
Under review as submission to TMLR

Promoting Exploration in Memory-Augmented Adam using
Critical Momenta

Anonymous authors
Paper under double-blind review

Abstract

Adaptive gradient-based optimizers, notably Adam, have left their mark in training large-scale
deep learning models, offering fast convergence and robustness to hyperparameter settings.
However, they often struggle with generalization, attributed to their tendency to converge to
sharp minima in the loss landscape. To address this, we propose a new memory-augmented
version of Adam that encourages exploration towards flatter minima by incorporating a buffer
of critical momentum terms during training. This buffer prompts the optimizer to overshoot
beyond narrow minima, promoting exploration. Through comprehensive analysis in simple
settings, we illustrate the efficacy of our approach in increasing exploration and bias towards
flatter minima. We empirically demonstrate that it can improve model performance for
image classification on ImageNet and CIFAR10/100, language modelling on Penn Treebank,
and online learning tasks on TinyImageNet and 5-dataset.

1 Introduction

Deep learning models are often sensitive to the choice of optimizer used during training, which significantly
influences convergence speed and the qualitative properties of the minima to which the system converges (Choi
et al., 2019). Stochastic gradient descent (SGD) (Robbins & Monro, 1951), SGD with momentum (Polyak,
1964), and adaptive gradient methods such as Adam (Kingma & Ba, 2015) have been the most popular
choices for training large-scale models.

Adaptive gradient methods are advantageous as they automatically adjust the learning rate on a per-coordinate
basis, converging quickly with minimal hyperparameter tuning by using information about the loss curvature.
However, they are also known to achieve worse generalization performance than SGD (Wilson et al., 2017;
Zhou et al., 2020; Zou et al., 2023), which several recent works suggest is due to the greater stability of
adaptive optimizers (Zhou et al., 2020; Wu et al., 2018a; Cohen et al., 2022). This can lead the system
to converge to sharper minima than SGD, resulting in worse generalization performance (Hochreiter &
Schmidhuber, 1994; Keskar et al., 2016; Dziugaite & Roy, 2017; Neyshabur et al., 2017; Chaudhari et al.,
2017; Izmailov et al., 2018; Kaur et al., 2023).

However, similar to exploration in reinforcement learning, we hypothesize that equipping Adam with an
exploration strategy could improve performance by escaping sharp minima. Building upon the framework
proposed by McRae et al. (2022), which maintains a buffer containing a limited history of gradients from
previous iterations (called critical gradients or CG) during training, the goal is to allow the optimizer
to overshoot and escape sharp minima by adding inertia to the learning process, as to control for the
necessary width of the minima in order for the system to converge. However, we show that the original
memory-augmented adaptive optimizers proposed by McRae et al. (2022), particularly Adam using CG
(referred to as Adam+CG), suffer from gradient cancellation: a phenomenon where new gradients have high
directional variance and large norm around a sharp minima. This leads to the aggregated gradient over the
buffer to vanish, preventing the optimizer from escaping sharp minima, which is in agreement with the poor
generalization performance presented by McRae et al. (2022).

We propose to instead store critical momenta (CM) during training, leading to a new memory-augmented
version of Adam (Algorithm 1) that can effectively escape sharp basins and converge to flat loss regions.

1

Under review as submission to TMLR

Figure 1 illustrates the optimization trajectories, on a toy 2D loss surface corresponding to the Goldstein–Price
(GP) function (Picheny et al., 2013), of Adam, Adam+CG, Adam+CM, and Adam combined with sharpness-
aware minimization (Adam+SAM) (Foret et al., 2021) from different initializations. We observe that while
other optimizers converge to higher and often sharper loss regions, Adam+CM is able to find the flat region
that contains the global minimum.

Adam
Adam+SAM
Adam+CG
Adam+CM

Algorithm 1: Adam with Critical Momenta

Require: Initial parameters θ0 and moments m0, vM
0 , loss

L, step size α, buffer mc, capacity C, decay λ
for t = 1, 2, · · · do

Sample mini-batch & compute loss gradient
Update 1st moments mt with equation 4
Aggregate with buffer moments mM

t ←− mt with equa-
tion 4
Update 2nd moments vM

t with equation 5
if buffer is not full then

Add mt to mc

else if Priority(mt) > min(Priority(mc)) then
Replace smallest priority element with mt

end if
Decay Priority(mc) using λ
Update parameter θt with equation 7

end for

Figure 1: (Left) Learning trajectories for different optimizers on the Goldstein-Price loss function starting
from different initial points. While the other optimizers get stuck in sub-optimal surfaces, Adam+CM explores
a lower loss surface and is able to reach the global minimum. (Right) Pseudo-code for Adam with critical
momenta (Adam+CM).
The key contributions of our work are as follows:

• We introduce a framework for promoting exploration in adaptive optimizers (section 3). We propose
a new memory-augmented version of Adam, which stores and leverages a buffer of critical momenta
from previous iterations during training.

• We provide a theoretical convergence analysis of our method in simplified settings (subsection 3.2).

• Using numerous examples and benchmarks, we illustrate how our method surpasses existing memory-
augmented methods and promotes exploration towards flat minima (section 4).

• We observe empirically an improvement in model performance in supervised and online learning
settings (section 5).

2 Related work

To improve convergence speed and achieve better generalization in deep learning models, numerous optimizers
have been proposed. While SGD with momentum tends to show superior performance in particular scenarios,
it usually requires careful hyperparameter tuning (Le et al., 2011). On the other hand, adaptive optimization
methods (Duchi et al., 2011; Hinton et al., 2012; Zeiler, 2012), which adjust the learning rate for each
parameter based on past gradient information to accelerate convergence, have reached state-of-the-art
performance in many supervised learning problems while being more robust to hyperparameter choice.
In particular, Adam (Kingma & Ba, 2015) combines momentum with an adaptive learning rate and has
become the preeminent choice of optimizer across a variety of models and tasks, particularly in large-
scale deep learning models (Dozat, 2016; Vaswani et al., 2017). Several Adam variants have since been
proposed (Loshchilov & Hutter, 2019; Zhuang et al., 2020; Granziol et al., 2020; Defazio & Jelassi, 2022) to

2

Under review as submission to TMLR

tackle Adam’s lack of generalization ability (Wu et al., 2018b; Zhou et al., 2020; Zou et al., 2023; Cohen et al.,
2022).

Converging to flat minima has been shown to be a viable way of indirectly improving generalization
performance (Hochreiter & Schmidhuber, 1994; Keskar et al., 2016; Dziugaite & Roy, 2017; Neyshabur et al.,
2017; Izmailov et al., 2018; Kaur et al., 2023; Jiang et al., 2020). For example, sharpness-aware minimization
(SAM) Foret et al. (2021) jointly maximizes model performance and minimizes sharpness within a specific
neighborhood during training. Since its proposal, SAM has been utilized in several applications, enhancing
generalization in vision transformers (Dosovitskiy et al., 2021; Chen et al., 2022), reducing quantization
error (Liu et al., 2023), and improving model robustness (Mordido et al., 2022). Numerous methods have been
proposed to further improve its generalization performance, e.g. by changing the neighborhood shape (Kim
et al., 2022b) or reformulating the definition of sharpness (Kwon et al., 2021; Zhuang et al., 2022), and to
reduce its cost, mostly focusing on alleviating the need for the double backward and forward passes required
by the original algorithm (Du et al., 2022a;b; Liu et al., 2022).

Memory-augmented optimizers extend standard optimizers by storing gradient-based information during
training to improve performance. Hence, they present a trade-off between performance and memory usage.
Different memory augmentation optimization methods have distinct memory requirements. For instance,
stochastic accelerated gradient (SAG) (Roux et al., 2012) and its adaptive variant, SAGA (Defazio et al.,
2014), require storing all past gradients to achieve a faster convergence rate. While such methods show great
performance benefits, their large memory requirements often make them impractical in the context of deep
learning. On the other hand, one may only use a subset of past gradients, as proposed in limited-history
BFGS (LBFGS) (Nocedal, 1980), its online variant (oLBFGS) (Schraudolph et al., 2007), and stochastic dual
coordinate ascent (SDCA) (Shalev-Shwartz & Zhang, 2013). Additionally, memory-augmented frameworks
with critical gradients (CG) use a fixed-sized gradient buffer during training, which has been shown to achieve
a good performance and memory trade-off for deep learning compared to the previous methods (McRae et al.,
2022).

In this work, we further improve upon CG by storing critical momenta instead of critical gradients, leading
to a better exploration of the loss surface by adaptive optimizers, particularly Adam.

3 Memory-augmented Adam

We build upon the memory-augmented framework presented by McRae et al. (2022) and focus on Adam in a
supervised learning setting. Adam (Kingma & Ba, 2015) has standard parameter updates

mt = β1mt−1 + (1− β1)gt; vt = β2vt−1 + (1− β2)g2
t (1)

m̂t = mt

1− βt
1

; v̂t = vt

1− βt
2

; θt+1 = θt − α
m̂t√
v̂t + ϵ

. (2)

where θt denotes the model parameter at iteration t, gt is the loss gradient on the current mini-batch, α is
the learning rate, β1, β2 ∈ [0, 1) are the decay rates for mt and vt.

Critical gradients (CG). To memory-augment Adam, McRae et al. (2022) introduce a fixed-size buffer
gc of priority gradients gc maintained in memory during training, and apply an aggregation function over
this buffer to modify the moment updates (Equation 1):

mG
t = β1mG

t−1 + (1− β1)aggr(gt, gc); vG
t = β2vG

t−1 + (1− β2)aggr(gt, gc)2 (3)

The gradient l2-norm is used as the selection criterion for the buffer. The buffer takes the form of a dictionary
where the key-value pairs are (∥gc∥2, gc); additionally, the priority keys are decayed at each iteration by a
decay factor λ ∈ (0, 1) to encourage buffer update. Thus, at each iteration t, if the norm ∥gt∥2 of the current
gradient is larger than the smallest priority key in the buffer, the corresponding critical gradient gets replaced
by gt in the buffer. A standard choice of aggregation function adds gt to the average of the critical gradients
in the buffer.

3

Under review as submission to TMLR

Adam+CM
Adam+CG
Buffer quantities
Buffer mean
New gradient

Adam+CM
Adam+CG
Buffer quantities
Buffer mean
New gradient

Figure 2: First 10 steps of Adam+CG and Adam+CM trajectories on Ackley loss surface. Coloured diamonds
represent the final points reached by the optimizers. Gradient cancellation is observed in Adam+CG as buffer
mean and new gradients cancel each other out, yielding a small update. Conversely, Adam+CM escapes
sub-optimal minima and converges near the global minimum.

The gradient cancellation problem. However, combining Adam with critical gradients has its pitfalls.
We hypothesize that with CG, while the buffer gradients can promote exploration initially (Figure 1), the
parameters remain fixed within sharp regions due to gradient cancellation. Gradient cancellation primarily
occurs when existing buffer gradients are quickly replaced by high-magnitude gradients when the parameters
are near a sharp basin. As a result, the buffer quickly converges to high variance gradients whose mean goes
to zero, allowing learning to converge. Intuitively, the parameters bounce back and forth off the sides and
bottom of the sharp basin: whenever the parameters try to escape the basin, the new outgoing gradient
gets cancelled by incoming gradients in the buffer. Figure 2 illustrates this phenomenon on a toy surface,
by showing the buffer gradients (thin blue lines) and their means (black arrow) as well as the new gradient
(green arrow), within sharp basins where Adam+CG gets stuck. Additional plots are found in Appendix A.1.

3.1 Critical momenta (CM)

As gradient cancellation hinders the ability of Adam+CG to escape sharp minima, our approach addresses
this by leveraging a buffer mc of critical momenta mc during training. Like McRae et al. (2022), we use the
gradient l2-norm as priority criterion1. The buffer is a dictionary of key-value pairs (∥gc∥2, mc) with a factor
λ ∈ (0, 1) with which the values are decayed at each iteration. The integration with critical momenta leads to
a new algorithm, Adam+CM, defined by moment updates:

mt = β1mt−1 + (1− β1)gt; mM
t = aggr(mt, mc) (4)

vM
t = β2vM

t−1 + (1− β2) aggr(mt, mc)2 (5)

where aggr is the addition of the current momentum to the average of all critical momenta:

aggr(mt, mc) = mt + 1
C

∑
mc∈mc

mc . (6)

Finally, the Adam+CM update rule is given by

m̂M
t = mM

t

1− βt
1

; v̂M
t = vM

t

1− βt
2

; θt+1 = θt − α
m̂M

t√
v̂M

t + ϵ
(7)

1We do not use the alternative ∥mt∥2 since the buffer will not get updated fast enough using this criterion.

4

Under review as submission to TMLR

The pseudo-code of Adam+CM is given in Algorithm 1.

While at a sharp minima, the elements of the buffer will still be quickly replaced (Figure 1), due to the inertia
in the momentum terms the variance will stay low. Moreover, the fact that gradients quickly change direction
will lead to the new momentum terms being smaller and hence have a smaller immediate influence on the
aggregate value of the buffer. This allows the overshooting effect to still happen, enabling the exploration
effect and helping to learn to escape sharp minima. Furthermore, the larger the size of the buffer, the stronger
the overshooting effect will be and the wider the minima needs to be for learning to converge. That is because
learning needs to stay long enough in the basin of a minimum to fill up most of the buffer in order to turn
back to the minimum that it jumped over and for the optimizer to converge. We observe this empirically in
Figure 9 and Appendix A.2.2.

3.2 Convergence analysis

Figure 3: Quadratic convergence rates (1− ρ∗) of clas-
sical momentum and critical momenta. Solid curves
indicate that both α and β were optimized to obtain
ρ∗, while dashed lines indicate that ρ∗ obtained with
β = 0.9. Critical momenta converges for a wide range
of condition numbers in both cases.

In this section, we discuss the convergence of
gradient-based algorithms with critical momenta
under simplifying assumptions. Leaving aside the
specificity of Adam, we consider the simplest variant
characterized by the following update,

θt+1 = θt − α aggr(mt, mc) (8)

In what follows, we restrict our attention to quadratic
losses and assume that the optimum lies at θ∗ = 0
for simplicity, so that L(θ) = 1

2 θ⊤Hθ. We also make
the following assumptions: (i) as in McRae et al.
(2022), we assume a fixed bound on the staleness of
momenta, i.e., there is an integer K > 0 such that
at each iteration t, mt−k ∈ mC implies k ≤ K; (ii)
we further assume that K coincides with the buffer
size and that at iteration t, mC contains exactly the
momenta mt−1, · · ·mt−C .

Under these assumptions, the convergence can
be analyzed using standard spectral analysis for multistep linear systems. Considering Vt+1 =
[θt+1, θt, mt, mt−1, ..., mt−C+1], it is straightforward to show that the dynamics can be cast as a linear
dynamical system Vt+1 = AVt where the matrix A depends on the Hessian H, the learning rate α and the
momentum parameter β, and takes the form:

A =



I − αH 0 −α(β + 1
C)I − α

C I ... − α
C I α

C I
I 0 0 0 ... 0 0
H 0 βI 0 ... 0 0
0 0 I 0 ... 0 0
...

...
...

...
0 0 0 0 ... I 0


Assuming L-smoothness and µ-strongly convexity, the worse-case bound on the convergence rate is obtained
by maximizing the spectral radius (largest singular value) ρ(A) over all admissible H (Lessard et al., 2016).
Let h denote the eigenvalues of the Hessian matrix H. Note that the singular values of the block matrix A
are the same as those of the matrices Ah, obtained by collapsing the blocks of A as follows: replace I by 1
and H by h. This leads to the simplified problem:

ρ(α, β) = max
h∈[µ,L]

ρ(Ah)

The optimal convergence rate is obtained by tuning these parameters to minimize the spectral radius, i.e.,
ρ∗ := minα,β ρ(α, β). Similar to Zhang et al. (2019), we solve this problem numerically using standard solvers

5

Under review as submission to TMLR

0 100 200 300 400 500
Epochs

1

0

1

2

3

4

5

6

Tr
ai

n
Lo

ss

Adam
Adam+CG
Adam+CM
Adam+SAM
Adam+SAM+CM

Adam+CM
Adam+SAM+CM
Adam+CG
Adam+SAM
Adam

Figure 4: Training loss curves (left, averaged across 10 seeds) and learning trajectories (right, one seed) for
different optimizers on the Ackley loss surface. While the other optimizers get stuck in sub-optimal minima
near the initialization point (black square), both CM variants explore and find the lower loss surface near the
global solution (black diamond).

to compute the eigenvalues and minimize the worse case spectral radius; we also compare with the convergence
rate of critical momenta with classical momentum on diagonal quadratic functions in Figure 3. We plot the
convergence rates of classical momentum and critical momenta with C = 5 on a quadratic loss function for
two variants: (i) Optimal α, β (solid curves), (ii) optimal α with fixed β = 0.9. In both variants, we can see
that critical momenta converge for a wide range of condition numbers.

Following the literature (Kaur et al., 2023), we use maximum eigenvalue (hmax) of the Hessian H as the
indicator of sharpness in the rest of the paper. As hmax increases, the surface becomes sharper.

4 Insights from toy examples

In this section, we use toy tasks to empirically validate our hypothesis by analyzing and comparing various
combinations of Adam with memory augmentation and sharpness-aware minimization.

Critical momenta promote exploration. We first compare the optimization trajectories of Adam+CM
with Adam, Adam+SAM, and Adam+CG, on interpretable, non-convex 2D loss surfaces. We also include the
double combination of Adam with SAM and CM. To complement the Goldstein-Price function in Figure 1,
we consider the Ackley function (Ackley, 1987) (see equation 11 in Appendix A.2.1 for the explicit formula),
which contains a nearly flat outer region with many sharp minima and a large hole at the center with the
global minimum at (0, 0).

We minimize the Ackley function for 10 different initialization seeds and compare the trajectories of the
different optimizers. We run each model for 500 steps and reduce the learning rate by a factor of 10 at the
250th step. To get the best performing setup, we perform a grid search over the hyper-parameters for each
optimizer. Figure 4 shows the training curves (left) and optimization trajectories (right) of the different
optimizers, for the same initialization (black square). We observe that, here, only the CM variants are able to
explore the loss surface, resulting in a lower loss solution. Additional trajectories with various different seeds
for both the Ackley and Goldstein-Price loss surfaces are shown in Appendix A.2.1 (Figure 14 and Figure 13).

Critical momenta reduce sharpness. We now want to compare more specifically the implicit bias of
the different optimizers towards flat regions of the loss landscape. We first examine the solutions of optimizers
trained on the Goldstein-Price and Levy functions (Laguna & Marti, 2005) (see Appendix A.2.1). Both of
these functions contain several local minima and one global minimum. We evaluate the solutions based on
the final loss and sharpness, averaged across 20 seeds. As a simple proxy for sharpness, we compute the
highest eigenvalue of the loss Hessian.

6

Under review as submission to TMLR

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

2 0 2
0

2

4

2 0 2
0

2

4

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

2 0 2
0

2

4

2 0 2
0

2

4

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

2 0 2
0

2

4

2 0 2
0

2

4

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

Figure 5: Optimization trajectory of Adam (left), Adam+CG (middle), and Adam+CM (right) on a toy 1D
function with a flat and a sharp minimum with increasing sharpness (across columns), for different initialization
points (across rows). Green backgrounds indicate that the optimizer escapes the sharper minimum while red
backgrounds indicate otherwise. The vertical line indicates the final point in each sub-figure. We observe
that Adam mostly converges to the minimum closest to the initial point. Adam+CM converges to the flatter
minimum for different initial points and degrees of sharpness more often than Adam+CG.

Optimizers Loss Sharpness

GP

Adam 0.86 1.49
Adam+SAM 3.14 1.43
Adam+CG 0.85 1.51
Adam+CM 0.81 1.36

Levy

Adam 13.87 65.65
Adam+SAM 13.87 65.62
Adam+CG 13.61 64.45
Adam+CM 12.50 62.53

Table 1: Loss vs sharpness of the solutions of
different optimizers for toy loss surfaces. The
buffer decay is set to 0.99 for these experiments.
Adam+CM is able to find solutions that are
both flatter and deeper (lower loss) than other
optimizers in this setting.

2 3 5 10 100
Sharpness coefficient (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
sc

ap
e

ra
tio

Adam+CM C=20
Adam+CG C=20
Adam+SAM
Adam

Figure 6: Escape ratio (number of times the opti-
mizer escapes the sharp minimum to reach the global
minimum out of 50 runs) in the 10-D toy example
(equation 9), for different values of the sharpness co-
efficient. Adam+CM shows a higher ability to escape
sharp minima in this setting.

Results in Figure 1 show that Adam+CM finds flatter solutions with a lower loss value compared to Adam,
Adam+CG, and Adam+SAM in both examples. Furthermore, Adam and Adam+SAM reach almost equal loss
values for the Levy function with a negligible difference in sharpness, but for the GP function, Adam+SAM
converges to a sub-optimal minimum with lower sharpness.

We analyze how the buffer size controls the amount of exploration empirically in Appendix A.2.1, where
we show that even with a small buffer size, Adam+CM can escape sharper minima and explores lower loss
regions than other optimizers. The results also suggest that in a controlled setting, the larger buffer size helps
find a flatter minimum. To further investigate the escaping abilities of the various optimizers, we consider
the following class of functions on RD:

fs(x) =
D∑

d=1
min(x2

d, s(xd − 1)2) (9)

7

Under review as submission to TMLR

where s > 1 is a sharpness coefficient. Each function in this class has two global minima: a flat minimum at
the origin and a sharper minimum at (1 · · · 1).

Figure 5 shows optimization trajectories in the one-dimensional case for various values of the sharpness
coefficient s ∈ {5, 10, 100} (across columns) and initial point x ∈ {−2, 2, 3} (across rows). We can see that
Adam mostly converges to the minimum closest to the initial point. Adam+CM converges to the flatter
minimum for different initial points and degrees of sharpness more often than Adam+CG. Additional plots
are shown in Appendix A.3 for various values of the hyperparameters.

In Figure 7 (left), we compare the escape ratio for different optimizers on Equation 9 with d = 1 (similar
to Figure 6). We can see that for C = 10, with an exception at s = 2, Adam+CM consistently finds the
minimum at x = 0 more often than other optimizers. Interestingly, as s increases, Adam+CG is outperformed
by both Adam and Adam+SAM, which indicates that Adam+CG is more susceptible to getting stuck at
sharper minima in this example. Figure 7 (right) shows that the tendency of Adam+CM to escape minima is
dependent on C such that, a larger value of C results in convergence to flatter minimum more often.

1 2 3 5 10 100
Sharpness coefficient (s)

0.0

0.2

0.4

0.6

0.8

1.0

E
sc

ap
e

ra
tio

Adam+CM topC=10
Adam+CG topC=10
Adam+SAM
Adam

1 2 3 5 10 100
Sharpness coefficient (s)

0.0

0.2

0.4

0.6

0.8

1.0

E
sc

ap
e

ra
tio

Adam+CM topC=5
Adam+CM topC=10
Adam+CM topC=20
Adam+CM topC=40

Figure 7: (Left) Escape ratio (number of times when optimizer reaches the minima at x = 0 out of total 50
runs) for different sharpness coefficient (s) for minima at x = 1 in 1D toy example shown in Figure 5. (Right)
Escape ratio vs sharpness coefficient (s) for different C.

Analyzing with D = 10, we uniformly sample 50 unique initial points in [−5, 5]10. Of these runs, we count
the number of times an optimizer finds the flat minimum at the origin by escaping the sharper minimum.
Figure 6 reports the escape ratio for different values of the sharpness coefficient. We observe that Adam+CM
(with buffer capacity C = 20) has a higher escape ratio than others as the sharpness increases. We replicate
this experiment with various values of the buffer capacity (see Figure 7).

5 Experimental results

Results from the previous section show that our proposed approach of exploration in adaptive optimizers
(Adam+CM) is less sensitive to the sharpness of the loss surface, less prone to gradient cancellation and finds
flatter solutions on a variety of loss surfaces. The goal of this section is to evaluate our method empirically
on complex models and with the following benchmarks:

• The Penn Treebank (PTB) (Marcus et al., 1993): It is a part-of-speech (POS) tagging task where a
model must determine what part of speech (ex. verb, subject, direct object, etc.) every element of a
given natural language sentence consists of.

• CIFAR10 (Krizhevsky et al., 2009): It is a multiclass image classification task the training and
validation set consists of images that are separated into 10 distinct classes, with each class containing
an equal number of samples across the training and validation sets. The goal is to predict the correct
image class, provided as an annotated label, given a sample from the sets.

8

Under review as submission to TMLR

Language modelling Image classification
Validation Perplexity (↓) Validation Accuracy % (↑)

Optimizers PTB CIFAR10 CIFAR100 ImageNet
Adam 179.4±2.8 93.9±0.3 70.7±0.3 67.8±0.1

Adam+CG 174.4±5.5 93.8±0.4 71.0±0.3 69.7±0.1
Adam+SAM 168.7±1.9 93.7±0.3 70.5±0.4 65.4±0.2

Adam+CM (ours) 163.2±5.5±5.5±5.5 94.0±0.3 71.2±0.3±0.3±0.3 71.7±0.2±0.2±0.2
Adam+SAM+CM (ours) 176.2±5.7 94.4±0.4±0.4±0.4 69.7±0.3 71.3±0.2

Table 2: Comparison of performance in terms of best validation perplexity and accuracy (%) achieved by the
existing baselines with Adam+CM and its SAM variant on language modelling and image classification tasks.
Overall, CM outperforms the baselines in all four datasets.

• CIFAR100: It is the same task as CIFAR10, except that images are now separated into 100 classes
with an equal number of samples within each class.

• ImageNet (Deng et al., 2009): It is a large-scale dataset consisting of images separated into 1000
distinct classes. The objective of the task is the same as CIFAR10 and CIFAR100, which is to classify
images from the training and validation set correctly into a class with an annotated label.

All results presented in this section are averaged across five seeds.

5.1 Language modelling

Starting with a language-based task, a single-layer long short-term memory network (LSTM) (Hochreiter &
Schmidhuber, 1997) is trained on the PTB dataset. We evaluate the performance by reporting the validation
perplexity on a held-out set. We train the model for 50 epochs (similar to McRae et al. (2022)) and we reduce
the learning at the 25th epoch by dividing it by 10. The results are reported after performing a grid search
over corresponding hyper-parameters. Details of this grid search are present in Appendix Table 8. Table 2
shows that Adam+CM outperforms other optimizers in terms of best validation perplexity achieved during
training. We also note that Adam+SAM is the second best optimizer and achieves better performance than
its CM variant.

5.2 Image classification

Next, we evaluate Adam+CM on different model sizes for image classification. We train ResNet34 models (He
et al., 2016) on CIFAR10/100 datasets. We train the models for 100 epochs where we reduce the learning at
the 50th epoch by dividing it by 10. We also train an EfficientNet-B0 model (Tan & Le, 2019) from scratch
on ImageNet. We used a publicly available EfficientNet implementation2 in PyTorch (Paszke et al., 2019),
with a weight decay (Loshchilov & Hutter, 2019) of 10−4 and a learning rate scheduler where the initial
learning rate is reduced by a factor of 10 every 30 epochs. We provide additional details about the grid
search, datasets and models in Appendix A.2.2.

The best validation accuracy achieved by models for image classification tasks are reported in Table 2. We
again observe that Adam+CM achieves better performance than the other optimizer baselines. Moreover,
Adam+SAM+CM yielded the best validation accuracy for CIFAR10, while Adam+CM performed the best
on the other two datasets.

Figure 8 corroborates the claim that Adam+CM finds a flatter surface containing the global minimum, with
the top-left plot showing lower sharpness compared to Adam or Adam+SAM. The top-right plot further
reveals the greater distance travelled by parameters during training, indicating that using CM promotes more
exploration than the other optimizers. We also note that the distance travelled by parameters in SAM is

2https://github.com/lukemelas/EfficientNet-PyTorch

9

Under review as submission to TMLR

0 20 40 60 80 100
Epochs

10 1

100

Sh
ar

pn
es

s

Adam
Adam+CG
Adam+CM
Adam+SAM
Adam+SAM+CM

0 20 40 60 80 100
Epochs

102Di
st

an
ce

Adam
Adam+CG
Adam+CM
Adam+SAM
Adam+SAM+CM

0 20 40 60 80 100
Epochs

10 5

10 4

Bu
ffe

r V
ar

ia
nc

e

Adam+CG
Adam+CM

0 20 40 60 80 100
Epochs

0.05

0.10

0.15

0.20

0.25

0.30

Co
sin

e
sim

ila
rit

y

Adam+CG
Adam+CM

Figure 8: Sharpness (top-left), distance (top-right) buffer variance (bottom-left), and cosine similarity
(bottom-right) in buffer elements of the optimizers on CIFAR100. These results indicate that buffer elements
in Adam+CM agree more with each other and have lower sharpness than Adam+CG.

similar to that of Adam. This similarity is also observed with Adam+CM and Adam+SAM+CM as their
distance curves overlap. Figure 8 (bottom-left) shows that buffer elements stored by Adam+CM have lower
variance during training compared to Adam+CG. To compare agreement among buffer quantities, we take
the element with the highest norm within the buffer, compute the cosine similarities with other elements in
the buffer, and take the mean of these similarities.

Resnet34
CIFAR10

Resnet34
CIFAR100

10 2

10 1

Sh
ar

pn
es

s

C=5
C=20

Figure 9: Sharpness for different
buffer sizes using Adam+CM on CI-
FAR10/100, with other hyperparam-
eters fixed. Using larger buffers re-
sults in lower sharpness even for high-
dimensional models.

Figure 8 (bottom-right) shows the agreement in Adam+CM remains
higher than in Adam+CG, indicating the aggregation of buffer ele-
ments in Adam+CM will more often result in a non-zero quantity in
the desired direction. On the other hand, high variance and disagree-
ment among elements in the Adam+CG buffer may cause gradient
cancellation during aggregation and result in Adam-like behavior.
These results are associated with the best-performing setup for the
given optimizers. They highlight that it is the property of Adam+CM
that facilitates efficient exploration and finding flatter surfaces to
achieve the best performance.

Figure 9 shows the final sharpness metric for different buffer sizes
recorded for CIFAR10/100 experiments with default hyperparameter
setup. It is clear that using a large buffer size can further reduce the
sharpness of the solution in such complex settings.

Next, we show how batch size influences the performance of
Adam+CM for CIFAR10/100 experiments. In both datasets, we
found that the default batch size of 64 performs best in terms of
validation accuracy. We provide the validation accuracy achieved by
the best-performing setups for other batch sizes in Figure 10 (left).
We also perform a similar experiment but for different buffer sizes

10

Under review as submission to TMLR

Resnet34
CIFAR10

Resnet34
CIFAR100

60

65

70

75

80

85

90

95

Va
lid

at
io

n
ac

cu
ra

cy

64
128
256
512

Resnet34
CIFAR10

Resnet34
CIFAR100

60

65

70

75

80

85

90

95

Va
lid

at
io

n
ac

cu
ra

cy

1
2
3
5
20

Figure 10: Best validation accuracy for different batch sizes (left) and buffer size (right) using Adam+CM on
CIFAR10/100, with hyperparameters grid search. The default batch size of 64 and buffer size of 5 works best
for these benchmarks.

Optimizers CIFAR10 CIFAR100
Accuracy Speed-up Accuracy Speed-up

SGD 93.0±0.4 1x 69.6±0.7 1x
SGD+CG 93.1±0.4 1.2x 69.6±0.3 1.2x

SGD+CM (ours) 93.1±0.1 1.3x 69.6±0.7 1.2x

Table 3: Comparison of performance in terms of best validation accuracy (%) and speed-up by SGD+CM
on CIFAR10 and CIFAR100. Although the performance remains the same, there is a speed-up by both
memory-augmented optimizers.

on CIFAR10/100 experiments. We found that the default buffer size
of 5 performs best in terms of validation accuracy. We provide the
best-performing setups in Figure 10 (right) and also observe that smaller buffer size results have a slightly
higher standard deviation.

5.3 Using non-adaptive optimizer

Next, we show the advantage of integrating exploration capabilities in SGD. To implement SGD+CG, we
follow McRae et al. (2022) and replace gt with aggregation of gt and the buffer gradients gc for parameter
updates as following:

θt+1 = θt − η (gt + 1
C

∑
gc∈gc

gc) (10)

Similarly, for SGD+CM, we aggregate the momentum using equation 4 and update the parameters using
equation 8. We perform a hyperparameter grid search on CIFAR10/100 experiments to compare SGD,
SGD+CG with SGD+CM and report the results in Table 3. Apart from validation accuracy, we also
report the speed-up in the first 50 epochs of the training process and observe that although generalization
performance remains the same, there is a speed-up in both SGD+CG and SGD+CM.

5.4 Online learning

We also evaluate the methods in an online learning setup where a model with a limited capacity is trained
on a stream of tasks. Here, the goal is to adapt to the latest task dataset by maximizing its performance.
Therefore, it is important for an optimizer to escape task-specific solutions as the loss landscape changes once

11

Under review as submission to TMLR

a new task dataset arrives. We hypothesize that with its greater exploration capabilities, Adam+CM will be
able to do so better than other baselines. We evaluate the optimizers on the following benchmarks:

• TinyImagenet (Zhang et al., 2019): This dataset is created by partitioning its 200 classes into 40
5-way classification tasks. The implementation of TinyImagenet is based on Gupta et al. (2020)
where a 4-layer CNN model is trained.

• 5-dataset (Mehta et al., 2023): It consists of five different 10-way image classification tasks: CIFAR10,
MNIST LeCun (1998), Fashion-MNIST Xiao et al. (2017), SVHN Netzer et al. (2011), and notMNIST
Bulatov (2011). The implementation is based on Mehta et al. (2023) where a ResNet18 He et al.
(2016) model is trained.

We report their learning accuracies, which is the average validation accuracy for each task when the model is
trained on that specific task. More details about the models, datasets, and hyper-parameter grid search are
provided in Appendix A.2.3.

Optimizers TinyImagenet 5-dataset
Adam 62.9±0.4 88.2±0.5
Adam+CG 62.8±0.1 88.2±0.5
Adam+SAM 62.8±0.4 88.3±1.0

Adam+CM 63.4±0.1 88.4±0.6
Adam+SAM+CM 63.9±0.7±0.7±0.7 88.5±0.5±0.5±0.5

Table 4: Comparison of performance in terms of best learning
accuracy (%) achieved by the existing baselines with Adam+CM
and its SAM variant on online learning benchmarks. Both CM-
based optimizers result in improved performance as compared to
the baselines.

In Table 4, we observe that Adam+CM
achieves better performance than Adam.
Moreover, while Adam+SAM performs
similarly to Adam, Adam+SAM+CM re-
sults in the best accuracy on both bench-
marks. One possible reason for this is
that, while SAM primarily focuses on im-
proving the flatness of a solution, CM is
more effective in exploring the loss surface
and finding a basin containing a more gen-
eralizable solution. Our findings validate
the hypothesis that CM can be applied in
online learning settings to promote explo-
ration. Moreover, it complements existing
baselines and can be seamlessly integrated
for performance improvements.

6 Conclusion

This work presents a framework for enhancing exploration in adaptive optimizers. We introduce Adam+CM,
a novel memory-augmented variant of Adam that incorporates a buffer of critical momenta and adapts the
parameters update rule using an aggregation function. Our analysis demonstrates that Adam+CM effectively
mitigates the limitations of existing memory-augmented adaptive optimizers, fostering exploration toward
flatter regions of the loss landscape. Empirical evaluations showcase that Adam+CM outperforms Adam,
SAM, and CG across standard supervised and online learning tasks. An exciting future direction is the
application of reinforcement learning settings, where knowledge transfer without overfitting on a single task
is crucial. Furthermore, our findings hint at the potential of CM to capture higher-order dynamics of the loss
surface, warranting further investigation.

References
David H Ackley. The model. In A Connectionist Machine for Genetic Hillclimbing, pp. 29–70. Springer, 1987.

Yaroslav Bulatov. Notmnist dataset. Technical report, Google (Books/OCR), 2011. URL http://yaroslavvb.
blogspot.it/2011/09/notmnist-dataset.html.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs, Jennifer
Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-SGD: Biasing gradient descent into wide valleys.
In International Conference on Learning Representations, 2017.

12

http://yaroslavvb.blogspot.it/2011/09/notmnist-dataset.html
http://yaroslavvb.blogspot.it/2011/09/notmnist-dataset.html

Under review as submission to TMLR

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets without
pre-training or strong data augmentations. In International Conference on Learning Representations, 2022.

Dami Choi, Christopher J Shallue, Zachary Nado, Jaehoon Lee, Chris J Maddison, and George E Dahl. On
empirical comparisons of optimizers for deep learning. arXiv preprint arXiv:1910.05446, 2019.

Jeremy M Cohen, Behrooz Ghorbani, Shankar Krishnan, Naman Agarwal, Sourabh Medapati, Michal Badura,
Daniel Suo, David Cardoze, Zachary Nado, George E Dahl, et al. Adaptive gradient methods at the edge
of stability. arXiv preprint arXiv:2207.14484, 2022.

Aaron Defazio and Samy Jelassi. Adaptivity without compromise: a momentumized, adaptive, dual averaged
gradient method for stochastic optimization. Journal of Machine Learning Research, 2022.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems,
2014.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In IEEE Conference on Computer Vision and Pattern Recognition, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.
An image is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2021.

Timothy Dozat. Incorporating Nesterov momentum into Adam. In International Conference on Learning
Representations workshop, 2016.

Jiawei Du, Zhou Daquan, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware training for free.
In Advances in Neural Information Processing Systems, 2022a.

Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and Vincent
Tan. Efficient sharpness-aware minimization for improved training of neural networks. In International
Conference on Learning Representations, 2022b.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 2011.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data. In Conference on Uncertainty
in Artificial Intelligence, 2017.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. In International Conference on Learning Representations, 2021.

Diego Granziol, Xingchen Wan, Samuel Albanie, and Stephen Roberts. Iterative averaging in the quest for
best test error. arXiv preprint arXiv:2003.01247, 2020.

Gunshi Gupta, Karmesh Yadav, and Liam Paull. Look-ahead meta learning for continual learning. Advances
in Neural Information Processing Systems, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning lecture 6a
overview of mini-batch gradient descent, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima. Advances in
Neural Information Processing Systems, 1994.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9:1735–1780, 1997.

13

Under review as submission to TMLR

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. In Conference on Uncertainty in
Artificial Intelligence, 2018.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic generalization
measures and where to find them. In International Conference on Learning Representations, 2020.

Simran Kaur, Jeremy Cohen, and Zachary Chase Lipton. On the maximum hessian eigenvalue and general-
ization. In Proceedings of Machine Learning Research, volume 187, pp. 51–65. PMLR, 03 Dec 2023.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On
large-batch training for deep learning: Generalization gap and sharp minima. In International Conference
on Learning Representations, 2016.

Junhyung Lyle Kim, Gauthier Gidel, Anastasios Kyrillidis, and Fabian Pedregosa. When is momentum
extragradient optimal? a polynomial-based analysis. arXiv preprint arXiv:2211.04659, 2022a.

Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher SAM: Information geometry and
sharpness aware minimisation. In International Conference on Machine Learning, 2022b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images, 2009.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. ASAM: Adaptive sharpness-aware
minimization for scale-invariant learning of deep neural networks. In International Conference on Machine
Learning, 2021.

Manuel Laguna and Rafael Marti. Experimental testing of advanced scatter search designs for global
optimization of multimodal functions. Journal of Global Optimization, 33:235–255, 2005.

Quoc V Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow, and Andrew Y Ng. On optimization
methods for deep learning. In International Conference on Machine Learning, 2011.

Yann LeCun. The mnist database of handwritten digits, 1998. URL http://yann.lecun.com/exdb/mnist/,.

Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization algorithms via
integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016. doi: 10.1137/15M1009597.
URL https://doi.org/10.1137/15M1009597.

Ren Liu, Fengmiao Bian, and Xiaoqun Zhang. Binary quantized network training with sharpness-aware
minimization. Journal of Scientific Computing, 2023.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable sharpness-
aware minimization. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated corpus of
english: The penn treebank. Comput. Linguist., 19(2):313–330, jun 1993. ISSN 0891-2017.

Paul-Aymeric Martin McRae, Prasanna Parthasarathi, Mido Assran, and Sarath Chandar. Memory augmented
optimizers for deep learning. In International Conference on Learning Representations, 2022.

Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell. An empirical investigation of
the role of pre-training in lifelong learning. Journal of Machine Learning Research, 24(214):1–50, 2023.
URL http://jmlr.org/papers/v24/22-0496.html.

14

http://yann.lecun.com/exdb/mnist/,
https://doi.org/10.1137/15M1009597
http://jmlr.org/papers/v24/22-0496.html

Under review as submission to TMLR

Gonçalo Mordido, Sarath Chandar, and François Leduc-Primeau. Sharpness-aware training for accurate
inference on noisy DNN accelerators. arXiv preprint arXiv:2211.11561, 2022.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. 2011.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generalization in
deep learning. Advances in Neural Information Processing Systems, 2017.

Jorge Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of computation, 1980.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Systems, 2019.

Victor Picheny, Tobias Wagner, and David Ginsbourger. A benchmark of kriging-based infill criteria for noisy
optimization. Structural and multidisciplinary optimization, 48:607–626, 2013.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 1964.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 1951.

Nicolas Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an exponential convergence
rate for finite training sets. Advances in Neural Information Processing Systems, 2012.

Nicol N Schraudolph, Jin Yu, and Simon Günter. A stochastic quasi-newton method for online convex
optimization. In Conference on Artificial Intelligence and Statistics, 2007.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. Journal of Machine Learning Research, 2013.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In
International Conference on Machine Learning, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
2017.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal value of
adaptive gradient methods in machine learning. In Advances in Neural Information Processing Systems,
2017.

Lei Wu, Chao Ma, and Weinan E. How SGD selects the global minima in over-parameterized learning: A
dynamical stability perspective. In Advances in Neural Information Processing Systems, 2018a.

Lei Wu, Chao Ma, et al. How SGD selects the global minima in over-parameterized learning: A dynamical
stability perspective. Advances in Neural Information Processing Systems, 31, 2018b.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Matthew D Zeiler. AdaDelta: An adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps forward, 1
step back. Advances in neural information processing systems, 2019.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoretically
understanding why SGD generalizes better than Adam in deep learning. Advances in Neural Information
Processing Systems, 2020.

15

Under review as submission to TMLR

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Papademetris,
and James Duncan. AdaBelief optimizer: Adapting stepsizes by the belief in observed gradients. In
Advances in Neural Information Processing Systems, 2020.

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha C Dvornek, Sekhar Tatikonda,
James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware training. In Interna-
tional Conference on Learning Representations, 2022.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of adam in
learning neural networks with proper regularization. In The Eleventh International Conference on Learning
Representations, 2023.

A Appendix

In this section, we provide the details and results not present in the main content. In section A.1, we report
more evidence of gradient cancellation in a toy example. In section A.2, we describe the implementation
details including hyper-parameters values used in our experiments. All experiments were executed on an
NVIDIA A100 Tensor Core GPUs machine with 40 GB memory.

A.1 Gradient cancellation in CG

When we track the trajectory along with the gradient directions of the buffer in the Adam+CG optimizer on
the Ackley+Rosenbrock function (defined in the next section), we found that CG gets stuck in the sharp
minima (see Figure 11). This is because of the gradient cancellation problem discussed earlier.

Figure 11: Three consecutive steps in training Adam+CG on Ackley+Rosenbrock function with C = 5. The
white lines indicate the gradient directions in the buffer. Since four of these gradients point in opposite
directions, their mean would be small and cancel the current gradient update out. As a result, parameters
get stuck in the sharp minima.

Next, we provide additional analysis similar to Figure 2. We compare the trajectories and gradient directions
of Adam+CM and Adam+CG for six consecutive steps on the Goldstein–Price function in Figure 12. Similar
to our observations on Ackley function, we find that the buffer quantities in CG are dominated by directions
of higher sharpness (towards top-left direction and bottom-right direction). Even when the new gradient
direction aligns with buffer mean in CG, it remains stuck in the sharp surface. On the other hand, the buffer
directions do not drastically change in CM and therefore it finds the surface that contains the global minima.

A.2 Implementation details and other results

A.2.1 Toy examples

We evaluate our optimizer on the following test functions in Section 4:

1. Ackley function:

f(x, y) = −20 exp(−0.2
√

0.5(x2 + y2))− exp(0.5(cos 2πx + cos 2πy)) + e + 20 (11)

16

Under review as submission to TMLR

Adam+CM
Adam+CG
Buffer quantities
Buffer mean
New gradient

Adam+CM
Adam+CG
Buffer quantities
Buffer mean
New gradient

Adam+CM
Adam+CG
Buffer quantities
Buffer mean
New gradient

Adam+CM
Adam+CG
Buffer quantities
Buffer mean
New gradient

Adam+CM
Adam+CG
Buffer quantities
Buffer mean
New gradient

Adam+CM
Adam+CG
Buffer quantities
Buffer mean
New gradient

Figure 12: Six consecutive steps of Adam+CG and Adam+CM trajectories on Goldstein–Price function
function. Buffer quantities in Adam+CG are dominated by directions of higher sharpness (towards top-left
direction and bottom-right direction) and the new gradient directions have high variance, yielding a small
update. Conversely, Adam+CM escapes sub-optimal minima and converges near the global minimum.

The global minimum is present at (0, 0). In Figure 13, we visualize the trajectories of Adam,
Adam+SAM, Adam+CG and Adam+CM for different initialization points. While other optimizers
may get stuck at nearby local minima, Adam+CM benefits from more exploration and finds a
lower-loss surface that may contain the global minima.

2. Goldstein-Price function:

f(x, y) = 1
2.427 log[1 + (x + y + 1)2(19− 14x + 3x2 − 14y + 6xy + 3y2)]

× [30 + (2x− 3y)2(18− 32x + 12x2 + 48y − 36xy + 27y2)− 8.693]
(12)

The global minimum is present at [0, 1]2. In Figure 14, we visualize the trajectories of Adam,
Adam+SAM, Adam+CG and Adam+CM for different initialization points. While other optimizers
may get stuck at a sub-optimal loss surface, Adam+CM benefits from more exploration and finds
the global minimum.

3. Levy function:

f(x1, x2) = sin2(πw) +
d−1∑
i=1

(wi − 1)2[1 + 10 sin2(πwi + 1)] + (wd − 1)2[1 + sin2(2πwd)] (13)

where wi = 1 + xi−1
4 and d is the number of variables. The global minimum is present at (1, 1).

4. Ackley+Rosenbrock function:

f(x, y) = 0.05(1− x)2 + 0.05(y − x2)2 + 0.6[exp(−0.2
√

0.5(x2 + y2))
− exp(0.5(cos 2πx + cos 2πy)) + e]

(14)

The global minima is present at (2.1, 3.9).

17

Under review as submission to TMLR

Adam+CM
Adam+CG
Adam
Adam+SAM+CM
Adam+SAM

Adam+CM
Adam+CG
Adam
Adam+SAM+CM
Adam+SAM

Adam+CM
Adam+CG
Adam
Adam+SAM+CM
Adam+SAM

Adam+CM
Adam+CG
Adam
Adam+SAM+CM
Adam+SAM

Figure 13: Optimization trajectories of various optimizers on the Ackley loss surface for different initial points
(black square). The black diamond indicates the global minimum.

In Figure 1, we also compared different optimizers in terms of the sharpness of the solution reached by each
optimizer on different functions. In Table 5, we perform a similar experiment and compare sharpness across
different values of hyperparameters for Adam+CM. We observe that Adam+CM is able to find a flatter and
lower-loss solution as buffer size increases. This is consistent with complex tasks in Figure 9.

Optimizers C λ Loss Sharpness
Adam+CG 5 0.7 14.40 64.72
Adam+CG 5 0.99 14.41 64.67
Adam+CG 20 0.99 13.61 64.45
Adam+CM 5 0.7 12.90 63.74
Adam+CM 5 0.99 13.02 63.83
Adam+CM 20 0.99 12.50 62.53

Table 5: Loss vs sharpness of the solutions of Adam+CM for different hyperparameters buffer sizes on Levy
function. Adam+CM is able to find solutions that are both flatter and deeper (lower loss) as buffer size
increases. Moreover, Adam+CM always outperforms Adam+CG even with a smaller buffer size.

18

Under review as submission to TMLR

Adam+CM
Adam+CG
Adam
Adam+SAM

Adam+CM
Adam+CG
Adam
Adam+SAM

Adam+CM
Adam+CG
Adam
Adam+SAM

Adam+CM
Adam+CG
Adam
Adam+SAM

Figure 14: Optimization trajectories of various optimizers on the Goldstein-Price loss surface for different
initial points (black square). The black diamond indicates the global minimum..

We also provide a comparison with another existing method called Momentum Extragradient (MEG) (Kim
et al., 2022a) and Adam+CM on the Ackley and Goldstein-Price functions in Figure 15. We observe
that Adam+CM has better exploration capabilities than MEG. When evaluated on CIFAR10 dataset,
Adam+MEG achieves the accuracy of 93.8 (±0.3) % which is lower than both Adam+CM (94.0 (±0.3) %)
and Adam+SAM+CM (94.4 (±0.4) %).

Adam+CM
Adam
Adam+SAM
Adam+MEG

Adam+CM
Adam
Adam+SAM
Adam+MEG

Figure 15: Comparing adaptation trajectories of Adam+MEG with Adam, Adam+SAM and Adam+CM.
Overall, we observe that Adam+CM exhibits better exploration of the loss landscape.

19

Under review as submission to TMLR

In Figure 4, we compared different variants of Adam on Ackley function by running 500 steps. We observed
that unlike other baselines, Adam+CM and Adam+SAM+CM escape local minima, explores the loss surface
and navigates towards the region containing global minima. In this experiment, reducing the learning rate
helps in settling down to the global minimum and stopping further exploration. As an ablation study, we
perform the same experiment but without learning rate decay. We plot the loss curve in Figure 16 and
observe that Adam+CM oscillates near the global minima.

0 100 200 300 400
Epochs

1

0

1

2

3

4

5

6

Lo
ss

Adam
Adam+CG
Adam+SAM
Adam+CM
Adam+SAM+CM

Figure 16: Loss (averaged across 10 seeds) obtained on and learning trajectories for different optimizers with
a constant learning rate on the Ackley loss surface. We observe that while other optimizers get stuck at
sub-optimal minima, Adam+CM and Adam+SAM+CM achieve lower loss values and oscillates near the
global minima.

A.2.2 Deep learning experiments

Dataset Train set Validation set
PTB 890K 70K

CIFAR10 40K 10K
CIFAR100 40K 10K
ImageNet 1281K 50K

Table 6: Dataset details

In Table 6 and Table 7, we provide a summary of all datasets and deep learning models used in the experiment
from Section 5.

Model Number of parameters
LSTM 20K

ResNet34 22M
EfficientNet-B0 5.3M

Table 7: Model details

For all toy examples experiments based on Equation 9, the learning rate is set as 0.05. The learning rate is
set as 0.1 for other toy examples. Unless specified in the experiment description, the default set of other
hyperparameters in all our experiments is {β1, β2, C, λ, ρ} = {0.9, 0.99, 5, 0.7, 0.05} except in CIFAR10/100
experiments where β2 is set to 0.999. The default values of C and λ are decided based on the suggested values
from McRae et al. (2022) and ρ based on Foret et al. (2021). For the results in Figure 6 and Figure 1, C and
λ are set to 20 and 0.99.

20

Under review as submission to TMLR

For supervised learning experiments, we provide the details on hyper-parameter grid-search in Table 8 and
the best settings for all experiments and Table 9 and Table 10. In these tables, we report the hyperparameter
set for each optimizer as follows:

• Adam: {α}

• Adam+CG: {α, β1, β2, C, λ}

• Adam+SAM: {α, β1, β2, ρ}

• Adam+CM: {α, β1, β2, C, λ}

• Adam+SAM+CM: {α, β1, β2, C, λ, ρ}

CM essentially uses the equivalent cost of computation and space complexity as CG. However, after performing
a hyperparameter grid search over the buffer size, we observed that CM consistently requires a smaller buffer
size than CG and obtains better performance. A default

Hyper-parameter Set
lr {0.1, 0.01, 0.001, 0.0001}
β1 {0.9, 0.99, 0.999}
β2 {0.99, 0.999, 0.9999}
C {5, 20}
λ {0.7, 0.99}
ρ {0.01, 0.05, 0.1}

Table 8: Details on grid search on hyper-parameter setting.

Optimizers PTB
LSTM

Adam {0.001, 0.9, 0.99}
Adam+CG {0.001, 0.9, 0.999, 5, 0.7}

Adam+SAM {0.001, 0.9, 0.9, 0.01}
Adam+CM {0.001, 0.9, 0.999, 5, 0.7}

Adam+SAM+CM {0.001, 0.9, 0.999, 5, 0.7, 0.1}

Table 9: Best hyperparameter settings for different optimizers on PTB.

Optimizers CIFAR10 CIFAR100 ImageNet
Adam {0.001, 0.9, 0.999} {0.001, 0.9, 0.99} {0.0001, 0.9, 0.99}

Adam+CG {0.0001, 0.9, 0.999, 20, 0.7} {0.001, 0.9, 0.99, 20, 0.7} {0.0001, 0.9, 0.99, 5, 0.7}
Adam+SAM {0.0001, 0.9, 0.99, 0.05} {0.001, 0.9, 0.999, 0.05} {0.0001, 0.9, 0.99, 0.05}
Adam+CM {0.0001, 0.9, 0.999, 5, 0.7} {0.001, 0.9, 0.9999, 5, 0.7} {0.0001, 0.9, 0.99, 5, 0.7}

Adam+SAM+CM {0.0001, 0.9, 0.99, 5, 0.7, 0.05} {0.001, 0.9, 0.99, 5, 0.7, 0.1} {0.0001, 0.9, 0.99, 5, 0.7, 0.05}

Table 10: Best hyperparameter settings for different optimizers on image classification benchmarks.

A.2.3 Online learning setup

The online learning experiments are performed on following benchmarks:

• TinyImagenet: This dataset is created by partitioning its 200 classes into 40 5-way classification
tasks. The implementation of TinyImagenet is based on Gupta et al. (2020) where a 4-layer CNN
model is trained.

21

Under review as submission to TMLR

Optimizers GP Ackley
Adam {0.1, 0.9, 0.99} {0.1, 0.9, 0.99}

Adam+CG {0.1, 0.9, 0.99, 5, 0.7} {0.1, 0.9, 0.99, 5, 0.7}
Adam+SAM {0.1, 0.9, 0.99, 0.01} {0.1, 0.9, 0.99, 0.01}
Adam+CM {0.1, 0.9, 0.999, 20, 0.99} {0.1, 0.9, 0.999, 20, 0.99}

Adam+SAM+CM {0.1, 0.9, 0.999, 20, 0.99, 0.05} {0.1, 0.9, 0.999, 20, 0.99, 0.05}

Table 11: Best hyperparameter settings for different optimizers on toy examples.

• 5-dataset: It consists of five different 10-way image classification tasks: CIFAR10, MNIST LeCun
(1998), Fashion-MNIST Xiao et al. (2017), SVHN Netzer et al. (2011), and notMNIST Bulatov (2011).
The implementation is based on Mehta et al. (2023) where a ResNet18 He et al. (2016) model is
trained.

For online learning experiments, we provide the details on hyper-parameter grid-search in Table 12 and the
best settings for all experiments in Table 13.

Hyper-parameters Values
step size (η) {0.01, 0.001, 0.0001, 0.00001}

β1 {0.9, 0.99}
β2 {0.99, 0.999, 0.9999}

Table 12: Details on the hyper-parameter grid search used for the online learning experiments.

Optimizer TinyImagenet 5-dataset
Adam {0.0001, 0.9, 0.999} {0.0001, 0.9, 0.999}

Adam+CG {0.0001, 0.9, 0.999} {0.0001, 0.9, 0.999}
Adam+SAM {0.0001, 0.9, 0.9999} {0.001, 0.9, 0.999}
Adam+CM {0.0001, 0.9, 0.9999} {0.001, 0.9, 0.9999}

Adam+SAM+CM {0.0001, 0.9, 0.99} {0.00001, 0.9, 0.999}

Table 13: Best hyper-parameter settings for online learning experiments.

A.3 Sensitivity analysis

Following experiments in Figure 5, we fix decay to 0.7 in Figure 17 and vary C. We perform a similar
experiment with decay= 0.99 and plot them in Figure 18. In both these figures, the observation remains
the same that is Adam+CM converges to flatter minima for different initial points and degrees of sharpness.
We also observe that C plays an important role in convergence to flatter minima in both Adam+CG and
Adam+CM.

A.3.1 m-sharpness

There have been various definitions of sharpness used in optimization literature. Specifically, Foret et al.
(2021) employs m-sharpness to indicate the sharpness of the loss landscape and demonstrates its correlation
with generalization performance.

The m-sharpness is defined as:

1
n

∑
M∈D

max
∥ϵ∥2≤r

1
m

∑
s∈M

Ls(θ + ϵ)− Ls(θ) (15)

22

Under review as submission to TMLR

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

2 0 2
0

2

4

2 0 2
0

2

4

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

2 0 2
0

2

4

2 0 2
0

2

4

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

2 0 2
0

2

4

2 0 2
0

2

4

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

2 0 2
0

2

4

2 0 2
0

2

4

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

2 0 2
0

2

4

2 0 2
0

2

4

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

2 0 2
0

2

4

2 0 2
0

2

4

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

Figure 17: Following Figure 5, we compare trajectories of Adam+CG (left columns) and Adam+CM (right
column) on Equation 9 with d = 1 where λ is set to 0.7 and C : (i) 5 (first row), (ii) 10 (second row) and (iii)
20 (third row). For different initial points and degrees of sharpness, Adam+CM converges to flatter minima
more often than Adam+CG.

where D represents the training dataset, which is composed of n mini-batches M of size m and r is a
hyper-parameter set to 0.05 by default.

In Figure 19, we also monitor the m-sharpness during the training of CIFAR10 (left) and CIFAR100 (right)
with the same learning rate of 0.0001 and fixed hyperparameter setups. We compare the baseline optimizers

23

Under review as submission to TMLR

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

2 0 2
0

2

4

2 0 2
0

2

4

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

2 0 2
0

2

4

2 0 2
0

2

4

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

2 0 2
0

2

4

2 0 2
0

2

4

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

2 0 2
0

2

4

2 0 2
0

2

4

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

2 0 2
0

2

4

2 0 2
0

2

4

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

6

2 0 2
0

2

4

2 0 2
0

2

4

2 0 2
0

2

4

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

2.5 0.0 2.5
0

5

10

Figure 18: Following Figure 5, we compare trajectories of Adam+CG (left columns) and Adam+CM (right
column) on Equation 9 with d = 1 where λ is set to 0.99 and C : (i) 5 (first row), (ii) 10 (second row) and (iii)
20 (third row). For different initial points and degrees of sharpness, Adam+CM converges to flatter minima
more often than Adam+CG.

with Adam+CM and observe that Adam+CM exhibits lower m-sharpness on both datasets, which is consistent
with our observations in Figure 8.

24

Under review as submission to TMLR

0 20 40 60 80 100
Epochs

10 4

10 3

10 2

m
-S

ha
rp

ne
ss

Adam
Adam+CG
Adam+SAM
Adam+CM

0 20 40 60 80 100
Epochs

10 3

m
-S

ha
rp

ne
ss

Adam
Adam+CG
Adam+SAM
Adam+CM

Figure 19: m-sharpness computed upon training ResNet34 on CIFAR10 (left) and CIFAR100 (right) with
different optimizers on a fixed hyper-parameter setup. In both cases, Adam+CM has lower m-sharpness than
other baselines.

A.3.2 Learning rate and sharpness

In this section, we compare generalization performances and empirical sharpness of the solutions obtained
using Adam optimizer with different learning rates on CIFAR10 dataset. We keep the other hyper-parameters
fixed to their default values for fair comparison. We show that even when increasing the learning rate
decreases the overall sharpness (Figure 20), the resulting minima is sub-optimal (Figure 14).

Learning rate Validation Accuracy
0.01 93.5±0.3
0.001 93.7±0.2
0.0001 93.4±0.2

Table 14: Validation Accuracy of Adam with
different learning rates on CIFAR10. The
best result it obtained using learning rate of
0.001.

0 20 40 60 80
Epochs

10
3

10
2

10
1

10
0

10
1

S
ha

rp
ne

ss

lr=0.01
lr=0.001
lr=0.0001

Figure 20: Sharpness obtained using Adam with differ-
ent learning rates on CIFAR10. These results indicate
that higher learning rate results in lower sharpness.

25

	Introduction
	Related work
	Memory-augmented Adam
	Critical momenta (CM)
	Convergence analysis

	Insights from toy examples
	Experimental results
	Language modelling
	Image classification
	Using non-adaptive optimizer
	Online learning

	Conclusion
	Appendix
	Gradient cancellation in CG
	Implementation details and other results
	Toy examples
	Deep learning experiments
	Online learning setup

	Sensitivity analysis
	m-sharpness
	Learning rate and sharpness

