
Traxgen: Ground-Truth Trajectory Generation for AI
Agent Evaluation

Maria Emilia Mazzolenis
The Vanguard Group
Charlotte, NC, USA

emilia_mazzolenis@vanguard.com

Ruirui Zhang
The Vanguard Group
Charlotte, NC, USA

ruirui_zhang@vanguard.com

Abstract

As AI agents take on complex, goal-driven workflows, response-level evaluation
becomes insufficient. Trajectory-level evaluation offers deeper insight but typically
relies on high-quality reference trajectories that are costly to curate or prone to
LLM noise. We introduce Traxgen, a Python toolkit that constructs gold-standard
trajectories via directed acyclic graphs (DAGs) built from structured workflow
specifications and user data. Traxgen generates deterministic trajectories that align
with human-validated references and achieve average median speedups of over
17,000× compared to LLM-based methods. To probe LLM reasoning, we compared
models across three workflow complexities (simple, intermediate, complex), two
input formats (natural language vs. JSON), and three prompt styles (Vanilla, ReAct,
and ReAct-few-shot). While LLM performance varied, Traxgen outperformed
every configuration in both accuracy and efficiency. Our results underscore LLM
planning limitations and establish Traxgen as a scalable, resource-efficient tool
for evaluating planning-intensive AI agents in compliance-critical domains.

1 Introduction

Modern AI agents are expected to go beyond generating plausible responses; they are often required
to execute structured, goal-driven workflows that are auditable, policy-aligned, and robust to model
or prompt changes. As these systems grow more complex, traditional response-level evaluation
becomes insufficient [Yehudai et al., 2025]. Instead, evaluation must consider the trajectory: the
ordered sequence of tool calls or decisions an agent makes to complete a task. Trajectories can reveal
whether an agent reasons effectively, selects appropriate tools, and respects task specific constraints.

Recent frameworks have introduced support for trajectory-level benchmarking, typically by compar-
ing an agent’s behavior to a ground truth trajectory [LangChain, 2024, Google Cloud, 2024]. However,
these evaluations rely on or benefit from the availability of high-quality reference trajectories, which
are often manually constructed. While LLMs have also been explored as a means to generate ground
truth trajectories [Yao et al., 2024, Zhang et al., 2025], the effects of model size and workflow com-
plexity on their performance are still poorly understood. Moreover, there are no standardized tools for
generating high-quality reference trajectories, limiting reproducibility and evaluation. To address this
gap, we present an automated framework for generating and evaluating agent trajectories, enabling
consistent benchmarking in single- and multi-agent settings. Our contributions are as follows:

• A Python toolkit for ground-truth trajectory generation in single- and multi-agent settings,
supporting conditional logic, synthetic data, and platform-compatible formats, achieving
orders-of-magnitude speedups over LLM-based generation with improved accuracy 1.

1Experimentation code is available here. Package available on PyPI.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Scaling Environments
for Agents (SEA).

https://github.com/emiliamazzo/traxgen-experiments/tree/main
https://pypi.org/project/traxgen/

• An empirical study of six LLMs’ trajectory planning under diverse prompts, input for-
mats, and inference strategies, evaluated on tasks spanning nine domains, three workflow
complexities, and multi-agent, multi-intent scenarios.

2 Related Work

2.1 Evaluation Strategies for Agents

Evaluating multi-agent dialogue systems is challenging, requiring assessment of message quality,
outcome correctness, and overall agent effectiveness. A common approach uses LLMs as judges
to rate responses based on metrics like helpfulness, relevance, and coherence [Zheng et al., 2023,
Gu et al., 2024]. However, such approaches emphasize surface-level dialogue quality and often
overlook agents’ internal reasoning or coordination dynamics [Son et al., 2024, Feuer et al., 2024].
To address limitations, recent work looks beyond conversation-level metrics. τ -Bench compares
final database states with annotated ground truth goals to measure tool-use reliability across trials
[Yao et al., 2024]. LTM Benchmark evaluates agents’ ability to retain and apply long-term memory
in dynamic user interactions [Castillo-Bolado et al., 2024]. CURATe explores agents’ ability to
personalize recommendations using safety-critical user data across sessions [Alberts et al., 2024].

Another emerging direction focuses on trajectory-level evaluation. Recent work has explored captur-
ing tool choices, reasoning, and key decisions in agent workflows. MetaTool, for instance, examines
tool selection under ambiguity [Huang et al., 2023]. ToolLlama provides datasets capturing rea-
soning steps and intermediate tool calls [Qin et al., 2023]. ToolSandbox introduces Milestones and
Minefields, events that must or must not occur, to track critical events in workflows [Lu et al., 2024].

Trajectory evaluation is essential for understanding agent performance in multi-step interactions. For
instance, Agent WARPP [Mazzolenis and Zhang, 2025] relied on trajectory-level metrics such as
execution fidelity, parameter fidelity, and tool accuracy to assess workflow adherence in multi-agent
systems. While frameworks such as the OpenAI Agents SDK [OpenAI, 2025] and platforms like
Langchain [LangChain, 2024], Vertex AI [Google Cloud, 2024], and Labelbox [Labelbox, 2025] offer
agent tracing and evaluation tools, they typically assume and/or benefit from ground truth trajectories.
In real-world systems with proprietary workflows, trajectories often depend on user inputs and
intermediate tool outputs, making them costly and slow to obtain at scale. This motivates the need for
an automated framework that generates trajectories for systematic analysis and benchmarking.

2.2 Trajectory Ground Truth Generation

Evaluating AI agents in complex, tool-augmented tasks requires high-quality ground truth trajectories.
Existing generation methods are often labor-intensive or error-prone and generally fall into two
paradigms: human-in-the-loop LLM generation or fully automated LLM-driven approaches.

In the human-in-the-loop paradigm, MetaTool Benchmark [Huang et al., 2023] utilizes human experts
to label user queries based on tool necessity, supplemented by LLM-driven verification and manual
review of ambiguous outputs. Similarly, ToolSandbox [Lu et al., 2024] employs human annotators
who incrementally create complex, branching scenarios from simpler cases, validated via LLM
consistency checks. DataSciBench [Zhang et al., 2025] initially generates responses using LLMs and
subsequently relies on human experts to resolve inconsistencies. τ -Bench [Yao et al., 2024] integrates
human-written examples and LLM-generated dialogues, with an emphasis on human curation.

Automated LLM-driven approaches reduce human involvement. APIGen-MT [Prabhakar et al., 2025]
creates an LLM-reviewed blueprint for intent and API use, then collects trajectories by simulating
human-agent interactions. ToolLLM [Qin et al., 2023] generates trajectories from instructions, tools,
and execution examples with a DFS-based decision tree guided by LLM reasoning. While scalable
and more cost-effective than ReAct-generated trajectories [Yao et al., 2022]), these methods can yield
incomplete or incorrect trajectories as they rely on model’s predictions for termination.

3 Traxgen

Unlike prior stochastic or hybrid approaches, we introduce a fully deterministic trajectory generation
paradigm. Traxgen (MIT-license) transforms high-level workflow specifications and user profiles

2

into trajectories specifying which agents invoke which tools, in what order, with all parameters set.
Trajectories can vary across users based on conditional logic, tool availability, and user attributes.

Traxgen is designed for domains where compliance, auditability, and repeatability are critical, and
where flexible or stochastic evaluation could introduce ambiguity or legal risk. By generating fully
specified trajectories, Traxgen ensures agents are assessed against explicitly defined correct paths.
This is particularly important in industries such as finance or healthcare, where exact adherence to
workflows is required. Instructions on installation and usage are provided in Appendix A.1.

3.1 Required Inputs

3.1.1 Workflow

Inspired by symbolic AI planning [Chen et al., 2024], workflow modeling [Russell et al., 2006],
and rule-based expert systems [Grosan and Abraham, 2011], a Traxgen workflow is a structured
specification encoding a sequence of tool-based operations to accomplish a task. Workflows are
JSON objects with three key components:

Steps: An ordered list of tool calls defining the actions in the workflow. Each step includes a tool
name and parameter templates indicating where to source values from user-provided or system data.
The list enumerates all possible tool invocations for the workflow.

Soft Ordering: Groups of steps that can execute in any order, allowing flexible sequencing and
multiple valid trajectories via permutations. Although permutations grow factorially, groups rarely
exceed 3–4 steps, as fine-grained actions are usually bundled into high-level operations.

Conditionals: Logic blocks that dynamically influence the trajectory based on user data, exter-
nal JSON inputs, or tool outputs. Conditionals specify actions such as skip, end_after, and
override_params targeting specific steps, enabling pruning, early termination, or parameter over-
rides in the trajectory generation (See Appendix section A.2 for all action definitions).

Example workflows appear in Appendix sections A.5 through A.13.

3.1.2 User Data

Traxgen workflows operate with user-specific data that drives conditional branching and parameter
binding. User data is provided as JSON objects including fields such as (a) agent sequence (a
list of workflows to be executed), (b) customer_id or other domain-specific identifiers, and (c)
user_provided_info as the subset of information that a client LLM provides to the agent during
interaction. An example customer data can be found in the Appendix section A.14.

3.2 Supported Trajectory Formats

Traxgen supports four trajectory formats (App. A.15) for interoperability with existing frameworks:
(1) Tool Only, which lists only tool names without arguments; (2) Google Style, used in Google’s
Vertex AI evaluation service; (3) LangChain Tool Style, compatible with the LangChain evaluation
ecosystem; and (4) Traxgen Style, which captures agent names and tool calls with arguments.

3.3 System Architecture

The toolkit comprises three modular stages, represented in Algorithm 1:

(1) Workflow Interpretation. Each workflow is parsed into an intermediate planner object that
formalizes all valid tool sequences. Workflows are represented as (T,C, S), where T is the set of tools,
C are conditional rules, and S are soft ordering blocks. Conditional rules evaluate boolean expressions
over user data with operators {==, ̸=, >,<,≥,≤,∈, /∈, contains, not contains}, triggering dynamic
changes such as skipping tools, truncating sequences, overriding trajectories, or adjusting parameters.

(2) Trajectory Planning. Traxgen constructs a directed acyclic graph G = (V,E) with tools as
vertices and edges enforcing hard ordering. The process includes:

• Node insertion: Insert all candidate tools T from the workflow into the graph.

3

• Conditional pruning: Remove nodes whose execution is skipped or truncated according to
conditional rules C, along with their incident edges.

• Edge wiring: Reconnect remaining nodes into a linear chain, enforcing precedences.

• Cycle check: Assert the graph remains acyclic to catch contradictory constraints.

• Soft ordering: For each soft-ordering block S = {s1, . . . , sk}, generate all intra-block per-
mutations P =

∏k
i=1 Perm(si), respecting hard constraints and pruning invalid sequences.

(3) Multi-Agent Composition. Given agents A = [a1, . . . , an], each agent’s valid trajectories Ti
are computed, and multi-agent sequences are formed by concatenating the agent trajectories in order.

For each user profile, multi-agent trajectories are generated in all requested formats. Optional
visualizations of the dependency graph support debugging and analysis. A validation layer detects
malformed workflows, invalid profiles, missing parameters, and unsupported APIs, ensuring correct
and reproducible trajectory generation.

Algorithm 1 Traxgen Trajectory Generation
Require: User profiles U , workflows W , agents A, formats F , optional visualization flag v
Ensure: Trajectories T

1: for all agent a ∈ A do
2: (T,C, S)← parse_workflow(W [a])
3: end for
4: for all user u ∈ U do
5: for all agent a ∈ A do
6: G← DAG(T,C, S) ▷ Apply conditionals, ordering, permutations
7: end for
8: Tu ← concatenate({Ga}a∈A)
9: for all f ∈ F do

10: Tu,f ← format(Tu, f)
11: end for
12: if v then
13: visualize({Ga}, Tu, A)
14: end if
15: T [u]← {Tu,f}f∈F

16: end for
17: return T

4 Experimentation

4.1 Data Construction

We generate data for nine customer service workflows using a three-stage process:

Stage I: Workflow design. Workflows are manually defined using a control-flow language (e.g.,
skip, end_after, override_trajectory) to specify tool sequences, parameter bindings, and
policy constraints. Three workflows were created for each of the three complexity tiers (see §4.2).

Stage II: User profile generation. For each workflow, we create a pool of diverse user profiles in
JSON form, populated via templated sampling supported by Traxgen. Profiles include relevant user-
specific information (e.g., address, product ID, leave dates) required to instantiate tool parameters.

Stage III: Trajectory Annotation and Verification. We use Traxgen to compile each work-
flow–profile pair into a deterministic trajectory. Two blinded annotators validate whether each
trajectory follows the workflow’s policy logic and aligns with user data, using structured guidelines
on tool order, parameter correctness, conditionals, and agent boundaries. A trajectory is marked valid
only if all constraints are satisfied. While Traxgen-generated drafts seeded the process, all gold
trajectories were independently reviewed by human annotators to avoid self-alignment.

4

Intent Complexity Domain # Test Cases # APIs

checkOrderStatus Simple E-Commerce 50 3
checkProductAvailability Simple E-Commerce 50 5
resendEmailReceipt Simple E-Commerce 50 4
submitTimeOffRequest Intermediate HR 75 8
updateAddress Intermediate HR 75 7
accountSuspensionRequest Intermediate HR 75 7
bookFlight Complex Travel 100 12
cancelFlight Complex Travel 100 12
flightDisruption Complex Travel 100 13

Table 1: Intents categorized by complexity, domain, number of test cases, and number of APIs.

4.2 Data Distribution and Complexity Levels

Workflow Complexity. We categorize workflows as: simple (linear with few conditionals), inter-
mediate (branching with optional soft ordering), and complex (nested conditionals, multiple soft
orderings, heavy contextual dependence).

Data Distribution. To balance effort and coverage, we sample 100 profiles per complex intent, 75
per intermediate, and 50 per simple, capturing the greater diversity and error surface of complex
workflows while maintaining metric stability. In total, the dataset includes 675 task instances and 71
tools, with 10% involving multi-intent cases.

4.3 General Experimentation Setup

We evaluate models on generating agent trajectories conditioned on user intent, profile, and workflow.
Experiments vary prompting (Vanilla, ReAct [Yao et al., 2022], ReAct few-shot), input format
(natural language vs. JSON), and workflow complexity. To benchmark Traxgen, we include multiple
LLMs as baselines, since recent literature predominantly relies on LLMs for trajectory synthesis, and
outputs from all approaches are compared to human-validated reference trajectories.

4.4 Evaluation Metrics

To handle multiple predicted and gold trajectories from soft ordering or multi-output models, we
align each prediction to its best-matching ground-truth trajectory using the Hungarian algorithm
[Kuhn, 1955], maximizing a similarity metric. We then evaluate the aligned pairs.

Let G and P denote the sets of ground-truth and predicted trajectories, each a sequence of
(tool, params) steps. We define metrics as follows:

Exact Match and Count Agreement We compute Exact Match as 1(P = G), and Count Agree-
ment as |P|

|G| × 100%, capturing over- or under-prediction in the number of predicted trajectories.

Tool- and Parameter-Level PRF We flatten each matched trajectory pair into a multiset of tools
T = [t1, t2, . . .] and a multiset of parameter triplets P = [(t, k, v)j], where each t is a tool, k a
parameter key, and v its value. We compute precision, recall, and F1 (PRF) based on multiset overlap
(ignoring order). Standard PRF metrics are reported separately for tools and parameter triplets.

Contiguous Overlap Length (CMR) Measures the longest substring C shared between G and
P: C = max{k : Gi+ℓ = Pj+ℓ for ℓ = 0, . . . , k − 1}. We report the percentage of G recovered in a
single uninterrupted chunk as 100× C

|G| .

Prefix Length. Captures the longest common prefix L between G and P: L = max{k : Gi =
Pi for all i = 1, . . . , k}. We report the normalized percentage as PrefixScore(G,P) = 100× L

|G| .

Unmatched ground-truth trajectories are excluded from PRF and length calculations but count toward
Count Agreement, ensuring trajectory quality is evaluated independently of prediction quantity.

5

Workflow DeepSeek Gemini GPT4.1 Llama4 Mistral Sonnet Package

Complex 28.82 5.01 4.48 14.26 8.70 7.43 0.00048337
Intermediate 16.78 2.87 3.52 7.45 5.06 4.81 0.00017534
Simple 9.30 1.53 2.08 3.28 3.22 3.60 0.00009979

Table 2: Average runtime (seconds) per trajectory by model (Sec. 6) across workflow complexities.

5 Experiment 1: Traxgen Evaluation

5.1 Experiment-Specific Setup

We assess Traxgen’s ability to generate accurate trajectories from structured workflows and user
profiles, comparing outputs to validated references using the metrics in 4.4. As a control, LLM
baselines are prompted with either (a) the original JSON workflows or (b) equivalent natural-language
descriptions, isolating the effect of structured input. The same six LLMs evaluated in Section 6 are
used here for consistency, with full benchmarking results reported in Section 6.

5.2 Results

Traxgen achieves 100% alignment with the gold trajectories across all evaluation metrics, validating
its ability to deterministically and accurately capture conditional workflow logic (see Appendix Table
5). This confirms its suitability as a ground-truth generator for downstream benchmarking.

Across twelve LLM configurations (six models, each with JSON or natural-language workflow
inputs), Traxgen outperforms on all metrics. While the full LLM benchmark is deferred to Section 6,
we note here that Traxgen’s performance is not only more accurate but also significantly more
efficient. Traxgen eliminates the need for token-based inference, achieving median speedups of
30,000× on simple workflow and over 17,000× across all complexity levels (see Table 2). Moreover,
unlike LLMs, which process an average of 750–3,400 tokens per example (see Appendix tables 6, 7),
Traxgen executes near-instantaneously and incurs minimal compute and energy costs. Our method
lowers environmental impact and enhances reproducibility, offering a more sustainable and efficient
solution for large-scale benchmarking.

6 Experiment 2: LLM Benchmarking

To assess in-context planning, we design controlled experiments isolating the planning stage of
tool use. The benchmark abstracts execution, focusing on the model’s ability to generate policy-
compliant trajectories from user instructions and structured workflows. Each task requires reasoning
over user data and multi-step workflows, including selecting tools, binding parameters, and han-
dling conditionals, in a single pass. We evaluate six diverse LLMs spanning architectures, open-
ness, and scale: open models DeepSeek-Chat-v3-0324 [Liu et al., 2024, DeepSeek AI, 2025],
Mistral-7B-Instruct [Jiang et al., 2023, Mistral AI, 2023], Llama-4-Maverick [Touvron et al.,
2023, Meta AI, 2025]; and proprietary ones Gemini-2.0-Flash-001 [Team et al., 2024, Google
DeepMind, 2025], Claude-3.7-Sonnet [Anthropic, 2025], GPT-4.1 [Achiam et al., 2023, OpenAI,
2025]. Our setup follows plan-first evaluation protocols [Zheng et al., 2024], enabling assessment
without interactive noise.

6.1 Experiment-Specific Setup

We conduct three controlled studies, each isolating a factor affecting trajectory-planning quality:
workflow representation, prompt design, and inference-time search. Using the same nine workflows
and evaluation metrics ensures observed differences are due to the factor under study.

Study 1: Input Representation (Natural Language vs. JSON). Trajectory planning often uses
structured task representations (e.g., graphs, trees, JSON). To isolate the effect of structure, we
compare model performance on (a) natural language workflow descriptions and (b) equivalent
structured JSON (used in Traxgen) across the three complexity levels.

6

Study 2: Prompt Engineering. Prompting strategies shape model behavior in constrained reasoning
tasks. We tested three designs: Vanilla (minimal instruction-only), ReAct (interleaved reasoning
and actions, [Yao et al., 2022]), and ReAct + few-shot (ReAct augmented with a worked example
matched to workflow complexity). Llama-4 Maverick (open) and Sonnet 3.7 (proprietary) were tested
to balance coverage and depth.

Study 3: Direct Generation vs. Guided Search. We examine inference strategy using ToolLLM’s
DFSDT, a depth-first search decision-tree algorithm that augments LLMs with backtracking and
branch exploration [Qin et al., 2023]. We replace live APIs with static simulations for deterministic,
side-effect-free execution. The same LLM generates both ReAct-style direct trajectories (Direct) and
DFSDT-guided trajectories (Guided), enabling a clean comparison of pure in-context planning versus
search-augmented planning. We limited this study to 50 user trajectories per domain to capture trends
while controlling for DFSDT’s longer runtime.

6.2 Results

Trajectory Quality Evaluation LLM-generated trajectories often required cleaning before compari-
son to the ground truth. We used a Python script to standardize outputs, addressing issues such as
markdown fences, bracket mismatches, and null literals. DeepSeek tended to hallucinate, returning
unstructured code snippets. Across models, the most common tool errors were incorrect tool order,
omitted steps, and extra steps. Parameter errors were mostly missing inputs; value mismatches were
rare. Errors were concentrated in complex workflows, fewer in intermediate, and minimal in simple
workflows. Detailed metrics appear in Appendix Table 9.

Model Comparison Model performance on complex workflows shows a stratification by model
class and format, with differences confirmed using the Kruskal–Wallis test followed by pairwise
Mann–Whitney U tests (Holm-corrected, p < 0.05). For both JSON and natural language, Gemini and
Sonnet significantly outperform others across nearly all metrics. Sonnet has strong tool and parameter-
level accuracy on complex workflows, while Gemini shows comparable or better performance on
intermediate. Llama4 and GPT-4.1 follow closely, with strong F1 and prefix scores but lower exact
match and CMR. In contrast, Mistral and DeepSeek trail behind significantly across most metrics,
particularly on complex workflows. These findings suggest that Gemini and Sonnet may be best
suited for handling high-complexity, multi-step tasks in both formats.

Complexity Comparison. LLM performance declines as workflow complexity increases. Most
models perform well on simple workflows, with top models achieving near-perfect scores. Perfor-
mance becomes more variable on intermediate workflows, particularly for lower-performing models,
and degrades further on complex workflows. Even the best models show noticeable drops in exact-
match and CMR metrics on complex tasks, highlighting the growing challenge of higher-complexity
workflows.

Input Representation Comparison Across models, we find that JSON and natural language inputs
yield significantly different performance in most cases (Mann–Whitney U test with p < 0.05),
indicating that input format choice has a robust effect. For intermediate workflow, JSON inputs
consistently outperformed all other options across every model and metric. In contrast, simple
workflow showed minimal sensitivity to input choice; performance differences were negligible and
varied idiosyncratically by model. The most striking effects emerged in complex workflow, where
input had a substantial impact: while JSON remained optimal for the most capable models (such as
GPT-4.1 and Claude Sonnet), natural language yielded improvements for mid-tier and open-source
models.

Prompt Engineering Method Comparison Prompt style impacts performance differently across
workflow complexity and model type (Appendix Table 11). For simple workflows, all prompts
achieved near-perfect exact-match and parameter F1, with slight gains for ReAct. For intermediate
workflows, Vanilla prompts gave Llama-4 the highest exact-match in natural language, while Sonnet
favored ReAct, highlighting model- and domain-specific sensitivity. In complex workflows, ReAct
consistently led in Tool F1. Few-shot prompting did not reliably outperform simpler prompts,
suggesting examples do not always aid constrained reasoning. Statistical testing shows that prompt
engineering differences are not consistent: Sonnet with natural language benefits strongly from
few-shot prompting, while Llama-4 often shows no significant difference or even favors vanilla
prompts.

7

Model Format Exact-Match (%) Count (%) Tool F1 Param F1 CMR % tools CMR % params Prefix % tools Prefix % params
Complex Workflow

Mistral JSON 0.0 ± 0.0 69.8 ± 1.7 0.525 ± 0.017 0.414 ± 0.015 36.7 ± 1.5 29.4 ± 1.2 33.5 ± 1.5 18.3 ± 1.3
Deepseek JSON 5.5 ± 1.1 73.9 ± 1.7 0.706 ± 0.015 0.659 ± 0.016 48.1 ± 1.5 46.6 ± 1.5 32.4 ± 1.8 27.2 ± 1.8
Gemini JSON 11.5 ± 1.6 84.2 ± 1.8 0.759 ± 0.017 0.762 ± 0.017 67.1 ± 1.7 66.3 ± 1.7 57.1 ± 2.0 56.4 ± 2.0
Sonnet JSON 38.5 ± 2.4 69.8 ± 1.7 0.975 ± 0.003 0.977 ± 0.003 93.6 ± 0.8 91.9 ± 0.8 92.9 ± 0.9 91.2 ± 0.9
Llama4 JSON 15.2 ± 1.8 100.3 ± 1.9 0.877 ± 0.006 0.870 ± 0.007 66.2 ± 1.3 63.9 ± 1.3 60.8 ± 1.5 58.5 ± 1.5
Gpt4.1 JSON 26.0 ± 2.2 70.4 ± 1.7 0.940 ± 0.005 0.938 ± 0.006 76.1 ± 1.2 75.2 ± 1.2 73.8 ± 1.4 73.1 ± 1.4
Mistral NL 0.2 ± 0.2 69.8 ± 1.7 0.505 ± 0.016 0.432 ± 0.015 30.6 ± 1.2 24.0 ± 1.0 26.4 ± 1.2 12.1 ± 0.9
Deepseek NL 13.5 ± 1.7 74.1 ± 1.7 0.775 ± 0.012 0.718 ± 0.015 58.1 ± 1.6 55.4 ± 1.6 43.3 ± 2.0 39.9 ± 2.1
Gemini NL 23.8 ± 2.1 87.1 ± 1.3 0.914 ± 0.006 0.918 ± 0.007 77.6 ± 1.1 76.8 ± 1.2 65.1 ± 1.8 65.1 ± 1.8
Sonnet NL 16.5 ± 1.9 70.1 ± 1.7 0.954 ± 0.004 0.962 ± 0.003 84.0 ± 1.0 82.7 ± 1.0 75.4 ± 1.5 74.9 ± 1.5
Llama4 NL 14.8 ± 1.8 84.9 ± 1.4 0.920 ± 0.006 0.924 ± 0.006 75.6 ± 1.2 73.5 ± 1.3 69.1 ± 1.6 67.3 ± 1.6
Gpt4.1 NL 16.5 ± 1.9 71.0 ± 1.7 0.930 ± 0.004 0.929 ± 0.004 72.6 ± 1.3 70.1 ± 1.3 65.5 ± 1.7 64.2 ± 1.6
Trajectory PACKAGE 100.0 ± 0.0 100.0 ± 0.0 1.000 ± 0.000 1.000 ± 0.000 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Intermediate Workflow
Mistral JSON 2.7 ± 1.1 67.3 ± 1.6 0.658 ± 0.019 0.566 ± 0.022 53.8 ± 1.9 46.5 ± 1.9 50.2 ± 2.1 34.0 ± 2.4
Deepseek JSON 49.8 ± 3.3 81.8 ± 1.6 0.814 ± 0.019 0.743 ± 0.023 83.6 ± 2.0 75.3 ± 2.2 76.6 ± 2.7 60.8 ± 3.2
Gemini JSON 76.9 ± 2.8 100.0 ± 0.0 0.972 ± 0.005 0.905 ± 0.014 98.5 ± 0.5 94.3 ± 1.0 98.5 ± 0.5 94.3 ± 1.0
Sonnet JSON 59.6 ± 3.3 85.1 ± 1.7 0.968 ± 0.006 0.955 ± 0.010 96.3 ± 0.8 96.3 ± 0.8 94.2 ± 1.3 94.2 ± 1.3
Llama4 JSON 43.1 ± 3.3 107.6 ± 3.9 0.919 ± 0.006 0.912 ± 0.009 92.9 ± 1.2 92.4 ± 1.2 92.5 ± 1.3 92.0 ± 1.3
Gpt4.1 JSON 63.6 ± 3.2 81.8 ± 1.6 0.994 ± 0.003 0.988 ± 0.006 99.1 ± 0.4 99.1 ± 0.4 99.1 ± 0.4 99.1 ± 0.4
Mistral NL 6.7 ± 1.7 67.1 ± 1.7 0.376 ± 0.026 0.325 ± 0.025 28.4 ± 2.2 22.3 ± 2.1 22.2 ± 2.2 14.7 ± 2.0
Deepseek NL 3.6 ± 1.2 68.0 ± 1.6 0.452 ± 0.025 0.421 ± 0.027 33.5 ± 2.0 32.9 ± 2.0 9.3 ± 1.6 8.5 ± 1.6
Gemini NL 64.0 ± 3.2 83.3 ± 1.6 0.662 ± 0.031 0.657 ± 0.031 65.7 ± 3.1 65.7 ± 3.1 65.4 ± 3.1 65.4 ± 3.1
Sonnet NL 35.6 ± 3.2 75.8 ± 1.9 0.600 ± 0.030 0.563 ± 0.031 57.2 ± 3.0 57.2 ± 3.0 54.9 ± 3.1 54.9 ± 3.1
Llama4 NL 44.4 ± 3.3 85.6 ± 1.5 0.640 ± 0.030 0.627 ± 0.030 65.8 ± 3.1 65.5 ± 3.1 65.5 ± 3.1 65.5 ± 3.1
Gpt4.1 NL 44.9 ± 3.3 69.8 ± 2.0 0.662 ± 0.031 0.658 ± 0.031 65.9 ± 3.1 65.9 ± 3.1 65.7 ± 3.1 65.7 ± 3.1
Trajectory PACKAGE 100.0 ± 0.0 100.0 ± 0.0 1.000 ± 0.000 1.000 ± 0.000 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Simple Workflow
Mistral JSON 23.3 ± 3.5 99.3 ± 0.7 0.738 ± 0.027 0.574 ± 0.031 66.5 ± 2.9 49.8 ± 3.1 60.0 ± 3.4 37.3 ± 3.6
Deepseek JSON 30.0 ± 3.8 99.3 ± 0.7 0.881 ± 0.016 0.912 ± 0.016 81.2 ± 2.1 75.3 ± 2.0 50.0 ± 4.1 30.2 ± 3.7
Gemini JSON 68.7 ± 3.8 100.0 ± 0.0 0.955 ± 0.006 0.998 ± 0.002 92.0 ± 1.0 92.0 ± 1.0 69.0 ± 3.8 69.0 ± 3.8
Sonnet JSON 100.0 ± 0.0 100.0 ± 0.0 1.000 ± 0.000 1.000 ± 0.000 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Llama4 JSON 96.0 ± 1.6 104.0 ± 1.6 0.999 ± 0.001 0.999 ± 0.001 99.7 ± 0.3 99.7 ± 0.3 99.7 ± 0.3 99.7 ± 0.3
Gpt4.1 JSON 96.7 ± 1.5 100.0 ± 0.0 0.992 ± 0.003 0.991 ± 0.004 98.5 ± 0.7 98.5 ± 0.7 98.0 ± 0.9 98.0 ± 0.9
Mistral NL 32.0 ± 3.8 105.3 ± 6.0 0.700 ± 0.029 0.566 ± 0.033 63.0 ± 3.2 50.7 ± 3.3 56.2 ± 3.7 40.8 ± 3.7
Deepseek NL 28.0 ± 3.7 99.3 ± 0.7 0.825 ± 0.017 0.870 ± 0.020 74.3 ± 2.0 68.0 ± 2.3 29.5 ± 3.7 28.8 ± 3.7
Gemini NL 44.7 ± 4.1 100.0 ± 0.0 0.874 ± 0.012 0.948 ± 0.011 80.5 ± 1.7 79.8 ± 1.8 44.7 ± 4.1 44.7 ± 4.1
Sonnet NL 99.3 ± 0.7 100.0 ± 0.0 0.999 ± 0.001 1.000 ± 0.000 99.8 ± 0.2 99.8 ± 0.2 99.3 ± 0.7 99.3 ± 0.7
Llama4 NL 100.0 ± 0.0 100.0 ± 0.0 1.000 ± 0.000 1.000 ± 0.000 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Gpt4.1 NL 96.0 ± 1.6 100.0 ± 0.0 0.994 ± 0.002 1.000 ± 0.000 99.0 ± 0.4 99.0 ± 0.4 96.0 ± 1.6 96.0 ± 1.6
Trajectory PACKAGE 100.0 ± 0.0 100.0 ± 0.0 1.000 ± 0.000 1.000 ± 0.000 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Table 3: Performance by model (Sec. 6), input format, and workflow complexity (mean ± SE,
NL=Natural Language)

Direct Generation and Guided Search Comparison DFSDT (Appendix Table 10) underperform
direct generation across all complexity levels (Table 3). One consistent pattern is that DFSDT-
generated trajectories often skip required steps defined in the workflow, leading to low exact-match
and step-level F1 scores. A likely contributor is the way in which DFSDT determines when a plan
is complete, potentially stopping before all mandatory steps in the policy have been executed. This
highlights a limitation of search-based planning without explicit end-condition supervision.

7 Discussion

We introduced Traxgen, a deterministic trajectory generation framework for reproducible, scalable
benchmarking of tool-augmented AI agents. Traxgen aligns with manually validated ground truth
and outperforms LLM baselines by orders of magnitude in accuracy and efficiency, requiring no
external model inference. Traxgen removes inference-time randomness, enabling stable, repeatable
comparisons across workflows and agents. Unlike prompting-based methods, sensitive to phrasing
and sampling, it provides a consistent reference for validation. Ablation studies highlight the
importance of input structure: JSON schemas consistently outperform natural language, while ReAct-
style prompting offers only marginal, inconsistent gains. These results suggest that architectural
improvements may be more impactful than further prompt tuning. Overall, Traxgen provides a
reliable foundation for evaluating AI agents in planning-intensive tasks.

8 Limitations

While Traxgen enables reproducible evaluation of agent trajectories, it has not yet been validated
on real-world workflows, which often involve complex interdependencies, multimodal inputs, and
non-idempotent behaviors. Extending Traxgen to open-ended or multimodal workflow remains an

8

exciting future direction and natural progression toward broader applicability. Moreover, enumerating
all permutations of soft-order blocks can grow factorially, limiting scalability, and the framework
does not adapt to novel or ambiguous inputs without pre-specified logic. Additionally, our LLM
benchmarking is constrained by available models and prompt designs, which may not generalize to
newer architectures or strategies. Finally, while Traxgen can support reliability in regulated domains,
human oversight remains essential to mitigate risks such as automation errors or misuse.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Lize Alberts, Benjamin Ellis, Andrei Lupu, and Jakob Foerster. Curate: Benchmarking personalised
alignment of conversational ai assistants. arXiv preprint arXiv:2410.21159, 2024.

Anthropic. Claude 3.7 sonnet announcement, 2025. URL https://www.anthropic.com/news/
claude-3-7-sonnet.

David Castillo-Bolado, Joseph Davidson, Finlay Gray, and Marek Rosa. Beyond prompts: Dy-
namic conversational benchmarking of large language models. Advances in Neural Information
Processing Systems, 37:42528–42565, 2024.

Dillon Z Chen, Pulkit Verma, Siddharth Srivastava, Michael Katz, and Sylvie Thiébaux. Ai planning:
A primer and survey (preliminary report). arXiv preprint arXiv:2412.05528, 2024.

DeepSeek AI. Deepseek-chat-v3-0324 release, 2025. URL https://api-docs.deepseek.com/
news/news250325.

Benjamin Feuer, Micah Goldblum, Teresa Datta, Sanjana Nambiar, Raz Besaleli, Samuel Dooley,
Max Cembalest, and John P Dickerson. Style outweighs substance: Failure modes of llm judges in
alignment benchmarking. arXiv preprint arXiv:2409.15268, 2024.

Google Cloud. Introducing agent evaluation in vertex ai gen ai evaluation ser-
vice, 2024. URL https://cloud.google.com/blog/products/ai-machine-learning/
introducing-agent-evaluation-in-vertex-ai-gen-ai-evaluation-service.

Google DeepMind. Gemini 2.0 flash-001 model documentation, 2025. URL https://cloud.
google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash.

Crina Grosan and Ajith Abraham. Rule-based expert systems. In Intelligent systems: A modern
approach, pages 149–185. Springer, 2011.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594,
2024.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao
Wan, Neil Zhenqiang Gong, et al. Metatool benchmark for large language models: Deciding
whether to use tools and which to use. arXiv preprint arXiv:2310.03128, 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/
abs/2310.06825.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

Labelbox. How to train and evaluate ai agents and trajecto-
ries with labelbox, 2025. URL https://labelbox.com/blog/
how-to-train-and-evaluate-ai-agents-and-trajectories-with-labelbox/
#enhance-agent-trajectory.

9

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://api-docs.deepseek.com/news/news250325
https://api-docs.deepseek.com/news/news250325
https://cloud.google.com/blog/products/ai-machine-learning/introducing-agent-evaluation-in-vertex-ai-gen-ai-evaluation-service
https://cloud.google.com/blog/products/ai-machine-learning/introducing-agent-evaluation-in-vertex-ai-gen-ai-evaluation-service
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://labelbox.com/blog/how-to-train-and-evaluate-ai-agents-and-trajectories-with-labelbox/#enhance-agent-trajectory
https://labelbox.com/blog/how-to-train-and-evaluate-ai-agents-and-trajectories-with-labelbox/#enhance-agent-trajectory
https://labelbox.com/blog/how-to-train-and-evaluate-ai-agents-and-trajectories-with-labelbox/#enhance-agent-trajectory

LangChain. Evaluation concepts, 2024. URL https://docs.smith.langchain.com/
evaluation/concepts#evaluators.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma, Shen
Ma, Mengyu Li, Guoli Yin, et al. Toolsandbox: A stateful, conversational, interactive evaluation
benchmark for llm tool use capabilities. arXiv preprint arXiv:2408.04682, 2024.

Maria Emilia Mazzolenis and Ruirui Zhang. Agent warpp: Workflow adherence via runtime parallel
personalization. arXiv preprint arXiv:2507.19543, 2025.

Meta AI. Introducing llama-4 maverick and scout, 2025. URL https://ai.meta.com/blog/
llama-4-multimodal-intelligence/.

Mistral AI. Mistral-7b-instruct model card, 2023. URL https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.1.

OpenAI. Openai agents sdk, 2025. URL https://openai.github.io/
openai-agents-python/.

OpenAI. Introducing gpt-4.1, 2025. URL https://openai.com/index/gpt-4-1/.

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, et al. Apigen-mt: Agentic pipeline for
multi-turn data generation via simulated agent-human interplay. arXiv preprint arXiv:2504.03601,
2025.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Nick C Russell, Arthur HM Ter Hofstede, Wil MP Van Der Aalst, and Nataliya A Mulyar. Workflow
control-flow patterns: A revised view. 2006.

Guijin Son, Hyunwoo Ko, Hoyoung Lee, Yewon Kim, and Seunghyeok Hong. Llm-as-a-judge &
reward model: What they can and cannot do. arXiv preprint arXiv:2409.11239, 2024.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The eleventh international
conference on learning representations, 2022.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. Taubench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Asaf Yehudai, Lilach Eden, Alan Li, Guy Uziel, Yilun Zhao, Roy Bar-Haim, Arman Cohan,
and Michal Shmueli-Scheuer. Survey on evaluation of llm-based agents. arXiv preprint
arXiv:2503.16416, 2025.

Dan Zhang, Sining Zhoubian, Min Cai, Fengzu Li, Lekang Yang, Wei Wang, Tianjiao Dong, Ziniu
Hu, Jie Tang, and Yisong Yue. Datascibench: An llm agent benchmark for data science. arXiv
preprint arXiv:2502.13897, 2025.

10

https://docs.smith.langchain.com/evaluation/concepts#evaluators
https://docs.smith.langchain.com/evaluation/concepts#evaluators
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://openai.github.io/openai-agents-python/
https://openai.github.io/openai-agents-python/
https://openai.com/index/gpt-4-1/

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova,
Le Hou, Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking llms on
natural language planning. arXiv preprint arXiv:2406.04520, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

11

A Appendix Contents

A.1 Generating Trajectories with Traxgen . 13

A.2 Traxgen supported conditional actions . 14

A.3 Traxgen Evaluation Results . 15

A.4 Main LLM Experiment Results . 16

A.5 Simple Workflow - Check Order Status . 20

A.6 Simple Workflow - Check Product Availability 21

A.7 Simple Workflow - Resend Email Request . 22

A.8 Intermediate Workflow - Account Suspension Request 23

A.9 Intermediate Workflow - Submit Time Off Request 25

A.10 Intermediate Workflow - Update Address . 27

A.11 Complex Workflow - Book Flight . 29

A.12 Complex Workflow - Cancel Flight . 32

A.13 Complex Workflow - Flight Disruption . 35

A.14 User Data Example . 38

A.15 Traxgen Trajectory Format . 39

A.16 Annotator Instructions . 41

12

A.1 Generating Trajectories with Traxgen

pip install traxgen

from traxgen import generate_trajectories

customer_data =
json.load(open("test_data/customer_data/simple_routine.json"))↪→

workflow_data = {
"check_order_status":

json.load(open("simple/check_order_status.json")),↪→

"resend_email_receipt":
json.load(open("simple/resend_email_receipt.json")),↪→

"check_product_availability":
json.load(open("simple/check_product_availability.json")),↪→

}

output = generate_trajectories(
customer_data=customer_data,
routine_data=routine_data,
id_field='customer_id',
trajectory_format= ['google'],
output_path = 'output/simple_routines',
output_mode = return_format,
enable_visualization=False)

13

A.2 Traxgen supported conditional actions

Logic Construct Definition

skip Skips the execution of one or more steps when a specified condition is met.
end_after Terminates the workflow immediately after the specified step if the condition is met.
override_trajectory Replaces the default step sequence with a new list of steps, enabling a custom path.
all_of A composite condition that is satisfied only if **all** subconditions are true. Used within an if clause.
any_of A composite condition that is satisfied if **any** subcondition is true. Used within an if clause.

Table 4: Definitions of conditional actions supported in Traxgen JSON workflows.

14

A.3 Traxgen Evaluation Results

Routine Model Metric Value

Complex Package

Exact-Match (%) 100.0 ± 0.0
Count (%) 100.0 ± 0.0
Tool F1 1.0 ± 0.0
Param F1 1.0 ± 0.0
CO % tools 100.0 ± 0.0
CO % params 100.0 ± 0.0
Prefix % tools 100.0 ± 0.0
Prefix % params 100.0 ± 0.0

Intermediate Package

Exact-Match (%) 100.0 ± 0.0
Count (%) 100.0 ± 0.0
Tool F1 1.0 ± 0.0
Param F1 1.0 ± 0.0
CO % tools 100.0 ± 0.0
CO % params 100.0 ± 0.0
Prefix % tools 100.0 ± 0.0
Prefix % params 100.0 ± 0.0

Simple Package

Exact-Match (%) 100.0 ± 0.0
Count (%) 100.0 ± 0.0
Tool F1 1.0 ± 0.0
Param F1 1.0 ± 0.0
CO % tools 100.0 ± 0.0
CO % params 100.0 ± 0.0
Prefix % tools 100.0 ± 0.0
Prefix % params 100.0 ± 0.0

Table 5: Package evaluation results across all workflow complexities. All metrics are reported as
mean ± standard deviation across evaluation splits.

15

A.4 Main LLM Experiment Results

Workflow DeepSeek Gemini GPT-4.1 Llama 4 Mistral Sonnet 3.7

Complex 2703.58 3371.62 2429.05 2872.32 3528.30 2921.56
Intermediate 1445.40 1707.81 1307.93 1388.18 1722.44 1536.91
Simple 868.06 984.62 786.44 791.65 1123.87 977.76

Table 6: Average total token usage per workflow complexity using structured JSON workflow
instructions.Model versions are described in Section 6.

Routine DeepSeek Gemini GPT-4.1 Llama 4 Mistral Sonnet

Complex 2615.45 3366.92 2425.30 2621.34 3279.63 2818.16
Intermediate 1041.62 1357.16 1001.81 1034.91 1448.38 1224.04
Simple 869.46 941.53 771.91 801.27 1133.48 953.47

Table 7: Average total token usage per workflow complexity using natural language workflow
instructions. Model versions are described in Section 6.

Routine DeepSeek Gemini GPT4.1 Llama4 Mistral Sonnet

Complex workflow 24.90 5.59 4.63 10.64 9.05 7.79
Intermediate workflow 10.59 2.55 3.12 5.05 7.08 5.32
Simple workflow 8.60 1.42 1.79 3.25 3.97 3.61

Table 8: Average runtime (seconds) per trajectory by Natural Language-based models across workflow
complexities. Model versions are described in Section 6.

16

Workflow Format Model In
iti

al
Fa

il

R
ec

ov
er

ed

U
nr

ec
ov

er
ed

B
ra

ck
et

M
is

m
at

ch

H
al

lu
ci

na
te

d
C

od
e

In
co

rr
ec

tF
or

m
at

In
va

lid
C

om
m

as

Ju
nk

B
tw

.B
ra

ck
et

s

M
ar

kd
ow

n
Fe

nc
es

M
is

m
at

ch
ed

Q
uo

te
s

M
is

si
ng

C
om

m
as

N
ul

lL
ite

ra
ls

Si
ng

le
Q

uo
te

s

E
lli

ps
es

[]
E

xp
r

in
qu

ot
es

Simple JSON deepseek 105 102 2 4 1 0 0 0 94 0 0 1 0 0 0
JSON gemini 150 150 0 0 0 0 0 0 150 0 0 0 0 0 0
JSON gpt4.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JSON Llama4 17 17 0 0 0 0 0 0 17 0 0 0 0 0 0
JSON mistral 65 64 1 2 0 0 0 5 1 0 7 0 1 0 15
JSON sonnet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NL deepseek 114 109 2 9 3 0 0 0 103 0 0 3 0 0 0
NL gemini 150 150 0 0 0 0 0 0 150 0 0 0 0 0 0
NL gpt4.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NL Llama4 10 10 0 0 0 0 0 0 10 0 0 0 0 0 0
NL mistral 85 83 2 3 0 0 0 21 5 0 12 2 1 2 9
NL sonnet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Intermediate JSON deepseek 130 123 6 15 1 0 0 0 102 2 0 1 0 0 0
JSON gemini 225 225 0 0 0 0 0 0 225 0 0 0 0 0 0
JSON gpt4.1 37 37 0 0 0 0 0 0 0 0 0 0 0 0 0
JSON Llama4 71 71 0 0 0 0 0 0 71 0 0 0 0 0 0
JSON mistral 58 58 0 3 0 0 0 14 5 0 8 4 2 5 4
JSON sonnet 7 7 0 0 0 0 0 0 0 0 1 0 0 0 0
NL deepseek 164 157 3 10 4 0 0 0 147 3 2 1 1 0 3
NL gemini 225 225 0 0 0 0 0 0 225 0 0 0 0 0 0
NL gpt4.1 45 45 0 0 0 0 0 0 0 0 0 0 0 0 0
NL Llama4 155 155 0 1 0 0 0 0 155 0 3 12 0 0 0
NL mistral 114 113 1 4 0 0 0 13 15 0 6 2 0 12 9
NL sonnet 8 8 0 0 0 0 0 0 0 0 5 0 0 0 0

Complex JSON deepseek 289 264 19 18 6 1 0 1 246 2 0 16 0 1 0
JSON gemini 400 400 0 0 0 0 0 0 400 0 0 6 0 0 0
JSON gpt4.1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
JSON Llama4 126 125 1 1 0 0 0 0 124 0 0 13 0 0 0
JSON mistral 111 109 2 14 0 2 5 9 2 1 5 9 1 7 56
JSON sonnet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NL deepseek 302 297 1 15 4 0 0 0 289 0 0 3 0 0 1
NL gemini 400 400 0 2 0 0 0 0 400 0 0 33 0 0 0
NL gpt4.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NL Llama4 160 159 1 1 0 0 0 0 158 0 0 7 0 0 0
NL mistral 145 144 1 10 0 0 8 15 12 2 8 27 0 24 48
NL sonnet 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

Table 9: LLM Output Cleaning Metrics by Workflow Type, Workflow Format, and Model (NL =
Natural Language). Model versions are described in Section 6.

17

Model Format Exact-Match (%) Tool F1 Param F1 CMR % tools CMR % params Prefix % tools Prefix % params
Complex workflow

Sonnet NL 0.0 ± 0.0 0.354 ± 0.419 0.228 ± 0.263 26.3 ± 35.9 16.7 ± 21.5 24.4 ± 36.4 15.0 ± 21.6
Llama4 NL 0.0 ± 0.0 0.279 ± 0.253 0.227 ± 0.258 17.6 ± 20.6 14.9 ± 18.3 12.1 ± 20.1 10.7 ± 18.0
Gpt4.1 NL 0.0 ± 0.0 0.516 ± 0.321 0.400 ± 0.191 33.3 ± 31.6 23.6 ± 18.7 25.3 ± 35.5 16.2 ± 21.2

Intermediate workflow
Sonnet NL 0.0 ± 0.0 0.478 ± 0.254 0.306 ± 0.198 38.7 ± 30.9 23.7 ± 17.1 31.0 ± 34.8 19.5 ± 19.0
Llama4 NL 0.0 ± 0.0 0.531 ± 0.222 0.314 ± 0.205 41.6 ± 30.0 27.3 ± 14.8 34.4 ± 33.1 22.3 ± 17.6
Gpt4.1 NL 0.0 ± 0.0 0.556 ± 0.159 0.353 ± 0.176 44.1 ± 24.8 26.7 ± 14.5 33.1 ± 31.0 22.0 ± 17.2

Simple workflow
Sonnet NL 8.0 ± 27.2 0.949 ± 0.121 0.110 ± 0.289 94.9 ± 12.0 38.7 ± 18.1 94.9 ± 12.1 38.7 ± 18.1
Llama4 NL 14.7 ± 35.5 0.840 ± 0.178 0.438 ± 0.452 82.2 ± 23.4 55.6 ± 27.2 67.1 ± 35.8 43.8 ± 28.7
Gpt4.1 NL 8.7 ± 28.2 0.892 ± 0.141 0.307 ± 0.429 86.9 ± 16.3 45.1 ± 21.2 75.3 ± 37.1 34.0 ± 24.6

Table 10: DFSDT Experiment Results. Model versions are described in Section 6.

18

Model Format Prompt Type Exact-Match (%) Count (%) Tool F1 Param F1 CMR % tools CMR % params Prefix % tools Prefix % params
Complex Workflow

Llama4 JSON ReAct Few Shot 10.8 ± 31.0 91.2 ± 41.7 0.834 ± 0.183 0.831 ± 0.195 71.3 ± 23.4 68.8 ± 23.7 69.5 ± 25.8 66.8 ± 26.2
Llama4 JSON ReAct 15.2 ± 36.0 100.3 ± 37.8 0.877 ± 0.117 0.870 ± 0.135 66.2 ± 25.8 63.9 ± 25.9 60.8 ± 30.8 58.5 ± 30.6
Llama4 JSON Vanilla 12.5 ± 33.1 91.7 ± 40.7 0.817 ± 0.167 0.812 ± 0.181 65.4 ± 25.5 64.6 ± 26.0 58.9 ± 31.9 58.5 ± 32.0
Llama4 NL ReAct Few Shot 20.0 ± 40.1 86.3 ± 31.0 0.898 ± 0.150 0.896 ± 0.154 83.3 ± 21.2 81.8 ± 21.4 80.7 ± 25.5 79.3 ± 25.3
Llama4 NL ReAct 14.8 ± 35.5 84.9 ± 28.5 0.920 ± 0.123 0.924 ± 0.127 75.6 ± 25.0 73.5 ± 25.8 69.1 ± 32.3 67.3 ± 32.7
Llama4 NL Vanilla 15.5 ± 36.2 82.7 ± 27.3 0.882 ± 0.155 0.887 ± 0.162 74.4 ± 25.1 73.7 ± 25.6 68.4 ± 32.2 68.1 ± 32.3
Sonnet JSON ReAct Few Shot 41.8 ± 49.4 80.5 ± 30.0 0.944 ± 0.138 0.945 ± 0.136 96.4 ± 10.2 94.5 ± 11.9 96.4 ± 10.2 94.5 ± 11.9
Sonnet JSON ReAct 38.5 ± 48.7 69.8 ± 34.2 0.975 ± 0.059 0.977 ± 0.059 93.6 ± 15.8 91.9 ± 16.9 92.9 ± 18.0 91.2 ± 18.9
Sonnet JSON Vanilla 50.5 ± 50.1 80.4 ± 30.5 0.919 ± 0.186 0.919 ± 0.188 90.1 ± 22.0 88.8 ± 22.4 87.6 ± 26.4 86.5 ± 26.5
Sonnet NL ReAct Few Shot 19.5 ± 39.7 76.1 ± 32.1 0.925 ± 0.142 0.926 ± 0.139 88.3 ± 17.9 86.7 ± 18.3 85.9 ± 22.4 84.4 ± 22.5
Sonnet NL ReAct 16.5 ± 37.2 70.1 ± 34.2 0.954 ± 0.071 0.962 ± 0.064 84.0 ± 19.1 82.7 ± 20.4 75.4 ± 30.1 74.9 ± 30.1
Sonnet NL Vanilla 0.0 ± 0.0 69.6 ± 34.3 0.049 ± 0.071 0.031 ± 0.050 4.2 ± 7.1 1.0 ± 4.4 0.0 ± 0.0 0.0 ± 0.0

Intermediate Workflow
Llama4 JSON ReAct Few Shot 62.2 ± 48.6 96.4 ± 13.7 0.937 ± 0.132 0.911 ± 0.180 95.6 ± 15.2 94.4 ± 16.6 94.6 ± 18.6 92.9 ± 21.0
Llama4 JSON ReAct 43.1 ± 49.6 107.6 ± 58.1 0.919 ± 0.086 0.912 ± 0.138 92.9 ± 17.7 92.4 ± 18.1 92.5 ± 18.8 92.0 ± 19.1
Llama4 JSON Vanilla 39.1 ± 48.9 100.2 ± 21.4 0.917 ± 0.110 0.903 ± 0.170 87.4 ± 22.4 86.3 ± 23.3 87.1 ± 22.9 85.6 ± 24.6
Llama4 NL ReAct Few Shot 56.0 ± 49.7 83.3 ± 23.6 0.652 ± 0.456 0.629 ± 0.469 64.6 ± 46.0 62.6 ± 46.7 63.7 ± 47.1 62.0 ± 47.2
Llama4 NL ReAct 44.4 ± 49.8 85.6 ± 22.7 0.640 ± 0.449 0.627 ± 0.454 65.8 ± 46.5 65.5 ± 47.0 65.5 ± 47.0 65.5 ± 47.0
Llama4 NL Vanilla 90.7 ± 29.2 100.0 ± 0.0 0.985 ± 0.064 0.971 ± 0.113 98.1 ± 8.7 96.8 ± 12.1 96.9 ± 15.1 95.2 ± 18.6
Sonnet JSON ReAct Few Shot 26.2 ± 44.1 68.4 ± 24.2 0.827 ± 0.371 0.826 ± 0.374 82.2 ± 37.3 82.2 ± 37.3 81.6 ± 38.3 81.6 ± 38.3
Sonnet JSON ReAct 59.6 ± 49.2 85.1 ± 24.8 0.968 ± 0.094 0.955 ± 0.149 96.3 ± 12.7 96.3 ± 12.7 94.2 ± 20.2 94.2 ± 20.2
Sonnet JSON Vanilla 66.2 ± 47.4 90.4 ± 19.7 0.970 ± 0.075 0.964 ± 0.106 98.7 ± 7.5 98.7 ± 7.5 98.1 ± 11.4 98.1 ± 11.4
Sonnet NL ReAct Few Shot 45.3 ± 49.9 73.8 ± 25.0 0.636 ± 0.470 0.635 ± 0.476 62.8 ± 46.8 62.6 ± 47.0 59.1 ± 48.8 59.1 ± 48.8
Sonnet NL ReAct 35.6 ± 48.0 75.8 ± 29.2 0.600 ± 0.449 0.563 ± 0.462 57.2 ± 45.2 57.2 ± 45.2 54.9 ± 46.4 54.9 ± 46.4
Sonnet NL Vanilla 0.0 ± 0.0 66.4 ± 24.0 0.078 ± 0.098 0.035 ± 0.074 7.8 ± 9.8 1.5 ± 6.2 0.0 ± 0.0 0.0 ± 0.0

Simple Workflow
Llama4 JSON ReAct Few Shot 67.3 ± 47.1 100.0 ± 0.0 0.955 ± 0.065 0.948 ± 0.076 91.2 ± 13.3 91.2 ± 13.3 91.2 ± 13.3 91.2 ± 13.3
Llama4 JSON ReAct 96.0 ± 19.7 104.0 ± 19.7 0.999 ± 0.009 0.999 ± 0.012 99.7 ± 4.1 99.7 ± 4.1 99.7 ± 4.1 99.7 ± 4.1
Llama4 JSON Vanilla 76.0 ± 42.9 112.0 ± 38.3 0.967 ± 0.080 0.958 ± 0.110 94.5 ± 11.9 94.5 ± 11.9 93.8 ± 15.0 93.8 ± 15.0
Llama4 NL ReAct Few Shot 60.0 ± 49.2 102.0 ± 14.0 0.946 ± 0.070 0.935 ± 0.085 90.5 ± 12.2 90.5 ± 12.2 90.5 ± 12.2 90.5 ± 12.2
Llama4 NL ReAct 100.0 ± 0.0 100.0 ± 0.0 1.000 ± 0.000 1.000 ± 0.000 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Llama4 NL Vanilla 99.3 ± 8.2 100.0 ± 0.0 1.000 ± 0.000 0.996 ± 0.054 100.0 ± 0.0 99.5 ± 6.1 100.0 ± 0.0 99.5 ± 6.1
Sonnet JSON ReAct Few Shot 99.3 ± 8.2 100.0 ± 0.0 0.999 ± 0.012 0.999 ± 0.016 99.8 ± 2.0 99.8 ± 2.0 99.8 ± 2.0 99.8 ± 2.0
Sonnet JSON ReAct 100.0 ± 0.0 100.0 ± 0.0 1.000 ± 0.000 1.000 ± 0.000 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Sonnet JSON Vanilla 97.3 ± 16.2 100.0 ± 0.0 0.996 ± 0.023 1.000 ± 0.000 99.3 ± 4.0 99.3 ± 4.0 97.3 ± 16.2 97.3 ± 16.2
Sonnet NL ReAct Few Shot 100.0 ± 0.0 100.0 ± 0.0 1.000 ± 0.000 1.000 ± 0.000 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Sonnet NL ReAct 99.3 ± 8.2 100.0 ± 0.0 0.999 ± 0.012 1.000 ± 0.000 99.8 ± 2.0 99.8 ± 2.0 99.3 ± 8.2 99.3 ± 8.2
Sonnet NL Vanilla 93.3 ± 25.0 100.0 ± 0.0 0.990 ± 0.039 1.000 ± 0.000 98.3 ± 6.3 98.3 ± 6.3 93.3 ± 25.0 93.3 ± 25.0

Table 11: LLM Performance across Model, Format, Prompt Tyle and Workflow Complexity (NL =
Natural Language). Model versions are described in Section 6.

19

A.5 Simple Workflow - Check Order Status

JSON Format

{
"agent": "check_order_status",
"steps": [

"ask_for_order_id() -> [order_id]",
"get_order_status(order_id = user_provided_info['order_id']) ->

[status]",↪→
"return_order_status(order_status = order_status)",
"close_case(order_id = user_provided_info['order_id'])"

],
"soft_ordering": [],
"conditionals": []

}

Natural Language Format

- Begin by asking the user for their order ID using ask_for_order_id().
- Check if the order exists by calling check_order_exists(order_id =

user_provided_info['order_id']).↪→
- If the "user_provided_info['order_id']" matches the number in

'order_id', proceed to send the receipt via email using
send_email_receipt(order_id = user_provided_info['order_id']).

↪→
↪→
- If they do not match match, escalate the issue to support using

escalate_to_support(order_id = user_provided_info['order_id']).↪→
- Finally, mark the case as complete by calling complete_case(customer_id =

customer_id).↪→

20

A.6 Simple Workflow - Check Product Availability

JSON Format

{
"agent": "check_product_availability",
"steps": [

"ask_for_product_id() -> [product_id]",
"check_inventory(product_id = user_provided_info['product_id']) ->

[availability]",↪→
"return_product_availability(product_id =

user_provided_info['product_id'],↪→
availability =

inventory_info[user_provided_info['product_id']]['availability'])",↪→
"close_case(customer_id = customer_id)"

],
"soft_ordering": [],
"conditionals": []

}

Natural Language Format

- Ask the user for the product ID by calling `ask_for_product_id()`.
- Check inventory by invoking `check_inventory(product_id =

user_provided_info['product_id'])`, which returns availability.↪→
- Return the product’s availability by calling

`return_product_availability(product_id = user_provided_info['product_id'],
availability = inventory_info[user_provided_i ⌋

nfo['product_id']]['availability'])`.↪→
- Finally, wrap up the interaction with `close_case(customer_id =

customer_id)`.↪→

21

A.7 Simple Workflow - Resend Email Request

JSON Format

"agent": "resend_email_receipt",
"steps": [

"ask_for_order_id() -> [order_id]",
"check_order_exists(order_id = user_provided_info['order_id']) ->

[exists]",↪→
"send_email_receipt(order_id = user_provided_info['order_id'])",
"escalate_to_support(order_id = user_provided_info['order_id'])",
"complete_case(customer_id = customer_id)"

],
"soft_ordering": [],
"conditionals": [

{
"if": [

{
"field": "user_provided_info['order_id']",
"operator": "==",
"compare_to": "order_id"

}
],
"then": [{"action": "skip", "target": "escalate_to_support"}],
"else": [{"action": "skip", "target": "send_email_receipt"}]

}
]

}

Natural Language Format

- Begin by asking the user for their order ID using ask_for_order_id().
- Check if the order exists by calling check_order_exists(order_id =

user_provided_info['order_id']).↪→
- If the "user_provided_info['order_id']" matches the number in

'order_id', proceed to send the receipt via email using
send_email_receipt(order_id = user_provided_info['order_id']).

↪→
↪→
- If they do not match match, escalate the issue to support using

escalate_to_support(order_id = user_provided_info['order_id']).↪→
- Finally, mark the case as complete by calling complete_case(customer_id =

customer_id).↪→

22

A.8 Intermediate Workflow - Account Suspension Request

JSON Format

"agent": "account_suspension_request",
"steps": [

"ask_suspension_type() -> [suspension_type]",
"ask_suspension_reason() -> [reason]",
"get_user_status(employee_id = employee_id) -> [status]",
"notify_already_suspended(employee_id = employee_id)",
"ask_ReActivation_date() -> [ReActivation_date]",
"suspend_account(employee_id = employee_id, type =

user_provided_info['suspension_type'],↪→
reason = user_provided_info['suspension_reason'])",
"send_suspension_confirmation(employee_id = employee_id)",
"close_case(suspension_id = suspension['suspension_id'])"

],
"soft_ordering": [

["ask_suspension_type", "ask_suspension_reason"]
],
"conditionals": [

{
"if": [

{
"field": "suspension['suspension_status']",
"operator": "==",
"value": "suspended"

}
],
"then": [

{
"action": "end_after",
"target": "notify_already_suspended"

}
],
"else": [

{
"action": "skip",
"target": "notify_already_suspended"

}
]

},
{

"if": [
{

"field": "user_provided_info['suspension_type']",
"operator": "!=",
"value": "temporary"

}
],
"then": [

{
"action": "skip",
"target": "ask_ReActivation_date"

}],
"else": [

{
"action": "override_params",
"target": "suspend_account",
"params": {

"employee_id": "employee_id",
"type": "user_provided_info['suspension_type']",
"reason": "user_provided_info['suspension_reason']",

23

"ReActivation_date": "user_provided_info['ReActivation_date']"
}}

]
}

]
}

Natural Language Format

1. Ask the user which type of suspension they need (temporary or permanent)
by calling `ask_suspension_type()`.↪→

2. Ask the user to explain their reason for suspension by calling
`ask_suspension_reason()`.↪→

*(Steps 1 and 2 can happen in any order, but both must be completed before
moving forward.)*↪→

3. Retrieve the user’s current suspension status by calling
`get_user_status(employee_id = employee_id)`.↪→

4. If the suspension['suspension_status'] is already "suspended":
- Call `notify_already_suspended(employee_id = employee_id)` to inform the

user.↪→
- End the process here.

5. If the suspension type is **temporary**:
- Ask for the desired ReActivation date by calling

`ask_ReActivation_date()`.↪→

6. Call `suspend_account(...)` with the following parameters:
- `employee_id = employee_id`
- `type = user_provided_info['suspension_type']`
- `reason = user_provided_info['suspension_reason']`
- If the suspension is temporary, also include `ReActivation_date =

user_provided_info['ReActivation_date']`.↪→

7. Send a confirmation message by calling
`send_suspension_confirmation(employee_id = employee_id)`.↪→

8. Close the case by calling `close_case(suspension_id =
suspension['suspension_id'])`.↪→

24

A.9 Intermediate Workflow - Submit Time Off Request

JSON Format

"agent": "submit_time_off_request",
"steps": [

"ask_for_pto_dates() -> [start_date, end_date]",
"get_pto_balance(employee_id = employee_id) -> [pto_balance]",
"inform_employee_balance_low()",
"check_conflicts(start_date = user_provided_info['start_date'],
end_date = user_provided_info['end_date'], pto_balance =

vacation['pto_balance'])↪→
-> [conflict_status]",
"inform_employee_conflict()",
"submit_leave_request(employee_id = employee_id, start_date =

user_provided_info['start_date'],↪→
end_date = user_provided_info['end_date'])
-> [leave_request_id]",
"notify_manager(manager_id = manager_id, leave_request_id =

vacation['leave_request_id']) ->↪→
[manager_notification_status]",
"send_confirmation(employee_id = employee_id, leave_request_id =

vacation['leave_request_id']) ->↪→
[confirmation_status]",
"close_case(leave_request_id = vacation['leave_request_id'])"

],
"soft_ordering": [["ask_for_pto_dates", "get_pto_balance"]],
"conditionals": [

{
"if": [

{
"field": "vacation['pto_balance']",
"operator": "<",
"value": 1

}
],
"then": [

{
"action": "end_after",
"target": "inform_employee_balance_low"

}
],
"else": [

{
"action": "skip",
"target": "inform_employee_balance_low"

}
]

},
{

"if": [
{

"field": "conflict_status",
"operator": "==",
"value": true

}
],
"then": [

{
"action": "end_after",
"target": "inform_employee_conflict"

}
],

25

"else": [
{

"action": "skip",
"target": "inform_employee_conflict"

}]}]}

Natural Language Format

- Begin by asking the user for their desired time off dates using
ask_for_pto_dates(). This returns start_date and end_date.↪→

- Retrieve the employee's current PTO balance using
get_pto_balance(employee_id = employee_id).↪→
- If vacation['pto_balance'] is less than 1, inform the employee their

balance is too low using inform_employee_balance_low(), then end the
trajectory.

↪→
↪→

- Check for any scheduling conflicts by calling check_conflicts(start_date =
user_provided_info['start_date'], end_date =
user_provided_info['end_date'], pto_balance = vacation['pto_balance']).

↪→
↪→

- If conflict_status is true, notify the employee about the conflict
using inform_employee_conflict(), then end the trajectory.↪→

- If there are no issues, submit the leave request using
submit_leave_request(employee_id = employee_id, start_date =
user_provided_info['start_date'], end_date =
user_provided_info['end_date']). This returns a leave_request_id.

↪→
↪→
↪→
- Notify the employee's manager about the request using

notify_manager(manager_id = manager_id, leave_request_id =
vacation['leave_request_id']).

↪→
↪→
- Send a confirmation to the employee with send_confirmation(employee_id =

employee_id, leave_request_id = vacation['leave_request_id']).↪→
- Finally, close the case using close_case(leave_request_id =

vacation['leave_request_id']).↪→

Note on Soft Ordering: You can either call ask_for_pto_dates() first and then
get_pto_balance(), or do it the other way around; the order of those two
functions doesn’t matter.

↪→
↪→

26

A.10 Intermediate Workflow - Update Address

JSON Format

"agent": "update_address",
"steps": [

"get_employment_details(employee_id = employee_id) ->
[employment_type, employee_status]",↪→

"validate_address(address = user_provided_info['address']) ->
[validation_status]",↪→

"escalate_to_hr(employee_id = employee_id)",
"update_employee_address(employee_id = employee_id, address =

user_provided_info['address']) ->↪→
[notification_status]",
"notify_payroll(employee_id = employee_id) -> [notification_status]",
"check_contact_info(employee_id = employee_id) ->

[has_contact_info]",↪→
"update_contact_info(employee_id = employee_id, new_phone =

user_provided_info['new_phone']) ->↪→
[phone_update_status]",
"complete_case(employee_id = employee_id)"

],
"soft_ordering": [],
"conditionals": [

{
"if": [

{
"field": "validation_status",
"operator": "==",
"value": "invalid"

}
],
"then": [

{
"action": "end_after",
"target": "escalate_to_hr"

}
],
"else": [

{
"action": "skip",
"target": "escalate_to_hr"

}
]

},{
"if": [

{
"field": "employment_type",
"operator": "not in",
"value": [

"Full Time"
]

}
],
"then": [

{
"action": "skip",
"target": "notify_payroll"

}
]

},{
"if": [

{

27

"field": "has_contact_info",
"operator": "==",
"value": false

}
],
"then": [

{
"action": "skip",
"target": "update_contact_info"

}]}]}

Natural Language Format

- Start by retrieving the user's employment details using
get_employment_details(employee_id = employee_id), which returns
employment_type and employee_status.

↪→
↪→
- Validate the new address using validate_address(address =

user_provided_info['address']).↪→
- If validation_status is "invalid", escalate the issue to HR by calling

escalate_to_hr(employee_id = employee_id), then end the trajectory.↪→
- If the address is valid, update the employee’s address using

update_employee_address(employee_id = employee_id, address =
user_provided_info['address']).

↪→
↪→
- If the employee's employment_type is "Full Time", notify the payroll team

using notify_payroll(employee_id = employee_id). Otherwise, skip this
step.

↪→
↪→
- Check if the employee has contact information by calling

check_contact_info(employee_id = employee_id), which returns
has_contact_info.

↪→
↪→

- If has_contact_info is false, skip updating the contact info.
- Otherwise, update the phone number using

update_contact_info(employee_id = employee_id, new_phone =
user_provided_info['new_phone']).

↪→
↪→

- Finally, mark the case as complete using complete_case(employee_id =
employee_id).↪→

28

A.11 Complex Workflow - Book Flight

JSON Format

"agent": "book_flight",
"steps": [

"ask_for_basic_flight_details() -> [origin, destination, departure_date,
return_date]",↪→

"get_customer_preferences(customer_id = customer_id) ->
[cabin_preference, seat_preference]",↪→

"get_customer_frequent_traveler_status(customer_id = customer_id) ->
frequent_traveler_status",↪→

"search_regular_flights(origin = user_provided_info['origin'],
destination = user_provided_info['destination'], departure_date =
user_provided_info['departure_date'],
return_date = user_provided_info['return_date'], cabin_preference =
user_provided_info['cabin_preference'], seat_preference =
user_provided_info['seat_preference']) ->
[flight_number]",
"search_priority_flights(origin = user_provided_info['origin'],

destination =↪→
user_provided_info['destination'], departure_date =

user_provided_info['departure_date'],↪→
return_date = user_provided_info['return_date'], cabin_preference =
user_provided_info['cabin_preference'], seat_preference =

user_provided_info['seat_preference'])↪→
->[flight_number]",
"get_passport_visa_info(customer_id = customer_id)",
"check_visa_requirements(customer_id = customer_id,
destination = user_provided_info['destination']) -> [visa_status]",
"get_customer_payment_method(customer_id = customer_id) ->

[payment_method]",↪→
"create_booking(flight_number = user_provided_info['flight_number']) ->

[booking_id]",↪→
"create_booking_with_points(flight_number =

user_provided_info['flight_number']) -> [booking_id]",↪→
"add_special_services(booking_id = booking_info['booking_id'],
service_type = traveler_info['special_assistance'])",
"notify_airport_ground_team(customer_id = customer_id, booking_id =

booking_info['booking_id'],↪→
service_type =
traveler_info['special_assistance'])",
"complete_case(customer_id = customer_id)"],

"soft_ordering": [],
"conditionals": [{

"if": [
{"field": "traveler_info['frequent_traveler_status']", "operator":

"==", "value": null}],↪→
"then": [{ "action": "skip", "target": "search_priority_flights" }],
"else": [{ "action": "skip", "target": ["search_regular_flights",

"get_passport_visa_info"] }]},{↪→
"if": [{

"field": "payment_method['payment_type']",
"operator": "==",
"value": "Points" }],

"then": [{ "action": "skip", "target": "create_booking" }],
"else": [{ "action": "skip", "target": "create_booking_with_points"

}]},{↪→
"if": [{

"all_of": [
{

"field": "traveler_info['frequent_traveler_status']",
"operator": "in",

29

"value": ["Gold", "Platinum"]
},{

"field": "traveler_info['special_assistance']",
"operator": "!=",
"value": null}]}],

"then": [],
"else": [{ "action": "skip", "target": "notify_airport_ground_team"}]},

{
"if": [

{"field": "traveler_info['special_assistance']",
"operator": "==",
"value": null}],

"then": [{ "action": "skip", "target": "add_special_services" }]},{
"if": [{"field": "traveler_info['is_blacklisted']",

"operator": "==",
"value": true}],

"then": [{ "action": "end_after", "target": "check_visa_requirements"
}]}]}↪→

Natural Language Format

Step 1: Ask for Basic Flight Details
- Call the ask_for_basic_flight_details() function to ask the customer for:

Origin, Destination, Departure date, and Return date.↪→

Step 2: Retrieve Customer Preferences
- Call `get_customer_preferences(customer_id = customer_id)` to check if the

customer has preferences for the flight booking.↪→

Step 3: Check Frequent Traveler Status
- Call `get_customer_frequent_traveler_status(customer_id = customer_id)` to

determine if the customer is a frequent traveler.↪→
- **If frequent traveler status is None**:

- Proceed to Step 4 (Search Regular Flights).
- **If frequent traveler status is not None**:

- Skip Step 4 and Step 6.
- Proceed to Step 5 (Search Priority Flights).

Step 4: Search Regular Flights (Only if not a frequent traveler)
- Call `search_regular_flights(origin = user_provided_info['origin'],

destination = user_provided_info['destination'], departure_date =
user_provided_info['departure_date'], return_date =
user_provided_info['return_date'], cabin_preference =
user_provided_info['cabin_preference'], seat_preference =
user_provided_info['seat_preference'])`.

↪→
↪→
↪→
↪→
↪→
- Proceed to Step 6.

Step 5: Search Priority Flights (Only if frequent traveler)
- Call `search_priority_flights(origin = user_provided_info['origin'],

destination = user_provided_info['destination'], departure_date =
user_provided_info['departure_date'], return_date =
user_provided_info['return_date'], cabin_preference =
user_provided_info['cabin_preference'], seat_preference =
user_provided_info['seat_preference'])`.

↪→
↪→
↪→
↪→
↪→
- Proceed to Step 7.

Step 6: Retrieve Passport and Visa Information
Call get_passport_visa_info(customer_id = customer_id) to retrieve passport

and visa information.↪→

30

Step 7: Check Visa Requirements
Call check_visa_requirements(customer_id = customer_id, destination =

user_provided_info['destination']) to determine if a visa is required.↪→
If the customer is blacklisted (traveler_info['is_blacklisted'] is true): End

the flow after this step and notify the customer accordingly.↪→

Step 8: Retrieve Payment Method and Create Booking
- Call `get_customer_payment_method(customer_id = customer_id)` to get the

customer’s payment method.↪→
- **If the payment method is 'Points'**: Call

`create_booking_with_points(flight_number =
user_provided_info['flight_number'])`.

↪→
↪→
- **Otherwise**: Call `create_booking(flight_number =

user_provided_info['flight_number'])`.↪→
- Proceed to Step 9.

Step 9: Add Special Services
- **If the customer has listed any special assistance needs**: Call

`add_special_services(booking_id = booking_info['booking_id'],
service_type = traveler_info['special_assistance'])",`.

↪→
↪→
- Proceed to Step 10.

Step 10: Notify Airport Ground Team
- **If the customer is Gold or Platinum frequent traveler AND has special

assistance needs**:↪→
- Call `notify_airport_ground_team(customer_id = customer_id, booking_id =

booking_info['booking_id'], service_type =
traveler_info['special_assistance'])`.

↪→
↪→

Step 11: Final Confirmation and Case Completion
- Share the booking ID and confirmation details with the customer.
- Call `complete_case(customer_id = customer_id)` to finalize the process.
- Thank the customer: "Thank you for booking with us. Have a pleasant

journey!"↪→

31

A.12 Complex Workflow - Cancel Flight

JSON Format

"agent": "cancel_flight",
"steps": [

"get_customer_loyalty_info(customer_id = customer_id) ->
[frequent_flyer_status, loyalty_points]",↪→

"get_booking_details(customer_id = customer_id) -> [booking_id,
booking_date,↪→

payment_method, total_paid, is_refundable, purchased_insurance,
booking_channel]",↪→

"check_cancellation_policy(booking_id = booking_info['booking_id']) ->
[is_refundable]",↪→

"calculate_cancellation_fee(booking_id = booking_info['booking_id']) ->
[cancellation_fee]",↪→

"waive_cancellation_fee(loyalty_points = traveler_info['loyalty_points'],
booking_id =↪→

booking_info['booking_id']) -> [fee_waived]",
"offer_alternate_flight_options(customer_id = customer_id,

original_booking_id =↪→
booking_info['booking_id']) -> [flight_options]",
"process_flight_change(old_booking_id = booking_info['booking_id'])",
"cancel_flight(booking_id = booking_info['booking_id'])",
"get_customer_payment_method(customer_id = customer_id, booking_id =

booking_info['booking_id']) ->↪→
[payment_method]",
"process_refund(booking_id = booking_info['booking_id'], payment_method =
payment_method['payment_type'])",
"issue_travel_credit(customer_id = customer_id, amount =

booking_info['total_paid'])",↪→
"complete_case(customer_id = customer_id)"

],
"soft_ordering": [

["get_customer_loyalty_info", "get_booking_details"],
["check_cancellation_policy", "calculate_cancellation_fee"]

],
"conditionals": [

{"if": [{
"field": "user_provided_info['change_flight']",
"operator": "==",
"value": true

}],
"then": [{ "action": "skip", "target": ["cancel_flight",

"get_customer_payment_method",↪→
"process_refund", "issue_travel_credit"] }
],
"else": [{ "action": "skip", "target": ["process_flight_change"] }]},

{"if": [
{

"any_of": [
{ "field":"booking_info['is_refundable']",

"operator":"==",
"value": true },

{ "field":"booking_info['purchased_insurance']",
"operator":"==",
"value": true }

]}],
"then": [{ "action":"skip", "target":"issue_travel_credit" }
],
"else": [{ "action":"skip", "target":"process_refund" }]},

{"if": [{
"field": "traveler_info['loyalty_points']",

32

"operator": ">=",
"value": 10000}],

"then": [{ "action": "override_trajectory", "target":
["get_customer_loyalty_info",↪→

"get_booking_details", "waive_cancellation_fee", "cancel_flight",
"process_refund",↪→

"complete_case"]}],
"else": [{ "action": "skip", "target": ["waive_cancellation_fee"] }]}]}

Natural Language Format

Step 1: Retrieve Customer Loyalty Information
- Call `get_customer_loyalty_info(customer_id = customer_id)` to retrieve:

- **Frequent flyer status**
- **Loyalty points**

Step 2: Retrieve Booking Details
- Call `get_booking_details(customer_id = customer_id)` to retrieve:

- **Booking ID**, booking date, payment method, total paid
- **Is refundable**, purchased insurance, booking channel

Step 3: Shortcut for High Loyalty Customers
- If `traveler_info['loyalty_points'] >= 10000`:

- **Override the trajectory**: perform only:
1. `get_customer_loyalty_info`
2. `get_booking_details`
3. `waive_cancellation_fee`
4. `cancel_flight`
5. `process_refund`
6. `complete_case`

- **Skip** all other steps (Steps 4, 5, 7, 9, 11).
- Then return from the routine.

Step 4: Check Cancellation Policy
- Call `check_cancellation_policy(booking_id = booking_info['booking_id'])`

to determine if the booking is refundable.↪→
- **Note**: Can be done before or after Step 5 per soft ordering.

Step 5: Calculate Cancellation Fee
- Call `calculate_cancellation_fee(booking_id = booking_info['booking_id'])`

to retrieve the fee amount.↪→
- If `traveler_info['loyalty_points'] < 10000`, **skip** Step 6 and proceed

to Step 7.↪→
Step 6: Waive Cancellation Fee
- Call `waive_cancellation_fee(loyalty_points =

traveler_info['loyalty_points'], booking_id =
booking_info['booking_id'])` to waive the fee.

↪→
↪→
- **Only executed if** `traveler_info['loyalty_points'] >= 10000`.

Otherwise skipped.↪→
Step 7: Offer Flight Change Option
- Call `offer_alternate_flight_options(customer_id = customer_id,

original_booking_id = booking_info['booking_id'])` to offer alternatives.↪→
- If `user_provided_info['change_flight'] == True`:

- Call `process_flight_change(old_booking_id =
booking_info['booking_id'])`.↪→

- **Skip** the following:
- Step 8: `cancel_flight`
- Step 9: `get_customer_payment_method`
- Step 10: `process_refund`
- Step 11: `issue_travel_credit`

- Then return from the routine.
- Else:

- Continue to Step 8.
Step 8: Cancel Flight

33

- Call `cancel_flight(booking_id = booking_info['booking_id'])` to finalize
cancellation.↪→

Step 9: Retrieve Payment Method
- Call `get_customer_payment_method(customer_id = customer_id, booking_id =

booking_info['booking_id'])` to determine the original payment type.↪→
Step 10: Process Refund
- If `booking_info['is_refundable'] == True` **or**

`booking_info['purchased_insurance'] == True`:↪→
- Call `process_refund(booking_id = booking_info['booking_id'],

payment_method = payment_method['payment_type'])`.↪→
- **Skip** Step 11.

- Else:
- **Skip** this step (Step 10) and proceed to Step 11.

Step 11: Issue Travel Credit
- Call `issue_travel_credit(customer_id = customer_id, amount =

booking_info['total_paid'])` to issue credit.↪→
- **Only executed if** booking is non-refundable and no insurance.

Otherwise skipped.↪→
Step 12: Complete the Case
- Call `complete_case(customer_id = customer_id)` to mark the process as

complete.↪→
Note on Soft Ordering:
- You may call `get_customer_loyalty_info` before or after

`get_booking_details`.↪→
- You may call `check_cancellation_policy` before or after

`calculate_cancellation_fee`.↪→

34

A.13 Complex Workflow - Flight Disruption

JSON Format

"steps": ["get_booking_details(customer_id=customer_id) -> [booking_id,
origin, destination]",↪→

"check_flight_status(flight_number=
booking_info['flight_number'], flight_date=booking_info['flight_date'])
-> [status, estimated_delay_minutes, delay_reason]",
"notify_customer_disruption(customer_id=customer_id,

flight_number=booking_info['flight_number'],↪→
status = flight_info['status'], delay_reason=flight_info['delay_reason'],

estimated_delay_minutes =↪→
flight_info['estimated_delay_minutes'])",
"ask_rebooking_preference(customer_id=customer_id) -> [wants_rebook]",
"search_alternate_flights(origin=booking_info['origin'],

destination=booking_info['destination'],↪→
flight_date=booking_info['flight_date'],
cabin_class=booking_info['cabin_class']) -> [alternate_flights]",
"offer_flight_options_to_customer(customer_id=customer_id, flights=
search_results['alternate_flights']) ->[selected_flight_id]",
"create_rebooking(original_booking_id=booking_info['booking_id'],

new_flight_id=↪→
user_provided_info['selected_flight_id']) -> [new_booking_id,

fare_difference]",↪→
"process_fare_difference(customer_id=customer_id,

fare_difference=search_results['fare_difference'])",↪→
"check_overnight_need(estimated_delay_minutes=flight_info['estimated_delay_m ⌋

inutes'])
->

↪→
↪→
[needs_overnight_accommodation]",

"arrange_accommodation(customer_id=customer_id) -> [hotel_booking_id]",
"arrange_transport(customer_id=customer_id,

hotel_booking_id=search_results['hotel_booking_id'])",↪→
"issue_meal_vouchers(customer_id=customer_id,

delay=flight_info['estimated_delay_minutes']) ->↪→
[voucher_codes]",
"offer_compensation(customer_id=customer_id,

delay_reason=flight_info['delay_reason']) ->↪→
[compensation_details]",
"complete_case(customer_id=customer_id)"],

"soft_ordering": [["arrange_accommodation", "arrange_transport"]],
"conditionals": [{

"if": [{"field": "flight_info['status']", "operator": "==", "value":
"On Time"}],↪→

"then": [{"action": "override_params", "target":
"notify_customer_disruption", "params": {↪→

"customer_id": "customer_id",
"flight_number": "booking_info['flight_number']",
"status": "flight_info['status']"}},

{ "action": "end_after", "target": "notify_customer_disruption" }}},
{"if": [{

"field": "flight_info['status']",
"operator": "==",
"value": "Cancelled"}],

"then": [{"action": "override_params", "target":
"notify_customer_disruption", "params": {↪→

"customer_id": "customer_id",
"flight_number": "booking_info['flight_number']",
"status": "flight_info['status']",
"delay_reason": "flight_info['delay_reason']"}}]},

{"if": [{"all_of": [

35

{"field": "flight_info['status']", "operator": "==", "value":
"Cancelled"},↪→

{"field": "flight_info['delay_reason']", "operator": "in",
"value": ["Mechanical",↪→

"Crew Issue"]}]}],
"then": [{ "action": "override_trajectory",

"target": ["get_booking_details",
"offer_flight_options_to_customer", "create_rebooking",↪→

"arrange_accommodation", "arrange_transport", "offer_compensation",
"update_loyalty_points",↪→

"complete_case"]}]},
{"if": [{"field":

"user_provided_info['wants_rebook']","operator":
"==","value": false}],

↪→
↪→

"then": [{"action": "skip","target": ["search_alternate_flights",
"offer_flight_options_to_customer","create_rebooking","process_fare_di ⌋

fference"]}]},↪→
{"if": [{"field": "flight_info['estimated_delay_minutes']","operator":

"<","value": 360}],↪→
"then": [{ "action": "skip", "target":["arrange_accommodation",

"arrange_transport",↪→
"issue_meal_vouchers"]}]},

{"if": [{"all_of": [{"field":
"traveler_info['frequent_traveler_status']","operator": "in","value":↪→

["Gold", "Platinum", "Diamond"]},{"field":
"flight_info['delay_reason']",↪→

"operator": "!=","value": "Weather"}]}],
"then": [{"action": "override_params", "target":

"offer_compensation","params": { "customer_id":↪→
"customer_id", "delay_reason":

"flight_info['delay_reason']","extra_miles":↪→
"booking_info['compensation_allowed']"}}]},{
"if": [{ "field": "flight_info['delay_reason']","operator": "==",

"value": "Weather"}],↪→
"then": [{"action": "skip","target":["offer_compensation"]}]}]}

Natural Language Format

Step 1: Retrieve Booking Details
- Call get_booking_details(customer_id=customer_id) and capture booking_id

and origin & destination↪→
Step 2: Check Flight Status
- Call check_flight_status(flight_number=booking_info['flight_number'],

flight_date=booking_info['flight_date']) and capture: status (“On Time”,
“Delayed”, “Cancelled”), estimated_delay_minutes, delay_reason (if
cancelled)

↪→
↪→
↪→
Step 3: Notify the Customer of the Disruption
- Call notify_customer_disruption() with the following parameters based on

the value of flight_info['status']".↪→
- If flight_info['status']" is On Time, use parameters:

customer_id=customer_id, flight_number=booking_info['flight_number'],
status=flight_info['status']) and end the flow here.

↪→
↪→
- If flight_info['status'] is Cancelled, use parameters:

customer_id=customer_id, flight_number=booking_info['flight_number'],
status = flight_info['status'], delay_reason=flight_info['delay_reason']

↪→
↪→
- If flight_info['status'] is Delayed, use parameters:

customer_id=customer_id, flight_number=booking_info['flight_number'],
status = flight_info['status'], delay_reason=flight_info['delay_reason'],
estimated_delay_minutes = flight_info['estimated_delay_minutes']

↪→
↪→
↪→
Step 4: Ask Rebooking Preference

36

- Call ask_rebooking_preference(customer_id=customer_id) and capture
wants_rebook. - If user_provided_info['wants_rebook'] == false, skip
Steps 5–8.

↪→
↪→
Step 5: Search for Alternate Flights
- Call search_alternate_flights(origin=booking_info['origin'],

destination=booking_info['destination'],
flight_date=booking_info['flight_date'],
cabin_class=booking_info['cabin_class'],) and capture alternate_flights

↪→
↪→
↪→
Step 6: Offer Flight Options
- Call offer_flight_options_to_customer(customer_id=customer_id,

flights=search_results['alternate_flights']) and capture
selected_flight_id

↪→
↪→
Step 7: Create the New Booking
- Call create_rebooking(original_booking_id=booking_info['booking_id'],

new_flight_id=user_provided_info['selected_flight_id']) and capture
new_booking_id and fare_difference

↪→
↪→
Step 8: Process Any Fare Difference
- Call process_fare_difference(customer_id=customer_id,

fare_difference=search_results['fare_difference']).↪→
Step 9: Check Overnight Accommodation Need
- Call check_overnight_need(

estimated_delay_minutes=flight_info['estimated_delay_minutes']) and
capture needs_overnight_accommodation

↪→
↪→
Steps 10 & 11: Arrange Hotel and Transport
- Only if flight_info['estimated_delay_minutes'] is over 360, call

arrange_accommodation(customer_id=customer_id) and capture
hotel_booking_id

↪→
↪→
- Call arrange_transport(customer_id=customer_id,

hotel_booking_id=search_results['hotel_booking_id']).↪→
- (These two steps may execute in either order.)
Step 12: Issue Meal Vouchers
- If flight_info['estimated_delay_minutes'] under 360, skip this step.
- Otherwise, call issue_meal_vouchers(customer_id=customer_id,

delay=flight_info['estimated_delay_minutes']) and capture voucher_codes↪→
Step 13: Offer Compensation
- Call offer_compensation(customer_id=customer_id,

delay_reason=flight_info['delay_reason'],) and capture
compensation_details.

↪→
↪→
- If traveler_info['frequent_traveler_status'] in ["Gold", "Platinum",

"Diamond"], include extra_miles = booking_info['compensation_allowed'] in
the parameters to become offer_compensation(customer_id=customer_id,
delay_reason=flight_info['delay_reason'], extra_miles =
booking_info['compensation_allowed'])

↪→
↪→
↪→
↪→
- If flight_info['status'] == "Cancelled" and flight_info['delay_reason'] in

["Mechanical", "Crew Issue"], override the trajectory to execute in order
with the parameters defined above:

↪→
↪→

1. get_booking_details()
2. offer_flight_options_to_customer()
3. create_rebooking()
4. arrange_accommodation()
5. arrange_transport()
6. offer_compensation()
7. update_loyalty_points()
8. complete_case()

Step 14: Complete the Case
- Call complete_case(customer_id=customer_id).

37

A.14 User Data Example

User Data Example Provided to Traxgen

{
"agent_sequence": [

"submit_time_off_request"
],
"employee_id": 2709079,
"manager_id": 7215773,
"conflict_status": false,
"employment_type": "Full Time",
"has_contact_info": false,
"suspension": {

"suspension_id": 601790,
"suspension_status": "not suspended"

},
"vacation": {

"leave_request_id": 191059,
"pto_balance": 9

},
"validation_status": "valid",
"user_provided_info": {

"address": "12 Grimmauld Place, London, UK",
"end_date": "2025-06-27",
"new_phone": 6512227804,
"ReActivation_date": "2025-06-03",
"start_date": "2025-06-12",
"suspension_reason": "Leave of Absence",
"suspension_type": "temporary"

}
}

38

A.15 Traxgen Trajectory Format

Traxgen Style

[
[

"agent: assistant",
"tool: ask_for_order_id()",
"tool: get_order_status(order_id=63920)",
"tool: return_order_status(order_status=Delivered)",
"tool: close_case(order_id=63920)"

]
]

Google Style

[[
{'tool_name': 'ask_for_order_id', 'tool_input': {}},
{'tool_name': 'get_order_status', 'tool_input': {'order_id': 63920}},
{'tool_name': 'return_order_status', 'tool_input': {'order_status':

'Delivered'}},↪→
{'tool_name': 'close_case', 'tool_input': {'order_id': 63920}}
]]

Langchain Style

[
[

{
"role": "assistant",
"tool_calls": [

{ "name": "ask_for_order_id", "arguments": {} }
]

},
{

"role": "assistant",
"tool_calls": [

{ "name": "get_order_status", "arguments": { "order_id": 63920 } }
]

},
{

"role": "assistant",
"tool_calls": [

{ "name": "return_order_status", "arguments": { "order_status":
"Delivered" } }↪→

]
},
{

"role": "assistant",
"tool_calls": [

{ "name": "close_case", "arguments": { "order_id": 63920 } }
]

}
]

]

39

Tool-Only Style

['ask_for_order_id', 'get_order_status', 'return_order_status', 'close_case']

40

A.16 Annotator Instructions

Annotator Instructions

Trajectory Annotation Instructions

Objective

You will review tool-call trajectories to ensure they follow
the defined workflow logic and are consistent with the provided customer

data.↪→

Each annotation task includes:
- A workflow (a step-by-step recipe that tells the agent which tools to use,

in what order, and under what conditions, to complete a task)↪→
- A customer profile (database-like JSON input)
- A generated trajectory (tool calls + parameters)

Your goal is to determine whether the generated trajectory adheres to the
workflow based on the given user data and fully satisfies the task
requirements.

↪→
↪→

Notes: Some trajectories will have 'soft ordering' defined. Soft ordering
refers to groups of steps that can execute in any order. When soft
ordering is present, more than one trajectory should be created and you
will need to approve multiple possible trajectories that differ only in
the order of those steps.

↪→
↪→
↪→
↪→

When to Mark as Pass
Mark the trajectory as `Pass` if all of the following conditions are met:

1. All required tool calls are present in the correct order. If 'soft
ordering' is present, the right number of trajectories are generated and
contain the right tool calls in the correct order.

↪→
↪→
2. Conditional logic (`skip`, `end_after`, `override_trajectory`) is

triggered appropriately based↪→
on customer data.
3. No extra tool calls are included
4. Tool parameters are fully and correctly filled using customer data and

workflow-defined rules.↪→
5. In multi-agent workflows, each agent only calls tools defined in its

assigned sub-intent.↪→

When to Mark as `Fail`

Mark the trajectory as `Fail` if any of the following issues are present:

- A required tool is missing.
- Tools are called in the wrong order, violating hard constraints.
- A conditional rule is misapplied (e.g., skipped when it should not be).
- A tool has incorrect or missing parameters.
- Extra tools are called that are not defined in the workflow or allowed by

policy.↪→
- In multi-intent workflows, an agent calls tools outside its scope.

Common Error Tags

If a trajectory is marked as `Fail`, please include one or more of the
following tags:↪→

41

| Tag | Description
|↪→

|------------------|-- ⌋
------|↪→

| `missing_tool` | A required tool was not called.
|↪→

| `wrong_order` | Tools were called in the incorrect order.
|↪→

| `wrong_condition` | A condition (e.g., `skip`, `end_after`) was applied
wrongly.|↪→

| `wrong_param` | Tool parameters were missing or incorrect.
|↪→

| `extra_tool` | Unnecessary or invalid tool calls were included.
|↪→

| `agent_violation` | A tool was used by the wrong agent in a multi-intent
task. |↪→

Output Format

Each task should be annotated using this format:

```json
{

"customer_id": "1802531",
"annotator_id": "A1",
"result": "fail",
"tags": ["missing_tool", "bad_param"]

}

42



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper clearly states the research problem: generating deterministic trajec-
tories for multi-agent and tool-use evaluation in task-oriented dialogue systems.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a Limitations section discussing that Traxgen has only been
evaluated on a restricted set of workflows and does not yet handle complex, multimodal,
or non-idempotent real-world scenarios. We note that factorial growth in soft-order per-
mutations can limit scalability, the framework cannot adapt to novel or ambiguous inputs
without pre-specified logic, and LLM benchmarking is constrained by available models and
prompt designs. We also highlight that human oversight remains essential to mitigate risks
in high-stakes or regulated domains.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

43



3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not present new theoretical results or formal proofs. Instead, it
focuses on introducing a framework for deterministic trajectory generation and evaluating it
empirically across multiple domains. While we include definitions and structured formalisms
for workflows and trajectories, these are methodological rather than theoretical theorems,
and thus no assumptions or formal proofs are required.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed descriptions of the datasets, task domains, work-
flows, and evaluation setup, ensuring that the experimental results can be reproduced. The
methodology section specifies the trajectory generation process, agent configurations, and
evaluation metrics, while the appendix offers additional implementation details. Further-
more, experimentation code is publicly available, which will allow researchers to directly
reproduce our results and extend them to new domains.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

44



(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper provides both anonymized code and dataset access in the supple-
mental material, with clear instructions on installation, environment setup, and commands
to reproduce the main results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies the experimental setting by describing the workflows,
trajectory generation process, model usage, baseline creation and evaluation setup.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

45

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Answer: [Yes]
Justification: The paper reports statistical significance for its main experimental comparisons.
Specifically, we tested for distributional assumptions (Shapiro–Wilk for normality, Levene’s
test for homogeneity of variance) and, since these assumptions were not satisfied, we applied
the non-parametric Kruskal–Wallis test across model and format groups. When significant
differences were found, we conducted post-hoc pairwise Mann–Whitney U tests with Holm
correction. Results in the text explicitly state when performance differences are statistically
significant (e.g., between JSON and natural language input, or across prompting methods),
ensuring that our main claims are supported by significance testing.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: The paper does not report compute resources explicitly. In practice, the
experiments were run via API calls to hosted LLM services (OpenAI / OpenRouter), so
no local CPU/GPU specifications or runtime measurements are applicable. The only local
compute involved was a standard personal laptop CPU for issuing requests, which did not
impact the experimental outcomes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]

46

https://neurips.cc/public/EthicsGuidelines


Justification: The research conforms with the NeurIPS Code of Ethics. The paper presents a
synthetic evaluation toolkit and benchmark for trajectory generation without collecting or
exposing sensitive personal data. No human subjects are involved, and no ethical risks such
as bias amplification, privacy breaches, or misuse of restricted data are introduced. The work
focuses on deterministic synthetic data and benchmarking, which aligns with responsible AI
development practices.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses potential impacts in multiple places. The positive impact
comes from Experiment 1 results, where Traxgen enables fast, deterministic generation
of ground-truth trajectories without passing user data to LLMs, reducing compute costs
and improving reproducibility, which can enhance reliability and transparency in high-
stakes domains such as finance and healthcare. The negative impacts are discussed in the
Limitations section, highlighting risks such as automation errors or misuse of the system,
emphasizing the need for human oversight.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No release of high-risk data or models.

Guidelines:

47



• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes; the authors of this paper are also the creators of Traxgen, and any external
LLMs used are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new assets in the form of Traxgen (a Python toolkit)
and synthetic datasets for trajectory generation benchmarking. Both are described in detail
within the paper, including their structure, functionality, and intended usage. At submission
time, the assets are shared in anonymized form, consistent with the guidelines.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

48

paperswithcode.com/datasets


Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or human-subject studies.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper clearly describes the use of LLMs in the experimental setup. Specifi-
cally, we benchmark multiple large language models (e.g., GPT-4.1, Gemini, Llama, Mistral,
Sonnet) on structured and natural-language workflows to evaluate trajectory generation
quality. However, the core method we propose (Traxgen) does not rely on LLMs for its
operation; LLMs are used only as baselines and for comparative evaluation.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

49

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Evaluation Strategies for Agents
	Trajectory Ground Truth Generation

	Traxgen
	Required Inputs
	Workflow
	User Data

	Supported Trajectory Formats
	System Architecture

	Experimentation
	Data Construction
	Data Distribution and Complexity Levels
	General Experimentation Setup
	Evaluation Metrics

	Experiment 1: Traxgen Evaluation
	Experiment-Specific Setup
	Results

	Experiment 2: LLM Benchmarking
	Experiment-Specific Setup
	Results

	Discussion
	Limitations
	Appendix Contents
	Generating Trajectories with Traxgen
	Traxgen supported conditional actions
	Traxgen Evaluation Results
	Main LLM Experiment Results
	Simple Workflow - Check Order Status
	Simple Workflow - Check Product Availability
	Simple Workflow - Resend Email Request
	Intermediate Workflow - Account Suspension Request
	Intermediate Workflow - Submit Time Off Request
	Intermediate Workflow - Update Address
	Complex Workflow - Book Flight
	Complex Workflow - Cancel Flight
	Complex Workflow - Flight Disruption
	User Data Example
	Traxgen Trajectory Format
	Annotator Instructions


