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Abstract

We introduce GazeD, a new 3D gaze estimation method
that jointly provides 3D gaze and human pose from a sin-
gle RGB image. Leveraging the ability of diffusion models
to deal with uncertainty, it generates multiple plausible 3D
gaze and pose hypotheses based on the 2D context informa-
tion extracted from the input image. Specifically, we condi-
tion the denoising process on the 2D pose, the surroundings
of the subject, and the context of the scene. With GazeD
we also introduce a novel way of representing the 3D gaze
by positioning it as an additional body joint at a fixed dis-
tance from the eyes. The rationale is that the gaze is usu-
ally closely related to the pose, and thus it can benefit from
being jointly denoised during the diffusion process. Eval-
uations across three benchmark datasets demonstrate that
GazeD achieves state-of-the-art performance in 3D gaze
estimation, even surpassing methods that rely on temporal
information. Project details will be available at https :
//aimagelab.ing.unimore.it/go/gazed

1. Introduction

The importance of 3D gaze estimation lies in its ability to
unlock deeper insights into human attention [47], and cog-
nition [12], which are central to a wide range of applica-
tions such as human-computer interaction [51], behavioral
analysis [30], and extended reality systems [54], surveil-
lance [62], autonomous driving [43], and robotics [44].
Computer vision researchers have traditionally ap-
proached automated gaze analysis by dividing it into two
main tasks [59]: gaze estimation and gaze target detection,
also referred to as gaze following. Specifically, gaze estima-
tion aims to predict the direction of a person’s gaze, while
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Figure 1. GazeD method jointly predicts 3D gaze and body pose
analyzing the 2D pose, the surroundings of the subject and the
context, in terms of objects in the scene.

gaze target detection aims to pinpoint the exact location a
person is looking at within the scene.

Methods for 3D gaze estimation are often based on the
availability or extraction of detailed information about the
human face or upper body [5, 14, 19, 29], ranging from the
positions of the pupils to the exact location of the eyes. In-
stead, only a few methods take advantage of the context,
and even fewer works attempt to combine it with the human
pose [58]. These elements are used more often for gaze
target detection [17, 59], as they are required to relate the
target of the gaze to the elements in the scene.

However, we believe that the scene context and the hu-
man pose contain knowledge useful also for 3D gaze esti-
mation: the context influences the gaze, and the gaze itself
strictly depends on the body pose. Indeed, previous studies
have shown that gaze direction and body pose are closely in-
terrelated [25]. Some works [41, 58] utilize the 2D pose or
the head or body orientation to estimate the 3D gaze. How-
ever, these methods lack a mechanism to directly correlate
the pose with the final gaze output.

Therefore, in this paper, we introduce GazeD, that effi-
ciently combines different elements from the scene, i.e. the
2D body pose, the subject’s surroundings, and the global
context with objects, to output the 3D gaze direction (see
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Figure 2. Human body skeleton with our additional gaze joint.

Fig. 1). A key idea of GazeD is to model the gaze as a
virtual protrusion from the forehead of the person, between
the eyes, where we placed an additional joint here referred
to as gaze joint (see Fig. 2). The gaze joint has a variable
direction (the gaze angle), while its distance from the head
is fixed. Therefore, the gaze joint is not positioned in cor-
respondence with the target object, as required to solve the
gaze target detection task, but it acts as a proxy to compute
the gaze direction.

Having modeled the gaze direction using an additional
joint enables the resolution of the problem as an extension
of 3D human pose estimation. GazeD is thus based on a
regression head, which outputs both pose and gaze working
on a common embedding.

Because of the intrinsic ambiguity of lifting 2D infor-
mation to the 3D world, as well as the multiple possible
gaze directions given the body posture and the context of the
scene, GazeD regresses the 3D gaze and pose using a dif-
fusion model. By conditioning the denoising process using
2D pose, surroundings, and context features, GazeD models
the uncertainty in the data and generates multiple plausible
output hypotheses. To our knowledge, we are the first to
adopt a diffusion model to regress 3D gaze direction.

The embeddings used as conditioning for the diffusion
model are generated by GazeD as two consecutive steps.
Starting from the 2D pose estimated by an off-the-shelf
method, the first step recovers information from the con-
text close to the subject. The second step extracts additional
cues from the objects in the scene, i.e. it captures the context
of the scene far from the subject.

As an additional advantage, GazeD works on a single
RGB image, avoiding the computational complexity of pro-
cessing video sequences and the need for specific hardware.
This streamlines its adoption in real-world applications,
simplifies the training procedure, and facilitates the acqui-
sition of new datasets. In contrast, 3D estimators based on
sequences of frames [18, 27, 41] or specific data modalities,
such as depth maps or point clouds [14, 24, 58], have more
limited applicability in real-world scenarios.

In summary, the contributions of our paper are: i) We in-

troduce GazeD, a method for 3D gaze estimation that com-
bines surroundings, context with objects, and 2D human
pose features to condition a diffusion model. The denois-
ing process produces multiple plausible hypotheses of 3D
gaze and human pose. ii) We propose a novel representa-
tion of the gaze as an additional joint; as a consequence, the
proposed method neatly outputs both the 3D gaze and the
3D human pose. iii) Experimental evaluations on several
datasets demonstrate that GazeD achieves state-of-the-art
performance in 3D gaze estimation, even surpassing meth-
ods that use multiple input modalities. Additionally, our
method also achieves high accuracy in predicting the 3D
human pose.

2. Related Work
2.1. 3D Gaze Estimation

Recently, research in 3D gaze estimation has evolved signif-
icantly. Approaches are broadly categorized into two cate-
gories [41]: geometry-based and appearance-based ones.
Geometry-based methods. These methods [20, 33,37, 77]
rely on constructing a 3D model of the eye using optical or
geometric properties. These techniques are accurate in con-
trolled environments (e.g. good light conditions [40]) with
consistent subject characteristics (e.g. head position [61]).
Unfortunately, they often require specialized and expensive
hardware — such as infrared cameras or eye-tracking devices
— extensive calibration, limiting their applicability in real-
world settings.

Appearance-based methods. These methods [5, 13, 68,
69] have gained popularity due to their reliance on stan-
dard RGB cameras to estimate the gaze from eye and face
images directly. Early appearance-based approaches used
hand-crafted features, such as pixel intensity or eye shape,
but suffered from limited robustness in unconstrained en-
vironments. The advent of deep learning has significantly
improved the performance of these methods, enabling more
robust gaze estimation across varying lighting conditions,
head poses, and subjects [6].

Some methods [14, 23, 24, 58] use RGB and depth data
to recover scene depth, but this requires specialized hard-
ware and is less suitable for outdoor use due to limitations
like sunlight interference [49]. Alternatively, temporal in-
formation modeled with RNNs or LSTMs has improved
gaze estimation by capturing movement patterns [41, 45,
75], though such approaches demand significant computa-
tional resources to handle long video sequences.

2.2. 3D Human Pose Estimation

3D Human Pose Estimation (HPE) typically involves es-
timating 2D poses and then lifting them to 3D [9, 11], a
step that remains challenging due to the ambiguity of infer-
ring 3D from 2D [2, 4]. To address this, some methods use
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Figure 3. Overview of the proposed GazeD method that predicts the 3D gaze and human pose starting from a single input RGB image,
combining information from the 2D body pose, surroundings, and context with objects.

temporal information [34, 74], although this adds latency.
Given the under-constrained nature of the problem [53],
multihypothesis approaches generate multiple plausible 3D
poses instead of a single estimate, using techniques such
as mixture density networks [42] or conditional variational
autoencoders [52].

Diffusion Models. More recently, Denoising Diffusion
Probabilistic Models [21] have been applied to 3D HPE.
These models treat 3D pose estimation as a reverse diffu-
sion process, where a highly uncertain 3D pose distribu-
tion is progressively refined toward a more accurate pose.
Methods like DiffPose [15] leverage spatial-temporal con-
text from 2D pose sequences to guide this diffusion process.
A key advantage of diffusion models in this context is their
ability to generate multiple hypotheses, providing a proba-
bilistic framework naturally, and this allows for improved
performance by aggregating multiple outputs, effectively
reducing the impact of outliers. Furthermore, graph con-
volutional neural networks have been integrated with dif-
fusion models [7] to explicitly capture the correlations be-
tween joints, enhancing pose estimation accuracy.

3. Method

Given a single RGB image I € RH*W*3 ag input, our
goal is to predict the 3D gaze direction together with the
3D pose of the person in the scene. To this end, we define
an additional gaze joint and we concatenate it to the list of
body joints to provide the output y € R7*3, where J is the
number of skeleton’s joints, including the gaze joint (see

Fig. 2). The gaze unit vector v is defined as the direction
from the midpoint between the eyes and the gaze joint:
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As shown in Figure 3, GazeD is composed of three mod-
ules: Body & Surroundings, responsible for the feature
extraction from the human pose and surroundings, Context
with objects to integrate the general context, including the
location of objects, and a Diffusion module that contains a
regression head for the 3D gaze and pose prediction as well
as the diffusion scheduler.

3.1. Body & Surroundings

This module takes as input a cropped image of the person,
along with its 2D pose p € R7*2. The pose p is obtained
by concatenating the output of a 2D pose estimator with
an additional joint representing the 2D gaze. However, as
the gaze joint is virtual and lacks a correspondence in the
image, we set the 2D gaze point as the midpoint between
the eyes. Although it is not the 2D projection of the cor-
responding 3D gaze joint, such a point has proven to be
a good and consistent initialization. For this joint, it will
not only be necessary to perform a third-dimensional lift-
ing, but all three coordinates must be correctly estimated by
the method.

We use a HR-Net[56] backbone to extract intermediate
hierarchical features H = {H; € REXWixCL | where
L is the number of feature maps (L = 4 in our experiments).



Deformable Surroundings Extraction. As shown in [38,
71], it is possible to encode fine-grained visual cues — i.e.,
the joint locations — and extract high-level semantics, i.e.,
the spatial configuration of the joints, via the high- and low-
level features of a stacked network based on down-sampling
operations [56, 66]. Therefore, following [71], we lever-
age a Deformable Context Extraction (DCE) module, based
on the deformable attention mechanism [76]. DCE extracts
spatial contextual cues from the intermediate feature maps
using the initial 2D pose joints as reference points. Linear
projections of the 2D input poses are concatenated to the
hierarchical features H as an additional channel.

The output of the DCE module F) € R(EFD>xIxd jg

an embedding containing near context (i.e., surroundings)
and body pose features. We fixed d = 128 in our exper-
iments. A linear projection of the noisy 3D poses at the
current timestep coming from the diffusion scheduler (see
Sect. 3.3) is then concatenated to Fz/r Moreover, a posi-
tional encoding of the diffusion timestep is added in order
to generate F, € R(Z+2)%7%d and to make the model aware
of the current diffusion step.
Pose-to-Context and Joint-to-Joint Modules. Drawing
inspiration from multi-modality models [1, 31] that em-
ploy a transformer encoder, we use a similar architecture
to learn a joint representation. F}, is a multichannel descrip-
tor, which contains two channels for the pose and L chan-
nels for the context. The Pose-to-Context Attention Module
performs a self-attention among the L + 2 descriptors (to-
kens) of size d for each joint. The Joint-to-Joint Attention
Module considers J tokens of size d' = d - (L + 2) and
computes self-attention among them. The Pose-to-Context
module enriches the embeddings of each joint with contex-
tual information, while the Joint-to-Joint module enables
data sharing between the different joints. BS, € R % g
the final output of the Body & Surroundings module, with a
descriptor of size d’ for each joint.

3.2. Context with Objects

The goal of this module is to extract information from the
whole image, particularly focusing on elements that can
affect or guide the person’s gaze — i.e., the objects. To
this aim, we use a DETR-like object detector, which is
able to provide a descriptor of the objects in the image,
with knowledge of both their location and their class. Let
Fperr € R*? be the last hidden states (removing the
localization and classification heads and projecting to the
common size d’) of the detector obtained with @ input
queries. The Object-To-Context block performs a cross-
attention between Fpgrgr and BS,. An average pooling
operation is applied along the query dimension to merge all
the important information related to the scene objects. The
obtained embedding CO € R? is merged with BSS** to

generate the final Pose&Gaze embedding PG € R %

3.3. Diffusion-based Multi-hypothesis Generation

Estimating the 3D gaze and pose of people from RGB is
inherently challenging. Major issues are the partial or com-
plete occlusion of the eyes and the lack of depth informa-
tion. Therefore, we propose the use of diffusion models to
estimate the gaze direction, as their ability to generate mul-
tiple plausible hypotheses based on the person’s pose and
contextual information becomes highly valuable. By mod-
eling various potential gaze directions, the diffusion process
accommodates the inherent uncertainties and ambiguities.

Representing pose and gaze direction using a single
skeleton with an additional joint brings two advantages.
First, it enables the formalization of the global inference
process as a denoising task, starting from a completely ran-
dom pose sampled from a unique Gaussian distribution.
Second, it simplifies the optimization function: we adopted
a single MSE loss between the predicted and the ground-
truth joint coordinates, implicitly incorporating and stan-
dardizing the contributions of the pose and the gaze.

The iterative denoising procedure can be applied in par-

allel to H initial hypotheses gy, ~ N(0;1) in order to
generate H final predictions ., € R7*3 after N denoising
iterations. For efficient inference, we employ the optimized
DDIM [55] denoising scheduler. A regression head is in-
cluded in the diffusion module, and it is trained to perform
the denoising task.
Gaze and Pose aggregation. GazeD generates H hypothe-
ses of the gaze and the pose, each one representing a plau-
sible 3D solution. The distribution itself contains additional
information about the real gaze (and posture). Therefore, a
correct aggregation of the generated hypotheses allows for
reducing the prediction error of a single hypothesis.

As the aggregation function A, we adopt the average
operation (AVG) at joint level. Despite its simplicity, this
aggregation has proven to be effective and accurate, as re-
ported in experiments. For the sake of completeness, we
also compute the “Supervision from an Oracle” [52] ag-
gregation (ORC) that selects the closest hypothesis with
respect to the ground truth annotation. This aggregation
is useful to highlight the upper-bound performance of the
proposed method, but it is limited in its applicability when
ground truth annotations are not available. Additional ag-
gregation functions based on oracle are investigated in Sec-
tion 4.6. We avoided using additional aggregation tech-
niques that required ground-truth information or camera
calibration parameters [50], which are not always available
or predictable in single-frame methods.

4. Experimental Evaluation
4.1. Datasets

As GazeD is based on the rich information extracted from
the surroundings and global context, we focus on datasets



Method Office Living Room  Kitchen Library Courtyard ‘ All
Fixed bias 88.0/76.0 85.5/76.7 86.0/82.4  89.0/85.1  89.7/88.7 | 88.1/79.7
Frontal gaze 22.6/21.9 36.6/35.4 17.9/19.6 27.1/25.8  30.5/33.8 | 28.8/28.8
Dias et al. [10] —/27.2 —/25.2 —/19.8 —/24.9 —/36.1 —/27.1
XGaze [69] 24.2/23.0 42.0/40.9 23.3/22.9 24.6/22.3  30.2/31.9 | 29.2/284
Nonaka et al. [41] 20.0/18.1 25.6/25.5 21.5/18.6  21.9/20.1  28.4/30.5 | 24.1/23.3
Gaze360 [29]° 24.0/19.2 41.1/31.3 32.4/21.2 27.5/20.7 28.2/28.3 | 30.4/24.5
Nonaka et al. [41]T  14.4/14.3 25.1/22.6 20.4/19.6 19.8/184  25.4/26.9 | 21.7/20.9
Ours =20, A=AvG) 15.8/16.3 19.3/20.6 18.2/19.5 17.6/16.9 25.3/29.1 | 19.5/20.5
Ours =20, A=ORC) 11.6/11.6 13.2/13.8 14.6/13.7  14.2/129  23.9/279 | 15.9/16.3

Table 1. Experimental results on GAFA dataset expressed as MAEsp /MAE;p. T indicates methods leveraging temporal information.

containing 3D gaze annotations and full images, thus ex-
cluding those only containing crops around the faces, eyes
or body of the subject [13, 29, 69]. Additional details about
datasets are reported in the Supplementary.

GAFA [41] (Gaze from Afar) dataset is designed for 3D
gaze estimation in surveillance scenarios, capturing freely
moving people in natural settings. It includes more than
850k video frames from 5 different daily environments. It
features a wide range of head poses, including back views
and high-pitch angles, reflecting realistic conditions. GAFA
is annotated with 3D gaze directions and body orientations,
using wearable cameras and AR marker-based positioning
systems for ground truth.

GFIE [24] is a dataset introduced for 2D and 3D gaze-
following tasks, created using a system that combines a
laser rangefinder and an RGB-D camera to record and an-
notate gaze behaviors in natural indoor environments. The
system guides the subject’s gaze target using a laser spot,
which is then detected in the RGB images to generate pre-
cise annotations, and then removed using image inpaint-
ing [60]. The 3D gaze target is reconstructed using the dis-
tance measured by the laser rangefinder and the camera’s
intrinsic parameters. The dataset includes about 71k frames
of 61 subjects, performing a wide range of activities.

Ego-Gaze. We create this dataset starting from the mul-
timodal Ego-Exo4D dataset [16]. Specifically, we select
frames from the Ego-Pose subset in which the 3D anno-
tation of the human pose is available. Then, we com-
pute 3D gaze annotations from the data acquired with the
Aria glasses. The dataset includes a wide range of skilled
activities— such as sports, music, dance—performed in
natural settings. Because the Ego-Pose dataset is still used
for competitions, the official test set has not been made
available. Therefore, we use the official validation split as
test set and we sample validation instances from the training
set. We will release splits, enabling future comparisons.

Method RGB Crops Depth MAE;p
Random 84.4
Center 87.2
GazeFollow [48] v v 41.5
Lian et al. [35] v v 26.7
Rt-Gene [13] v v 21.0
Hu et al. [24] v v v 17.7
Toaiari et al. [58] v 15.9
Chong et al. [8]* v v 20.8
Gaze360 [29]F v 19.8
OUI'S(H:QOY A=AVG) v 13.6
OllI'S(sz(), A=ORC,) v 9.9

Table 2. Quantitative results on GFIE dataset. For each method,
the input data is reported: RGB for color images, Crops for head,
face, or eye crops, and Depth for depth maps. T indicates methods
leveraging temporal information.

Method Basket Dance Various All

XGaze 21.6/20.6  23.8/27.1 21.6/20.5  23.1/24.9
Gaze360 21.8/17.0 21.0/21.8 22.1/17.6  21.3/204
Ours 15.4/14.7 18.6/18.9 15.3/12.7 17.5/17.4

Table 3. Quantitative results on the Ego-Gaze dataset. GazeD is
tested with H=20, A=AVG.

4.2. Implementation Details and Training

As backbones, we use different pre-trained models. For
2D human pose estimation, we use HRNet [56], capable
of maintaining high-resolution representations throughout
the whole architecture and achieving great accuracy. As an
object detector, we use RT-DETR [73], a recent end-to-end
architecture with good accuracy and real-time performance
for the object detection task from single RGB images. Both
models are frozen during the training phase and are used
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Figure 5. Ablation study on GFIE dataset: (a) the contribu-
tion of the “Context with objects” module in addition to the
“Body&Surroundings”. (b) Performance of GazeD in terms of
MAE3;p by varying the distance of the gaze joint from the head.

with their original weights and parameters.

We train GazeD with a batch size of 64 for 100 epochs
on all datasets. We use Adam optimizer [32] with a starting
learning rate of 6e~* using a linear decay with factor 0.993.
No data augmentation is applied to input images.

4.3. Baselines and Competitors

We compare GazeD with several 3D gaze estimation base-
lines and competitors.

For the GAFA dataset [41], we compute two baselines.
The first is fixed bias, i.e. the mean gaze direction is ob-
tained from the training set, and the error metric is com-
puted using this mean value over the test set [41]. This
baseline is intended to show the lower bound accuracy on
this dataset. The second baseline is frontal gaze, where
we compute the angular error assuming that the predicted
gaze direction is always orthogonal to the line between the

two eyes. This is a useful reference for understanding the
precision that a method based solely on the pose of the
head would achieve. As competitors, we use a variety of
state-of-the-art methods from the literature. The approach
proposed by Dias et al. [10] estimates 2D gaze on the im-
age plane using facial keypoints detected by OpenPose [3].
Gaze360 [29] takes a sequence of full-head images as input
and provides the 3D gaze direction. XGaze [69] uses facial
images as input and assumes high-resolution facial images.

1

Hypothesis

45 40 35 30 25 20 15 10 5

5 10 15 20 25 30 35
Timesteps

(b)

Figure 6. (a) GazeD, predicts multiple hypotheses on which aggre-
gation functions are applied (see Sect. 3.3) (b) Investigation on the
number of different hypotheses vs number of timesteps. Darker
color represents a lower MAEsp value.

The GFIE dataset was originally proposed for gaze tar-
get detection, and thus provides additional information on
the scene — i.e. depth maps. For this reason, we evaluate
on this dataset with other baselines and competitors. The
baseline methods include the random approach, i.e. the 2D
and 3D gaze directions are randomly selected within the
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# Diffusion Objects Context MAE;p, MAE;p
1 X 16.1 14.2
2 X 15.9 12.9
3 X 15.1 12.0
4 13.6 11.5

Table 4. Ablation analysis of each component.
Aggregation GAFA [41] GFIE [24]

method MAEsp MAE;p | MAEsp  MAEpp
AVG 19.5 20.5 13.6 11.5
ORCp 19.7 204 13.4 10.8
ORCg 15.9 16.3 9.9 7.9
ORC; 12.6 13.3 8.7 7.5

Table 5. Impact of different aggregation methods on gaze.

image and point cloud, respectively. In addition, the cen-
ter baseline localizes the gaze always at the center of the
point cloud of the 3D space. As competitors, we also use
existing 2D gaze-following methods, i.e. GazeFollow [48],
Lian [35], and Chong [8]. To retrieve their 3D gaze an-
gle, we first back-projected the 2D gaze target into the 3D
space using the available registered depth maps. The results
of Gaze360 [29] and Rt-Gene [13] are collected from [23].
Finally, we report the results of the recent work by Toaiari
et al. [58], which utilizes upper-body skeleton data and the
depth map of the scene to predict the 3D gaze.

4.4. Comparison with state-of-the-art

We report the result using the Mean Angular Error (MAE),
the standard metric for the evaluation of gaze estimation
methods. MAE is expressed in degrees, and it is calculated
as the average of the angular difference between the pre-
dicted and ground-truth gaze directions over all the testing
samples. In addition to the 3D errors (MAE;3p), we report
the metric using the directions on the image plane (MAE;p).

Table | reports the performance of our GazeD and other
approaches. On the GAFA dataset, as shown, GazeD
achieves the best performance on both metrics, even out-
performing methods that leverage additional temporal in-
formation, i.e. [29, 41]. Both MAE;p and MAE,p achieved
by our method are well below the frontal gaze baseline, in-
dicating that the idea to model the gaze as additional joint
is effective in estimating the 3D gaze direction and that the
output of our method is not the mere head pose.

Table 2 reports similar results on the GFIE dataset. Also
in this case, our method largely outperforms the competi-
tors. In particular, GazeD outperforms even methods that
are based on fine details, such as the face or body crops, or
additional input data as depth maps, whose contribution is

significant in 3D estimation tasks.

In both datasets, we also report the results obtained us-
ing the ORCg aggregation function. As expected, these are
the best results. However, the ground truth is not normally
available in the inference phase, and it is not completely
correct to use it to select the best hypothesis. These results
show that the diffusion process can generate hypotheses
close to the ground truth, suggesting future work on more
sophisticated aggregation strategies.

The newly introduced Ego-Gaze dataset imposes re-
training the Gaze360 and XGaze methods. Unfortunately,
it was not possible to implement more recent techniques,
such as the ones developed in [24, 41], due to a lack of
depth maps and body or head orientation, respectively. Re-
sults are reported in Table 3, organized in three main scenes,
i.e., basket, dance and various. The latter includes the less
represented classes, such as cooking, soccer and bike repair.
As shown, GazeD achieves the best results in all the scenes.
These results demonstrate the robustness of the proposed
approach on a challenging dataset with complex scenes.

4.5. Qualitative results

Some qualitative results are reported in Figure 4, where the
input image and the predicted 3D gaze and pose are shown.
The ground truth gaze direction vector is drawn as a green
arrow, while the predicted vector is drawn as a red arrow.
These results confirm the ability of GazeD to predict gaze
direction in wide-angle ranges, also when the face is not
visible or partially occluded. Additional qualitative results
are reported in the Supplementary material.

4.6. Ablation Studies

Ablation studies are mainly computed on the GFIE dataset,
using GazeD in the configuration described in Section 4.2.
Module contributions We investigate the contribution of
each module (see Table 4). In experiment #1, we use
the transformer-based model without the diffusion process,
training the network to predict directly pose and gaze. In #2,
we remove the module ”Context with Objects” for context
analysis. In #3, we remove the part of the method respon-
sible for extracting and processing the surroundings of the
person. Each module is a key part of the method.

Context with Objects module To highlight the perfor-
mance improvement provided by the proposed ‘“context
with objects” module, we tested the results of GazeD di-
rectly using B.S,, in input to the diffusion step (see Fig. 3).
The results are reported in Figure 5a. Adding the object
embeddings clearly improves the model’s ability to solve
the 3D gaze estimation task.

Distances of the Gaze Keypoint The gaze joint is an aux-
iliary point used to solve the task, but it is not physically
present. Its distance from the eyes was chosen to be close
enough to the body to be modeled as a joint and, at the same
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(H=20, A=AVG)  (H=20, A=ORC)

MPJPEi‘ 629 608 59.1 58.6 583

524 519 518 434 494

49.7 | 49.7 41.1

Table 6. Results on Human3.6M dataset for the 3D Human Pose Estimation task. The best result is in bold, the second one is underlined.
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[46] [74] [63] [34] [74] [67] [71] | (H=20, A=AVG)  (H=20, A=ORC)
MPJPE | \ 84.0 77.1 68.1 58.0 577 549 447 \ 46.6 33.8

Table 7. Results on MPI-INF-3DHP dataset for the 3D Human Pose Estimation task. The best result is in bold, the second one is underlined.

time, far enough to reduce the dependence on noise in the
final conversion into angles. The measurement used, equal
to 30 centimeters, is supported by an experimental analysis.
MAE;p errors vs distances are plotted in Figure 5b.
Number of hypotheses and timesteps A key advantage
of diffusion models is their ability to generate multiple hy-
potheses. In Figure 6a, a real multiple-hypothesis prediction
is depicted. Then, we analyze how the number of hypothe-
ses H and the number of denoising iterations N affect the
final MAE;p. Figure 6b shows the matrix from which we
selected the final values of H and NN, where darker colors
denote lower errors. Based on this analysis, we selected
H = 20 and N = 20 for our evaluation, as a favorable
trade-off between accuracy and computational load.
Multiple Hypothesis Aggregation Strategies Having mul-
tiple generated hypotheses allows us to explore various ag-
gregation strategies. In Table 5, we compare the different
aggregations described in Section 3.3. We also investigate
different oracle selections [52] obtained in three different
ways. ORCg chooses the hypothesis with the lowest error,
specifically at the gaze joint. ORCp selects the hypothe-
sis with the lowest Mean Per-Joint Position Error (MPJPE)
relative to the ground truth; however, our results indicate
that minimizing MPJPE at the pose level does not neces-
sarily produce the most accurate gaze estimation. Finally,
ORC; employs a per-joint selection strategy in which, for
each joint, the coordinates with the lowest error are inde-
pendently selected, resulting in a more accurate estimation
of gaze direction. Since ORC,, ORC,, and ORC; rely on
ground truth data, they are not applicable in real-world sce-
narios. Therefore, we consider AVG as the most appropriate
baseline for fair comparison.

4.7. Additional Evaluation

As previously mentioned, GazeD predicts not only the 3D
gaze, but also the 3D body pose: therefore, we also analyze
performances on this task pose. Therefore, in this section,
we analyze the performance of this task.

Dataset The Human3.6M dataset [26] is a well-known
dataset of 3.6 million images with 3D human pose anno-

tations. It contains 17-joint skeleton annotations for 11 sub-
jects performing 15 activities, captured by 4 cameras in an
indoor environment. For evaluation, we follow the stan-
dard protocol of training on subjects S1, S5, S6, S7, and S8,
and testing on subjects S9 and S11. The MPI-INF-3DHP
dataset consists of over 1.3 million frames captured from
14 cameras and it is widely used for training and evaluating
3D human pose estimation models. It contains 8 actors per-
forming activities such as walking, sitting, and sports. The
frames are annotated using a skeleton model with 17 joints.
3D Pose Evaluation For the training, we use a batch of
128 for 50 epochs. Other training settings are the same
used for the gaze evaluation. Performance is evaluated us-
ing the Mean Per Joint Position Error (MPJPE) [28], which
calculates the average Euclidean distance (in millimeters)
between predicted and ground truth 3D joint coordinates.
In Tables 6 and 7, we report the comparison for the 3D pose
estimation task between our model and literature competi-
tors, on Human3.6M and MPI-INF datasets, respectively.
Among the others, Diffupose [7], Diffpose [15] are the most
similar methods since they are based on a diffusion architec-
ture. As shown, the results obtained are better than a large
portion of the literature, and comparable with the most re-
cent one. These experimental results suggest that, although
our method was not specifically developed for the HPE task,
it still achieves competitive results with a good level of ac-
curacy.

5. Conclusion

We introduced GazeD, a method for 3D gaze and pose es-
timation from single RGB images. By modeling 3D gaze
through a diffusion process, GazeD integrates 2D pose, sur-
rounding context, and global scene cues. The use of a diffu-
sion model addresses the inherent ambiguity of 3D gaze es-
timation, generating multiple plausible hypotheses. Results
demonstrate the efficacy of GazeD, highlighting its poten-
tial for accurate 3D gaze and pose estimation.
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