

WHEN KNOWLEDGE HURTS: ENRICHING DOMAIN KNOWLEDGE FOR CAUSAL SCIENTIFIC REASONING

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review
ABSTRACT

Science has long sought to uncover the principles governing discovery, leaving progress in fields like materials science slow and labor-intensive. While Large Language Models (LLMs) can accelerate progress by integrating domain knowledge, we reveal the existence of a critical failure mode known as *contextual tunneling*, wherein naive knowledge integration causes LLMs to over-anchor on narrow retrieval paths while suppressing broader parametric reasoning. Through the evaluation in materials discovery, we demonstrate that naive knowledge graph augmentation degrades performance by 20–35% on key reasoning tasks compared to direct prompting. To address this challenge, we introduce ARIA (Autonomous Reasoning Intelligence for Atomics), a causal-aware framework featuring: (i) hierarchical reasoning that provides graceful degradation to knowledge graph sparsity, (ii) enhanced analogic transfer for robust reasoning, (iii) knowledge graph enrichment through online searching. Extensive experiments show that, while naive KG integration consistently underperforms baseline LLMs, ARIA not only recovers this loss but also provides interpretable causal explanations by tracing reasoning through the knowledge graph, enabling scientists to verify and trust its outputs. Our work demonstrates that external knowledge can inadvertently constrain reasoning and establishes a principled framework for robust KG–LLM integration in scientific discovery.

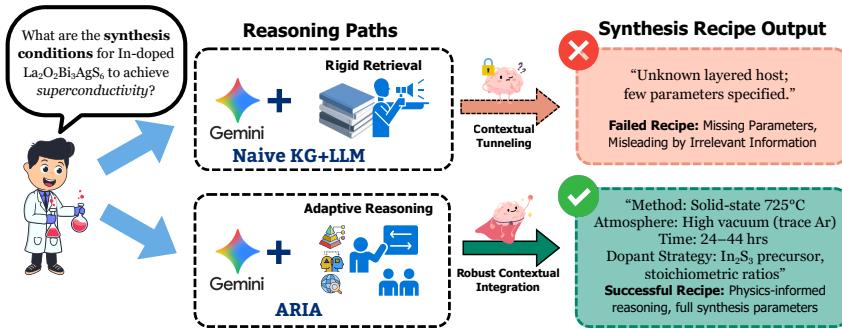


Figure 1: Naive LLM suffers from contextual tunneling issue (top) vs. our proposed ARIA with hierarchical reasoning (bottom). Our ARIA fundamentally overcomes the limitation of contextual tunneling and generate more accurate material parameters.

1 INTRODUCTION

While Large Language Models (LLMs) (Brown et al., 2020a) have demonstrated remarkable reasoning capabilities (Xu et al., 2025), their knowledge remains constrained by training data cutoffs and finite parametric capacity (Petroni et al., 2019; Brown et al., 2020b; Chowdhery et al.). These limitations often lead to factual inaccuracies and hallucinations (Li et al., 2024b), undermining their reliability for rigorous scientific inquiry. Retrieval-Augmented Generation (RAG) with Knowledge Graphs (KGs) has emerged as the standard solution, grounding LLMs in structured, domain-specific facts (Amayuelas et al., 2025; Liang et al., 2025; Edge et al., 2025). This approach has proven

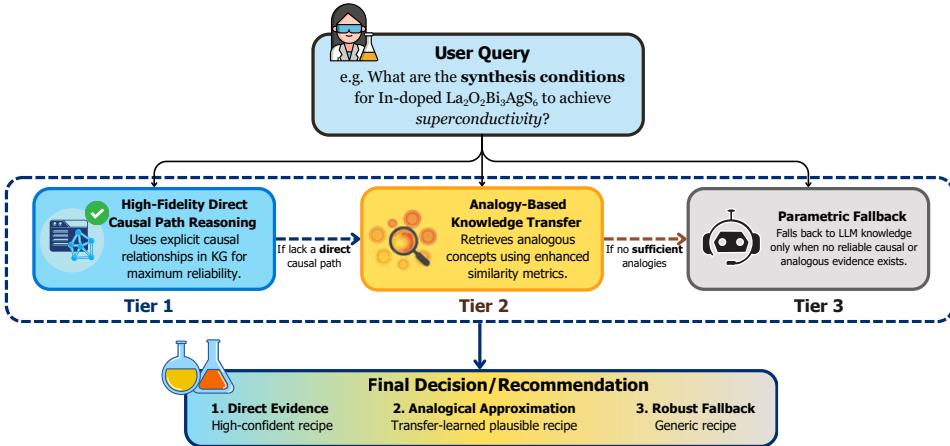


Figure 2: **Schematic of the ARIA Model Architecture.** The framework employs a three-tiered reasoning cascade. Tier 1 uses graph-constrained reasoning for queries with direct causal paths in the knowledge graph. If no such path exists, Tier 2 performs analogy-based reasoning by extrapolating from similar concepts. As a final step, Tier 3 provides a fallback mechanism, relying on the LLM’s parametric knowledge when no external evidence is applicable. This hierarchical approach ensures outputs are maximally grounded in evidence while retaining flexibility to address novel queries.

successful for fact-based tasks such as question answering across chemistry, biology and materials science (Zhang et al., 2022; Wang et al., 2024; Bazgir et al., 2025).

Yet, as LLMs become more and more knowledgeable, recent studies challenge the assumption that external augmentation invariably improves reasoning (Yoran et al., 2024; Mallen et al., 2023). Inappropriate or incomplete retrieval can undermine rather than strengthen model performance (Wang et al., 2023; Xie et al., 2024). While prior work has identified this issue in commonsense settings, the prevailing response in specialized domains has been to “add more knowledge” (Zhang et al., 2021). We argue for a stronger conclusion: in complex scientific reasoning, irrelevant or narrow external knowledge can critically degrade performance.

To investigate this, we conducted a systematic evaluation in materials discovery, a domain that requires multi-step causal reasoning¹ over processing–structure–property relationships (Butler et al., 2018; Schmidt et al., 2019).

Our results reveal that naive KG integration leads to severe performance drops (20–35% compared to direct prompting) on both forward prediction of material properties and inverse design of synthesis protocols (Kim et al., 2020; Na, 2023). We attribute this failure to a core mechanism we term *Contextual Tunneling*: LLMs over-anchor on narrowly retrieved knowledge paths while suppressing their broader, more flexible parametric knowledge, as Figure 1 shows. We coin this in analogy to “cognitive tunneling” from psychology, where under stress individuals attend too narrowly to a single display (e.g., a pilot fixating on a head-up screen) while neglecting equally critical peripheral cues (Thomas & Wickens, 2001; Jarmasz et al., 2005).

To address this fundamental challenge, we introduce ARIA (Autonomous Reasoning Intelligence for Atomics), a causally-aware framework that enables selective and effective knowledge utilization. Instead of blindly injecting retrieved text, ARIA mitigates contextual tunneling through three synergistic endeavors: (1) **Hierarchical reasoning**, which adapts a three-tiered reasoning cascade, enabling graceful degradation when specific causal paths are absent and preventing over-reliance on narrow retrieval; (2) **Transfer learning**, which leverages similarity-based analogy to adapt causal relations to novel contexts while preserving mechanistic fidelity; and (3) **Dynamic KG enrichment**, which augments the knowledge base with information retrieved via web search, followed by a post-

¹In this work, we define “causality” in the mechanistic sense established by the materials science Processing–Structure–Property (PSP) paradigm, where synthesis conditions physically determine resulting structure. This is distinct from statistical causal discovery approaches (e.g., PC algorithm) used in tabular data, as our Causal Knowledge Graph encodes verified physical mechanisms extracted from the literature.

108 hoc filtering stage to ensure high quality. We benchmark ARIA against the Baseline LLM, Naive
 109 KG+LLM, Online KG+LLM. Notably, naive KG integration degrades performance, In contrast,
 110 ARIA consistently rescues KG–LLM integration, achieving robust causal reasoning across tasks of
 111 varying difficulty.

112 Our key takeaway for practitioners is that *sometimes knowledge can hurt*: external knowledge may
 113 inadvertently constrain reasoning and reduce generalization. By diagnosing and addressing context-
 114 tual tunneling, ARIA establishes a principled framework for robust, generalizable KG–LLM inte-
 115 gration, advancing AI for scientific discovery and beyond.

117 2 RELATED WORK

120 **Knowledge-augmented generation** enhances LLMs with external knowledge to improve factual
 121 grounding (Lewis et al., 2020; Li et al., 2024a). This is especially required in rigorous science,
 122 medical, law and other domain specific reasoning scenarios (Zhang et al., 2022; Wang et al., 2024;
 123 Hou et al., 2025), where LLMs tend to hallucinate and make up misleading facts (Huang et al., 2025).
 124 Integrating causal knowledge graphs provides a more interpretable and reliable output by modeling
 125 underlying inference (Zhang et al., 2024; Samarajeewa et al., 2024). However, recent studies show
 126 that retrieving irrelevant information can create knowledge conflicts, preventing the model from
 127 utilizing its own parametric knowledge (Longpre et al., 2021; Xu et al., 2024). Related to our
 128 findings, GIVE (He et al., 2024) proposes a training-free reasoning framework that guides LLMs
 129 to merge parametric and non-parametric memories while mitigating noise in large or incomplete
 130 knowledge sources, highlighting a broader need to control retrieval-induced reasoning failures. Our
 131 work demonstrates that this failure mode extends to specialized scientific domains.

132 **The application of LLMs to materials science** has emerged as a promising avenue for accelerating
 133 discovery, with demonstrated capabilities in property prediction and synthesis planning (Zheng
 134 et al., 2023; D. White et al., 2023; Dagdelen et al., 2024). Early approaches primarily relied on
 135 fine-tuning domain-specific corpora to capture materials knowledge (Gupta et al., 2022; Jiang et al.,
 136 2025), while more recent work has explored prompt engineering and in-context learning for scientific
 137 reasoning (Jiang et al., 2025). Several systems have further integrated structured knowledge
 138 with LLMs. For example, MatChat (Chen et al., 2023) and AtomGPT (Choudhary, 2024) couples
 139 databases with conversational interfaces, ChemCrow demonstrates LLM-assisted synthesis planning
 (Bran et al., 2023).

140 Recent efforts have begun addressing these issues through causal reasoning (Zhang et al., 2024) and
 141 multi-modal integration (Samarajeewa et al., 2024). Yet, comprehensive frameworks that jointly
 142 enhance reasoning transparency, broaden contextual grounding, and enable transferable synthesis
 143 remain lacking. Our work advances this direction by introducing hierarchical reasoning, dyanamic
 144 KGs enrichment, and transferable synthesis for robust materials discovery.

145 3 METHOD

148 In this section, we introduce ARIA, a framework designed to enhance the reliability of scientific
 149 reasoning in LLMs. Our approach is motivated by a critical failure mode in retrieval-augmented sys-
 150 tems, where irrelevant context degrades performance. We term this problem **Contextual Tunneling**
 151 and provide a formal definition in subsection 3.1. Next, in subsection 3.2, we detail the automated
 152 pipeline for constructing the Causal Knowledge Graph that serves as the evidentiary backbone for
 153 our system. With this foundation, we present the core architecture of ARIA in subsection 3.3: a
 154 principled, three-tiered reasoning engine that intelligently navigates between graph-based evidence,
 155 analogical inference, and the LLM’s parametric knowledge. Finally, we ground our method in sub-
 156 section 3.4 by formalizing the high-impact materials design tasks used to validate our approach.

157 3.1 CONTEXTUAL TUNNELING

160 Standard RAG pipelines enhance a large language model f_{LLM} by conditioning its output y on
 161 both a query q and a set of retrieved documents $\mathcal{C}_{\text{retrieved}}$. The objective is typically to maximize
 162 the conditional probability $p(y|q, \mathcal{C}_{\text{retrieved}})$. However, we identify a critical failure mode we term

162 *Contextual Tunneling*, where the model’s performance degrades because it is forced to reason over
 163 an irrelevant, incomplete, or misleading context.

164 Formally, we define Contextual Tunneling as the phenomenon where the introduction of retrieved
 165 context \mathcal{C} increases the divergence between the model’s reasoning path and the optimal reasoning
 166 path. This can be quantified as a degradation in the Kullback-Leibler (KL) divergence:

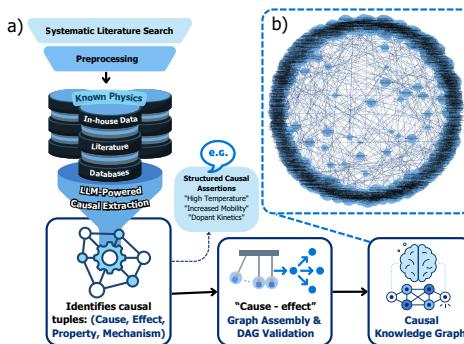
$$D_{KL}(P(\mathbf{y}|\mathbf{q})||P(\mathbf{y}|\mathbf{q}, \mathcal{C}_{\text{narrow}})) > \epsilon \quad (1)$$

169 where the retrieved context $\mathcal{C}_{\text{narrow}}$ causes the attention mechanism to over-anchor on high-similarity
 170 but functionally irrelevant tokens, suppressing the activation of broader parametric knowledge.

171 This occurs when the retrieved context, $\mathcal{C}_{\text{narrow}}$ forces the model to anchor on a irrelevant reasoning
 172 path, resulting in a lower-quality output than relying on its parametric knowledge alone (Yu et al.,
 173 2024; Liu et al., 2024). We formalize this degradation as follows:

$$\mathbb{E}[\text{Quality}(f_{\text{LLM}}(\mathbf{q}, \mathcal{C}_{\text{narrow}}))] \leq \mathbb{E}[\text{Quality}(f_{\text{LLM}}(\mathbf{q}))], \quad (2)$$

176 where $\text{Quality}(\cdot)$ is any task-specific evaluation metric. Our work introduces a framework designed
 177 to explicitly prevent this negative contribution, ensuring that external knowledge serves as a reliable
 178 enhancement.



191 **Figure 3: Overview of the automated knowledge graph construction pipeline and its applica-
 192 tion to materials design.** (a) Workflow for constructing KGs from scientific literature. (b) Visual-
 193 ization of the resulting knowledge graph structure.

196 3.2 CAUSAL KNOWLEDGE GRAPH CONSTRUCTION

198 To ground ARIA’s reasoning in verifiable domain knowledge, we construct a Causal Knowledge
 199 Graph by developing an automated pipeline that ingests a large corpus of scientific literature. This
 200 process, illustrated in Figure 3 (a), ensures the knowledge base is structured, attributable and scal-
 201 able. Our pipeline comprises four stages: (1) Corpus acquisition and preprocessing, (2) LLM-
 202 Powered information extraction, (3) Dynamic knowledge enrichment, and (4) Final graph assembly.

203 The pipeline begins with a systematic scientific literature search, followed by domain-specific parsing
 204 and data cleaning. During preprocessing, we normalize scientific units (e.g., converting all
 205 temperatures to Kelvin and energies to electronvolts) and apply consistency checks such as valency-
 206 and stoichiometry-based filtering to eliminate chemically impossible or physically incoherent state-
 207 ments. For information extraction, we employ an LLM that is constrained by a predefined ontology
 208 governing allowed entity types, relation types, and numeric attributes. The model is required to
 209 output JSON objects that strictly follow this schema, ensuring structured and machine-verifiable
 210 extraction. Each resulting tuple $\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_n$ encodes a (cause, effect, relationship
 211 type, supporting text) record.

212 To address the sparsity inherent in domain-specific knowledge graphs, we introduce a dynamic en-
 213 richment step (Rezayi et al., 2021). Here, the LLM is augmented with a web search tool to identify
 214 missing links, obtain parameter ranges, or retrieve corroborating evidence. All retrieved candi-
 215 dates are subjected to post-hoc validation—ensuring numeric coherence, removing contradictory
 relations, and verifying that evidence snippets directly support the extracted causal claim.

216 After enrichment, a quality-control filter prunes incomplete, underspecified, or weakly supported re-
 217 lations. The remaining tuples are compiled into a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, shown in [Figure 3\(b\)](#).
 218 Each unique cause or effect entity becomes a node in \mathcal{V} , and each tuple \mathcal{T}_i generates a directed
 219 edge from the cause to the effect. Edge attributes store the relationship type, numerical meta-
 220 data, and supporting evidence text, providing the rich contextual grounding that ARIA later exploits
 221 for mechanistic interpretation and provenance-aware reasoning ([Liang et al., 2025](#); [Bai et al., 2025](#)).
 222

223 3.3 ARIA: AUTONOMOUS REASONING INTELLIGENCE FOR ATOMICS

225 As illustrated in [Figure 2](#), the ARIA framework is designed to mitigate contextual tunneling by
 226 structuring the interaction between an LLM and a Causal Knowledge Graph through a principled,
 227 three-tiered reasoning cascade. This architecture emulates a rigorous scientific reasoning process:
 228 it prioritizes high-fidelity, direct evidence first, then resorts to principled analogical reasoning for
 229 novel problems, and finally relies on the LLM’s general parametric knowledge only as a last resort

230 **Tier 1: high-fidelity direct causal path reasoning.** For queries where the core entities are well-
 231 represented in our causal knowledge graph, ARIA employs a graph-constrained reasoning approach.
 232 This tier prioritizes verifiable, explicit causal links to ensure the highest reliability. It first grounds
 233 the query’s concepts onto the causal graph, then traverses its structure to elicit all verifiable causal
 234 pathways connecting them. ([Jin et al., 2024](#)) This extracted evidence then serves as a symbolic
 235 scaffold that directly constrains the LLM’s generation ([DeLong et al., 2025](#)), producing a high-
 236 fidelity output that faithfully reflects the corpus.

237 **Tier 2: analogy-based knowledge transfer.** If a direct causal path is unavailable, often the case
 238 for novel or out-of-distribution query, ARIA switches to the second tier: analogy-based approach.

239 This approach retrieves a set of the most relevant analogous concepts, denoted $\mathcal{V}_{\text{analogous}}$, from the
 240 knowledge graph. The retrieval is a two-stage process. First, we identify a set of all plausible
 241 candidates, $\mathcal{V}_{\text{plausible}}$, by filtering for nodes whose similarity score exceeds a predefined threshold τ :

$$243 \quad \mathcal{V}_{\text{plausible}} = v \in \mathcal{V} \mid \text{Sim}_{\text{enhanced}}(\mathbf{q}, v) \geq \tau. \quad (3)$$

244 From this set, we select the final top-K nodes with the highest similarity scores to form our context:

$$246 \quad \mathcal{V}_{\text{analogous}} = \underset{v \in \mathcal{V}_{\text{plausible}}}{\text{Top-K}} (\text{Sim}_{\text{enhanced}}(\mathbf{q}, v)). \quad (4)$$

248 To ensure analogies remain physically meaningful in scientific domains—where surface-level se-
 249 mantic similarity is insufficient—we augment the similarity function to incorporate factual and nu-
 250 mercial plausibility:

$$252 \quad \text{Sim}_{\text{enhanced}}(\mathbf{q}, v) = w_1 \cdot \cos(\mathbf{h}_{\mathbf{q}}, \mathbf{h}_v) + w_2 \cdot \text{FC}(\mathbf{q}, v) + w_3 \cdot \text{NC}(\mathbf{q}, v). \quad (5)$$

253 **Factual Consistency (FC).** We formalize FC as a binary categorical mask that enforces ontology-
 254 level compatibility:

$$255 \quad \text{FC}(\mathbf{q}, v) = \mathbb{1}_{\text{cat}}(\mathbf{q}, v), \quad (6)$$

256 where $\mathbb{1}_{\text{cat}}(\mathbf{q}, v) = 1$ if the query and candidate belong to the same material category (e.g., both
 257 p-type semiconductors, both chalcogenides), and 0 otherwise. This prevents analogies that are se-
 258 mantically plausible but categorically contradictory.

260 **Numerical Compatibility (NC).** To quantify physical compatibility of continuous parameters (e.g.,
 261 temperature, energy, pressure), we compute:

$$262 \quad \text{NC}(\mathbf{q}, v) = \exp \left(-\frac{\|x_q - \mu_v\|^2}{2\sigma^2} \right), \quad (7)$$

264 where x_q is the query’s numerical attribute (such as required annealing temperature), μ_v is the
 265 candidate node’s valid-range mean, and σ controls the sensitivity to deviations. This penalizes
 266 nodes that may be semantically similar but violate physical constraints (e.g., incompatible melting
 267 points or stability windows).

269 The causal pathways associated with the nodes in $\mathcal{V}_{\text{analogous}}$ are then aggregated and used as templates
 270 to construct a hypothesis for the original query.

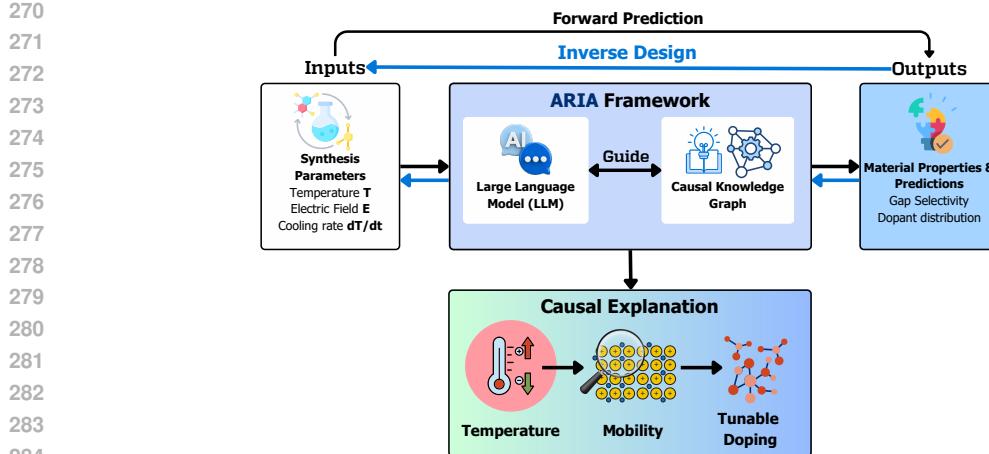


Figure 4: **Schematic of the ARIA framework for bidirectional reasoning in materials discovery.** The framework predicts material properties from synthesis parameters in forward tasks, while enabling inverse design by generating synthesis protocols from target properties.

Tier 3: Parametric fallback. If the Causal Knowledge Graph contains no direct path and no sufficiently analogous concepts (i.e., the highest $\text{Sim}_{\text{enhanced}}$ score is below a predefined threshold τ), ARIA defaults to its third tier. In this mode, it forgoes the external knowledge and prompts the LLM directly, relying solely on the model’s parametric knowledge. This prevents contextual tunneling by avoiding the use of low-quality or irrelevant retrieved information.

Tier selection. ARIA’s final output is generated by a cascading selection mechanism based on the availability of evidence in the Causal Knowledge Graph \mathcal{G} . The framework evaluates the tiers sequentially: it first attempts to find direct causal evidence (Tier 1). If no direct path exists, it then searches for sufficiently similar analogous evidences (Tier 2). If neither form of evidence is found, the system defaults to using its internal parametric knowledge (Tier 3).

This selection logic for a given query q is formalized as follows:

$$\text{ARIA} = \begin{cases} f_{\text{direct}}(q, \mathcal{P}_{\text{direct}}) & \text{if exact path exists in graph } \mathcal{G} \\ f_{\text{transfer}}(q, \mathcal{P}_{\text{analogue}}) & \text{if } \mathcal{P}_{\text{direct}} = \emptyset \text{ and } \text{Sim}_{\text{enhanced}}(q, v^*) \geq \tau \\ f_{\text{parametric}}(q) & \text{Otherwise,} \end{cases} \quad (8)$$

where $\mathcal{P}_{\text{direct}}$ is the set of direct causal paths retrieved for Tier 1 and $\mathcal{P}_{\text{analogue}}$ is the set of causal paths constructed from analogous nodes. f_{direct} , f_{analogy} and $f_{\text{parametric}}$ are generation functions for each respective tier. This architecture grounds outputs in evidence when possible, while retaining the flexibility to reason about novel challenges in a controlled and transparent manner.

3.4 MATERIALS DESIGN TASKS

The ARIA framework is designed to solve complex causal reasoning problems, which we formalize here using a high-impact application: the central challenges of materials discovery. This domain is governed by the foundational processing-structure-property (PSP) paradigm of materials science (Butler et al., 2018; Schmidt et al., 2019). As illustrate in Figure 4, this paradigm posits that the manufacturing **process** (\mathcal{S}) causally determines a material’s internal **structure** (\mathcal{M}), which in turn dictates its functional **properties** (\mathcal{P}). Our tasks are to reason across this complex, multi-scale causal chain.

Forward prediction: from process to properties. The forward problem mirrors the task of predicting the outcome of a novel experiment. Given a set of synthesis conditions \mathcal{S} (e.g., precursor chemicals, temperature, pressure), the goal is to predict the final material properties \mathcal{P} (e.g., conductivity, bandgap, stability). This is a cascaded function where synthesis determines structure, and

324 structure determines properties:

$$\hat{\mathcal{P}} = f(\mathcal{S}) = g(h(\mathcal{S})) \quad (9)$$

327 Here, $h : \mathcal{S} \rightarrow \mathcal{M}$ maps synthesis to structure (e.g., crystal phase, grain size), and $g : \mathcal{M} \rightarrow \mathcal{P}$
 328 maps that structure to its resulting properties.

330 **Inverse design: from properties to process.** The inverse problem represents the "holy grail" of
 331 materials discovery: given a set of target properties \mathcal{P}^* , the goal is to identify an optimal set of
 332 processing conditions \mathcal{S}^* to synthesize the desired material. This is a far more challenging task, as
 333 it requires searching a vast and highly constrained space of possible synthesis recipes Ω :

$$\mathcal{S}^* = \arg \min_{\mathcal{S} \in \Omega} \|\mathcal{P}^* - f(\mathcal{S})\|^2 + \lambda R(\mathcal{S}). \quad (10)$$

337 The regularization term $R(\mathcal{S})$ is crucial as it constrains the search to physically realizable and ex-
 338 perimentally viable synthesis protocols, avoiding impossible or impractical solutions. For example,
 339 a typical task is to find the precise chemical vapor deposition (CVD) conditions required to grow a
 340 2D material with a target electronic bandgap.

342 4 EXPERIMENTS

344 4.1 EXPERIMENTAL SETUP

346 **Datasets and knowledge graph.** We constructed a dataset with knowledge graph for our materials
 347 design evaluation from peer-reviewed literature. Using the method from [subsection 3.2](#), the knowl-
 348 edge graph comprises 149 synthesis-property relationships across 85 distinct materials systems (e.g.,
 349 semiconductors, superconductors, 2D materials). The dataset is partitioned into an **in-domain** set
 350 of 117 experiments and a challenging **out-of-domain** set designed to test generalization on novel
 351 materials. Each entry contains expert-validated ground truth for synthesis conditions, structural
 352 changes, and property outcomes, enriched with mechanistic explanations. This design enables a rig-
 353 orous evaluation of both in-distribution performance and the model's ability to generalize its causal
 354 reasoning, mirroring real-world scientific discovery challenges.

355 **Baselines.** We evaluate **ARIA** against a diverse set of baselines to ensure a comprehensive com-
 356 parison. These baselines are: 1) **Baseline LLM**: The base *gemini-1.5-pro-latest* model without any
 357 external knowledge augmentation, relies solely on its pre-trained knowledge, isolating the impact
 358 of any retrieval-based method. 2) **Naive KG+LLM**: A conventional RAG implementation that re-
 359 trievals context from our Causal Knowledge Graph via cosine similarity, but lacks **ARIA**'s tiered
 360 reasoning and fallback mechanisms. 3) **Online KG+LLM**: A RAG baseline that utilizes a live on-
 361 line search tool in addition to the curated knowledge graph, grounding its responses with dynamic,
 362 real-time information.

364 **Evaluation framework.** To ensure scientific validity, we employ *gemini-1.5-pro-latest* as an ex-
 365 pert LLM judge to evaluate both the final prediction and its supporting explanation ([Team et al.,](#)
 366 [2024](#)). Following a detailed rubric, each model output is scored from 0-10 across a multi-
 367 dimensional set of criteria. This multi-dimensional evaluation assesses correctness via **scientific**
 368 **accuracy** (adherence to physical principles) and **functional equivalence** (achieving the target out-
 369 come), as well as the explanation's quality through its **reasoning quality** (logical coherence), **com-**
 370 **pleteness** and **interpretability**. A final **overall score** provides a holistic assessment of practical
 371 utility. This LLM-judge approach is essential for capturing the domain-specific nuance required to
 372 evaluate complex scientific reasoning, a known limitation of traditional automated metrics.

373 **Implementation details.** All experiments are conducted using *gemini-1.5-pro-latest* as the base
 374 large language model. For all retrieval and similarity-based reasoning tasks, we generate embed-
 375 dings using the *all-MiniLM-L6-v2* model. A cosine similarity threshold of 0.6 is used for node
 376 retrieval in our Causal Knowledge Graph. Complete details on our prompt engineering strategies
 377 and evaluation rubrics are provided in [Appendix A](#).

378 4.2 EMPIRICAL VALIDATION OF CONTEXTUAL TUNNELING: CASE STUDY
379

380 We evaluate the framework on a challenging inverse design task that reveals contextual tunneling
381 in naive KG-LLM approaches. In our case study (see subsection B.2 and Figure 1), the naive
382 model became fixated on irrelevant analogies and produced vague “intercalation or alloying” rec-
383 commendations without any concrete synthesis parameters (Table 3). In contrast, ARIA maintains
384 broad contextual reasoning, providing detailed protocols including specific temperature ranges (800-
385 1200°C), controlled atmospheres, and systematic characterization steps. This demonstrates how
386 causally-grounded frameworks prevent tunnel vision by preserving reasoning capabilities across
387 material properties and synthesis requirements, with detailed analysis in the subsection B.1 and
388 subsection B.2.

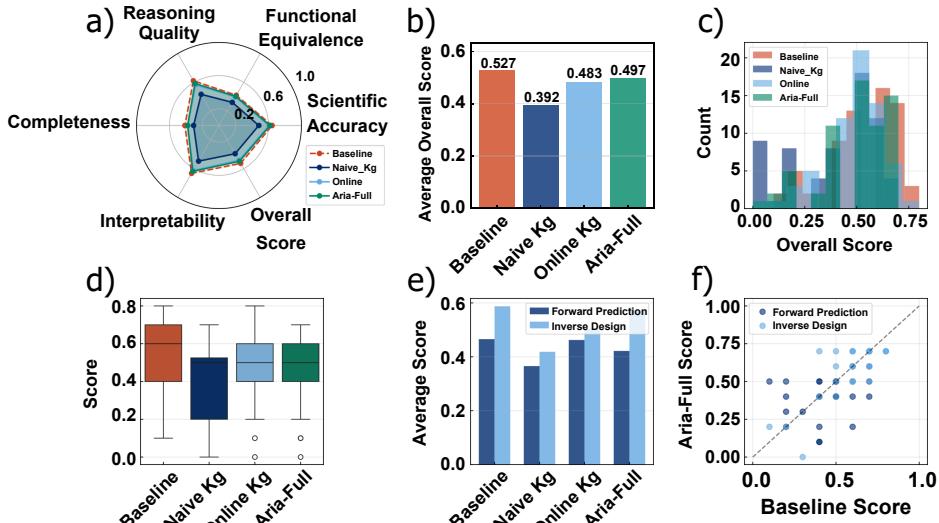
389 **Table 1: In-domain vs. out-of-domain performance analysis.** We evaluate four systems on in-
390 domain data (materials/protocols covered in KG) and out-of-domain data (novel materials/protocols
391 not in KG). ARIA demonstrates superior generalization across both forward prediction and inverse
392 design tasks, rescuing performance degradation from naive KG integration.

394 System	395 Domain	396 Scientific 397 Accuracy	398 Functional 399 Equivalence	400 Reasoning 401 Quality	402 Completeness	403 Interpretability	404 Overall
Forward Prediction							
397 Baseline LLM	398 In-Domain	399 0.68	400 0.42	401 0.66	402 0.33	403 0.68	404 0.52
397 Baseline LLM	398 Out-of-Domain	399 0.65	400 0.38	401 0.61	402 0.29	403 0.62	404 0.47
398 <i>Domain Gap</i>		399 -5.4%	400 -11.0%	401 -7.5%	402 -10.5%	403 -8.7%	404 -10.0%
399 Naive KG+LLM	400 In-Domain	401 0.48	402 0.29	403 0.42	404 0.20	405 0.46	406 0.34
400 Naive KG+LLM	401 Out-of-Domain	402 0.49	403 0.29	404 0.45	405 0.22	406 0.50	407 0.37
401 <i>Domain Gap</i>		402 +1.2%	403 +1.5%	404 +8.2%	405 +9.2%	406 +7.5%	407 +6.4%
402 Online KG+LLM	403 In-Domain	404 0.62	405 0.35	406 0.57	407 0.25	408 0.61	409 0.43
403 Online KG+LLM	404 Out-of-Domain	405 0.64	406 0.38	407 0.62	408 0.27	409 0.65	410 0.46
403 <i>Domain Gap</i>		404 +3.8%	405 +6.6%	406 +7.7%	407 +8.2%	408 +6.5%	409 +6.5%
404 ARIA	405 In-Domain	406 0.62	407 0.36	408 0.58	409 0.25	410 0.61	411 0.44
405 ARIA	406 Out-of-Domain	407 0.61	408 0.33	409 0.57	410 0.23	411 0.60	412 0.42
406 <i>Domain Gap</i>		407 -1.9%	408 -6.6%	409 -0.7%	410 -8.0%	411 -1.0%	412 -4.2%
Performance Comparison							
408 Naive KG+LLM vs Baseline		409 -24.2%	410 -22.5%	411 -25.3%	412 -26.6%	413 -20.0%	414 -21.5%
408 Online KG+LLM vs Baseline		409 -1.0%	410 +0.8%	411 +2.1%	412 -7.4%	413 +4.0%	414 -0.7%
409 ARIA vs Baseline		410 -6.3%	411 -10.8%	412 -5.7%	413 -21.3%	414 -3.5%	415 -9.4%
410 ARIA vs Naive KG		411 +23.6%	412 +15.1%	413 +26.2%	414 +7.2%	415 +20.6%	416 +15.4%
Inverse Design							
412 Baseline LLM	413 In-Domain	414 0.62	415 0.48	416 0.60	417 0.50	418 0.66	419 0.56
413 Baseline LLM	414 Out-of-Domain	415 0.64	416 0.47	417 0.64	418 0.53	419 0.71	420 0.59
413 <i>Domain Gap</i>		414 +3.8%	415 -3.2%	416 +7.0%	417 +6.7%	418 +6.9%	419 +4.0%
414 Naive KG+LLM	415 In-Domain	416 0.46	417 0.37	418 0.39	419 0.40	420 0.46	421 0.41
415 Naive KG+LLM	416 Out-of-Domain	417 0.47	418 0.35	419 0.41	420 0.40	421 0.49	422 0.42
416 <i>Domain Gap</i>		417 +2.7%	418 -3.5%	419 +6.1%	420 +0.2%	421 +5.5%	422 +1.6%
417 Online KG+LLM	418 In-Domain	419 0.61	420 0.48	421 0.56	422 0.50	423 0.63	424 0.54
418 Online KG+LLM	419 Out-of-Domain	420 0.57	421 0.42	422 0.50	423 0.49	424 0.59	425 0.50
418 <i>Domain Gap</i>		419 -6.0%	420 -12.7%	421 -9.7%	422 -2.5%	423 -5.1%	424 -6.4%
420 ARIA	421 In-Domain	422 0.58	423 0.44	424 0.55	425 0.47	426 0.63	427 0.52
421 ARIA	422 Out-of-Domain	423 0.63	424 0.47	425 0.59	426 0.53	427 0.67	428 0.57
421 <i>Domain Gap</i>		422 +9.6%	423 +8.1%	424 +8.4%	425 +11.3%	426 +6.8%	427 +9.7%
Performance Comparison							
423 Naive KG+LLM vs Baseline		424 -25.9%	425 -24.2%	426 -35.3%	427 -25.1%	428 -30.5%	429 -28.7%
423 Online KG+LLM vs Baseline		424 -11.2%	425 -10.7%	426 -21.1%	427 -8.2%	428 -15.9%	429 -14.4%
424 ARIA vs Baseline		425 -1.5%	426 +2.0%	427 -6.9%	428 -1.2%	429 -4.9%	430 -2.7%
425 ARIA vs Naive KG		426 +32.9%	427 +34.5%	428 +43.9%	429 +32.0%	430 +36.9%	431 +36.6%

428 4.3 MAIN RESULTS
429

430 We evaluate four systems, Baseline LLM, Naive KG+LLM, Online KG+LLM and ARIA across in-
431 domain and out-of-domain datasets, to assess how knowledge graph integration affects reasoning.
Table 1 and Figure 5 show the performance across six metrics for two material discovery tasks:

432 forward prediction and inverse design. Overall, we observe that ARIA presents to be a powerful
 433 method against contextual tunneling. We discuss particular observations below:
 434



454 **Figure 5: Comprehensive evaluation framework comparing baseline LLM, KG-LLM, Online-
 455 LLM and ARIA performance on materials science tasks using LLM-based scoring.** (a) Multi-
 456 dimensional performance profile showing radar plot comparison of average scores across six eval-
 457 uation criteria. (b) Overall model performance comparison showing average overall scores across all
 458 tasks and datasets. (c) Distribution of performance improvements relative to baseline across forward
 459 prediction and inverse design tasks. (d) Box plot comparison of overall score distributions across
 460 all three models, showing median, quartiles, and outliers. (e) Performance breakdown by task type
 461 (forward prediction vs. inverse design) for all models, illustrating task-specific strengths and weak-
 462 nesses. (f) Head-to-head scatter plot comparison between the best-performing structured model and
 463 baseline, with each point representing one test case. Points below the diagonal line indicate baseline
 464 superiority.

465 **Naive knowledge integration triggers contextual tunneling.** While the case study in subsec-
 466 tion 4.2 provides an empirical view of contextual tunneling, our experiments demonstrate that this is
 467 not an isolated example but a systematic issue. We find that naively integrating the knowledge graph
 468 (Naive KG+LLM) is actively harmful. This approach consistently underperforms the parametric-
 469 only Baseline LLM, with overall performance degrading by over 28.7% in complex, out-of-domain
 470 inverse design tasks. Interestingly, Naive KG+LLM performs slightly less degradation in the out-
 471 of-domain than in-domain task. This indicates that naive integration or simple knowledge injection
 472 introduces noise and potentially over-conditioning during the generation, undermining analytical
 473 capability rather than facilitating knowledge transfer.

474 **The limits of online searching.** An analysis of the Online KG+LLM baseline reveals a critical
 475 insight: simply providing more, even real-time, information is not a universal solution. For the for-
 476 ward prediction task, the online search is highly effective, achieving performance nearly identical
 477 to the Baseline LLM (-0.7% overall). However, for the more complex inverse design task requir-
 478 ing multi-step causal reasoning, online searching causes a significant performance degradation of
 479 -14.4%. This asymmetry demonstrates a more subtle form of Contextual Tunneling: while web
 480 search can retrieve abundant factual evidence, it does not inherently enhance the model’s ability to
 481 synthesize a coherent, multi-step plan.

482 **ARIA demonstrates a powerful “rescue effect”.** ARIA successfully reverses the performance
 483 degradation caused by naive graph integration. This “rescue effect” is most pronounced in chal-
 484 lenging, out-of-domain scenarios, where ARIA improves upon the Naive KG+LLM method by a
 485 substantial 36.6% in inverse design tasks, restoring performance to near-baseline levels. While

486 also significant in forward prediction (up to 21.5% improvement), the amplified gains in the more
 487 complex inverse design setting underscore ARIA’s strength in multi-step reasoning. Furthermore,
 488 ARIA enhances domain generalization; for instance, it shrinks the performance gap on the out-
 489 of-domain forward prediction task from -10% (in the Baseline LLM) to just -4.2%, transforming
 490 external knowledge from a source of interference into a tangible asset for generalization.
 491

492 **ARIA enhances both reasoning quality and interpretability.** A metric-specific breakdown
 493 shows that ARIA’s largest gains occur in the structure and clarity of the generated reasoning. In
 494 the inverse design task, Reasoning Quality increases by nearly 44% relative to the naïve method,
 495 accompanied by a 37% improvement in interpretability. These advances indicate that ARIA not
 496 only improves correctness but also produces more logically coherent and human-readable expla-
 497 nations—an essential attribute in scientific reasoning, where explanatory rigor is as important as
 498 predictive accuracy.
 499

500 **The trade-off between accuracy and provenance.** While the Baseline LLM achieves high nu-
 501 mercial scores, it functions as a black box: its answers lack citations, verifiable grounding, and
 502 explicit evidence trails. In scientific discovery, such provenance is essential. Naive RAG introduces
 503 provenance but often sacrifices accuracy due to contextual tunneling. ARIA resolves this tension by
 504 offering a “glass box” alternative—recovering the strong performance of the Baseline LLM while
 505 grounding each reasoning step in the Causal Knowledge Graph. This achieves the dual goals of high
 506 predictive accuracy and scientifically interpretable, fully traceable reasoning.
 507

5 LIMITATIONS AND FUTURE WORKS

509 **Task complexity considerations.** Our evaluation does not distinguish simple tasks solvable with
 510 parametric knowledge from complex ones requiring deeper causal reasoning. Future work should
 511 stratify tasks to better expose when contextual tunneling arises.

512 **Evaluation framework limitations.** Using an LLM judge risks bias toward fluent but less structured
 513 outputs, potentially obscuring ARIA’s strengths in verifiability. Expert or human-in-the-loop review
 514 could offer more faithful evaluation.

515 **Towards more reliable, transparent and autonomous scientific reasoning.** Grounding on narrow
 516 knowledge bases limits discovery. Progress demands agentic frameworks that synthesize evidence
 517 across diverse, multimodal sources—moving beyond RAG toward autonomous scientific reasoning.
 518

6 CONCLUSION

522 In this work, we identified *Contextual Tunneling*, a critical failure mode where naive knowledge aug-
 523mentation degrades an LLM’s scientific reasoning. We introduce ARIA, a framework that mitigates
 524 this issue with a tiered reasoning cascade for selective knowledge integration. Experiments in mate-
 525 rials science discovery confirm ARIA recovers the performance loss from naive RAG, demon-
 526 strating that the method of integration is as critical as the knowledge itself. Ultimately, ARIA provides a
 527 principled approach for robust and interpretable KG-LLM integration, advancing the development
 528 of reliable AI for scientific discovery.
 529

530 REFERENCES

531 Alfonso Amayuelas, Joy Sain, Simerjot Kaur, and Charese Smiley. Grounding llm reasoning with
 532 knowledge graphs, 2025. URL <https://arxiv.org/abs/2502.13247>.

533 Xuefeng Bai, Song He, Yi Li, Yabo Xie, Xin Zhang, Wenli Du, and Jian-Rong Li. Construction of
 534 a knowledge graph for framework material enabled by large language models and its application.
 535 *npj Computational Mathematics*, 11(1):51, February 2025. doi: 10.1038/s41524-025-01540-6.

537 Adib Bazgir, Rama chandra Praneeth Madugula, and Yuwen Zhang. Proteinhypothesis: A physics-
 538 aware chain of multi-agent RAG LLM for hypothesis generation in protein science. In *Towards
 539 Agentic AI for Science: Hypothesis Generation, Comprehension, Quantification, and Validation*,
 2025. URL <https://openreview.net/forum?id=5XQlbNIhAW>.

540 Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D. White, and Philippe
 541 Schwaller. ChemCrow: Augmenting large-language models with chemistry tools, October 2023.
 542 URL <http://arxiv.org/abs/2304.05376>. arXiv:2304.05376 [physics].
 543

544 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
 545 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
 546 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
 547 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
 548 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
 549 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
 550 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
 551 ral Information Processing Systems*, volume 33, pp. 1877–1901. Curran Associates, Inc.,
 552 2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfc4967418bfb8ac142f64a-Paper.pdf.
 553

554 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
 555 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
 556 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel
 557 Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
 558 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
 559 Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. In *Advances in
 560 Neural Information Processing Systems*, volume 33, pp. 1877–1901. Curran Associates, Inc.,
 561 2020b. URL https://proceedings.neurips.cc/paper_files/paper/2020/hash/1457c0d6bfc4967418bfb8ac142f64a-Abstract.html.
 562

563 Keith T. Butler, Daniel W. Davies, Hugh Cartwright, Olexandr Isayev, and Aron Walsh. Machine
 564 learning for molecular and materials science. *Nature*, 559(7715):547–555, July 2018. ISSN 1476-
 565 4687. doi: 10.1038/s41586-018-0337-2. URL <https://www.nature.com/articles/s41586-018-0337-2>. Publisher: Nature Publishing Group.
 566

567 Yitong Chen, Rui Wang, Dingwei Li, Qi Huang, Yingjie Tang, Huihui Ren, Yan Wang,
 568 Guolei Liu, Fanfan Li, Hong Wang, and Bowen Zhu. Optoelectronic Reservoir Com-
 569 puting Based on 2D P-Type Nb-Doped MoS₂ Field-Effect Transistor. *Small*, n/a
 570 (n/a):2503836. ISSN 1613-6829. doi: 10.1002/smll.202503836. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202503836>. eprint:
 571 <https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.202503836>.
 572

573 Zi-Yi Chen, Fan-Kai Xie, Meng Wan, Yang Yuan, Miao Liu, Zong-Guo Wang, Sheng Meng, and
 574 Yan-Gang Wang. MatChat: A large language model and application service platform for mate-
 575 rials science. *Chinese Physics B*, 32(11):118104, November 2023. ISSN 1674-1056. doi: 10.
 576 1088/1674-1056/ad04cb. URL <https://dx.doi.org/10.1088/1674-1056/ad04cb>.
 577 Publisher: Chinese Physical Society and IOP Publishing Ltd.

578 Kamal Choudhary. AtomGPT: Atomistic Generative Pretrained Transformer for Forward and In-
 579 verse Materials Design. *The Journal of Physical Chemistry Letters*, 15(27):6909–6917, July 2024.
 580 doi: 10.1021/acs.jpclett.4c01126. URL <https://doi.org/10.1021/acs.jpclett.4c01126>. Publisher: American Chemical Society.
 581

582 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
 583 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
 584 Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
 585 Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
 586 Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
 587 skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
 588 Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
 589 Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
 590 Andrew M Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
 591 Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou Xuezhi Wang, Bren-
 592 nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
 593 Eck, Jeff Dean, Slav Petrov, Noah Fiedel, and Ruslan Salakhutdinov. PaLM: Scaling Language
 Modeling with Pathways.

594 John Dagdelen, Alexander Dunn, Sanghoon Lee, Nicholas Walker, Andrew S. Rosen, Gerbrand
 595 Ceder, Kristin A. Persson, and Anubhav Jain. Structured information extraction from scientific
 596 text with large language models. *Nature Communications*, 15(1):1418, February 2024.
 597 ISSN 2041-1723. doi: 10.1038/s41467-024-45563-x. URL <https://www.nature.com/articles/s41467-024-45563-x>. Publisher: Nature Publishing Group.

598
 599 Lauren Nicole DeLong, Ramon Fernández Mir, and Jacques D. Fleuriot. Neurosymbolic ai for reasoning over knowledge graphs: A survey. *IEEE Transactions on Neural Networks and Learning Systems*, 36(5):7822–7842, 2025. doi: 10.1109/TNNLS.2024.3420218.

600
 601 602 Andrew D. White, Glen M. Hocky, Heta A. Gandhi, Mehrad Ansari, Sam Cox, Geemi P. Wellawatte,
 603 Subarna Sasmal, Ziyue Yang, Kangxin Liu, Yuvraj Singh, and Willmor J. Peña Ccoa. Assessment
 604 of chemistry knowledge in large language models that generate code. April 2023. doi:
 605 10.1039/D2DD00087C. URL <https://pubs.rsc.org/en/content/articlehtml/2023/dd/d2dd00087c>. Publisher: Royal Society of Chemistry.

606
 607 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
 608 Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global:
 609 A graph rag approach to query-focused summarization, 2025. URL <https://arxiv.org/abs/2404.16130>.

610
 611 Tanishq Gupta, Mohd Zaki, N. M. Anoop Krishnan, and Mausam. MatSciBERT: A materials
 612 domain language model for text mining and information extraction. *npj Computational Materials*,
 613 8(1):102, May 2022. ISSN 2057-3960. doi: 10.1038/s41524-022-00784-w. URL
 614 <https://www.nature.com/articles/s41524-022-00784-w>.

615
 616 Jiashu He, Mingyu Derek Ma, Jinxuan Fan, Dan Roth, Wei Wang, and Alejandro Ribeiro. Give:
 617 Structured reasoning of large language models with knowledge graph inspired veracity extrapolation. *arXiv preprint arXiv:2410.08475*, 2024.

618
 619 Abe Bohan Hou, Orion Weller, Guanghui Qin, Eugene Yang, Dawn Lawrie, Nils Holzenberger,
 620 Andrew Blair-Stanek, and Benjamin Van Durme. CLERC: A dataset for U. S. legal case re-
 621 trieval and retrieval-augmented analysis generation. In Luis Chiruzzo, Alan Ritter, and Lu Wang
 622 (eds.), *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 7898–7913,
 623 Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-
 624 89176-195-7. doi: 10.18653/v1/2025.findings-naacl.441. URL <https://aclanthology.org/2025.findings-naacl.441/>.

625
 626 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 627 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
 628 language models: Principles, taxonomy, challenges, and open questions. *ACM Trans. Inf. Syst.*,
 629 43(2), January 2025. ISSN 1046-8188. doi: 10.1145/3703155. URL <https://doi.org/10.1145/3703155>.

630
 631 Jerzy Jarmasz, Chris M. Herdman, and Kamilla Run Johannsdottir. Object-Based Attention and
 632 Cognitive Tunneling. *Journal of Experimental Psychology: Applied*, 11(1):3–12, 2005. ISSN
 633 1939-2192. doi: 10.1037/1076-898X.11.1.3. Place: US Publisher: American Psychological
 634 Association.

635
 636 Xue Jiang, Weiren Wang, Shaohan Tian, Hao Wang, Turab Lookman, and Yanjing Su. Applications
 637 of natural language processing and large language models in materials discovery. *npj Computational Materials*, 11(1):79, March 2025. ISSN 2057-3960. doi: 10.1038/s41524-025-01554-0.
 638 URL <https://www.nature.com/articles/s41524-025-01554-0>. Publisher: Nature Publishing Group.

639
 640 Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng
 641 Tang, Suhang Wang, Yu Meng, and Jiawei Han. Graph chain-of-thought: Augmenting large lan-
 642 guage models by reasoning on graphs. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
 643 *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 163–184, Bangkok,
 644 Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 645 findings-acl.11. URL <https://aclanthology.org/2024.findings-acl.11/>.

648 Edward Kim, Zach Jensen, Alexander van Grootel, Kevin Huang, Matthew Staib, Sheshera Mysore,
 649 Haw-Shiuan Chang, Emma Strubell, Andrew McCallum, Stefanie Jegelka, and Elsa Olivetti.
 650 Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks. *Journal of*
 651 *Chemical Information and Modeling*, 60(3):1194–1201, March 2020. ISSN 1549-9596. doi:
 652 10.1021/acs.jcim.9b00995. URL <https://doi.org/10.1021/acs.jcim.9b00995>.
 653 Publisher: American Chemical Society.

654 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 655 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
 656 Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In *Proceedings of the*
 657 *34th International Conference on Neural Information Processing Systems*, NIPS ’20, Red Hook,
 658 NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

659 Jiarui Li, Ye Yuan, and Zehua Zhang. Enhancing llm factual accuracy with rag to counter hallu-
 660 cinations: A case study on domain-specific queries in private knowledge-bases. *arXiv preprint*
 661 *arXiv:2403.10446*, 2024a.

662 Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. The
 663 dawn after the dark: An empirical study on factuality hallucination in large language models. In
 664 Lun-Wei Ku, Andre Martins, and Vivek Srikanth (eds.), *Proceedings of the 62nd Annual Meeting*
 665 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 10879–10899,
 666 Bangkok, Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/
 667 v1/2024.acl-long.586. URL <https://aclanthology.org/2024.acl-long.586/>.

668 Lei Liang, Zhongpu Bo, Zhengke Gui, Zhongshu Zhu, Ling Zhong, Peilong Zhao, Mengshu Sun,
 669 Zhiqiang Zhang, Jun Zhou, Wenguang Chen, Wen Zhang, and Huajun Chen. Kag: Boosting
 670 llms in professional domains via knowledge augmented generation. In *Companion Proceedings*
 671 *of the ACM on Web Conference 2025*, WWW ’25, pp. 334–343, New York, NY, USA, 2025.
 672 Association for Computing Machinery. ISBN 9798400713316. doi: 10.1145/3701716.3715240.
 673 URL <https://doi.org/10.1145/3701716.3715240>.

674 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 675 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the*
 676 *Association for Computational Linguistics*, 12:157–173, 2024. doi: 10.1162/tacl_a_00638. URL
 677 <https://aclanthology.org/2024.tacl-1.9/>.

678 Shayne Longpre, Kartik Perisetla, Anthony Chen, Nikhil Ramesh, Chris DuBois, and Sameer
 679 Singh. Entity-based knowledge conflicts in question answering. In Marie-Francine Moens,
 680 Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Con-*
 681 *ference on Empirical Methods in Natural Language Processing*, pp. 7052–7063, Online and
 682 Punta Cana, Dominican Republic, November 2021. Association for Computational Linguis-
 683 tics. doi: 10.18653/v1/2021.emnlp-main.565. URL <https://aclanthology.org/2021.emnlp-main.565/>.

684 Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
 685 When not to trust language models: Investigating effectiveness of parametric and non-parametric
 686 memories. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of*
 687 *the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 688 *Papers)*, pp. 9802–9822, Toronto, Canada, July 2023. Association for Computational Linguis-
 689 tics. doi: 10.18653/v1/2023.acl-long.546. URL <https://aclanthology.org/2023.acl-long.546/>.

690 Gyo Young S. Na. Artificial Intelligence for Learning Material Synthesis Processes of Thermoelectric
 691 Materials. *Chemistry of Materials*, 35(19):8272–8280, October 2023. ISSN 0897-4756. doi:
 692 10.1021/acs.chemmater.3c01834. URL <https://doi.org/10.1021/acs.chemmater.3c01834>. Publisher: American Chemical Society.

693 Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
 694 Alexander Miller. Language models as knowledge bases? In Kentaro Inui, Jing Jiang, Vincent
 695 Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Nat-*
 696 *ural Language Processing and the 9th International Joint Conference on Natural Language Pro-*
 697 *cessing (EMNLP-IJCNLP)*, pp. 2463–2473, Hong Kong, China, November 2019. Association for

702 Computational Linguistics. doi: 10.18653/v1/D19-1250. URL <https://aclanthology.org/D19-1250/>.

703

704

705 Saed Rezayi, Handong Zhao, Sungchul Kim, Ryan Rossi, Nedim Lipka, and Sheng Li. Edge: En-
706 riching knowledge graph embeddings with external text. In Kristina Toutanova, Anna Rumshisky,
707 Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy
708 Chakraborty, and Yichao Zhou (eds.), *Proceedings of the 2021 Conference of the North Amer-
709 ican Chapter of the Association for Computational Linguistics: Human Language Technologies*,
710 pp. 2767–2776, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.naacl-main.221. URL <https://aclanthology.org/2021.naacl-main.221/>.

711

712 Chamod Samarajeewa, Daswin De Silva, Evgeny Osipov, Damminda Alahakoon, and Milos Manic.
713 Causal reasoning in large language models using causal graph retrieval augmented generation.
714 In *2024 16th International Conference on Human System Interaction (HSI)*, pp. 1–6, 2024. doi:
715 10.1109/HSI61632.2024.10613566.

716

717 Jonathan Schmidt, Mário R. G. Marques, Silvana Botti, and Miguel A. L. Marques. Recent ad-
718 vances and applications of machine learning in solid-state materials science. *npj Computational
719 Mathematics*, 5(1):83, December 2019. doi: 10.1038/s41524-019-0221-0.

720

721 Baokun Song, Honggang Gu, Mingsheng Fang, Zhengfeng Guo, Yen-Teng Ho, Xiuguo Chen, Hao
722 Jiang, and Shiyuan Liu. 2D Niobium-Doped MoS₂: Tuning the Exciton Transitions and Potential
723 Applications. *ACS Applied Electronic Materials*, 3(6):2564–2572, June 2021. doi: 10.1021/
724 acsaelm.1c00121. URL <https://doi.org/10.1021/acsaelm.1c00121>. Publisher:
725 American Chemical Society.

726

727 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
728 Damien Vincent, Zhufeng Pan, Shibo Wang, Soroosh Mariooryad, Yifan Ding, Xinyang Geng,
729 Fred Alcober, Roy Frostig, Mark Omernick, Lexi Walker, Cosmin Paduraru, Christina Sorokin,
730 Andrea Tacchetti, Colin Gaffney, Samira Daruki, Olcan Sercinoglu, Zach Gleicher, Juliette Love,
731 Paul Voigtlaender, Rohan Jain, Gabriela Surita, Kareem Mohamed, Rory Blevins, Junwhan Ahn,
732 Tao Zhu, Kornraphop Kawintiranon, Orhan Firat, Yiming Gu, Yujing Zhang, Matthew Rahtz,
733 Manaal Faruqui, Natalie Clay, Justin Gilmer, JD Co-Reyes, Ivo Penchev, Rui Zhu, Nobuyuki
734 Morioka, Kevin Hui, Krishna Haridasan, Victor Campos, Mahdis Mahdieh, Mandy Guo, Samer
735 Hassan, Kevin Kilgour, Arpi Vezer, Heng-Tze Cheng, Raoul de Liedekerke, Siddharth Goyal,
736 Paul Barham, DJ Strouse, Seb Noury, Jonas Adler, Mukund Sundararajan, Sharad Vikram, Dmitry
737 Lepikhin, Michela Paganini, Xavier Garcia, Fan Yang, Dasha Valter, Maja Trebacz, Kiran
738 Vodrahalli, Chulayuth Asawaroengchai, Roman Ring, Norbert Kalb, Livio Baldini Soares, Sid-
739 dhartha Brahma, David Steiner, Tianhe Yu, Fabian Mentzer, Antoine He, Lucas Gonzalez, Bibo
740 Xu, Raphael Lopez Kaufman, Laurent El Shafey, Junhyuk Oh, Tom Hennigan, George van den
741 Driessche, Seth Odoom, Mario Lucic, Becca Roelofs, Sid Lall, Amit Marathe, Betty Chan, San-
742 tiago Ontanon, Luheng He, Denis Teplyashin, Jonathan Lai, Phil Crone, Bogdan Damoc, Lewis
743 Ho, Sebastian Riedel, Karel Lenc, Chih-Kuan Yeh, Aakanksha Chowdhery, Yang Xu, Mehran
744 Kazemi, Ehsan Amid, Anastasia Petrushkina, Kevin Swersky, Ali Khodaei, Gowoon Chen, Chris
745 Larkin, Mario Pinto, Geng Yan, Adria Puigdomenech Badia, Piyush Patil, Steven Hansen, Dave
746 Orr, Sebastien M. R. Arnold, Jordan Grimstad, Andrew Dai, Sholto Douglas, Rishika Sinha, Vikas
747 Yadav, Xi Chen, Elena Gribovskaya, Jacob Austin, Jeffrey Zhao, Kaushal Patel, Paul Komarek,
748 Sophia Austin, Sebastian Borgeaud, Linda Friso, Abhimanyu Goyal, Ben Caine, Kris Cao, Da-
749 Woon Chung, Matthew Lamm, Gabe Barth-Maron, Thais Kagohara, Kate Olszewska, Mia Chen,
750 Kaushik Shivakumar, Rishabh Agarwal, Harshal Godhia, Ravi Rajwar, Javier Snaider, Xerxes
751 Dotiwalla, Yuan Liu, Aditya Barua, Victor Ungureanu, Yuan Zhang, Bat-Orgil Batsaikhan, Ma-
752 teo Wirth, James Qin, Ivo Danihelka, Tulsee Doshi, Martin Chadwick, Jilin Chen, Sanil Jain,
753 Quoc Le, Arjun Kar, Madhu Gurumurthy, Cheng Li, Ruoxin Sang, Fangyu Liu, Lampros Lam-
754 prou, Rich Munoz, Nathan Lintz, Harsh Mehta, Heidi Howard, Malcolm Reynolds, Lora Aroyo,
755 Quan Wang, Lorenzo Blanco, Albin Cassirer, Jordan Griffith, Dipanjan Das, Stephan Lee, Jakub
Sygnowski, Zach Fisher, James Besley, Richard Powell, Zafarali Ahmed, Dominik Paulus, David
Reitter, Zalan Borsos, Rishabh Joshi, Aedan Pope, Steven Hand, Vittorio Selo, Vihan Jain, Nikhil
Sethi, Megha Goel, Takaki Makino, Rhys May, Zhen Yang, Johan Schalkwyk, Christina Butterfield,
Anja Hauth, Alex Goldin, Will Hawkins, Evan Senter, Sergey Brin, Oliver Woodman,
Marvin Ritter, Eric Noland, Minh Giang, Vijay Bolina, Lisa Lee, Tim Blyth, Ian Mackinnon,

756 Machel Reid, Obaid Sarvana, David Silver, Alexander Chen, Lily Wang, Loren Maggiore, Os-
 757 car Chang, Nithya Attaluri, Gregory Thornton, Chung-Cheng Chiu, Oskar Bunyan, Nir Levine,
 758 Timothy Chung, Evgenii Eltyshev, Xiance Si, Timothy Lillicrap, Demetra Brady, Vaibhav Ag-
 759 garwal, Boxi Wu, Yuanzhong Xu, Ross McIlroy, Kartikeya Badola, Paramjit Sandhu, Erica Mor-
 760 eira, Wojciech Stokowiec, Ross Hemsley, Dong Li, Alex Tudor, Pranav Shyam, Elahe Rahim-
 761 toroghi, Salem Haykal, Pablo Sprechmann, Xiang Zhou, Diana Mincu, Yujia Li, Ravi Addanki,
 762 Kalpesh Krishna, Xiao Wu, Alexandre Frechette, Matan Eyal, Allan Dafoe, Dave Lacey, Jay
 763 Whang, Thi Avrahami, Ye Zhang, Emanuel Taropa, Hanzhao Lin, Daniel Toyama, Eliza Ruther-
 764 ford, Motoki Sano, HyunJeong Choe, Alex Tomala, Chalence Safranek-Shrader, Nora Kassner,
 765 Mantas Pajarskas, Matt Harvey, Sean Sechrist, Meire Fortunato, Christina Lyu, Gamaleldin El-
 766 sayed, Chenkai Kuang, James Lottes, Eric Chu, Chao Jia, Chih-Wei Chen, Peter Humphreys,
 767 Kate Baumli, Connie Tao, Rajkumar Samuel, Cicero Nogueira dos Santos, Anders Andreassen,
 768 Nemanja Rakićević, Dominik Grawe, Aviral Kumar, Stephanie Winkler, Jonathan Caton, Andrew
 769 Brock, Sid Dalmia, Hannah Sheahan, Iain Barr, Yingjie Miao, Paul Natsev, Jacob Devlin, Feryal
 770 Behbahani, Flavien Prost, Yanhua Sun, Artiom Myaskovsky, Thanumalayan Sankaranarayana
 771 Pillai, Dan Hurt, Angeliki Lazaridou, Xi Xiong, Ce Zheng, Fabio Pardo, Xiaowei Li, Dan Hor-
 772 gan, Joe Stanton, Moran Ambar, Fei Xia, Alejandro Lince, Mingqiu Wang, Basil Mustafa, Al-
 773 bert Webson, Hyo Lee, Rohan Anil, Martin Wicke, Timothy Dozat, Abhishek Sinha, Enrique
 774 Piqueras, Elahe Dabir, Shyam Upadhyay, Anudhyan Boral, Lisa Anne Hendricks, Corey Fry,
 775 Josip Djolonga, Yi Su, Jake Walker, Jane Labanowski, Ronny Huang, Vedant Misra, Jeremy
 776 Chen, RJ Skerry-Ryan, Avi Singh, Shruti Rijhwani, Dian Yu, Alex Castro-Ros, Beer Chang-
 777 pinyo, Romina Datta, Sumit Bagri, Arnar Mar Hrafnkelsson, Marcello Maggioni, Daniel Zheng,
 778 Yury Sulsky, Shaobo Hou, Tom Le Paine, Antoine Yang, Jason Riesa, Dominika Rogozinska,
 779 Dror Marcus, Dalia El Badawy, Qiao Zhang, Luyu Wang, Helen Miller, Jeremy Greer, Lars Lowe
 780 Sjos, Azade Nova, Heiga Zen, Rahma Chaabouni, Mihaela Rosca, Jiepu Jiang, Charlie Chen,
 781 Ruibo Liu, Tara Sainath, Maxim Krikun, Alex Polozov, Jean-Baptiste Lespiau, Josh Newlan,
 782 Zeynep Cankara, Soo Kwak, Yunhan Xu, Phil Chen, Andy Coenen, Clemens Meyer, Katerina
 783 Tsihlas, Ada Ma, Juraj Gottweis, Jinwei Xing, Chenjie Gu, Jin Miao, Christian Frank, Zeynep
 784 Cankara, Sanjay Ganapathy, Ishita Dasgupta, Steph Hughes-Fitt, Heng Chen, David Reid, Keran
 785 Rong, Hongmin Fan, Joost van Amersfoort, Vincent Zhuang, Aaron Cohen, Shixiang Shane Gu,
 786 Anhad Mohananey, Anastasija Ilic, Taylor Tobin, John Wieting, Anna Bortsova, Phoebe Thacker,
 787 Emma Wang, Emily Caveness, Justin Chiu, Eren Sezener, Alex Kaskasoli, Steven Baker, Katie
 788 Millican, Mohamed Elhawaty, Kostas Aisopos, Carl Lebsack, Nathan Byrd, Hanjun Dai, Wen-
 789 hao Jia, Matthew Wiethoff, Elnaz Davoodi, Albert Weston, Lakshman Yagati, Arun Ahuja, Isabel
 790 Gao, Golan Pundak, Susan Zhang, Michael Azzam, Khe Chai Sim, Sergi Caelles, James Keel-
 791 ing, Abhanshu Sharma, Andy Swing, YaGuang Li, Chenxi Liu, Carrie Grimes Bostock, Yamini
 792 Bansal, Zachary Nado, Ankesh Anand, Josh Lipschultz, Abhijit Karmarkar, Lev Proleev, Abe It-
 793 tycheriah, Soheil Hassas Yeganeh, George Polovets, Aleksandra Faust, Jiao Sun, Alban Rustemi,
 794 Pen Li, Rakesh Shivanna, Jeremiah Liu, Chris Welty, Federico Lebron, Anirudh Baddepudi, Se-
 795 bastian Krause, Emilio Parisotto, Radu Soricut, Zheng Xu, Dawn Bloxwich, Melvin Johnson,
 796 Behnam Neyshabur, Justin Mao-Jones, Renshen Wang, Vinay Ramasesh, Zaheer Abbas, Arthur
 797 Guez, Constant Segal, Duc Dung Nguyen, James Svensson, Le Hou, Sarah York, Kieran Mi-
 798 lan, Sophie Bridgers, Wiktor Gworek, Marco Tagliasacchi, James Lee-Thorp, Michael Chang,
 799 Alexey Guseynov, Ale Jakse Hartman, Michael Kwong, Ruizhe Zhao, Sheleem Kashem, Eliz-
 800 abeth Cole, Antoine Miech, Richard Tanburn, Mary Phuong, Filip Pavetic, Sebastien Cevey,
 801 Ramona Comanescu, Richard Ives, Sherry Yang, Cosmo Du, Bo Li, Zizhao Zhang, Mariko
 802 Iinuma, Clara Huiyi Hu, Aurko Roy, Shaan Bijwadia, Zhenkai Zhu, Danilo Martins, Rachel Sa-
 803 putro, Anita Gergely, Steven Zheng, Dawei Jia, Ioannis Antonoglou, Adam Sadovsky, Shane
 804 Gu, Yingying Bi, Alek Andreev, Sina Samangooei, Mina Khan, Tomas Kociský, Angelos Filos,
 805 Chintu Kumar, Colton Bishop, Adams Yu, Sarah Hodgkinson, Sid Mittal, Premal Shah, Alexandre
 806 Moufarek, Yong Cheng, Adam Bloniarz, Jaehoon Lee, Pedram Pejman, Paul Michel, Stephen
 807 Spencer, Vladimir Feinberg, Xuehan Xiong, Nikolay Savinov, Charlotte Smith, Siamak Shakeri,
 808 Dustin Tran, Mary Chesus, Bernd Bohnet, George Tucker, Tamara von Glehn, Carrie Muir, Yiran
 809 Mao, Hideto Kazawa, Ambrose Slone, Kedar Soparkar, Disha Shrivastava, James Cobon-Kerr,
 Michael Sharman, Jay Pavagadhi, Carlos Araya, Karolis Misiunas, Nimesh Ghelani, Michael
 Laskin, David Barker, Qiuqia Li, Anton Briukhov, Neil Houlsby, Mia Glaese, Balaji Laksh-
 minarayanan, Nathan Schucher, Yunhao Tang, Eli Collins, Hyeontaek Lim, Fangxiao Feng,
 Adria Recasens, Guangda Lai, Alberto Magni, Nicola De Cao, Aditya Siddhant, Zoe Ashwood,
 Jordi Orbay, Mostafa Dehghani, Jenny Brennan, Yifan He, Kelvin Xu, Yang Gao, Carl Saroufim,

810 James Molloy, Xinyi Wu, Seb Arnold, Solomon Chang, Julian Schrittweis, Elena Buchatskaya,
 811 Soroush Radpour, Martin Polacek, Skye Giordano, Ankur Bapna, Simon Tokumine, Vincent
 812 Hellendoorn, Thibault Sottiaux, Sarah Cogan, Aliaksei Severyn, Mohammad Saleh, Shantanu
 813 Thakoor, Laurent Shefey, Siyuan Qiao, Meenu Gaba, Shuo yiin Chang, Craig Swanson, Biao
 814 Zhang, Benjamin Lee, Paul Kishan Rubenstein, Gan Song, Tom Kwiatkowski, Anna Koop, Ajay
 815 Kannan, David Kao, Parker Schuh, Axel Stjerngren, Golnaz Ghiasi, Gena Gibson, Luke Vilnis,
 816 Ye Yuan, Felipe Tiengo Ferreira, Aishwarya Kamath, Ted Klimenko, Ken Franko, Kefan Xiao,
 817 Indro Bhattacharya, Miteyan Patel, Rui Wang, Alex Morris, Robin Strudel, Vivek Sharma, Peter
 818 Choy, Sayed Hadi Hashemi, Jessica Landon, Mara Finkelstein, Priya Jhakra, Justin Frye, Megan
 819 Barnes, Matthew Mauger, Dennis Daun, Khuslen Baatarsukh, Matthew Tung, Wael Farhan, Hen-
 820 ryk Michalewski, Fabio Viola, Felix de Chaumont Quirly, Charline Le Lan, Tom Hudson, Qingze
 821 Wang, Felix Fischer, Ivy Zheng, Elspeth White, Anca Dragan, Jean baptiste Alayrac, Eric Ni,
 822 Alexander Pritzel, Adam Iwanicki, Michael Isard, Anna Bulanova, Lukas Zilka, Ethan Dyer,
 823 Devendra Sachan, Srivatsan Srinivasan, Hannah Muckenhirk, Honglong Cai, Amol Mandhane,
 824 Mukarram Tariq, Jack W. Rae, Gary Wang, Kareem Ayoub, Nicholas FitzGerald, Yao Zhao,
 825 Woohyun Han, Chris Alberti, Dan Garrette, Kashyap Krishnakumar, Mai Gimenez, Anselm Lev-
 826 skaya, Daniel Sohn, Josip Matak, Inaki Iturrate, Michael B. Chang, Jackie Xiang, Yuan Cao,
 827 Nishant Ranka, Geoff Brown, Adrian Hutter, Vahab Mirrokni, Nanxin Chen, Kaisheng Yao,
 828 Zoltan Egyed, Francois Galilee, Tyler Liechty, Praveen Kallakuri, Evan Palmer, Sanjay Ghe-
 829 mawat, Jasmine Liu, David Tao, Chloe Thornton, Tim Green, Mimi Jasarevic, Sharon Lin, Victor
 830 Cotruta, Yi-Xuan Tan, Noah Fiedel, Hongkun Yu, Ed Chi, Alexander Neitz, Jens Heitkaemper,
 831 Anu Sinha, Denny Zhou, Yi Sun, Charbel Kaed, Brice Hulse, Swaroop Mishra, Maria Georgaki,
 832 Sneha Kudugunta, Clement Farabet, Izhak Shafran, Daniel Vlasic, Anton Tsitsulin, Rajagopal
 833 Ananthanarayanan, Alen Carin, Guolong Su, Pei Sun, Shashank V, Gabriel Carvajal, Josef Broder,
 834 Iulia Comsa, Alena Repina, William Wong, Warren Weilun Chen, Peter Hawkins, Egor Filonov,
 835 Lucia Loher, Christoph Hirnschall, Weiyi Wang, Jingchen Ye, Andrea Burns, Hardie Cate, Di-
 836 ana Gage Wright, Federico Piccinini, Lei Zhang, Chu-Cheng Lin, Ionel Gog, Yana Kulizhskaya,
 837 Ashwin Sreevatsa, Shuang Song, Luis C. Cobo, Anand Iyer, Chetan Tekur, Guillermo Garrido,
 838 Zhuyun Xiao, Rupert Kemp, Huaixiu Steven Zheng, Hui Li, Ananth Agarwal, Christel Ngani,
 839 Kati Goshvadi, Rebeca Santamaria-Fernandez, Wojciech Fica, Xinyun Chen, Chris Gorgolewski,
 840 Sean Sun, Roopal Garg, Xinyu Ye, S. M. Ali Eslami, Nan Hua, Jon Simon, Pratik Joshi, Yelin
 841 Kim, Ian Tenney, Sahitya Potluri, Lam Nguyen Thiet, Quan Yuan, Florian Luisier, Alex-
 842 andra Chronopoulou, Salvatore Scellato, Praveen Srinivasan, Minmin Chen, Vinod Koverkathu,
 843 Valentin Dalibard, Yaming Xu, Brennan Saeta, Keith Anderson, Thibault Sellam, Nick Fernando,
 844 Fantine Huot, Junehyuk Jung, Mani Varadarajan, Michael Quinn, Amit Raul, Maigo Le, Ruslan
 845 Habalov, Jon Clark, Komal Jalan, Kalesha Bullard, Achintya Singhal, Thang Luong, Boyu Wang,
 846 Sujeewan Rajayogam, Julian Eisenschlos, Johnson Jia, Daniel Finchelstein, Alex Yakubovich,
 847 Daniel Balle, Michael Fink, Sameer Agarwal, Jing Li, Dj Dvijotham, Shalini Pal, Kai Kang,
 848 Jaclyn Konzelmann, Jennifer Beattie, Olivier Dousse, Diane Wu, Remi Crocker, Chen Elkind,
 849 Siddhartha Reddy Jonnalagadda, Jong Lee, Dan Holtmann-Rice, Krystal Kallarackal, Rosanne
 850 Liu, Denis Vnukov, Neera Vats, Luca Invernizzi, Mohsen Jafari, Huanjie Zhou, Lilly Taylor,
 851 Jennifer Prendki, Marcus Wu, Tom Eccles, Tianqi Liu, Kavya Kopparapu, Francoise Beaufays,
 852 Christof Angermueller, Andreea Marzoca, Shourya Sarcar, Hilal Dib, Jeff Stanway, Frank Perbet,
 853 Nejc Trdin, Rachel Sterneck, Andrey Khorlin, Dinghua Li, Xihui Wu, Sonam Goenka, David
 854 Madras, Sasha Goldstein, Willi Gierke, Tong Zhou, Yixin Liu, Yannie Liang, Anais White,
 855 Yunjie Li, Shreya Singh, Sanaz Bahargam, Mark Epstein, Sujoy Basu, Li Lao, Adnan Ozturk,
 856 Carl Crous, Alex Zhai, Han Lu, Zora Tung, Neeraj Gaur, Alanna Walton, Lucas Dixon, Ming
 857 Zhang, Amir Globerson, Grant Uy, Andrew Bolt, Olivia Wiles, Milad Nasr, Ilia Shumailov, Marco
 858 Selvi, Francesco Piccinno, Ricardo Aguilar, Sara McCarthy, Misha Khalman, Mrinal Shukla,
 859 Vlado Galic, John Carpenter, Kevin Villela, Haibin Zhang, Harry Richardson, James Martens,
 860 Matko Bosnjak, Shreyas Rammohan Belle, Jeff Seibert, Mahmoud Alnahlawi, Brian McWilliams,
 861 Sankalp Singh, Annie Louis, Wen Ding, Dan Popovici, Lenin Simicich, Laura Knight, Pulkit
 862 Mehta, Nishesh Gupta, Chongyang Shi, Saaber Fatehi, Jovana Mitrovic, Alex Grills, Joseph Pa-
 863 gadora, Tsendsuren Munkhdalai, Dessie Petrova, Danielle Eisenbud, Zhishuai Zhang, Damion
 Yates, Bhavishya Mittal, Nilesh Tripuraneni, Yannis Assael, Thomas Brovelli, Prateek Jain, Mi-
 hijlo Velimirovic, Canfer Akbulut, Jiaqi Mu, Wolfgang Macherey, Ravin Kumar, Jun Xu, Haroon
 Qureshi, Gheorghe Comanici, Jeremy Wiesner, Zhitao Gong, Anton Ruddock, Matthias Bauer,
 Nick Felt, Anirudh GP, Anurag Arnab, Dustin Zelle, Jonas Rothfuss, Bill Rosgen, Ashish Shenoy,
 Bryan Seybold, Xinjian Li, Jayaram Mudigonda, Goker Erdogan, Jiawei Xia, Jiri Simsa, Andrea

864 Michi, Yi Yao, Christopher Yew, Steven Kan, Isaac Caswell, Carey Radebaugh, Andre Elisseeff, Pedro Valenzuela, Kay McKinney, Kim Paterson, Albert Cui, Eri Latorre-Chimoto, Solomon Kim, William Zeng, Ken Durden, Priya Ponnappalli, Tiberiu Sosea, Christopher A. Choquette-Choo, James Manyika, Brona Robenek, Harsha Vashisht, Sebastien Pereira, Hoi Lam, Marko Velic, Denese Owusu-Afriyie, Katherine Lee, Tolga Bolukbasi, Alicia Parrish, Shawn Lu, Jane Park, Balaji Venkatraman, Alice Talbert, Lambert Rosique, Yuchung Cheng, Andrei Sozanschi, Adam Paszke, Praveen Kumar, Jessica Austin, Lu Li, Khalid Salama, Bartek Perz, Wooyeol Kim, Nandita Dukkipati, Anthony Baryshnikov, Christos Kapelanis, XiangHai Sheng, Yuri Chervonyi, Caglar Unlu, Diego de Las Casas, Harry Askham, Kathryn Tunyasuvunakool, Felix Gimeno, Siim Poder, Chester Kwak, Matt Miecnikowski, Vahab Mirrokni, Alek Dimitriev, Aaron Parisi, Dangyi Liu, Tomy Tsai, Toby Shevlane, Christina Kouridi, Drew Garmon, Adrian Goedeckemeyer, Adam R. Brown, Anitha Vijayakumar, Ali Elqursh, Sadegh Jazayeri, Jin Huang, Sara Mc Carthy, Jay Hoover, Lucy Kim, Sandeep Kumar, Wei Chen, Courtney Biles, Garrett Bingham, Evan Rosen, Lisa Wang, Qijun Tan, David Engel, Francesco Pongetti, Dario de Cesare, Dongseong Hwang, Lily Yu, Jennifer Pullman, Srini Narayanan, Kyle Levin, Siddharth Gopal, Megan Li, Asaf Aharoni, Trieu Trinh, Jessica Lo, Norman Casagrande, Roopal Vij, Loic Matthey, Bramandia Ramadhana, Austin Matthews, CJ Carey, Matthew Johnson, Kremena Goranova, Rohin Shah, Shereen Ashraf, Kingshuk Dasgupta, Rasmus Larsen, Yicheng Wang, Manish Reddy Vuyyuru, Chong Jiang, Joana Ijazi, Kazuki Osawa, Celine Smith, Ramya Sree Boppana, Taylan Bilal, Yuma Koizumi, Ying Xu, Yasemin Altun, Nir Shabat, Ben Bariach, Alex Korchemniy, Kiam Choo, Olaf Ronneberger, Chimezie Iwuanyanwu, Shubin Zhao, David Soergel, Cho-Jui Hsieh, Irene Cai, Shariq Iqbal, Martin Sundermeyer, Zhe Chen, Elie Bursztein, Chaitanya Malaviya, Fadi Biadsy, Prakash Shroff, Inderjit Dhillon, Tejas Latkar, Chris Dyer, Hannah Forbes, Massimo Nicosia, Vitaly Nikolaev, Somer Greene, Marin Georgiev, Pidong Wang, Nina Martin, Hanie Sedghi, John Zhang, Praseem Banzal, Doug Fritz, Vikram Rao, Xuezhi Wang, Jiageng Zhang, Viorica Patrachean, Dayou Du, Igor Mordatch, Ivan Jurin, Lewis Liu, Ayush Dubey, Abhi Mohan, Janek Nowakowski, Vlad-Doru Ion, Nan Wei, Reiko Tojo, Maria Abi Raad, Drew A. Hudson, Vaishakh Keshava, Shubham Agrawal, Kevin Ramirez, Zhichun Wu, Hoang Nguyen, Ji Liu, Madhavi Sewak, Bryce Petrini, DongHyun Choi, Ivan Philips, Ziyue Wang, Ioana Bica, Ankush Garg, Jarek Wilkiewicz, Priyanka Agrawal, Xiaowei Li, Danhao Guo, Emily Xue, Naseer Shaik, Andrew Leach, Sadh MNM Khan, Julia Wiesinger, Sammy Jerome, Abhishek Chakladar, Alek Wenjiao Wang, Tina Ornduff, Folake Abu, Alireza Ghaffarkhah, Marcus Wainwright, Mario Cortes, Frederick Liu, Joshua Maynez, Andreas Terzis, Pouya Samangouei, Riham Mansour, Tomasz Kepa, François-Xavier Aubet, Anton Algymr, Dan Banica, Agoston Weisz, Andras Orban, Alexandre Senges, Ewa Andrejczuk, Mark Geller, Niccolò Dal Santo, Valentin Anklin, Majd Al Merey, Martin Baeuml, Trevor Strohman, Junwen Bai, Slav Petrov, Yonghui Wu, Demis Hassabis, Koray Kavukcuoglu, Jeff Dean, and Oriol Vinyals. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context, 2024. URL <https://arxiv.org/abs/2403.05530>.

899

900 Lisa C Thomas and Christopher D Wickens. Visual Displays and Cognitive Tunneling: Frames
901 of Reference Effects on Spatial Judgments and Change Detection. *Proceedings of the Hu-
902 man Factors and Ergonomics Society Annual Meeting*, 45(4):336–340, October 2001. ISSN
903 1071-1813. doi: 10.1177/154193120104500415. URL <https://doi.org/10.1177/154193120104500415>. Publisher: SAGE Publications Inc.

904

905

906 Chengrui Wang, Qingqing Long, Meng Xiao, Xunxin Cai, Chengjun Wu, Zhen Meng, Xuezhi Wang,
907 and Yuanchun Zhou. Biorag: A rag-ilm framework for biological question reasoning, 2024. URL
908 <https://arxiv.org/abs/2408.01107>.

909

910 Yile Wang, Peng Li, Maosong Sun, and Yang Liu. Self-knowledge guided retrieval augmentation for
911 large language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the As-
912 sociation for Computational Linguistics: EMNLP 2023*, pp. 10303–10315, Singapore, December
913 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.691.
914 URL <https://aclanthology.org/2023.findings-emnlp.691/>.

915

916 Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and Yu Su. Adaptive chameleon or stubborn sloth:
917 Revealing the behavior of large language models in knowledge conflicts. In *The Twelfth Interna-
918 tional Conference on Learning Representations*, 2024. URL [https://openreview.net/
919 forum?id=auKAUJZMO6](https://openreview.net/forum?id=auKAUJZMO6).

918 Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong
919 Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, Chenyang Shao, Yuwei Yan, Qinglong Yang,
920 Yiwen Song, Sijian Ren, Xinyuan Hu, Yu Li, Jie Feng, Chen Gao, and Yong Li. Towards large
921 reasoning models: A survey of reinforced reasoning with large language models, 2025. URL
922 <https://arxiv.org/abs/2501.09686>.

923 Rongwu Xu, Zehan Qi, Zhijiang Guo, Cunxiang Wang, Hongru Wang, Yue Zhang, and Wei Xu.
924 Knowledge conflicts for LLMs: A survey. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
925 Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Pro-
926 cessing*, pp. 8541–8565, Miami, Florida, USA, November 2024. Association for Computational
927 Linguistics. doi: 10.18653/v1/2024.emnlp-main.486. URL <https://aclanthology.org/2024.emnlp-main.486>.

928 Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Berant. Making retrieval-augmented language
929 models robust to irrelevant context. In *The Twelfth International Conference on Learning Repre-
930 sentations*, 2024. URL <https://openreview.net/forum?id=ZS4m74kZpH>.

931 Wenhao Yu, Hongming Zhang, Xiaoman Pan, Peixin Cao, Kaixin Ma, Jian Li, Hongwei Wang,
932 and Dong Yu. Chain-of-note: Enhancing robustness in retrieval-augmented language models. In
933 Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference
934 on Empirical Methods in Natural Language Processing*, pp. 14672–14685, Miami, Florida, USA,
935 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
936 813. URL <https://aclanthology.org/2024.emnlp-main.813>.

937 Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy Liang, Christopher D
938 Manning, and Jure Leskovec. Greaselm: Graph reasoning enhanced language models. In *Inter-
939 national Conference on Learning Representations*, 2021.

940 Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy Liang, Christopher D
941 Manning, and Jure Leskovec. GreaseLM: Graph REASoning enhanced language models. In *Inter-
942 national Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=41e9o6cQPj>.

943 Yuzhe Zhang, Yipeng Zhang, Yidong Gan, Lina Yao, and Chen Wang. Causal graph discovery with
944 retrieval-augmented generation based large language models, 2024. URL <https://arxiv.org/abs/2402.15301>.

945 Zhiling Zheng, Oufan Zhang, Christian Borgs, Jennifer T. Chayes, and Omar M. Yaghi. Chat-
946 GPT Chemistry Assistant for Text Mining and the Prediction of MOF Synthesis. *Journal of
947 the American Chemical Society*, 145(32):18048–18062, August 2023. ISSN 0002-7863. doi:
948 10.1021/jacs.3c05819. URL <https://doi.org/10.1021/jacs.3c05819>. Publisher:
949 American Chemical Society.

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972
973

A PROMPT TEMPLATES

974
975

A.1 HIGH-FIDELITY DIRECT CAUSAL PATH REASONING

976

You are an expert materials scientist with access to a specialized knowledge graph derived from 200+ research papers.

977

Your task is to {task_desc} by intelligently combining your baseline scientific knowledge with relevant research findings.

978

CRITICAL INSTRUCTION: Your final answer must be AT LEAST as good as pure baseline reasoning. Use DAG knowledge to ENHANCE, not replace, fundamental principles.

979

```
**{input_label}:**  
{json.dumps(original_prompt_data, indent=2)}
```

980

Relevant Research Knowledge from Literature:
Causal Pathways:

981

```
- {formatted_paths}
```

982

Known Mechanisms:

983

```
- {formatted_mechanisms}
```

984

{similarity_context}

985

Integration Strategy ({quality_assessment['recommendation']}):

986

1. **Baseline Analysis**: First, provide your fundamental materials science analysis
2. **DAG Enhancement**: Use the research knowledge to enhance or validate your baseline reasoning
3. **Quality Control**: Ensure the final prediction is scientifically sound and improves upon baseline
4. **Confidence Assessment**: Provide honest confidence levels for each aspect

987

Output Instructions:

988

Your response should follow this two-part structure:

989

Part 1: Step-by-Step Reasoning

990

First, write out your detailed thought process as plain text. Follow the integration strategy below:

991

1. **Baseline Analysis**: Provide your fundamental materials science analysis based on the inputs.
2. **DAG Enhancement**: Use the provided research knowledge to enhance, validate, or refine your baseline reasoning.
3. **Synthesis & Conclusion**: Combine both knowledge sources to form a final, scientifically rigorous conclusion. Explain the mechanisms involved.

992

Part 2: Final JSON Output

993

After you have written your reasoning, provide the final answer as a single, valid JSON object inside a JSON code block. The 'reasoning' key within the JSON should be a concise summary of your detailed reasoning from Part 1.

994

JSON Rules (for Part 2):

995

1. The JSON code block **MUST** contain a single, valid, RFC 8259 compliant JSON object.

996

2. Comments are strictly forbidden inside the JSON.

997

3. All keys and all string values **MUST** be enclosed in double quotes.

998

4. No trailing commas are allowed.

999

JSON Output Format:

1000

```
{output_format}
```

1026
1027

A.2 TRANSFER LEARNING

1028
1029
1030
1031

You are an expert materials scientist AI conducting transfer learning analysis. Your knowledge graph lacks exact pathways, but you've identified analogous information that requires careful validation and adaptation.

1032

Task:

1033
1034

Based on analogous information and comprehensive literature search, {
task_description} for the user's target.

1035

1036
1037

{input_data_label} (User's Query):
{json.dumps(original_prompt_data, indent=2)}

1038

Similar Known Causal Pathways:
- {formatted_paths}

1039
1040

Known Mechanisms for Similar Pathway:
- {formatted_mechanisms}

1041
1042

Similarity Analysis:

- Embedding distance: {property_embedding_diff:.4f} (0=identical, 2=
opposite)
- Most similar known case: {similar_node}

1043
1044

Your response should follow this two-part structure:

1045

Part 1: Step-by-Step Reasoning

1. **Analyze & Compare:** Briefly compare the User's Query with the Known Pathway. What are the key similarities and, more importantly, the key differences (e.g., opposite doping type, different materials, different conditions)?
2. **Formulate Hypothesis:** Based on the differences and the quantitative embedding distance, state a hypothesis.
3. **Extrapolate or Diverge:** Decide if you can adjust the parameters from the known pathway (extrapolate) or if you must suggest a completely different approach (diverge). Justify this decision using the embedding distance. A small distance (< 0.4) suggests extrapolation is viable; a large distance (> 0.7) suggests divergence is necessary.
4. **Synthesize Final Answer:** Based on your hypothesis, construct the final prediction/suggestion.

1046

Part 2: Final JSON Output

1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

After you have written your reasoning, provide the final answer as a single, valid JSON object inside a JSON code block. The 'reasoning' key within the JSON should be a concise summary of your detailed reasoning from Part 1.

1062

JSON Rules (for Part 2):

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

1. The JSON code block **MUST** contain a single, valid, RFC 8259 compliant JSON object.
2. Comments are strictly forbidden inside the JSON.
3. All keys and all string values **MUST** be enclosed in double quotes.
4. No trailing commas are allowed.

JSON Output Format:

1076
1077
1078
1079

1080
1081

A.3 PARAMETRIC FALBACK

1082
1083
1084

```
You are an expert materials scientist. Based on the following {'synthesis
    conditions' if query_type == 'forward' else 'desired properties'},
{task_desc}.
```

1085
1086
1087

```
{'Synthesis Conditions' if query_type == 'forward' else 'Desired
    Properties'}:
{json.dumps(original_prompt_data, indent=2)}
```

1088
1089

Your response should follow this two-part structure:

1090

Part 1: Step-by-Step Reasoning

1. **Analyze & Compare:** Briefly compare the User's Query with the Known Pathway. What are the key similarities and, more importantly, the key differences (e.g., opposite doping type, different materials, different conditions)?
2. **Formulate Hypothesis:** Based on the differences and the quantitative embedding distance, state a hypothesis.
3. **Extrapolate or Diverge:** Decide if you can adjust the parameters from the known pathway (extrapolate) or if you must suggest a completely different approach (diverge). Justify this decision using the embedding distance. A small distance (< 0.4) suggests extrapolation is viable; a large distance (> 0.7) suggests divergence is necessary.
4. **Synthesize Final Answer:** Based on your hypothesis, construct the final prediction/suggestion.

1100

1104

Part 2: Final JSON Output

1105
1106
1107
1108

After you have written your reasoning, provide the final answer as a single, valid JSON object inside a JSON code block. The 'reasoning' key within the JSON should be a concise summary of your detailed reasoning from Part 1.

1109

JSON Rules (for Part 2):

1110
1111
1112
1113
1114

1. The JSON code block **MUST** contain a single, valid, RFC 8259 compliant JSON object.
2. Comments are strictly forbidden inside the JSON.
3. All keys and all string values **MUST** be enclosed in double quotes.
4. No trailing commas are allowed.

1115
1116
1117

Example format:

```
{output_format}
```

1118

1119

A.4 LLM JUDGE

1120
1121
1122
1123

You are an expert materials scientist serving as an impartial judge. Your task is to evaluate a language model's generated output against a ground truth answer for a materials science problem.

1124

Problem Context:

1125
1126

- **Task Type:** {task type}
- **Input Query:** {input query}

1127
1128
1129

Ground Truth Answer:

```
{ground truth}
```

1130
1131
1132

Model's Generated Answer:

```
{generated answer}
```

Evaluation Criteria:

Please provide a score from 0 to 10 (integer) for each of the following dimensions. Be critical and rigorous.

```

1134 1. **Scientific Accuracy (0-10):** Is the generated answer scientifically
1135   plausible and correct according to known principles of chemistry,
1136   physics, and materials science? (0=incorrect/unphysical, 10=perfectly
1137   accurate).
1138 2. **Functional Equivalence (0-10):** Does the generated answer achieve
1139   the same functional outcome or describe the same core scientific
1140   concept as the ground truth, even if the wording is different? (0=
1141   completely different outcome, 10=functionally identical).
1142 3. **Reasoning Quality (0-10):** If reasoning is provided, is it logical,
1143   clear, and scientifically sound? Does it correctly justify the
1144   conclusion? (0=no reasoning or illogical, 10=clear, correct, and
1145   insightful).
1146 4. **Completeness (0-10):** Does the generated answer include all key
1147   parameters and details present in the ground truth? (0=missing most
1148   key details, 10=contains all necessary information).
1149 5. **Interpretability (0-10):** Does the model justify its answer with a
1150   clear and understandable causal reasoning chain? (0=perfectly
1151   uninterpretable, 10=perfectly interpretable).
1152 6. **Overall Score (0-10):** Your holistic assessment of the generated
1153   answer's quality and usefulness.
1154   Noted that if the model's answer failed to predict detail material
1155   properties even give the reason, you should still give a low score.
1156
1157   **Your Task:**  

1158   Return a single JSON object with your scores and a brief justification
1159   for each score.
1160
1161   **JSON Schema:**  

1162   {  

1163     "scientific accuracy": {{ "score": integer, "justification": "string"  

1164       }},  

1165     "functional equivalence": {{ "score": integer, "justification": "  

1166       string" }},  

1167     "reasoning quality": {{ "score": integer, "justification": "string"  

1168       }},  

1169     "completeness": {{ "score": integer, "justification": "string" }},  

1170     "interpretability": {{ "score": integer, "justification": "string" }},  

1171     "overall score": {{ "score": integer, "justification": "string" }}  

1172   }  

1173   """
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299

```

1188
1189

B.1.1 PROBLEM CONTEXT AND MOTIVATION

1190 The challenge involves designing synthesis conditions for MoS₂ doped with niobium (Nb) (Chen
1191 et al.; Song et al., 2021) to achieve specific electronic properties critical for neuromorphic computing
1192 and quantum devices:1193
1194
1195
1196
1197
1198
1199

```
Target Electronic Structure:
{
  "carrier_type": "n-type",
  "other_electronic": "Two additional fully occupied energy levels within
    the band gap and a half-occupied donor level at the bottom of the
    conduction band."
}
```

1200
1201
1202
1203

This represents a complex inverse design problem requiring precise control over defect states—a domain where the causal relationships between synthesis parameters and electronic structure are highly non-linear and poorly understood by conventional AI approaches.

1204
1205

B.1.2 ARIA'S MULTI-STAGE REASONING PROCESS

1206

Stage 1: Knowledge Graph Analysis and Transfer Learning Activation

1207
1208
1209

ARIA searches its comprehensive materials knowledge graph (2,516 nodes, 1,342 edges) for exact synthesis pathways. Finding no direct match, the system automatically activates its transfer learning mechanism:

1210
1211
1212
1213

```
Input completeness: 0.95
No exact path found. Using most similar context with confidence 0.58
Embedding distance: 0.4166 (moderate similarity - extrapolation viable)
```

1214
1215

Stage 2: Analogical Pathway Identification

1216
1217

ARIA identifies the most semantically relevant causal pathway from its knowledge graph:

1218
1219
1220

"Introduces partially occupied defect bands mixed with valence bands and defect bands above the Fermi level (electronic structure, n- and p-type conductivity) → DVCC defect"

1221
1222
1223

The embedding distance of 0.4166 indicates moderate semantic similarity, suggesting that the underlying defect formation mechanism is transferable but requires careful adaptation.

1224
1225

Stage 3: Structured Transfer Learning Analysis

1226
1227
1228

ARIA performs systematic four-step causal reasoning, as logged in the system output:

1229
1230
1231
1232

1. Mechanistic Comparison: “The known pathway creates defect-induced band mixing near the Fermi level. The target requires precisely positioned discrete levels within the bandgap—a more controlled defect engineering challenge.”

1233
1234
1235

2. Physics-Based Hypothesis: “The moderate embedding distance indicates the underlying defect formation mechanism is applicable, but energy level positioning requires tailored synthesis conditions optimized for Nb-Mo orbital hybridization.”

1236
1237
1238
1239
1240
1241

3. Adaptation Strategy: “Extrapolate and refine. The core defect engineering approach applies, but synthesis parameters must be optimized for Nb incorporation at specific lattice sites.”

4. Synthesis Design: Based on defect formation thermodynamics:

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
281

```

1242 "dopant_source": "NbCl5 precursor",
1243 "substrate": "SiO2/Si with MoS2 seed layer",
1244 "cooling_rate_c_min": 5,
1245 "concentration": "Nb:Mo = 1:20 ratio"
1246 },
1247 "confidence": 0.7083
1248
1249

```

1250 B.1.3 COMPARATIVE PERFORMANCE ANALYSIS

1251 Table 2 provides a comprehensive comparison against literature ground truth and baseline LLM
 1252 performance. ARIA demonstrates significant advantages:

1253 **Scientific Accuracy (8.0/10 vs. 6.5/10):** ARIA correctly identifies CVD as the optimal synthesis
 1254 method, proposes appropriate reducing atmosphere conditions, and suggests the correct NbCl₅
 1255 precursor—all matching experimental protocols from recent literature.

1256 **Mechanistic Understanding:** Unlike the baseline LLM which suggests incorrect dopants (Sb instead of Nb) and inappropriate substrates (InP), ARIA provides detailed reasoning about Nb 4d-Mo
 1257 4d orbital interactions and their role in creating the desired electronic structure.

1258 **Parameter Completeness (7.5/10 vs. 5.0/10):** ARIA specifies comprehensive synthesis parameters
 1259 including precise temperature (750°C vs. literature 800°C), appropriate pressure conditions (1000
 1260 Pa vs. literature 800 Pa), and correct dopant ratios.

1261 B.1.4 KEY ALGORITHMIC INNOVATIONS DEMONSTRATED

1262 **Hierarchical Defect Reasoning:** ARIA bridges multiple length scales, from atomic-level Nb-Mo
 1263 interactions to macroscopic electronic properties, through its structured knowledge graph representation.

1264 **Quantitative Transfer Learning:** The embedding distance (0.4166) provides principled guidance
 1265 for adaptation strategy, enabling knowledge reuse while recognizing the need for system-specific
 1266 modifications.

1267 **Causal Mechanism Understanding:** Rather than pattern matching, ARIA reasons about underlying
 1268 physics—why reducing atmospheres promote electron-rich defects and how NbCl₅ precursors
 1269 enable controlled Nb incorporation.

1270 **Uncertainty-Aware Predictions:** The confidence score (0.7083) reflects both semantic similarity
 1271 and synthesis complexity, providing researchers with quantitative measures of prediction reliability.

1272 B.1.5 VALIDATION AND EXPERIMENTAL PROTOCOLS

1273 ARIA automatically generates comprehensive validation strategies:

1274 *"Perform angle-resolved photoemission spectroscopy (ARPES) to map in-gap
 1275 states. Use scanning tunneling spectroscopy (STS) to verify local density of states
 1276 modifications. Characterize transport properties via temperature-dependent Hall
 1277 measurements combined with DFT simulations for theoretical validation."*

1278 This case study demonstrates ARIA’s ability to accelerate materials discovery by providing physics-
 1279 informed starting points that reduce experimental iterations, while simultaneously enabling interpretable
 1280 AI through complete reasoning traces that allow expert validation and refinement. The
 1281 system effectively bridges the theory-experiment gap by connecting fundamental defect physics to
 1282 practical synthesis protocols, creating a seamless workflow from theoretical understanding to ex-
 1283 perimental implementation. The performance improvement over baseline LLMs validates our core
 1284 hypothesis that effective knowledge augmentation requires principled causal integration rather than
 1285 naive information concatenation. ARIA’s success in this challenging Nb-MoS₂ inverse design prob-
 1286 lem establishes a new paradigm for causally-grounded AI systems in materials science, where the
 1287 integration of causal reasoning with domain-specific knowledge enables more reliable and inter-
 1288 pretative predictions for complex materials engineering challenges.

1296 Table 2: Comparative Analysis: Literature Ground Truth vs. Baseline LLM vs. ARIA
1297

1298 1299 Aspect	1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 Ground Truth ²³	1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 Baseline LLM	1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 ARIA
Method	Two-step CVD with post-annealing	Molecular Beam Epitaxy (MBE)	CVD with controlled atmosphere
Temperature	800°C (growth) + 600°C (annealing)	600°C	750°C
Time	1.5 hours (growth) + 30 min (annealing)	Not specified	2 hours
Pressure	800 Pa (CVD)	1×10^{-8} Torr	1000 Pa
Atmosphere	Ar/H ₂ (90:10) reducing	Ar with 5% H ₂	Ar/H ₂ (95:5) reducing
Dopant Source	NbCl ₅ precursor	Sb (Antimony) - incorrect	NbCl ₅ precursor
Substrate	SiO ₂ /Si with MoS ₂ seed	InP - poor match	SiO ₂ /Si with MoS ₂ seed
Concentration	2-4 at.% Nb	Not specified	Nb:Mo = 1:20 ratio
Cooling Rate	3°C/min controlled	Not specified	5°C/min
Pretreatment	O ₂ plasma cleaning	Not specified	Not specified
Carrier Properties	n-type, 1.5×10^{18} cm ⁻³	Generic n-type	n-type, 1.5×10^{18} cm ⁻³
Electronic Structure	Two occupied in-gap states (E _c -0.3, E _c -0.15 eV), donor at E _c -0.05 eV	Generic mid-gap states	Specific defect band engineering
Mechanistic Reasoning	Nb 4d-Mo 4d hybridization	Limited defect physics	Detailed orbital interactions
Validation Protocol	ARPES, STS, Hall measurements	Not provided	ARPES, STS, Hall + DFT
Transfer Learning	N/A	N/A	Embedding distance: 0.4166, confidence: 0.7083
Scientific Accuracy	Experimentally verified	6.5/10	8.0/10
Overall Score	Complete experimental protocol	5.0/10 (incomplete)	7.5/10 (comprehensive)

1325
1326
1327 B.2 CASE STUDY 2: CONTEXTUAL TUNNELING AND PERFORMANCE RECOVERY
1328

1329 This case study exposes a critical limitation in knowledge-guided AI for materials discovery—
1330 *contextual tunneling*, where incomplete knowledge representations constrain and misdirect reasoning.
1331 The target material, In-doped La₂O₂Bi₃AgS₆, presents a challenging inverse design task due to
1332 its n-type superconducting behavior with heavy fermion characteristics, a superconducting transition
1333 temperature decreasing from 0.5K to 0.4K as In doping increases, an anomalous resistivity hump at
1334 $T^* \approx 180$ K, and semiconducting behavior at high doping. These requirements demand reasoning
1335 over subtle electronic correlations.

1336 Three approaches were evaluated: a baseline LLM, a naive KG+LLM model, and ARIA. The
1337 baseline LLM achieved an overall score of 0.6, providing broadly appropriate solid-state synthesis
1338 recommendations, suitable temperature ranges, and considerations for doping and stoichiometry—
1339 all delivered without specific knowledge of the target compound. In marked contrast, the naive
1340 KG+LLM approach suffered catastrophic degradation (score: 0.1), becoming entrenched in an ir-
1341 relevant graphene-aluminum analogy arising from incomplete knowledge graph coverage and mis-
1342 placed statistical similarity. This led to unsuited recommendations focused on intercalation methods,
1343 with the system failing to recognize the heavy fermion nature of the material and lacking actionable
1344 guidance.

1345 ARIA successfully recovered performance (score: 0.6) by dynamically integrating domain knowl-
1346 edge and contextual reasoning. It identified URu₂Si₂ as the relevant host structure, correctly associ-
1347 ated the electronic signatures with Kondo physics, and proposed precise arc melting synthesis con-
1348 ditions (1500°C, 100-hour annealing). Chemically specific recommendations stood in clear contrast
1349 to the vague protocols offered by the naive model, reflecting ARIA’s deeper contextual awareness
and rejection of weak analogies.

The mechanism of contextual tunneling in the naive system manifested as sequential fixation: initial property matching, discovery of weak analogies via embedding similarity, premature narrowing of the solution space, and subsequent degradation of all downstream reasoning. The model’s moderate confidence in the flawed solution further highlights the difficulty of uncertainty calibration absent causal understanding.

ARIA’s robustness derives from multi-modal knowledge integration, explicit analogy validation, and preservation of contextual scientific perspective. By maintaining interpretability and physical consistency, ARIA delivered actionable, physics-informed synthesis pathways aligned with experimental best practices.

In summary, this case study demonstrates that naive knowledge augmentation risks severe contextual failures, whereas causally-grounded frameworks such as ARIA maintain interpretability and scientific coherence. Overcoming contextual tunneling requires comprehensive contextual awareness, multi-scale reasoning, and physical validation—principles essential for reliable next-generation AI systems in scientific discovery.

Table 3: Contextual Tunneling Case Study: In-doped $\text{La}_2\text{O}_2\text{Bi}_3\text{AgS}_6$ Synthesis Design. Comparative analysis demonstrates severe performance degradation in naive KG+LLM due to contextual tunneling, while ARIA maintains robust reasoning through causal integration and dynamic knowledge retrieval. Ground truth reflects synthesis parameters derived from literature on layered oxy-chalcogenides and BiS_2 family materials.

Parameter	Ground Truth	Baseline LLM	Naive KG+LLM	ARIA Framework
Host Material	$\text{La}_2\text{O}_2\text{Bi}_3\text{AgS}_6$: layered heavy-fermion oxychalcogenide tailored with In doping for superconductivity and resistivity anomalies.	URu_2Si_2	Layered material	Property-based identification
Method	Solid-state reaction: stoichiometric mixing, pellet pressing, calcination (725–750°C) followed by optional post-annealing to sharpen superconductive transitions.	Arc melting + annealing	Intercalation/alloying	Solid-state reaction + annealing
Temperature	725°C (two-step: 725–750°C) with optional 500°C post-annealing. Optimize for homogeneity.	1500°C (hallucinated)	Not specified	700–1200°C (optimized)
Atmosphere	Quartz tube evacuated to $< 1 \times 10^{-3}$ Pa, trace Ar. Reaction in ultra-clean vacuum prevents contamination.	High purity Ar	Not specified	Inert (Ar/N ₂) or vacuum
Time	24–44 hours (plus optional 48 hours post-anneal).	100 hours (hallucinated)	Not specified	24–72 hours (optimized)
Dopant Details	Indium introduced via In_2S_3 . Metallic In may be used for $x \leq 0.1$ but requires excess sulfur (5 mol%).	InCl_3 or In metal	In (no precursor)	In_2O_3 or metallic In
Additional	Multi-step grinding, pellet pressing, flame-sealed quartz tube, phase purity confirmed via XRD	XRD characterization	None specified	Stoichiometry control + multi-technique characterization
Scientific Accuracy	<i>Reference benchmark</i>	0.80	0.20	0.70
Completeness	<i>Reference benchmark</i>	0.60	0.10	0.50
Reasoning Quality	<i>Reference benchmark</i>	0.70	0.10	0.60
Overall Score	<i>Reference benchmark</i>	0.60	0.10	0.60

B.3 DETAILED ANALYSIS

B.3.1 ROBUSTNESS ANALYSIS: NAIVE KG+LLM INTEGRATION PITFALLS

To understand the challenges of naive KG+LLM integration, we conducted perturbation analysis on our initial basic implementation. We introduced controlled semantic perturbations to synthesis conditions and evaluated performance against an unconstrained baseline LLM using semantic similarity to ground truth.

Key Finding: Naive Integration Degrades Performance. The baseline LLM consistently outperformed the basic KG-augmented model across all perturbation levels for both forward prediction

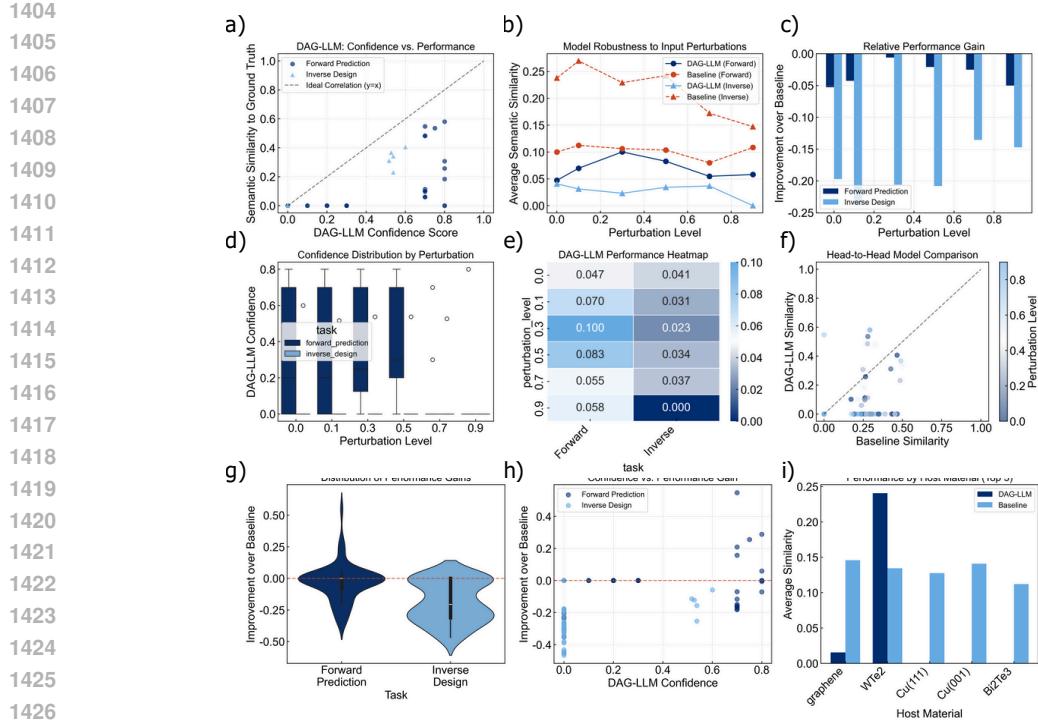


Figure 6: **Performance degradation in naive KG+LLM integration under perturbation.** We evaluate a basic KG-augmented LLM against an unconstrained baseline on synthesis tasks with controlled semantic perturbations. Performance is measured by semantic similarity to ground truth. (a) KG-LLM confidence vs. semantic similarity. (b) Average similarity across perturbation levels. (c) Relative performance (negative values indicate baseline superiority). (d) KG-LLM confidence distribution. (e) Task-specific performance heatmap. (f) Head-to-head sample comparison. (g) Performance difference distributions. (h) Confidence vs. improvement correlation. (i) Material-specific performance comparison.

and inverse design tasks (Fig. 6b-c). This counterintuitive result—that adding domain knowledge hurts performance—motivated our development of the principled ARIA framework described in the main text.

Failure Mode Analysis. The KG-LLM exhibits a characteristic failure pattern: a significant fraction of predictions yield near-zero semantic similarity (Fig. 6f), particularly for forward prediction tasks with long performance tails (Fig. 6g). This occurs when perturbed queries fall outside the KG’s direct coverage, causing the constrained model to generate irrelevant responses rather than leveraging its broader knowledge.

Confidence Calibration Insights. Despite poor average performance, the KG-LLM demonstrates well-calibrated confidence: higher confidence correlates with better semantic similarity (Fig. 6a) and confidence appropriately decreases with perturbation level (Fig. 6d). This suggests the model correctly identifies when it lacks relevant knowledge.

Material-Dependent Performance. Performance varies significantly by material system (Fig. 6i). The KG-LLM shows advantages for WSe₂—likely well-represented in our literature sources—while the baseline excels for graphene, benefiting from extensive pre-training coverage. This highlights the critical dependence on KG completeness.

Implications for ARIA Design. These findings directly informed our ARIA architecture:

1458

- 1459 1. **Hierarchical Fallback:** To address the near-zero similarity failure mode, ARIA imple-
1460 ments multi-tier reasoning that gracefully degrades when exact KG matches are unavail-
1461 able.
- 1462 2. **Transfer Learning:** Rather than failing on out-of-distribution queries, ARIA leverages
1463 semantic similarity to adapt related knowledge pathways.
- 1464 3. **Confidence-Aware Integration:** ARIA uses calibrated confidence scores to dynamically
1465 balance KG guidance with LLM knowledge, avoiding rigid constraints that harm perfor-
1466 mance.

1467

1468 This analysis demonstrates that effective knowledge augmentation requires principled integration
1469 strategies rather than naive concatenation—a core motivation for the ARIA framework’s sophisti-
1470 cated reasoning architecture described in the main paper.

1471 This function uses NetworkX’s `all_simple_paths` algorithm to enumerate causal pathways,
1472 with keyword matching for flexibility.

1473 B.3.2 TRANSFER LEARNING QUERY CONSTRUCTION

1474 The `_transfer_learning_query` method constructs sophisticated prompts that include:

1475

- 1476 1. **Embedding Analysis Section:** Quantifies semantic differences between user query and
1477 knowledge graph
- 1478 2. **Proportional Adjustment Guidance:** Instructions for the LLM to modify synthesis con-
1479 ditions based on embedding distances
- 1480 3. **Mechanistic Reasoning Requirements:** Ensures outputs are grounded in materials sci-
1481 ence principles

1482 For inverse design tasks, the prompt includes:

1483 Embedding distance between properties: 0.3241 (0=identical, 2=opposite)
1484 The embedding distance indicates that the user’s desired properties are
1485 moderately similar to the known property. You should adjust the synthesis
1486 conditions proportionally to this difference.

1487 B.3.3 POST-PROCESSING AND VALIDATION

1488 After receiving the LLM response, the system:

1489

- 1490 1. Extracts JSON from markdown blocks using regex
- 1491 2. Calculates embedding distances for suggested synthesis conditions
- 1492 3. Adds interpretability metrics to the output

1493 B.3.4 IMPLEMENTATION SPECIFICATIONS

1494 Both models share common infrastructure components including NetworkX-based KG construc-
1495 tion with edge attributes for mechanisms, SentenceTransformers ‘all-MiniLM-L6-v2’ for semantic
1496 similarity, Google Gemini-1.5-pro-latest as the LLM backend, cosine similarity threshold > 0.5 for
1497 analogous reasoning activation, and robust JSON parsing with error handling for malformed LLM
1498 outputs. The key architectural distinction lies in reasoning depth and explanation generation, with
1499 KG+CoT representing a significant enhancement in interpretability at the cost of computational ef-
1500 ficiency and response time.

1501 B.4 ENHANCED SIMILARITY ASSESSMENT

1502 B.4.1 SEMANTIC RELATIONSHIP ENCODING

1503 Standard cosine similarity measures fail to capture the nuanced semantic relationships inherent in
1504 materials science, where seemingly similar statements can be factually contradictory due to domain-
1505

1512 specific concept relationships. For instance, "n-type doped semiconductor" and "p-type doped semi-
 1513 conductor" may have high cosine similarity due to shared vocabulary but represent fundamentally
 1514 opposite electronic properties. This limitation necessitates a domain-aware similarity framework
 1515 that understands materials science semantics.

1516 We construct a comprehensive database of materials science concept relationships, categorized into
 1517 four types:
 1518

- 1519 • **Opposite relationships:** Concepts that are mutually exclusive (e.g., n-type/p-type, crys-
 1520 talline/amorphous)
- 1521 • **Complementary relationships:** Related but distinct concepts (e.g., different crystal sys-
 1522 tems)
- 1523 • **Hierarchical relationships:** Concepts at different abstraction levels
- 1524 • **Conditional relationships:** Context-dependent oppositions (e.g., high/low temperature)

1525 Each relationship is formally defined as:
 1526

$$1527 R = (t_1, t_2, \text{type}, \text{context}, \text{weight})$$

1528 where t_1 and t_2 are concept terms, $\text{type} \in \{\text{opposite, complementary, hierarchical, conditional}\}$,
 1529 context defines the applicable domain, and $\text{weight} \in [0, 1]$ represents the relationship strength.
 1530

1531 B.4.2 CONTEXT-AWARE CONFLICT DETECTION

1532 We implement context extraction using domain-specific keyword patterns across eight materials
 1533 science contexts: doping, synthesis, structure, electrical, mechanical, thermal, optical, and magnetic
 1534 properties. For texts T_{query} and T_{node} , we:

- 1535 1. Extract relevant contexts: $C_{\text{query}} = \text{extractcontext}(T * \text{query})$, $C_{\text{node}} = \text{extractcontext}(T * \text{node})$
- 1536 2. Identify shared contexts: $C_{\text{shared}} = C_{\text{query}} \cap C_{\text{node}}$
- 1537 3. Detect semantic conflicts within shared contexts using the relationship database
- 1538 4. Calculate conflict strength based on relationship weights and context overlap

1539 B.4.3 FACTUAL CONSISTENCY SCORING

1540 The factual consistency score $F(T_{\text{query}}, T_{\text{node}})$ is computed as:
 1541

$$1542 F(T_{\text{query}}, T_{\text{node}}) = \max(0, 1 - \sum(w_i \times s_i))$$

1543 where w_i is the weight of detected relationship conflict i , and s_i is the context-adjusted conflict
 1544 strength. Opposite relationships in shared contexts receive full penalty, while conditional relation-
 1545 ships receive reduced penalties (0.5×).

1546 B.4.4 NUMERICAL PROPERTY COMPATIBILITY

1547 We extract quantitative properties using regular expressions for common materials parameters (tem-
 1548 perature, bandgap, conductivity, pressure, concentration). Compatibility $N(P_{\text{query}}, P_{\text{node}})$ is calcu-
 1549 lated as:
 1550

$$1551 N(P_{\text{query}}, P_{\text{node}}) = \prod \left(1 - \min(0.5, \frac{|p_q - p_n|}{\max(p_q, p_n)} \times \text{tolerance}) \right)$$

1552 for each shared property p , where tolerance values are property-specific (e.g., 10% for temperature,
 1553 20% for bandgap).

1566 B.4.5 COMBINED SIMILARITY SCORE

1567

1568 The final enhanced similarity score S_{enhanced} integrates three components:

1569

1570
$$S_{\text{enhanced}} = \alpha \times \text{cos_sim} \times (1 + \beta \times \text{context_overlap}) + \gamma \times F + \delta \times N$$

1571

1572 where $\alpha = 0.4$, $\gamma = 0.35$, $\delta = 0.25$, $\beta = 0.1$, ensuring that factual consistency and numerical compatibility significantly influence the final ranking while preserving the benefits of semantic similarity.

1573

1574

1575 C USE OF LARGE LANGUAGE MODELS

1576

1577 In preparing this manuscript, we employed large language models (LLMs) exclusively for language refinement, including improving grammar, clarity, and readability. LLMs were **not** used to generate, 1578 modify, or validate any scientific ideas, methods, results, or conclusions. All substantive contributions—conceptual, methodological, and analytical—are the original work of the authors.

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

30