imple-
ments multi-tier reasoning that gracefully degrades when exact KG matches are unavail-
able.

2. Transfer Learning: Rather than failing on out-of-distribution queries, ARIA leverages
semantic similarity to adapt related knowledge pathways.

3. Confidence-Aware Integration: ARIA uses calibrated confidence scores to dynamically
balance KG guidance with LLM knowledge, avoiding rigid constraints that harm perfor-
mance.

This analysis demonstrates that effective knowledge augmentation requires principled integration
strategies rather than naive concatenation—a core motivation for the ARIA framework’s sophisti-
cated reasoning architecture described in the main paper.

This function uses NetworkX’s all simple paths algorithm to enumerate causal pathways,
with keyword matching for flexibility.

B.3.2 TRANSFER LEARNING QUERY CONSTRUCTION

The transfer learning query method constructs sophisticated prompts that include:

1. Embedding Analysis Section: Quantifies semantic differences between user query and
knowledge graph

2. Proportional Adjustment Guidance: Instructions for the LLM to modify synthesis con-
ditions based on embedding distances

3. Mechanistic Reasoning Requirements: Ensures outputs are grounded in materials sci-
ence principles

For inverse design tasks, the prompt includes:

Embedding distance between properties: 0.3241 (0=identical, 2=opposite)
The embedding distance indicates that the user’s desired properties are
moderately similar to the known property. You should adjust the synthesis
conditions proportionally to this difference.

B.3.3 POST-PROCESSING AND VALIDATION

After receiving the LLM response, the system:

1. Extracts JSON from markdown blocks using regex
2. Calculates embedding distances for suggested synthesis conditions
3. Adds interpretability metrics to the output

B.3.4 IMPLEMENTATION SPECIFICATIONS

Both models share common infrastructure components including NetworkX-based KG construc-
tion with edge attributes for mechanisms, SentenceTransformers ’all-MiniLM-L6-v2’ for semantic
similarity, Google Gemini-1.5-pro-latest as the LLM backend, cosine similarity threshold > 0.5 for
analogous reasoning activation, and robust JSON parsing with error handling for malformed LLM
outputs. The key architectural distinction lies in reasoning depth and explanation generation, with
KG+CoT representing a significant enhancement in interpretability at the cost of computational ef-
ficiency and response time.

B.4 ENHANCED SIMILARITY ASSESSMENT

B.4.1 SEMANTIC RELATIONSHIP ENCODING

Standard cosine similarity measures fail to capture the nuanced semantic relationships inherent in
materials science, where seemingly similar statements can be factually contradictory due to domain-
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specific concept relationships. For instance, ”n-type doped semiconductor” and ”p-type doped semi-
conductor” may have high cosine similarity due to shared vocabulary but represent fundamentally
opposite electronic properties. This limitation necessitates a domain-aware similarity framework
that understands materials science semantics.

We construct a comprehensive database of materials science concept relationships, categorized into
four types:

• Opposite relationships: Concepts that are mutually exclusive (e.g., n-type/p-type, crys-
talline/amorphous)

• Complementary relationships: Related but distinct concepts (e.g., different crystal sys-
tems)

• Hierarchical relationships: Concepts at different abstraction levels

• Conditional relationships: Context-dependent oppositions (e.g., high/low temperature)

Each relationship is formally defined as:

R = (t1, t2, type, context,weight)

where t1 and t2 are concept terms, type ∈ {opposite, complementary, hierarchical, conditional},
context defines the applicable domain, and weight ∈ [0, 1] represents the relationship strength.

B.4.2 CONTEXT-AWARE CONFLICT DETECTION

We implement context extraction using domain-specific keyword patterns across eight materials
science contexts: doping, synthesis, structure, electrical, mechanical, thermal, optical, and magnetic
properties. For texts Tquery and Tnode, we:

1. Extract relevant contexts: Cquery = extractcontext(T ∗ query), Cnode = extractcontext(T ∗
node)

2. Identify shared contexts: Cshared = Cquery ∩ Cnode

3. Detect semantic conflicts within shared contexts using the relationship database

4. Calculate conflict strength based on relationship weights and context overlap

B.4.3 FACTUAL CONSISTENCY SCORING

The factual consistency score F (Tquery, Tnode) is computed as:

F (Tquery, Tnode) = max(0, 1−
∑

(wi × si))

where wi is the weight of detected relationship conflict i, and si is the context-adjusted conflict
strength. Opposite relationships in shared contexts receive full penalty, while conditional relation-
ships receive reduced penalties (0.5×).

B.4.4 NUMERICAL PROPERTY COMPATIBILITY

We extract quantitative properties using regular expressions for common materials parameters (tem-
perature, bandgap, conductivity, pressure, concentration). Compatibility N(Pquery, Pnode) is calcu-
lated as:

N(Pquery, Pnode) =
∏

(1−min(0.5,
|pq − pn|

max(pq, pn)
× tolerance))

for each shared property p, where tolerance values are property-specific (e.g., 10% for temperature,
20% for bandgap).
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B.4.5 COMBINED SIMILARITY SCORE

The final enhanced similarity score Senhanced integrates three components:

Senhanced = α× cos sim × (1 + β × context overlap) + γ × F + δ ×N

where α = 0.4, γ = 0.35, δ = 0.25, β = 0.1, ensuring that factual consistency and numeri-
cal compatibility significantly influence the final ranking while preserving the benefits of semantic
similarity.

C USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we employed large language models (LLMs) exclusively for language
refinement, including improving grammar, clarity, and readability. LLMs were not used to generate,
modify, or validate any scientific ideas, methods, results, or conclusions. All substantive contribu-
tions—conceptual, methodological, and analytical—are the original work of the authors.
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