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ABSTRACT

Existing Video Large Language Models (Video LLMs) struggle with complex
video understanding, exhibiting limited reasoning capabilities and potential hal-
lucinations. In particular, these methods tend to perform reasoning solely relying
on the pretrained inherent reasoning rationales whilst lacking perception-aware
adaptation to the input video content. To address this, we propose Video-ToC,
a novel video reasoning framework that enhances video understanding through
tree-of-cue reasoning. Specifically, our approach introduces three key innovations:
(1) A tree-guided visual cue localization mechanism, which endows the model with
enhanced fine-grained perceptual capabilities through structured reasoning pat-
terns; (2) A reasoning-demand reward mechanism, which dynamically adjusts the
reward value for reinforcement learning (RL) based on the estimation of reasoning
demands, enabling on-demand incentives for more effective reasoning strategies;
and (3) An automated annotation pipeline that constructs the Video-ToC-SFT-1k
and Video-ToC-RL-2k datasets for supervised fine-tuning (SFT) and RL training,
respectively. Extensive evaluations on six video understanding benchmarks and
a video hallucination benchmark demonstrate the superiority of Video-ToC over
baselines and recent methods. All code, models, and datasets will be released.

1 INTRODUCTION

Video Large Language Models (Video LLMs) have achieved significant progress on various
perception-based video understanding tasks Zhang et al. (2024c); Bai et al. (2025); Wang et al.
(2024b). Despite their strong performance on these benchmarks, they often lack reasoning capability
and struggle with complex video reasoning tasks.

Recently, inspired by the success of DeepSeek-R1 Guo et al. (2025), which introduces Reinforcement
Learning (RL) to greatly improve the model’s reasoning abilites in text-based domains, many
efforts Feng et al. (2025); Li et al. (2025a) explore applying RL to Video-LLMs for enhancing
video reasoning. The common practice to train such a video reasoning model usually includes two
stages. First, the supervised fine-tuning (SFT) on video QA samples with labeled reasoning process
is performed to cold start the model for adapting the reasoning-based answering style. The followed
RL stage further incentivize the model to explore more effective and general reasoning strategies.

The labeled rationales in the training samples of SFT cold start stage is crucial, which basically
determines the reasoning style of the model. However, current methods Feng et al. (2025) usually
leverage strong models (e.g. Qwen2.5-VL-72B Bai et al. (2025)) to freely generate these rationales
without a tailored reasoning pattern, which is not suitable for much smaller models (e.g. Qwen2.5-
VL-7B Bai et al. (2025)) to learn and imitate. This is because the smaller model owns relatively
weaker spatio-temporal perception capability, which hinders effective reasoning when the model
cannot capture enough useful visual cues from the video. Therefore, some reasoning strategies
inherent in these rationales encourage the model to rely more on prior language knowledge rather
than the provided video semantics, which increases the risk of hallucination Li et al. (2025b). As
shown in Figure 1 for example, when the solution of a question requires fine-grained visual cues,
Video-R1 Feng et al. (2025) will easily forget searching for key information in the video and start
analyzing the question totally based on its prior language knowledge. This observation naturally
leads to our core research question: Can we develop a progressive visual cue localization approach
to enhance perception capabilities and mitigate hallucination?

Our solution. To tackle this challenge and improve the model’s reasoning strategies, we develop
a reasoning framework called ‘Video-ToC’, which is based on tree-guided visual cue localization.
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Video-ToC: <locate>I start by scanning the video to identify any scenes that involve drawing lines on a 
shirt……Next, I look for a scene where a person is drawing lines on a shirt……Then, I pay close 
attention to the placement of the lines and any points that are labeled……Finally, I carefully observe 
the points that are labeled, specifically looking for the point B to determine its location on the 
shirt……</locate>\n<answer>C</answer>

Video-R1: <think>Let me think about this for a moment. The question is asking about......The video 
shows......Now, let's consider the options: A. This seems plausible because the center of the shirt is a 
common reference point for drawing lines. B. This is less likely because the bottom of the shirt is not 
typically used as a reference point for drawing lines. C. This is also less likely because the shoulder is 
not a common reference point for drawing lines on a shirt. Hmm, it seems that the most logical and 
common reference point for drawing lines on a shirt is the center......Oh, I see. The point B is indeed 
on the center of the shirt......</think>\n<answer>A</answer>

Video:

Question: Where is the point B when drawing imaginary lines?
A. On the center of the shirt. B. On the bottom of the shirt. C. On the shoulder.

Figure 1: Reasoning strategy comparison between Video-R1 and our Video-ToC.

An example of our Video-ToC rationale is shown in Figure 1, which demonstrates the process
of progressively locating key spatio-temporal visual cues that become increasingly helpful for
answering the question. This rationale, characterized by step-by-step localization, enables the model
to meticulously examine fine-grained details within the video during question analysis, which is
beneficial for mitigating hallucination and handling tasks that require precise perceptual capabilities.

To facilitate learning of this reasoning process, we construct the ‘Video-ToC-SFT-1k’ dataset for
supervised fine-tuning (SFT). The dataset is built upon a tree-based data structure representing
video clips, where each leaf node corresponds to the content of an individual clip. The reasoning
localization trajectory is derived by traversing paths from the root of the tree to critical leaf nodes,
followed by summarization via a large language model (LLM). Then, in the following RL stage,
we employ GRPO Shao et al. (2024b) and introduce Reasoning Demand—a metric quantifying
the question’s reasoning complexity, computed as the error rate when the model answers without
reasoning over multiple trials. We further propose Reasoning-demand Reward, proportional to this
demand, as the success reward. Unlike GRPO’s binary reward, our design better incentivizes useful
reasoning strategies, enhancing the model’s reasoning ability. Using this framework, we construct the
‘Video-ToC-RL-2k’ dataset with reasoning demand annotations for GRPO training.

Equipped with Video-ToC, the model achieves robust reasoning capabilities when handling queries
that demand intricate spatio-temporal perception. It outperforms other reinforcement learning-
based methods on a series of challenging video understanding and video hallucination benchmarks,
including VSI-Bench Yang et al. (2024), VideoMMMU Hu et al. (2025), MMVU Zhao et al. (2025),
MVBench Li et al. (2024c), TempCompass Liu et al. (2024b), VideoMME Fu et al. (2024), and
VideoHallucer Wang et al. (2024c), demonstrating its clear advantage.

To summarize, we make the following contributions:

• We present Video-ToC, which is a novel video reasoning framework that introduces a tree-
guided visual cue localization mechanism and a reasoning-demand-based reward strategy.
This approach endows the model with enhanced fine-grained perceptual capabilities through
structured reasoning patterns.

• For acquiring the fine-grained reasoning ability, we develop an automatic data generation
pipeline to construct two video reasoning datasets, i.e., Video-ToC-SFT-1k and Video-ToC-
RL-2k, for SFT and RL training, respectively.

• Comprehensive evaluations across six video understanding benchmarks and one video
hallucination benchmark substantiate the efficacy of our method, demonstrating consistent
performance improvements and hallucination mitigation.
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2 RELATED WORK

2.1 VIDEO LARGE LANGUAGE MODELS

As a kind of Multimodal Large Language Models (MLLMs) Liu et al. (2023); Zhu et al. (2023);
Zhang et al. (2024a); Li et al. (2024a); Bai et al. (2025) especially designed for video data, Video
Large Language Models (Video LLMs) Maaz et al. (2024); Zhang et al. (2023a); Liu et al. (2024a);
Li et al. (2024d); Wang et al. (2024b); Zhang et al. (2024c) have shown remarkable capabilities in
comprehending and analyzing complex spatio-temporal visual cues within videos. For example,
VideoChatGPT Maaz et al. (2024) disentangles the spatial and temporal features in a dual-pathway
framework, enabling efficient video features modeling. Video-LLaMA Zhang et al. (2023a) employs
the Q-Former Li et al. (2023) for feature compression and introduces an audio branch to integrate
more diverse multimodal information. ST-LLM Liu et al. (2024a) delegates the task of video sequence
modeling to the LLMs through the proposed dynamic masking strategy with specifically designed
training objectives. Despite these advancements significantly enhancing the perception abilities of
Video LLMs, their reasoning capabilities still remain underexplored Feng et al. (2025); Li et al.
(2025a); Zhang et al. (2025b).

2.2 MULTIMODAL LARGE LANGUAGE MODEL REASONING

Recent studies focusing on the reasoning abilities of MLLMs highlight the great potential of tackling
complex tasks through Chain-of-Thought (CoT) reasoning Wei et al. (2022); Zhang et al. (2023b).
The general paradigm to improve the reasoning capabilities of MLLMs is performing supervised
fine-tuning (SFT) using a collection of high-quality CoT reasoning data annotated by powerful models
(e.g., GPT-4) and/or humans Wu & Xie (2024); Han et al. (2024); Fei et al. (2024); Shao et al. (2024a);
Qi et al. (2024); Xu et al. (2024). However, merely teaching the models to memorize thinking-style
reasoning paths leads to limited generalizability Chu et al. (2025), which can be greatly alleviated by
reinforcement learning which incentivizes the reasoning capabilities in MLLMs Zhang et al. (2025a);
Liu et al. (2025); Wang et al. (2025). While this approach remarkably improves performance on
strong reasoning data which are math-related Lu et al. (2023); Wang et al. (2024a) or task-specific
data like grounding Lai et al. (2024), its effectiveness for video understanding is underexplored. In
this work, we aim to enhance the reasoning capabilities of MLLMs and boost their performance on
both video reasoning and video general tasks through the development of a high-quality, tailor-made
CoT dataset and an improved RL reward design.

3 METHOD

3.1 OVERVIEW

The training phase of Video-ToC involves two stages: supervised fine-tuning (SFT) and reinforcement
learning (RL). In the SFT stage (Sec. 3.2), we detail the rationale annotation pipeline for constructing
the training data, while the RL stage (Sec. 3.3) extends beyond the standard accuracy reward
by introducing a Reasoning-demand Reward, supported by a dedicated dataset tailored for RL
optimization.

3.2 DATA CONSTRUCTION FOR SUPERVISED FINE-TUNING (SFT)

The SFT stage of Video-ToC differs from recent approaches Feng et al. (2025) by employing a
tree-structured representation of video clips based on their semantic correlations. Each leaf node
corresponds to a video clip’s content, while the hierarchical structure captures their relationships.
To generate SFT data, we simply backtrack from any leaf node to the root, extracting a coherent
reasoning path. This rationale is then processed and summarized by an external LLM to produce the
final SFT data. The specific steps are detailed as follows.

Step 1: Leaf node construction. To construct a hierarchical tree structure of video clips, we first
obtain the leaf nodes by segmenting the input video and extracting their content.

Specifically, as shown in Figure 2, given a sampled video and corresponding question-answer pair,
we first segment the video into multiple clips, employing the video splitting method proposed by
Panda-70M Chen et al. (2024). In detail, the video is first split based on shot boundary detection,
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Existing Video 
QA Datasets

…

Clip 1 Clip 2 Clip 3 Clip N

MLLM

…

Caption 1 Caption 2 Caption 3 Caption N

Tree

Construction

Sample Q: What's the name of the man in white?

A: Phil Pfister.

LLM

Selected Clips

Video Tree Reasoning Trajectory

Segment

LLM

Video-ToC Rationale: I start by scanning the 
video to find scenes where a person is wearing 
a white shirt. Next, I look for clips where the 
athletes are being introduced, to gather more 
context about the scene. Finally, I focus on the 
scene that explicitly reveals the name of the 
man in white through on-screen text, allowing 
me to identify the individual as Phil Pfister.

Backtracking

Video

Sample

start

end

Figure 2: Video-ToC rationale annotation pipeline. The pipeline consists of three phases: (i) Leaf
node construction through an LLM selecting question-relevant clips, (ii) Reasoning trajectory
generation through backtracking from the selected leaf nodes to the root node, and (iii) SFT data
construction through LLM summarization of the reasoning trajectory into the Video-ToC rationale.
Details of each phase are presented in Sec. 3.2.

then some adjacent clips are stitched if the frame embeddings from them are similar enough. After
segmenting the video into N clips, we prompt an MLLM to describe each clip comprehensively,
thereby obtaining N detailed video clip captions. Then we utilize an LLM to analyze the question-
answer pair, and identify the key clips that are essential for answering the question based on the
provided clip captions. After acquiring the video clips, we construct a Segment Tree with N leaf
nodes, where each leaf node represents a distinct video clip.

Step 2: Reasoning trajectory generation. Subsequently, by performing backtracking from each
selected leaf node (corresponding to a target clip) up to the root, the resulting paths collectively form
a subtree that implicitly encodes a reasoning trajectory. This trajectory begins with the entire video as
the root, progressively narrows down to finer-grained segments through hierarchical decomposition,
and ultimately converges on the key clips, effectively capturing the spatio-temporal localization
process in a structured and interpretable manner.

To facilitate comprehension by LLM, the trajectory is preprocessed into multiple visual cue descrip-
tions, where each layer of the subtree is transformed into a ‘video compilation’ by concatenating all
clips associated with its constituent nodes. Formally, for the i-th layer of subtree T containing k
nodes {Ti,j}kj=1, the corresponding compilation Vi is constructed as

Vi = Concat(S(Ti,1), . . . ,S(Ti,k)), (1)
where S(Ti,j) denotes the set of leaf nodes rooted at Ti,j . To ensure uniqueness, duplicate compila-
tions, resulting from identical clip sets across different layers, are removed, yielding a concise and
non-redundant representation of the hierarchical reasoning trajectory. This processed trajectory is then
summarized by an LLM as the Video-ToC rationale, effectively bridging the structured decomposition
with high-level reasoning. More illustrations are provided in the supplementary material.

Step 3: SFT data construction. We first prompt an MLLM to describe the rest ‘video compilations’
respectively. Each description corresponds to a step in the localization process, detailing the specific
spatial and temporal visual cues that the model needs to focus on. Subsequently, we employ an LLM
to assess and filter samples where the visual cues from the final step are insufficient to derive the
question’s answer. Finally, we utilize these visual cue descriptions alongside the question-answer pair
to prompt an LLM to generate a natural and coherent narrative serving as the Video-ToC rationale.
Such rationales demonstrate the process of locating video clips that are increasingly helpful for
solving the question and reaching the answer, as exemplified in the bottom-right portion of Figure 2.
More examples are provided in the supplementary material. The Video-ToC rationale, combined with
the video and question-answer pair, constitutes a training sample for the SFT cold start stage.

To construct the SFT training data, we apply the above annotation pipeline to the LLaVA-Video-178K
dataset Zhang et al. (2024c) by employing Qwen2.5-VL-7B Bai et al. (2025) as the MLLM and
Llama-3.3-70B-Instruct Grattafiori et al. (2024) as the LLM. By randomly selecting a small subset
of videos and their corresponding question-answer pairs, we curate the Video-ToC-SFT-1k dataset,
which comprises 1,000 high-quality training samples designed to facilitate an effective and efficient
SFT cold start.
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3.3 REASONING-DEMAND REWARD FOR REINFORCEMENT LEARNING (RL)

After the SFT cold start stage, we perform reinforcement learning (RL) with the Group Relative
Policy Optimization (GRPO) Shao et al. (2024b) algorithm to enable the model to further enhance its
reasoning capabilities. The adopted training rewards and objectives are as follows.

Vanilla accuracy reward. In GRPO, the vanilla accuracy reward is typically a binary (0-1) function
where the value is determined by whether the model’s prediction aligns with the question’s answer:

Rvanilla =

{
1, if Apred is correct
0, otherwise,

(2)

where Apred is the predicted answer after thinking. However, solving different questions requires
varying degrees of thinking: reasoning-based questions depend more heavily on analytical thought,
whereas perception-based ones rely less on it. Therefore, providing the same reward for each correct
answer is not the optimal approach to incentivize the effective reasoning strategies for solving
reasoning-based questions.

Reasoning-demand reward. To tailor a more suitable reward for each training sample, we first
assess its reasoning demand and then develop a corresponding reward based on this. Specifically,
for a given question, we employ an MLLM to directly predict the answer without thinking in M
independent trials and record the number of correct predictions, denoted as α (where α ranges
from 0 to M ). We define the reasoning demand for this question as e−

α
M , and set the value of

reasoning-demand reward equal to it when the model successfully solves the question during training.
Formally, the reasoning-demand reward is defined as:

Rrd =

{
e−

α
M , if Apred is correct

0, otherwise,
(3)

where Apred is the predicted answer after thinking. The core idea behind Equation equation 3 is
that when the model can answer questions accurately without reasoning (large α), the need for prior
reasoning diminishes (minimize Rrd); conversely, poorer model performance (small α) requires more
extensive reasoning (increase Rrd). The exponential function is used to modulate reward magnitudes
across different tiers of reasoning demands. Specifically, the reasoning-demand reward escalates
rapidly as the accuracy of direct answering declines, while it decreases relatively slowly as successful
direct predictions increase.

To this end, the reasoning demand-driven reward mechanism incentivizes the model when a question
inherently requires reasoning and the model successfully addresses it through reasoning analysis.
Conversely, for perception-based questions requiring minimal reasoning, the reward decreases
proportionally. With this reward, the model is guided to make decisions on whether to engage
in reasoning, consequently alleviating the problem of overthinking when unnecessarily complex
reasoning is applied to straightforward questions.

GRPO training objective. During GRPO training, the model first generates a group of G candidate
responses o = {o1, . . . , oG} for each input question. Then, we calculate the reasoning-demand
rewards for each response using Equation equation 3, which serve as their respective final rewards
denoted by {r1, . . . , rG}. Note that the overall reward we apply during GRPO training is only
the reasoning-demand reward, and we do not use format reward because the model after the cold
start phase can adhere to the specified format well enough. (More discussions are provided in the
supplementary material.) Subsequently, GRPO normalizes these rewards as the relative advantages
of the responses within a group:

Ai =
ri −mean({ri}Gi=1)

std({ri}Gi=1)
, (4)

where Ai represents the relative advantage of the i-th response. Since Equation equation 4 eliminates
the reward differences across responses to different questions, we then multiply Ai by the question’s
reasoning demand (denoted as γ) to derive the final advantage of the i-th response, denoted as Âi:

Âi = Ai × γ. (5)

5
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Ultimately, the model is optimized through maximizing the following training objective of GRPO:

Eq,{oi}

[ 1
G

G∑
i=1

(
min

( πθ(oi|q)
πθold(oi|q)

Âi, clip(
πθ(oi|q)
πθold(oi|q)

, 1−ϵ, 1+ϵ) Âi

)
−β DKL(πθ ∥πref)

)]
, (6)

where πθ and πθold represent the current and old policy. ϵ is a hyperparameter that controls the
clipping range. The KL-divergence term DKL(·|·) is introduced to constrain the deviation of πθ from
the reference model πref , with β as a hyperparameter controlling the regularization strength.

To construct the RL training data, we only need to annotate the reasoning demand for each sample.
This is because RL promotes free exploration by the model, eliminating the need for annotated Video-
ToC rationales. The training samples for RL is also derived from a subset of the LLaVA-Video-178K
dataset Zhang et al. (2024c). For each video QA, we employ Qwen2.5-VL-7B Bai et al. (2025) to
generate answers across 8 independent trials (M = 8). We then compute two key metrics: (1) α, the
count of correct predictions across these trials, and (2) the reasoning demand e−

α
M , which quantifies

each sample’s complexity. After balancing samples across different reasoning demand tiers, we
construct the final Video-ToC-RL-2k dataset containing 2,000 samples for GRPO training. More
details regarding the data construction pipeline are presented in the supplementary material.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate our model on seven widely used video understanding and video hallu-
cination benchmarks, including three video reasoning benchmarks: VSI-Bench Yang et al. (2024),
VideoMMMU Hu et al. (2025), and MMVU Zhao et al. (2025), three video general benchmarks:
MVBench Li et al. (2024c), TempCompass Liu et al. (2024b), and VideoMME Fu et al. (2024),
as well as a video hallucination benchmark VideoHallucer Wang et al. (2024c). Among the video
reasoning benchmarks, VSI-Bench focuses on assessing the model’s spatial reasoning ability, whereas
both VideoMMMU and MMVU primarily evaluate the knowledge acquisition and utilization capa-
bilities. The video general benchmarks contain both reasoning and perception tasks, thus offering a
more comprehensive assessment of the model’s holistic video understanding abilities. VideoHallucer
evaluates hallucination risks on five different task categories, including object-relation, temporal,
semantic detail, extrinsic factual, and extrinsic non-factual hallucinations. To be consistent with
Video-R1 Feng et al. (2025), we choose the multiple-choice question set for MMVU and evaluate
VideoMME without subtitle assistance.

Implementation details. Following Video-R1 Feng et al. (2025), we choose Qwen2.5-VL-7B Bai
et al. (2025) as the baseline. During the training stage, we first perform supervised fine-tuning
(SFT) as the cold-start, on our Video-ToC-SFT-1k dataset for one epoch. The model after the SFT
stage is termed as Video-ToC-SFT. Then we conduct reinforcement learning (RL) using GRPO
algorithm Shao et al. (2024b) with the proposed reasoning-demand reward, on our Video-ToC-RL-2k
dataset for one epoch, to obtain the final Video-ToC model. During both SFT and RL stages, a video
is uniformly sampled 16 frames as input and each frame is limited to a resolution of 128× 28× 28.
For inference, we increase input frame resolution to 256× 28× 28.

4.2 MAIN RESULTS

We conduct a comprehensive evaluation on Video-ToC’s overall video understanding capability and
hallucination, comparing it with baseline and recent methods (in particular, Video-R1 Feng et al.
(2025), the previous state-of-the-art model), as shown in Table 1 and Table 2.

As shown in Table 1 concerning a series of video understanding benckmarks, in comparison with
baseline, our SFT model Video-ToC-SFT significantly boosts performance with only 1,000 training
samples. It also largely outperforms Video-R1-SFT, which is the model after the SFT stage of
Video-R1, and even performs comparably with Video-R1. This result not only demonstrates the
effectiveness of our designed Video-ToC rationales but also emphasizes the importance of teaching the
model to locate key visual cues step-by-step during the reasoning process. The reinforcement learning
stage leveraging the proposed reasoning-demand reward serves to guide the model beyond the rigid
reasoning pattern introduced by supervised fine-tuning, which further enhances performance on the
basis of our SFT model. Our final model Video-ToC consistently outperforms all previous methods

6
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Table 1: Accuracy comparison on three video reasoning benchmarks and three video general bench-
marks. “Avg.” denotes average accuracy of the six benchmarks.

Method Frames
Video Reasoning Benchmarks Video General Benchmarks

Avg.
VSI-Bench VideoMMMU MMVU MVBench TempCompass VideoMME

GPT-4o Hurst et al. (2024) - 34.0 61.2 75.4 - - 71.9 -
VideoLLaMA2-7B Cheng et al. (2024) - - - 44.8 54.6 - 47.9 -
LongVA-7B Zhang et al. (2024b) - 29.2 23.9 - - 56.9 52.6 -
VILA-1.5-8B Lin et al. (2024) - 28.9 20.8 - - 58.8 - -
LLaVA-OneVision-7B Li et al. (2024b) - 32.4 33.8 49.2 56.7 - 58.2 -

Baseline (Qwen2.5-VL-7B) 16 27.7 47.8 59.2 57.4 72.2 53.1 52.9
Video-R1-SFT Feng et al. (2025) 16 31.8 47.4 61.3 59.4 69.2 52.8 53.7
Video-ToC-SFT (Ours) 16 34.8 46.5 65.3 63.3 72.8 56.6 56.6
TinyLLaVA-Video-R1 Zhang et al. (2025b) 16 - - 46.9 49.5 - 46.6 -
VideoChat-R1 Li et al. (2025a) 16 28.9 48.7 65.8 64.2 73.5 57.7 56.5
Video-R1 Feng et al. (2025) 16 34.6 49.8 64.2 62.7 72.6 57.4 56.9
Video-ToC (Ours) 16 35.3 50.5 66.1 65.0 73.8 58.6 58.2

Baseline (Qwen2.5-VL-7B) 32 30.1 48.1 60.0 59.0 72.6 56.6 54.4
Video-R1-SFT Feng et al. (2025) 32 33.3 49.4 63.5 60.5 69.9 55.4 55.3
Video-ToC-SFT (Ours) 32 35.8 47.1 65.4 65.3 73.7 59.8 57.9
Video-R1 Feng et al. (2025) 32 35.8 52.3 63.8 63.9 73.2 59.3 58.1
Video-ToC (Ours) 32 36.4 51.3 66.1 66.3 74.2 61.2 59.3

Table 2: Accuracy comparison on VideoHallucer Wang et al. (2024c) benchmark. “Avg.” denotes
average accuracy of the five task categories.

Method Object-Relation Temporal Semantic Detail Factual Non-factual Avg.

Baseline (Qwen2.5-VL-7B) 61.5 44.0 67.5 25.5 54.0 50.5
Video-R1 54.5 39.5 62.0 23.5 47.5 45.4
Video-ToC (Ours) 66.0 45.0 74.0 20.0 54.5 51.9

Table 3: Performance comparison of different training strategies.
Method MMVU MVBench VideoMME

Baseline (Qwen2.5-VL-7B) 59.2 57.4 53.1
Baseline + GRPO 63.8 61.1 54.3
Baseline + SFT 65.3 63.3 56.6
Baseline + SFT + GRPO 66.1 65.0 58.6

on both the reasoning and general benchmarks, which reveals the efficacy and generalizability of our
constructed datasets and training strategies.

Table 2 evaluates the hallucination risks across different models. Compared to the baseline, Video-R1
exhibits more severe hallucination on most task categories. This validates that the rationales annotated
by Video-R1, which are freely generated by a much more powerful model, are not suitable for the
base model to learn and imitate. The reason is that these rationales are not appropriately tailored to
the perceptual ability of the base model. As a consequence, the model tends to answer questions
primarily by relying on its language knowledge rather than extracting key visual cues from the videos,
thereby leading to more severe hallucination.

4.3 ABLATION STUDY

The necessity of SFT cold start. To investigate the effect of SFT cold start using the proposed
Video-ToC-SFT-1k dataset, we skip the cold start stage and directly apply GRPO training using
the proposed reasoning-demand reward to the baseline model, on the Video-ToC-RL-2k dataset.
As shown in Table 3, the performance gains of ‘Baseline + GRPO’ are relatively small across all
benchmarks, which may stem from the model’s limited reasoning capacity for video understanding
tasks. In contrast, the SFT cold start utilizing our Video-ToC-SFT-1k dataset equips the model with a
reasoning paradigm that progressively identifies critical visual cues for better analyzing the question,
which is more effective than the self-explored reasoning strategies. Consequently, the model after
SFT cold start (termed as ‘Baseline + SFT’) significantly outperforms the variant trained exclusively
via GRPO. Additionally, the reasoning strategies introduced by our constructed Video-ToC rationales
can be further enhanced through subsequent GRPO training with the proposed reasoning-demand
reward, leading to extra performance improvements.
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Table 4: Effect of tree-guided visual cue localization. “Single-Cue-SFT” and “Tree-of-Cue-SFT”
denote SFT using the Video-SingleCue-SFT-1k dataset and Video-ToC-SFT-1k dataset, respectively.

Method MMVU MVBench VideoMME

Baseline 59.2 57.4 53.1
Baseline + Single-Cue-SFT 61.8 61.0 54.5
Baseline + Tree-of-Cue-SFT 65.3 63.3 56.6

Table 5: Effect of reasoning-demand reward.
Method MMVU MVBench VideoMME

Video-ToC-SFT 65.3 63.3 56.6
Video-ToC-SFT + GRPO w/ Vanilla Reward 65.6 64.2 57.6
Video-ToC-SFT + GRPO w/ Reasoning-demand Reward 66.1 65.0 58.6

Effect of tree-guided visual cue localization. A key design of our method is introducing the tree
structure to help annotate the Video-ToC rationales with the reasoning pattern of tree-guided visual
cue localization, ultimately obtaining the Video-ToC-SFT-1k dataset. To validate its effectiveness,
we construct an analogous SFT dataset where there is only a single step of cue localization in the
rationales, and name it as Video-SingleCue-SFT-1k. Specifically, we use only the descriptions of
the selected key clips to prompt the LLM to generate the rationales, thereby eliminating the need
for constructing a tree. The sole difference between this dataset and our Video-ToC-SFT-1k lies in
their rationale pattern, where the rationales in Video-SingleCue-SFT-1k follow a style of directly
locating the cue and then analyzing the question. As shown in Table 4, using our Video-ToC-SFT-1k
dataset for SFT achieves superior performance on all benchmarks, demonstrating the advantage of
introducing tree for annotating rationales with a tree-guided visual cue localization pattern.

Effect of reasoning-demand reward. Table 5 presents an ablation study of the reward-design
choices during GRPO training. The formal descriptions of vanilla reward and our reasoning-demand
reward are demonstrated in Equation equation 2 and Equation equation 3, respectively. Note that for
GRPO training with vanilla accuracy reward, the reasoning demand used in Equation equation 5 is
set as a constant value of 1 (i.e., γ = 1). As shown in Table 5, the proposed reasoning demand-driven
reward mechanism consistently improves accuracy on all benchmarks compared to conventional
GRPO training which uses vanilla accuracy reward, highlighting the benefits of tailoring incentive
levels to questions with varying reasoning demands.

35

45

55

65

75
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Video-ToC Video-R1 Baseline

Figure 3: Quantitative analysis of task improvements on VideoMME benchmark.

4.4 VISUALIZATION ANALYSIS

Quantitative results. To assess the effect of Video-ToC on the improvements of specific tasks,
we conduct a statistical analysis of task category results on the VideoMME benchmark, comparing
against the baseline and Video-R1, as shown in Figure 3. Notably, Video-Toc demonstrates significant
improvements over the baseline across all tasks. It also outperforms Video-R1 on most categories,
particularly the ‘Temporal Perception’, ‘Counting Problems’, and ‘Object Reasoning’ tasks, which
demonstrates that our method can effectively enhance both the perception and reasoning capabilities
of the model.
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Video-ToC: <locate>I start by scanning the video content to identify any scenes that feature neon 
signs, as the question specifically asks about neon signs. Next, I look for clips that show neon signs 
with text, as the question mentions the text displayed on the neon signs. Then, I focus on finding a 
clip that clearly displays the text on the neon signs, ensuring that the text is legible and matches the 
options provided in the question. Finally, I carefully examine the text displayed on the neon signs in 
the video clips to determine which option matches the text shown, and I select the correct answer 
based on the information provided in the video.</locate>\n<answer>B</answer>

Video:

Question: What is the specific text displayed on the neon signs?
A. Hi gorgeous. B. Hello gorgeous. C. Hello. D. gorgeous.

Video-ToC: <locate>I start by examining the video clips to identify any visual or textual clues that 
might indicate the type of algorithm being introduced. I look for keywords, diagrams, or text that 
suggest the algorithm's characteristics, such as the presence of a source and target, distances, and 
predecessors, which are common elements in graph algorithms. I then analyze the structure of the 
graph and the process of updating distances and predecessors, which is a key feature of the 
algorithm being introduced. Finally, I compare the algorithm's characteristics with the options 
provided to determine the most likely algorithm being introduced.</locate>\n<answer>E</answer>

Video:

Question: What algorithm may the video be introducing? A. Floyd-Warshall algorithm B. Dijkstra 
algorithm C. Kruskal's algorithm D. Prim's algorithm E. Bellman-Ford algorithm

Figure 4: Two examples of Video-ToC’s output from MMVU (top) and VideoMME (bottom).

Qualitative results. We present two examples of our Video-ToC’s output, respectively drawn from
the video reasoning benchmark MMVU and the video general benchmark VideoMME, as shown in
Figure 4. For both questions, Video-ToC employs a step-by-step approach to locate key visual cues
for reasoning. Specifically, when addressing the reasoning-based question, Video-ToC first deduces
critical visual cues that help solving the question based on its knowledge and searches for them
progressively. In contrast, for the perception-based question, it meticulously scans and examines
key visual cues according to the queries in the question, reasoning primarily based on the semantic
information in the video rather than its knowledge. These examples demonstrate the effectiveness
and flexibility of Video-ToC’s reasoning strategies across various question types.

5 CONCLUDING REMARKS

Summary. We propose Video-ToC, a novel video reasoning framework that incorporates a tree-
guided visual cue localization mechanism and a reasoning-demand-based reward strategy. To endow
the model with robust reasoning capabilities, we develop an automatic data annotation pipeline
to construct two high-quality datasets: Video-ToC-SFT-1k and Video-ToC-RL-2k, dedicated to
supervised fine-tuning and reinforcement learning, respectively. Extensive experiments across six
video understanding benchmarks and one video hallucination benchmark validate the efficacy of our
approach, demonstrating consistent performance improvements and hallucination mitigation.

Limitations and future work. Our current experiments employ uniform sampling with 16 or 32
input frames. Future work will involve exploring the effect of increasing input frames and employing
different frame sampling strategies. Additionally, while we have focused on curating video training
data, numerous high-quality image reasoning datasets remain underexplored. We aim to devise
methodologies for leveraging image-video hybrid reasoning data to enhance the model’s video
reasoning capabilities.
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6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, personal
data, or sensitive attributes, and thus does not raise direct privacy or security concerns. The datasets
used are publicly available, and we strictly follow their licenses and usage guidelines. No proprietary
or non-consensually collected data were employed. We declare no conflicts of interest and ensure
compliance with ethical standards in data handling and research integrity.

7 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of Video-ToC. Sec. 3 and Sec. 4 in the
main paper present the dataset construction pipeline, model choice, training objectives, and evaluation
protocols. Detailed hyperparameter settings, implementation details, and prompt designs are included
in Sec. 4.1 of the main paper and in Secs. E-G of the supplementary material. We will release all
code, models, and datasets following the completion of the blind review process.
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Video-ToC: Video Tree-of-Cue Reasoning
Supplementary Material

A AN EXAMPLE OF VIDEO-TOC RATIONALE ANNOTATION PIPELINE

In Figure 5, we present an example of the Video-ToC rationale annotation pipeline.

We first build a Segment Tree based on the segmented video clips. Note that the core design of
Video-ToC lies in the hierarchical reasoning strategy enabled by tree-guided visual cue localization,
rather than the specific tree structure like a complete binary tree, which is just a practical choice
for systematic video decomposition and trajectory generation. Any tree structure that allows for a
multi-level decomposition of video content (enabling coarse-to-fine localization of visual cues) would
align with the goals of Video-ToC. The Segment Tree is merely a straightforward instantiation of this
idea.

Then, an LLM (Llama-3.3-70B-Instruct Grattafiori et al. (2024)) selects the relevant video clips using
their captions generated by an MLLM (Qwen2.5-VL-7B Bai et al. (2025)). After that, the reasoning
trajectory is derived by performing backtracking from the leaf nodes (selected video clips) to the
root node (the whole video). Note that when multiple clips are found to be relevant, the reasoning
trajectory forms a subtree rather than a single chain or path (see Figure 5 for an example).

Next, we extract video segments from each layer of this trajectory (i.e., the red nodes in Figure 5)
and concatenate them to form the ‘Video Compilations’. These compilations are deduplicated as
‘Visual Cues’ and then captioned by an MLLM (Qwen2.5-VL-7B Bai et al. (2025)). Finally, an LLM
(Llama-3.3-70B-Instruct Grattafiori et al. (2024)) integrates these ‘Visual Cue Descriptions’ with
the corresponding question-answer pair to generate the Video-ToC rationale. Because concatenation
linearizes the trajectory into a chain, the LLM no longer needs to process the original tree structure
and can instead interpret the visual cues as a single reasoning path during summarization.

Video:

Question: What is Mariusz Pudzianowski's performance in the Giant Farmer's Walk event? Answer: 25.05 seconds.

Reasoning Trajectory

Extract &

Concatenate

0s 3s 16s 23s 155s138s31s 40s 53s 86s 101s124s

Deduplicate

Visual Cue Descriptions

LLM

Video-ToC Rationale

MLLM

Visual Cues

: Selected Clips

Video Compilations

Layer 1:

Layer 2:

Layer 3:

Layer 4:

Layer 5:

0s-155s

0s-40s 40s-155s

16s-40s 101s-155s

23s-40s 101s-124s

+

+

+

23s-31s 101s-124s
+

0s-155s

16s-40s+101s-155s

23s-40s+101s-124s

23s-31s+101s-124s

Figure 5: Additional illustrations of Video-ToC rationale annotation pipeline.

B PERFORMANCE COMPARISON UNDER MORE INPUT FRAMES

We increase the number of input frames to 64 during evaluation, and compare with the baseline
and Video-R1 in Table 6. Consistent with the results under 16- and 32-frame settings shown in
Table 1 in the paper, our Video-ToC-SFT still outperforms both the baseline and the SFT model of
Video-R1 by a large margin on most benchmarks. Furthermore, after RL training, our final model
Video-ToC achieves the best overall performance and significantly surpasses Video-R1, demonstrating
the effectiveness and generalizability of our method.
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Table 6: Accuracy comparison using 64 frames as input. “Avg.” denotes average accuracy of the six
benchmarks.

Method Frames
Video Reasoning Benchmarks Video General Benchmarks

Avg.
VSI-Bench VideoMMMU MMVU MVBench TempCompass VideoMME

Baseline 64 31.4 50.4 60.0 59.2 72.9 59.6 55.6
Video-R1-SFT 64 34.8 49.4 61.6 60.6 70.0 58.8 55.9
Video-ToC-SFT (Ours) 64 37.6 48.3 65.4 65.7 73.9 61.1 58.7
Video-R1 64 37.1 52.4 63.8 64.8 73.2 61.4 58.8
Video-ToC (Ours) 64 38.6 51.0 66.5 66.4 74.2 62.6 59.9

Table 7: Effect of format reward. "Correct Format" denotes the percentage of responses that adhere
to the specified format.

Method MMVU MVBench VideoMME Correct Format

GRPO w/o format reward 66.1 65.0 58.6 100.0
GRPO w/ format reward 66.2 64.7 58.6 100.0

C ADDITIONAL DISCUSSIONS ON FORMAT REWARD

The format reward is typically used to guide the model to put its thinking process between the
“<think>” and “</think>” tags and place its answer between the “<answer>” and “</answer>” tags.
However, during GRPO training, we only apply the proposed reasoning-demand reward without
requiring the format reward. This is because we incorporate detailed formatting guidelines within the
prompts (see Figure 6), and the model after the SFT stage (i.e., Video-ToC-SFT) can adhere to the
specified format well enough. Moreover, if a response fails to follow this format (e.g., the answer
is not placed within the “<answer>” and “</answer>” tags), the reasoning-demand reward for this
response may be zero even if the answer is correct, which implicitly enforces the model to follow
the specified format. As shown in Table 7, applying format reward reveals negligible effect on the
performance, and the model successfully follows the specified format for all test samples. Therefore,
we remove the unnecessary format reward in GRPO training.

D ADDITIONAL DISCUSSIONS ON ADVANTAGE CALCULATION

In GRPO Shao et al. (2024b), the advantages of different responses within a group are calculated
by normalizing their rewards (see Equation (4) in the paper). Since the reward for each response
consists solely of the reasoning-demand reward which is a binary function, adjusting the values of
the reasoning-demand rewards for different questions will have no effect. Specifically, for a question
with a reasoning demand of γ, the reward of each response within the group can only be either γ or 0.
Suppose a group contains G responses, where x (0 ≤ x ≤ G) of them correctly answer the question.
The advantages of these responses are as follows:

Acorrect =
rcorrect −mean({ri}Gi=1)

std({ri}Gi=1)
(7)

=
γ − xγ

G√
1

G−1

(
x · (γ − xγ

G )2 + (G− x) · (0− xγ
G )2

) (8)

=

√
(G− 1) · (G− x)

Gx
(0 < x ≤ G), (9)
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where rcorrect and Acorrect respectively denote the reward and advantage of the correct response.
Similarly, the responses with wrong answers will obtain the advantages of:

Awrong =
rwrong −mean({ri}Gi=1)

std({ri}Gi=1)
(10)

=
0− xγ

G√
1

G−1

(
x · (γ − xγ

G )2 + (G− x) · (0− xγ
G )2

) (11)

= −

√
x · (G− 1)

G · (G− x)
(0 ≤ x < G), (12)

where rwrong and Awrong represent the reward and advantage of the wrong response, respectively.
We can observe that the advantages used for optimizing the model are irrelevant to the specific value
of γ, which we adjust for different questions. Therefore, we multiply the original advantages by
the reasoning demand γ (see Equation (5) in the paper) to tailor the magnitudes of advantages for
questions with different reasoning demands.

E ADDITIONAL DETAILS OF RL DATA CONSTRUCTION

We randomly select a subset of the LLaVA-Video-178K dataset Zhang et al. (2024c) and annotate the
reasoning demands to construct our RL training dataset. The LLaVA-Video-178K dataset includes
both open-ended and multiple-choice QA (question and answer) items. However, we choose the
multiple-choice QA items exclusively, as they tend to yield more accurate reward signals for RL. For
each video QA, we employ Qwen2.5-VL-7B Bai et al. (2025) to directly answer the question across
8 independent trials (M = 8) and record the count of correct predictions as α. Then, we calculate the
difficulty score and reasoning demand for this question as 1− α

M and e−
α
M , respectively. To avoid

the computed advantages from being all zeros, we exclude questions that are too easy or too hard to
answer, i.e., questions with difficulty scores below 0.2 or above 0.8 are discarded.

F PROMPT DETAILS

F.1 PROMPT FOR TRAINING AND INFERENCE

The prompt for both model training and inference is provided in Figure 6. Following Video-R1 Feng
et al. (2025), the last sentence of the prompt serves as the ‘task instruction’ to guide the model in
adhering to the formats of different types of questions.

F.2 PROMPT FOR KEY CLIPS SELECTION

During Step 1 of SFT data construction, we employ Llama-3.3-70B-Instruct Grattafiori et al. (2024)
to select the key clips that are essential for answering the provided question. The prompt is detailed
in Figure 7.

F.3 PROMPT FOR LOW-QUALITY CUES FILTERING

In Step 3 of SFT data construction, we employ Llama-3.3-70B-Instruct Grattafiori et al. (2024) to
filter out samples where the visual cues from the final step are insufficient to derive the answer to the
question, using the prompt in Figure 8.

F.4 PROMPT FOR VIDEO-TOC RATIONALE GENERATION

The Video-ToC rationale is generated by prompting Llama-3.3-70B-Instruct Grattafiori et al. (2024)
to summarize the processed reasoning trajectory. The specific prompt is provided in Figure 9. To
obtain rationales with a step-by-step style, we instruct the LLM to follow the specified format: "Step
1: ... Step 2: ... Step 3: ...". Subsequently, we remove the rigid "Step k:" structure to make the
rationales more natural.
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G ADDITIONAL IMPLEMENTATION DETAILS

For both the SFT and RL stages, we employ the Adam optimizer with a learning rate set to 5e-7 to
train the model for 1 epoch. The SFT is conducted using the LlamaFactory codebase Zheng et al.
(2024), while the RL is performed using the EasyR1 codebase Zheng et al. (2025). Specifically, the
SFT stage runs for 125 steps with a batch size of 8, whereas the RL stage runs for 500 steps with a
batch size of 4.

H EXAMPLES OF THE VIDEO-TOC-SFT-1K DATASET

We provide two qualitative examples of the Video-ToC rationales in our Video-ToC-SFT-1k dataset,
as shown in Figure 10. Both rationales in the annotated answers demonstrate the process of locating
video clips that are increasingly helpful for solving the question and reaching the answer.

I BROADER IMPACT

This paper presents work whose goal is to advance the field of machine learning. Although our work
may carry a range of societal implications, we do not identify any that require special emphasis here.

J USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely to aid in polishing the writing of this paper. The
research ideas, methodology, experiments, analyses, and conclusions were entirely developed and
carried out by the authors. LLMs did not contribute to research ideation, experiment design, or result
interpretation. All authors take full responsibility for the content of the paper.

Prompt for Training and Inference

{Question}

First, progressively locate video clips that are increasingly helpful for answering the question, and 

then provide your final answer. Put your detailed locating process between the <locate> </locate> 

tags, and your final answer between the <answer> </answer> tags. {Task Instruction}

Task Instruction:

"multiple choice": "Provide only the single option letter (e.g., A, B, C, D, etc.) within the <answer> 

</answer> tags."

"numerical/regression": “Provide the numerical value (e.g., 42 or 3.14) within the <answer> 

</answer> tags."

Figure 6: Prompt for training and inference.
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### Task:

You are an excellent problem solver with a strong ability to comprehend and analyze long-form 

video content. There is a long video that has been split into multiple semantically coherent clips to 

help you understand. You are provided with the detailed description for each clip, and a question-

answer pair based on this long video. Please carefully understand this long video based on the 

detailed descriptions for all clips, along with the question-answer pair. And reason how to solve 

this question using the information provided in the video to arrive at the correct answer. Based on 

your reasoning process, identify which clips are essential for answering the question.

### Guidelines:

The information provided to you regarding the long video is given in JSON format, which includes 

the count of clips, the index and detailed description for each clip, and a question-answer pair 

based on this long video. You should only provide the indices of your selected clips. No need to 

explain.

### Output Format:

It is critical that you respond only with the exact, parseable JSON and not any preamble, 

explanation, or anything else outside of the valid JSON as your outputs will be fed directly to a 

JSON parser to go into a downstream application. Do not include any markup like ```json or 

anything else that would break our ability to parse the response. This is critical, after you are done 

reasoning and before you respond, ensure that your response is exactly JSON parseable. You must 

respond with a JSON array that matches the following schema:

[<index_1>, <index_2>, ..., <index_N>]

Please provide the indices of the essential clips for the following video clip descriptions and 

corresponding question-answer pair:

{Video Clip Descriptions}; {Question}; {Answer}

Prompt for Key Clips Selection

Figure 7: Prompt for key clips selection.

I will provide you with a question-answer pair, along with a detailed description of a video. You 

need to judge whether the video content is sufficient to lead to the answer to the question. If so, 

respond with "Yes"; otherwise, respond with "No". No need to explain. Please provide your 

judgement for the following question-answer pair and video content:

{Question}; {Answer}; {Cues}

Prompt for Low-quality Cues Filtering

Figure 8: Prompt for low-quality cues filtering.
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You are an excellent video assistant with a strong ability to comprehend and analyze long-form 

video content, and you are watching a long video. I will provide you with a question-answer pair 

and explain the process of locating video clips that are increasingly helpful for solving the question 

and reaching the answer. Please summarize the locating process in the first-person tone, 

demonstrating the step-by-step method of how to locate the most important clip for the given 

question. While you are summarizing, act as if you can only see the entire video and question, and 

you are unaware of the provided video clip descriptions and the given answer. Your response 

should be concise, presented in a single paragraph, and follow this format: "Step 1: ... Step 2: ... 

Step 3: ...". Note that the number of steps in your response MUST equal the number of steps in the 

provided locating process. Please provide your summarized locating process for the following data:

{Question}; {Answer}; {Reasoning Trajectory}

Prompt for Video-ToC Rationale Generation

Figure 9: Prompt for Video-ToC rationale generation.

Answer: <locate>I start by examining the video content to identify any scenes that involve a tour or a 
van passing by notable landmarks, as this is the central theme of the question. Next, I look for clips 
that feature a tour bus or van with a clear label or signage, such as \"Ultimate Hollywood Tours,\" to 
establish a connection to the tour mentioned in the question. Then, I analyze the clips to find scenes 
where the tour bus passes by or is near recognizable landmarks or characters, which could be the 
answer to the question. Finally, I focus on identifying a specific landmark or character that the tour 
van passes by, looking for clear visuals or context clues that match one of the provided options, to 
determine the most accurate answer to the question.</locate>\n<answer>C</answer>

Video:

Question: Which landmark does the tour van pass by?\nA. The Hollywood Sign\nB. The Griffith 
Observatory\nC. A Spider-Man performer\nD. The Walk of Fame\nFirst, progressively locate video 
clips that are increasingly helpful for answering the question, and then provide your final answer. Put 
your detailed locating process between the <locate> </locate> tags, and your final answer between the 
<answer> </answer> tags. Provide only the single option letter (e.g., A, B, C, D, etc.) within the 
<answer> </answer> tags.

Answer: <locate>I start by examining the video clips to identify any that show a shoe cleaning process, 
looking for details such as the type of shoes being cleaned and the cleaning products used. Next, I 
narrow down my search to clips that not only show the cleaning process but also provide a clear view 
of the sneakers being cleaned, including any visible logos or branding that could help identify the 
brand. Finally, I focus on finding a clip that explicitly shows the brand of the sneakers, such as a 
close-up of the shoe's label or a clear shot of the brand's logo, to determine the correct answer to 
the question about the brand of sneakers being cleaned.</locate>\n<answer>D</answer>

Video:

Question: Which brand of sneakers is being cleaned in the video?\nA. Adidas\nB. Puma\nC. Reebok\n 
D. Nike Air Max\nFirst, progressively locate video clips that are increasingly helpful for answering 
the question, and then provide your final answer. Put your detailed locating process between the 
<locate> </locate> tags, and your final answer between the <answer> </answer> tags. Provide only the 
single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Figure 10: Two qualitative examples of the Video-ToC-SFT-1k dataset.
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