
Under review as a conference paper at ICLR 2022

Q-LEARNING SCHEDULER FOR
MULTI-TASK LEARNING THROUGH THE USE OF
HISTOGRAM OF TASK UNCERTAINTY

Anonymous authors
Paper under double-blind review

ABSTRACT

Simultaneous training of a multi-task learning network on different domains or
tasks is not always straightforward. It could lead to inferior performance or
generalization compared to the corresponding single-task networks. An effective
training scheduling method is deemed necessary to maximize the benefits of multi-
task learning. Traditional schedulers follow a heuristic or prefixed strategy, ignoring
the relation of the tasks, their sample complexities, and the state of the emergent
shared features. We proposed a deep Q-Learning Scheduler (QLS) that monitors
the state of the tasks and the shared features using a novel histogram of task
uncertainty, and through trial-and-error, learns an optimal policy for task scheduling.
Extensive experiments on multi-domain and multi-task settings with various task
difficulty profiles have been conducted, the proposed method is benchmarked
against other schedulers, its superior performance has been demonstrated, and
results are discussed.

1 INTRODUCTION

Multi-task learning aims to jointly improve the generalization of several classification and regression
tasks. It does so by sharing the domain-centric information of each task, reducing trainable parameters,
focusing attention on relevant features amid noisy or high dimensional data, regularizing other tasks,
and exploiting the relations among tasks (Ruder, 2017; Zamir et al., 2018). The tasks can be defined
as applying the same model on different data (also known as multi-domain learning) (Nam and Han,
2016; Liu et al., 2017a), or on various problems in a linear (Zamir et al., 2020) or hierarchical manner
(e.g., named entity recognition, entity mention detection, and relation extraction in HMTL (Sanh
et al., 2019)). Typical MTL is trained with mini-batches of every task intermittently, while the order
of the training is usually uniform or related to the tasks’ database size (Kiperwasser and Ballesteros,
2018). This simplistic approach may lead to unnecessary computations, which are due to redundancy
in tasks and samples (Lin et al., 2017), or due to the fact that some tasks are prerequisites for learning
others (Ruder et al., 2017). Additionally, task imbalances deteriorate appropriate training because
they lead to imbalances between back-propagated gradients (Chen et al., 2018b).

Researchers have proposed methods to train the tasks and samples in a certain order, a process called
“MTL Scheduling”. Effective scheduling increases accuracy, reduces overfitting across multiple
tasks, avoids catastrophic forgetting, improves the low-resource task accuracy. Meanwhile, it keeps
the high resource task accuracy intact, provides extensive control over the training dynamics of
MTL, and exploits task relations to learn required features for up-steam tasks. Early scheduling
approaches include non-adaptive heuristics and fixed strategies to order the training. Such scheduling
was applied to one target task (single scheduling, Figure 1(a)) or was used by scaling per-task learning
rates (Jean et al., 2019). As these methods were not adequate to handle more complicated MTL
systems (e.g., UberNet (Kokkinos, 2017)), more flexible and adaptive scheduling methods started
to emerge. They use learning progress signals such as training loss (Kiperwasser and Ballesteros,
2018), validation loss (Jean et al., 2019), and uncertainty (Kendall et al., 2018) to tailor the schedule
accordingly (Figure 1(b)). Advanced schedulers are expected to monitor task learning progress,
emergent shared feature representation, and sample complexity of each task to be able to provide
a suitable strategy for task orders. Additionally, when the underlying multi-task models learn to
improve the performance of harder tasks, they may hit a plateau; as a result, simpler (or data-poor)

1



Under review as a conference paper at ICLR 2022

(a) Single Task Scheduler (b) All Tasks Scheduler (c) Proposed Scheduler

Figure 1: Different schedulers for multi-task learning (a) Single scheduler that adjusts the training
priority of one task compared to others, (b) All scheduler that dynamically adjusts the relative
importance of each task compared to others using key performance indicators (e.g., validation loss) of
tasks, (c) Proposed scheduler that learns an optimal scheduling policy by employing deep Q-learning
on task uncertainties. Similar scheduling effect can be achieved via adjusting learning rate and
gradient manipulation, and training queue is depicted as an example of scheduling methods.

tasks can be over-trained (overfitted). Needless to say that some tasks may be forgotten if the schedule
is improper (catastrophic forgetting). Using a prefixed model to handle all these factors (model bias
problem) without considering instantaneous feedback from the network (lack of temporal monitoring)
is the main challenge for many of the current schedulers.

To address the challenges, we propose using reinforcement learning (RL) method to learn a potentially
complex strategy. This allows for handling different states of the MTL training and avoids catastrophic
forgetting. It also enables learning long-term temporal effects of task selection on the network’s
performance using the intrinsic delayed reward handling mechanism of RL. Moreover, it uncovers
task relations with no explicit modeling (model-free), merely based on trial-and-error and receiving
(delayed) feedback from the MTL training (Figure 1(c)). We use deep Q-Net (DQN) (Mnih et al.,
2013) to map the state of the MTL to the desired actions (i.e., which task to train on next?), and propose
the histogram of task uncertainty to describe the MTL state for the algorithm. Our contributions are:

• Introducing histogram of task uncertainty for the descriptive signal of the MTL;
• Proposing the use of deep Q-learning to learn the MTL scheduling to (i) handle temporal

progress in MTL, (ii) provide sufficiently complex strategy for marginal cases, (iii) avoid
catastrophic forgetting actively, and (iv) consider sample and task complexity;

• Extensive tests to investigate the performance and generalization of MTL’s learned features;
• Experimenting on multi-domain and multi-task learning problems with homogeneous and

heterogeneous tasks, with various inter-task relations.

2 RELATED WORKS

Multi-Task Learning: To leverage from correlations of different tasks, MTL could be performed on
tasks such as: those derived from different subsets of a shared data pool (Meyerson and Miikkulainen,
2018), adversarial tasks (Ganin and Lempitsky, 2015), auxiliary tasks which provide hints or attention
for the main task (Yu and Jiang, 2016; Caruana, 1997), tasks arranged in an easy-to-hard hierarchy
(Sanh et al., 2019), those which explicitly perform representation learning for a more complex
application (Rei, 2017; Subramanian et al., 2018), or those which facilitate training for a quickly-
plateauing main task (Bingel and Søgaard, 2017). Also, it can be helpful to learn the inter-task
relations to enable efficient transfer learning or task grouping (Ruder et al., 2017; Bingel and Søgaard,
2017; Zamir et al., 2018; Standley et al., 2019).

In the hard parameter sharing architectures, shared parameters provide a global feature representation,
while task-specific layers further process these features or provide a complimentary feature set for a

2



Under review as a conference paper at ICLR 2022

specific task. MTL methods assume that learning easy tasks is the prerequisite for learning complex
ones (Ruder, 2017), hence put tasks in hierarchies (Søgaard and Goldberg, 2016; Hashimoto et al.,
2017; Sanh et al., 2019) or group similar tasks to form group-specific shared layers (Liu et al., 2017b).

Scheduling MTL: To train a deep neural network on a battery of tasks simultaneously, the tasks
are sampled uniformly or in proportion to their dataset size (Jean et al., 2019). Since this may
offer limited control over the performance trade-offs (e.g., accuracy vs. overfitting), task scheduling
methods have been proposed to improve the MTL’s performance compared to single-task networks,
static heuristics, and exhaustive grid search methods. Thus, non-adaptive (i.e., fixed strategy) and
adaptive methods were proposed, and different classes of scheduling have emerged, such as:

Sample schedulers try to over-sample tasks with worse results compared to the baseline (Kiperwasser
and Ballesteros, 2018) or down-weight easier samples to focus on harder ones for training (Lin et al.,
2017). Yet, such strategies fail if a task is highly over-sampled or datasets are imbalanced.

Task difficulty schedulers are usually built upon the notion of curriculum learning that favors smaller
and easier tasks to learn first (Pentina et al., 2015), aligned with the training of natural intelligence
in human babies. This idea falls into two forms, task hierarchies (e.g., (Sanh et al., 2019)) and
task prioritization (Pentina et al., 2015; Graves et al., 2017; Zaremba and Sutskever, 2014). In the
latter case, if the data of the tasks are coming from significantly different distributions (e.g., domain
adaptation (Luo et al., 2017; Glorot et al., 2011; Tzeng et al., 2015)), the assumptions of curriculum
learning do not hold (Bengio et al., 2009), and prefixed schedulers might not be effective.

Task weighting is another approach for scheduling problem. MTL is sensitive to the task weights
(Kendall et al., 2018). These weights scale the loss term of each task in the total loss of the network.
Static task weights can be selected by hyper-parameter tuning (Kokkinos, 2017; Sermanet et al.,
2013), yet this approach is suboptimal in the presence of less important or redundant tasks/samples
(Lin et al., 2017). Non-adaptive weighting schemes fetch tasks intermittently early in training and
gradually weigh more on a specific task (Jean et al., 2019). Adaptive schedulers dynamically prioritize
different tasks by monitoring measures such as performance (Jean et al., 2019) and homoscedastic
uncertainty (Kendall et al., 2018). Another method is to dynamically tune the gradient magnitudes
(Chen et al., 2018b). Here, we use Q-learning scheduler which can dynamically schedule the learning
of long-term temporal effects of task selection. As a result of scheduling, QLS selects the task to
draw samples for the next training episodes.

3 MULTI-TASK CLASSIFICATION

We selected text classification, in which a document needs to be assigned to a set of classes. The
solutions range from hand-crafting good features to be used in convolutional neural networks (NNs)
for word-level (Kim, 2014) and character-level encoding (Zhang et al., 2015), recurrent NNs (Liu
et al., 2016) and convolutional recurrent NNs (Lai et al., 2015). Here, we address the problem of text
classification using long-short term memory networks (LSTM) with a variant explored in (Jozefowicz
et al., 2015) to facilitate further analysis of the effects of the proposed method in the representation.
Generally, this method can be applied to any encoder-decoder-based NLP task that uses LSTM as
the encoder. The text sequence of words w = {w1, w2, . . . , wT } is converted to a sequence of word
embeddings xi and is given to an LSTM layer. Each cell of LSTM layer at time t, includes input,
forget and output gates, a memory cell and a hidden state ht. The LSTM memory chain is updated as

ht = LSTM(ht−1,xt, θp) (1)

where the output of the last unit hT represents the whole sequence, and θp encapsulates the weights
and biases of the LSTM. This is then fed to the task-specific output layers. The network is then
trained on a training corpus with N samples (wi, yi) using cross-entropy loss function

L(ŷ, y) = −
N∑
i=1

C∑
j=1

yji log
(
ŷji

)
(2)

where yji is the groundtruth in {1..C} and ŷji is the predicted probability of label j for document i.
By exploiting commonalities and differences among tasks, multi-task learning aims to improve the
learning efficiency and prediction accuracy for all tasks by learning from them in parallel. To this
end, a learner shares some of its parameters between tasks while keeping some of them specific to

3



Under review as a conference paper at ICLR 2022

each task. Considering our baseline classifier, the shared features are the hidden states of the LSTM
at the end of the input sequence. There are several ways to implement the MTL using this baseline
for classification. The most popular idea is to use a fully-shared model, in which all tasks are using
the extracted features of the shared LSTM layer, and then differentiate using a final task layer.

We denote different datasets Dk as datasets with Nk examples for task k, Dk =
{(
w
〈k〉
i , y

〈k〉
i

)}Nk

i=1
.

Given task k, the final task-specific softmax layer for classification, converts the shared feature h
(k)
T

into probability distribution ŷ(k). The parameters of the network are trained by minimizing the
cross-entropy of true distribution of the task y(k) and the predicted distribution ŷ(k), using the loss

Ltask =

K∑
k=1

αkL
(
ŷ〈k〉, y〈k〉

)
. (3)

Here, αk is the importance of each task k and L(ŷ, y) is defined in eqequation 2. A scheduler, when
applied to this MTL frameworks, adopts one of the following modifications: change the task weight
(αk), modify its gradient in the back-propagation, re-weight the samples (xt), or select a task to draw
samples for the next training episodes. Here, for simplicity, we select the latter case to focus more on
the idea. Yet, the extension of the proposed idea to all different approaches is straightforward.

4 PROPOSED METHOD

4.1 USE OF PROGRESS SIGNAL FOR LEARNING STRATEGY

Graves et al. (Graves et al., 2017) employ accuracy as a learning progress signal to find a policy for
task curriculum learning (Oudeyer et al., 2007). A syllabus of curriculum learning is selected using
this learning progress signal to maximize the overall training progress. Progress signals are typically
used in RL problems as reward signals to encourage exploration (Schmidhuber, 1991; Itti and Baldi,
2006; Houthooft et al., 2016). Similarly, Routing Networks (Rosenbaum et al., 2017) select different
network submodules, based on the task and rewards via a multi-agent formulation. An ambitious idea
is to train an agent that is capable of designing the entire network architecture in neural architecture
search (Zoph and Le, 2016) using accuracy as the signal. DTP (Guo et al., 2018) scheduler uses
prediction gain (Bellemare et al., 2016) to dynamically compute task weights/priority during training.

Here, we use overall task uncertainty and validation loss as the progress signal of the network.
Together, these metrics give a comprehensive view of the state of the MTL.

4.2 PROPOSED HISTOGRAM OF TASK UNCERTAINTY

Task uncertainty measures what the model does not know or what cannot be inferred from the
data (Kendall and Gal, 2017). In MTL, we need to learn multiple tasks simultaneously, while the
uncertainty of each task varies. In a fully-shared MTL setting, each task contributes to the loss
function based on the errors it make, and since one task is being trained at a time, minimizing this
error may negatively change the shared parameters for other tasks. Using uncertainty instead of task
accuracy provides an additional signal to train the model. This helps by reflecting the internal state of
the classifiers. The model uncertainty can be obtained via Monte Carlo dropout sampling (Kendall
et al., 2015), as a function of the samples’ variance to be used as an estimation of the error (Kendall
and Cipolla, 2016). Another way is to compute the standard deviation over the softmax outputs
and average them over all classes to obtain a single value (Kampffmeyer et al., 2016). Moreover,
Kendall et al. (2018) calculated homoscedastic uncertainty (the uncertainty of the entire task itself not
dependent on input data) and used this to learn a weighting for each loss term in a multi-task setting.

To calculate the uncertainty of a multi-class classifier, uncertainty sampling methods could be applied.
Therefore, we proposed the uncertainty loss term as using margin uncertainty (Scheffer et al., 2001)

ζM = 1− Pk

(
ŷ(1)|x

)
+ Pk

(
ŷ(2)|x

)
, (4)

where ŷ(j) (j = 1, 2) is the label with jth largest predicted probability. For each task k all validation
data are given to the MTL, and their label uncertainty is calculated using margin uncertainty. The
final histogram of task uncertainties,H(k)

t , is formed by concatenating all histograms.

4



Under review as a conference paper at ICLR 2022

4.3 Q-LEARNING SCHEDULER

In our method, QLS monitors the state of the tasks to measure the task uncertainty, generates the
task uncertainty histogram, and then uses Q learning to schedule tasks. We formulate a Q-learning
agent to adjust the histogram of task uncertainty for the proposed MTL scheduler. At time t, the
agent takes an action at based on the state St of the MTL environment, and the environment gives the
reward r(St, at) and updates its state to St+1. The agent chooses its action w.r.t its policy π(at|St) to
maximize the cumulative reward Rt =

∑T
i=t γ

i−tr(Si, ai). Here, 0 < γ ≤ 1 is the discount factor
to weigh more on earlier rewards. Q-learning proposed to calculate Q-values, which is the expected
maximum scores for each action at in state St, as

Q(St, at) = r(St, at) + γQ(St+1, at+1) (5)

State: The state St ∈ St of the environment is explained using the concatenation of nb-bin histogram
of uncertainty measurements of the main classifier for all samples xt, for all tasks. To eliminate the
effect of the stochastic sampling on the uncertainty histogram, a deterministic sampling approach is
used, which obtains the batch hard samples (Hermans et al., 2017) from the validation set of each
task. The histogram of task uncertainty,H(k)

t , forms the input of the DQN network.

Action: Actions at ∈ At are K one-hot vectors, each indicating the task that is to be trained next.

Reward: During training time, the reward is defined as the −Ltask on all of the validation samples.
If the average accuracy of the MTL drops under 95% of the single-task network, a big punishment
(manually set to -10) is fed back to the scheduling learner agent to punish the use of chosen policy.

Policy: During the training time, we use Boltzmann-Gumbel exploration (Cesa-Bianchi et al.,
2017) to exploit all the information present in the estimated Q-values with an additional temperature
parameter, which is annealed over time. This parameter controls the spread of the softmax distribution
so that at the beginning of the training, the equal chance is assigned to each action while actions are
sparsely distributed by the end of the training.

4.4 IMPLEMENTATION DETAILS

Our proposed method, QSL-MTL, used LSTM of length 128, GloVe (Pennington et al., 2014) word
embedding (300d version on 840B Common Crawl data), and Xavier initialization for the parameters.
The mini-batch size is set to 16, including samples of the same task. Other than these, we follow the
training procedure for (Søgaard and Goldberg, 2016). The Q-learning parameters are then set to fixed
values of nb = 20 and γ = 0.99, and the Q-values are randomly initialized.

We used different uncertainty measures such as using least confidence (Settles and Craven, 2008),
margin (Scheffer et al., 2001), and Shanon’s entropy to calculate the histogram of uncertainty. On
the other hand, we experimented with accuracy for the initial phase to find the best performance
according to the preliminary results. We used 10,000 iterations for our initial testing to explore the
best practice and found that margin loss leads to the best performance.

The proposed scheduler is trained on the training data of all tasks. The parameters are tuned over the
validation sets. For each of the 1M training episodes, we randomly sample a minibatch from one of
the K tasks, and we reset the MTL every 10K training episode to enable exploring other cases in the
MTL. We used GeForce GTX 1080 GPU. During run-time, the scheduler greedily selects the action
a∗t which yields the highest expected reward, a∗t = argmaxa′

t∈At
Q(St, a

′
t). In the experiments, we

run our system three times and report the average.

5 EXPERIMENT

Our proposed scheduling method is benchmarked under three different scenarios: (i) A multi-domain
setting, in which a similar task is performed on different datasets, (ii) a simple multi-task setting,
where the network does three different but slightly related tasks, and (iii) a complex multi-task setting
in which task relations are complex (e.g., one task can be a prerequisite for another, improving one
may hamper the performance of another, etc.). We have conducted an extensive analysis of the first
task to clarify our proposed method’s internal mechanism and advantages.

5



Under review as a conference paper at ICLR 2022

5.1 MULTIPLE DOMAINS

In this experiment, we consider text classification as the learning task and 16 different datasets as
domains of the task. Each domain consists of around 2000 comments about a class of products
labeled as positive or negative reviews and 2000 unlabeled comments. We have applied various MTL
scheduling methods on the fully-shared MTL (hereafter, the baseline) and compared the performance
of our proposed method to the competitors and their performance on unseen data.

Dataset: Fourteen product review datasets for different products from (Blitzer et al., 2007) have
been obtained as domains, with their labels as positive (4+ stars) or negative (2- stars), omitting the
borderline 3-star comments. IMDB and MR movie review datasets from (Maas et al., 2011) and
(Pang and Lee, 2005) with binary labels (subjective/objective and positive/negative) are also used as
two additional domains. Domain statistics are shown in Table 1.

Table 1: Datasets’ statistics (i.e., domains) for multi-domain text classification experiment. (? = 1400)

D
om

ai
n

B
oo

ks

E
le

cs

D
V

D

K
itc

he
n

A
pp

ar
el

C
am

er
a

H
ea

lth

M
us

ic

To
ys

V
id

eo

B
ab

y

M
ag

s

So
ft

Sp
or

ts

IM
D

B

M
R

Train ? 1398 ? ? ? 1397 ? ? ? ? 1300 1370 1315 ? ? ?
Dev — All 200 — 200 200
Test — All 400 — 400 400
Len 159 101 173 89 57 130 81 136 90 156 104 117 129 94 269 21
Vocab 62K 30K 69K 28K 21K 26K 26K 60K 28K 57K 26K 30K 26K 30K 44K 12K

Competitor Models: We compared our algorithm with several scheduling strategies that are imple-
mented on top of Fully-Shared MTL with a pre-trained word embedding and shared LSTM layers
(baseline). Uniform: All tasks have the same importance from beginning to the end of training;
Hand Crafted: Tasks received a fixed importance coefficient for all training obtained by grid search;
Random: A random task is selected for the next training episode; Greedy: The task with the highest
loss is selected for the next training episode; Loss Exponentiation: Loss outputs are magnified by the
power of 1.15 (found by a grid search). In this way, larger losses (for the tasks needing more changes
in the shared space) are magnified; Homoscedastic Uncertainty (Kendall et al., 2018): Calculates the
task uncertainty using loss magnitude and use it to weigh different tasks; Self Paced (Li et al., 2017):
Introduces task weights as learnable parameters and employs a regularization that favors training
on easy tasks earlier in the training process; Focal Loss (Lin et al., 2017): Sample-level scheduler
that down-weights easier samples and focuses on hard samples during training; DTP (Guo et al.,
2018): Uses learning progress signals to automatically compute a priority level at both a task-level
and example-level.; Grad Norm (Chen et al., 2018b): Scales task gradients based on the magnitude of
the gradients and training losses; Adaptive (Jean et al., 2019): Oversamples tasks with poorer results
compared to their baseline; QLS: Our proposed fully-trained Q-learning-based scheduling method.

Task-Specific Output Layer: The obtained shared representation is fed to the task-specific output
classifiers composed of a fully connected layer followed by a softmax layer to predict the labels.

Performance Evaluation and Discussion: We perform the multi-domain learning on all 16 tasks
to compare the task-specific and overall performance of the proposed method. All schedulers are
added on top of untrained FS-MTL (baseline), and the training is governed by the scheduling strategy.
Based on Table 2, in most of the cases, our learned strategy outperforms other strategies. An in-
depth analysis revealed that in the early stages of the training, for instance, the performance of the
Kitchen domain was higher, while other domains were still trying to improve their performances.
Additionally, hand-crafted domain weights are working well for most of the domains. Yet, these
weights are fixed, resulting in the suboptimal performance of this strategy. The uncertainty weighting
by (Kendall et al., 2018) also ignores some categories since the early emergent features in the shared
space are suboptimal for the task. Although these measures keep the tasks’ homoscedastic uncertainty
low, they fail to guarantee high performance. This finding calls for better uncertainty measures in such
an approach. One of the shortcomings of the GradNorm algorithm was observed in cases that a very
noisy minibatch from a task was selected. By largely redirecting the gradients to the corresponding
task, GradNorm magnifies the label noise in the training of the task, causing some confusion in
updating the feature space. Moreover, we observed that by using Q-Learning, our method (i) enables
the discovery of more latent features, (ii) easily switches between hard and easy tasks periodically to
learn the policies and (iii) finds longer sequences as features that work well in the run phase. We also

6



Under review as a conference paper at ICLR 2022

Table 2: Accuracy of different scheduling methods on 16 domains, compared to its Fully-Shared-MTL
baseline (First, second, and third ranks). Our QLS method outperforms others in almost all of tasks.

Uniform Hand Loss Homos. Self Focal Grad QLS
Domain (baseline) Crafted Random Greedy Exponen. Unc. Paced Loss DTP Norm Adaptive (ours)

Books 82.5 89.1 83.3 83.0 83.4 87.8 88.1 87.0 90.3 89.3 89.1 90.4
Electronics 85.7 91.1 87.2 86.0 86.6 90.7 90.7 90.6 92.8 92.4 92.3 92.8
DVD 83.5 89.8 84.4 83.8 84.4 88.6 88.4 88.8 90.9 90.2 90.0 90.9
Kitchen 86.0 93.1 86.8 86.0 86.9 90.1 91.6 93.1 87.2 92.7 92.6 93.2
Apparel 84.5 88.8 85.8 85.0 85.3 89.1 89.0 88.4 90.9 91.2 90.9 91.3
Camera 86.5 91.3 89.4 86.8 87.3 91.4 91.3 90.8 93.3 93.2 92.9 93.2
Health 88.0 91.9 88.4 88.1 88.9 91.6 91.6 91.7 90.3 92.6 92.5 92.6
Music 81.2 87.8 81.9 81.4 82.0 86.6 86.5 86.9 89.0 87.9 87.6 89.1
Toys 84.5 90.4 85.0 84.7 85.4 89.6 89.1 88.8 91.8 91.4 91.2 92.2
Video 83.7 89.9 84.6 83.7 84.6 88.9 88.6 89.4 91.3 90.5 90.2 91.9
Baby 88.0 90.0 89.1 88.2 88.9 92.0 91.9 89.4 93.1 94.7 94.7 94.6
Magazines 92.5 92.6 93.1 92.5 93.4 92.2 91.9 90.7 93.0 94.0 93.6 94.2
Software 86.2 90.1 87.3 86.3 87.1 90.8 90.3 88.2 92.6 92.9 92.6 93.1
Sports 85.5 88.6 86.7 85.8 86.3 89.8 89.9 86.8 91.3 92.2 91.9 92.2
IMDB 82.5 89.7 83.5 82.8 83.4 87.9 87.9 89.0 90.5 89.2 89.1 91.3
MR 74.7 78.8 78.7 74.7 75.6 79.3 79.6 76.9 81.0 81.3 81.3 81.4

AVG 84.7 89.6 86.0 84.9 85.6 89.2 89.2 88.5 90.6 91.0 90.8 91.5

found two groups of mistakes by our model: (i) sentences with complicated structures such as when
two negative words are separated by two or more words and (ii) sentences that require reasoning or
external references (e.g., to pop culture) that conveys a particular sentiment, analogies (e.g., “The
actors really are made of cardboard”) or other types of inferences, out of the dataset’s scope.

Shared Knowledge Transfer: One of the reasons for using MTL methods is to obtain a better-shared
representation between tasks that cancels out the systematic noise of each individual task and provides
a generalizable feature set that performs well out-of-the-box on unseen data. We hypothesize that
by properly scheduling the MTL, more generalizable and useful features emerge early in the feature
space. Therefore, the training procedure focuses more on improving such features rather than using
some inefficient or suboptimal features and discarding them later. To test this hypothesis, we perform
a leave-one-out experiment in which the proposed classifier is trained on 15 tasks and tested on one
task which was excluded from training (e.g., we train on all tasks/categories except φ(Book) then
we test on φ(Book) category, we then do the same process for the next category). We freeze the
weights of the trained shared model and perform 5-fold cross-validation on the left-out task, and

Table 3: Accuracy of fully shared representation learned with different strategies on all-but-one
domains tested on the remaining unseen domain. φ(DOMAIN) means that we transfer the knowledge
of other 15 tasks to the target task DOMAIN. Using the proposed scheduling of all tasks while training,
we improved the overall accuracy of the MTL classifier on unseen data by 2.2% compared to baseline.

Hand Loss Homos Self Focal Grad QLS
Domain Craft Exponent. Unc. Paced Loss DTP Norm Adaptive (ours)

φ (Books) 86.3 81.8 85.9 82.2 81.7 86.5 86.3 86.4 86.6
φ (Elec.) 86.2 83.6 86.1 85.0 84.1 86.4 86.1 86.1 86.3
φ (DVD) 86.8 84.5 86.7 85.6 85.0 86.6 87.0 86.8 86.9
φ (Kitchen) 86.5 84.1 86.4 84.7 84.8 86.7 86.7 86.5 86.6
φ (Apparel) 86.3 84.7 86.2 85.1 84.7 86.2 86.3 86.2 86.3
φ (Camera) 87.3 86.2 87.3 86.9 86.2 87.3 87.1 87.1 87.3
φ (Health) 89.0 84.4 88.7 85.3 85.1 89.0 89.1 89.0 89.3
φ (Music) 85.6 79.7 85.0 80.2 80.2 85.9 85.9 85.9 86.1
φ (Toys) 86.3 83.7 86.1 84.1 84.1 85.6 86.3 86.0 86.4
φ (Video) 86.0 85.0 86.0 86.1 85.7 85.7 85.9 85.8 85.9
φ (Baby) 86.1 82.9 85.9 83.8 83.1 86.3 86.2 86.2 86.3
φ (Mags) 90.5 88.8 90.5 89.9 89.4 90.5 90.3 90.4 90.6
φ (Soft) 87.3 84.0 87.0 84.0 84.0 86.6 87.5 87.2 87.6
φ (Sports) 85.9 83.2 85.7 84.2 83.8 86.1 86.0 85.9 86.0
φ (IMDB) 87.7 86.8 87.7 87.5 87.1 87.5 87.6 87.5 87.6
φ (MR) 75.7 73.7 75.6 74.3 74.0 75.7 75.4 75.4 75.8

φ (AVG) 86.2 83.5 86.0 84.3 83.9 86.2 86.2 86.2 86.4

7



Under review as a conference paper at ICLR 2022

report the result in Table 3. For each unseen domain, new task layers are created on top of the shared
feature space, randomly initialized, and trained on a new domain.

5.2 MULTIPLE TASKS WITH SIMPLE RELATIONS

This experiment considers a heterogeneous multi-task learning scenario in which three different tasks
(part-of-speech tagging, chunking, and named entity recognition) on various datasets are considered.
Despite their differences, these tasks are related, but none of them could benefit from the output
of others. We trained FS-MTL with different strategies and compared their performance on these
different tasks (Table 5). We excluded pre-training from our model to provide a fair comparison.

Task-Specific Output Layer: Inspired by (Ma and Hovy, 2016), the obtained shared representation
is fed to a conditional random field (Lafferty et al., 2001) to perform sequence tagging. The baseline
consists of a pre-trained embedding, fully shared LSTM(s), and a CRF layer.

Dataset: For sequence tagging task, we use Wall Street Journal (WSJ) subset of Penn Treebank
(Marcus et al., 1993), CoNLL 2000 chunking, and CoNLL 2003 English NER dataset as in Table 4.

Table 4: Statistics of datasets for multi-task sequence tagging experiment.

Datasets Task Train Dev Test

WSJ POS Tagging 912,344 131,768 129,654
CoNLL 2000 Chunking 211,727 - 47,377
CoNLL 2003 NER 204,567 51,578 46,666

Competitor Models: We compare our method with Huang et al. (2015) that uses a BiLSTM encoding
and CRF output layer, text classifier of (Collobert et al., 2011), and multi-task text classifier with
Meta-LSTM (Chen et al., 2018a). We trained the baseline MTL with different strategies such as DTP
(Guo et al., 2018), Grad Norm (Chen et al., 2018b), and Adaptive scheduler (Jean et al., 2019) which
performed best in the previous task. We also used Hand Crafted which worked well by finding fixed
task weights and uncertainty-based loss weighting (Kendall et al., 2018) to compare with our QLS.

Results and Discussion: Table 5 shows that our model consistently outperforms others. It is robust
and has good generalization among related tasks. However, the task prioritization of Homoscedastic
uncertainty and Grad Norm works well for some tasks but not others. One reason lies in the differences
in the task complexities: the emergent features are not always successful in handling the complexity
of all tasks. Grad Norm aggressively decreases the relative weight of Chunking loss leading to a
higher error rate in this task, and Homoscedastic uncertainty favors NER that made fewer mistakes
early on in training. While DTP performs well, adaptive scheduling shows a mediocre performance.

5.3 MULTIPLE TASKS WITH COMPLEX RELATIONS

In this experiment, we use different tasks (two easy and one complex [translation]) to investigate the
effect of scheduling on the target task. We selected neural machine translation (NMT) as the target
task and chose POS tagging and Parsing as the other tasks in MTL. As Table 6 shows, our method

Table 5: Accuracy rates of the models for chunking and NER tasks using F1-score (%) and for POS
tagging using Accuracy (%). Our QLS method outperforms others in most of the tasks. (?: baseline)

Chunking NER POS Tagging
(CoNLL2000) (CoNLL2003) (WSJ)

BiLSTM+CRF 93.67 89.91 97.25
Meta-BiLSTM+CRF 93.71 90.08 97.30
(Collobert et al., 2011) 94.32 89.59 97.29
Meta-MTL + CRF 95.11 90.72 97.45

FS-MTL + CRF? 94.18 89.99 97.14
+ Hand Crafted 94.16 89.42 97.33
+ Homos. Unc. 95.05 90.24 97.42
+ DTP 95.46 90.73 97.38
+ Grad Norm 95.07 90.30 97.38
+ Adaptive 94.97 90.18 97.46
+ QLS (ours) 95.91 91.02 97.46

8



Under review as a conference paper at ICLR 2022

outperforms other static and dynamic scheduling methods. Compared to the baseline single-task
NMT (with 19.30 BLEU score), our scheduled ML gains +2.6 points improvement in BLEU points.

Task-Specific Output Layer: NMT has an LSTM encoder and a seq2seq decoder (Sutskever et al.,
2014; Bahdanau et al., 2014). Here, to be consistent with the literature, we perform POS tagging as a
translation between source language and sequence of POS tags, similar to (Niehues and Cho, 2017).
We also used the decoder in (Kiperwasser and Ballesteros, 2018) for dependency parsing.

Dataset: For translation setting, we use WMT’14 parallel corpus (Buck et al., 2014) including 4.5M
training sentence pairs, 3000 sentences of newstest2013 as the development set, and newstest2014
for test set. English POS tagging, dependency heads and labels are from the Penn tree-bank with
Stanford Dependencies (Training:02-21, Dev:22, Test:23) and German ones from TIGER tree-bank
(Hajič et al., 2009). Translation quality is measured with case-sensitive BLEU (Papineni et al., 2002).

Competitor Models: We have included three types of schedulers: (i) all-task schedulers such as
DTP (Guo et al., 2018), Grad Norm (Chen et al., 2018b), Adaptive (Jean et al., 2019), Homoscedastic
Uncertainty (Kendall et al., 2018), and ours; (ii) one-task scheduler which tunes the weight of the
target task over training episodes while keeping the rest of the weights intact; and (iii) constant
schedules that assign each task a fixed weight for the entire training. Second category contains
exponential schedule and sigmoid schedule inspired by (Kiperwasser and Ballesteros, 2018), and third
category includes prioritize hard/easy strategies that assign the weight of 0.98 to the hardest/easiest
task and 0.01 to others. Additionally, hand crafted weights and unified strategy fall into this category.

Table 6: BLEU score of target machine translation with POS tagging and parsing as auxiliary tasks in
multi-task framework trained with different scheduling strategies. The BLEU score of baseline NMT
system (without auxiliary tasks) is 19.30. QLS shows superior performance among schedulers.

Prioritize Prioritize Hand Expo- Homos. Grad QLS
Unified Easy Hard Crafted Sigmoid nential Unc. DTP Norm Adaptive (ours)

NMT + POS 18.3 18.9 19.1 20.9 19.2 20.0 19.2 21.3 20.5 20.9 21.7
NMT + Parsing 18.1 18.7 18.6 20.5 19.1 18.9 18.9 18.9 20.4 21.1 21.4
NMT + POS + Parsing 18.4 19.0 18.3 20.9 19.3 18.0 19.0 20.8 20.7 21.5 21.9

Results and Discussion: We selected NMT that is significantly harder than other tasks. Thus, the
syntax representations learned by POS and Parsing tasks are required to process the input better and
generate more meaningful sentences. As the table shows, merely plugging different tasks in the
MTL framework does not guarantee better results as (i) some task combinations are not compatible
(e.g., NMT and Parsing), which is aligned with the findings of (Zamir et al., 2020), and (ii) unified
task weights can be damaging to the overall performance of a target model, while it might increase
the overall performance of all tasks. It can be seen that even a carefully selected task’s weighting
(although static) could significantly improve this situation. Another observation is that single task
schedulers are not always successful (only NMT + POS + Exponential scheduler improves the results
in Table 6). DTP, Grad Norm, and homoscedastic uncertainty weighting suppress the performance of
the NMT task, either because of its high initial error rate or due to favoring easier tasks that show
better improvement during training. Among these, DTP sometimes covers difficult tasks better in
the cost of performance of the overall tasks, depending on its KPI. On the other hand, adaptive
scheduling handles catastrophic forgetting better and improves overall performance. However, we
see that a tailored strategy (that our RL scheduler achieved through numerous trial-and-errors) works
a lot better in handling such task difficulty imbalance. Yet, our method may not perform the best in
handling balanced tasks or complex tasks that can benefit from sufficient amount of related easy ones.

6 CONCLUSION

We augment the fully-shared MTL framework with a reinforcement-learning-based scheduling scheme
that obtains an optimal scheduling policy for tasks through trial and error. The scheduler detects the
task states through a novel state definition: histogram of task uncertainty. It adjusts the scheduling
policy to improve the training and validation accuracy of the MTL, enhances generalization of the
emergent shared features, and handles different relationships among tasks. The proposed method is
also capable of leveraging unlabeled data, obtaining highly-nonlinear strategies, and tackling different
sources of task uncertainty.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in neural information
processing systems, pages 1471–1479, 2016.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pages 41–48, 2009.

Joachim Bingel and Anders Søgaard. Identifying beneficial task relations for multi-task learning in
deep neural networks. In ACL’15, pages 164–169, 2017.

John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In Proceedings of the 45th annual meeting of the
association of computational linguistics, pages 440–447, 2007.

Christian Buck, Kenneth Heafield, and Bas Van Ooyen. N-gram counts and language models from
the common crawl. In LREC, volume 2, page 4. Citeseer, 2014.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Nicolò Cesa-Bianchi, Claudio Gentile, Gábor Lugosi, and Gergely Neu. Boltzmann exploration done
right. In NIPS’17, pages 6284–6293, 2017.

Junkun Chen, Xipeng Qiu, Pengfei Liu, and Xuanjing Huang. Meta multi-task learning for sequence
modeling. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018a.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International Conference
on Machine Learning, pages 794–803, 2018b.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
Natural language processing (almost) from scratch. Journal of machine learning research, 12
(Aug):2493–2537, 2011.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
ICML’15, pages 1180–1189, 2015.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In ICML, 2011.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. arXiv preprint arXiv:1704.03003, 2017.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task prioriti-
zation for multitask learning. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 270–287, 2018.

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria Antònia Martí,
Lluís Màrquez, Adam Meyers, Joakim Nivre, Sebastian Padó, Jan Štepánek, et al. The conll-2009
shared task: Syntactic and semantic dependencies in multiple languages. 2009.

Kazuma Hashimoto, Yoshimasa Tsuruoka, Richard Socher, et al. A joint many-task model: Growing
a neural network for multiple nlp tasks. In EMNLP’17, pages 1923–1933, 2017.

Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for person
re-identification. arXiv preprint arXiv:1703.07737, 2017.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In Advances in Neural Information Processing
Systems, pages 1109–1117, 2016.

10



Under review as a conference paper at ICLR 2022

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF models for sequence tagging. arXiv
preprint arXiv:1508.01991, 2015.

Laurent Itti and Pierre F Baldi. Bayesian surprise attracts human attention. In Advances in neural
information processing systems, pages 547–554, 2006.

Sébastien Jean, Orhan Firat, and Melvin Johnson. Adaptive scheduling for multi-task learning. arXiv
preprint arXiv:1909.06434, 2019.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recurrent
network architectures. In ICML’15, pages 2342–2350, 2015.

Michael Kampffmeyer, Arnt-Borre Salberg, and Robert Jenssen. Semantic segmentation of small
objects and modeling of uncertainty in urban remote sensing images using deep convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, pages 1–9, 2016.

Alex Kendall and Roberto Cipolla. Modelling uncertainty in deep learning for camera relocalization.
In 2016 IEEE international conference on Robotics and Automation (ICRA), pages 4762–4769.
IEEE, 2016.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Advances in neural information processing systems, pages 5574–5584, 2017.

Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian segnet: Model uncertainty
in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint
arXiv:1511.02680, 2015.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In CVPR’18, pages 7482–7491, 2018.

Yoon Kim. Convolutional neural networks for sentence classification. In EMNLP’14, pages 1746–
1751, 2014.

Eliyahu Kiperwasser and Miguel Ballesteros. Scheduled multi-task learning: From syntax to
translation. Transactions of the Association for Computational Linguistics, 6:225–240, 2018.

Iasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-,
and high-level vision using diverse datasets and limited memory. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6129–6138, 2017.

John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. 2001.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional neural networks for text
classification. In AAAI’15, 2015.

Changsheng Li, Junchi Yan, Fan Wei, Weishan Dong, Qingshan Liu, and Hongyuan Zha. Self-paced
multi-task learning. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pages
2980–2988, 2017.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Recurrent neural network for text classification with
multi-task learning. arXiv preprint arXiv:1605.05101, 2016.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Adversarial multi-task learning for text classification.
In ACL’17, pages 1–10, 2017a.

Sulin Liu, Sinno Jialin Pan, and Qirong Ho. Distributed multi-task relationship learning. In ACM
SIGKDD’17, pages 937–946. ACM, 2017b.

11



Under review as a conference paper at ICLR 2022

Zelun Luo, Yuliang Zou, Judy Hoffman, and Li F Fei-Fei. Label efficient learning of transferable
representations acrosss domains and tasks. In Advances in Neural Information Processing Systems,
pages 165–177, 2017.

Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF.
arXiv preprint arXiv:1603.01354, 2016.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting
of the association for computational linguistics: Human language technologies-volume 1, pages
142–150. Association for Computational Linguistics, 2011.

Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of english: The penn treebank. 1993.

Elliot Meyerson and Risto Miikkulainen. Pseudo-task augmentation: From deep multitask learning
to intratask sharing—and back. ICML’18, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Hyeonseob Nam and Bohyung Han. Learning multi-domain convolutional neural networks for visual
tracking. In ICPR’16, pages 4293–4302, 2016.

Jan Niehues and Eunah Cho. Exploiting linguistic resources for neural machine translation using
multi-task learning. arXiv preprint arXiv:1708.00993, 2017.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the 43rd annual meeting on association for
computational linguistics, pages 115–124. Association for Computational Linguistics, 2005.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pages 311–318, 2002.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In EMNLP’14, pages 1532–1543, 2014.

Anastasia Pentina, Viktoriia Sharmanska, and Christoph H Lampert. Curriculum learning of multiple
tasks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5492–5500, 2015.

Marek Rei. Semi-supervised multitask learning for sequence labeling. In ACL’17, pages 2121–2130,
2017.

Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection of
non-linear functions for multi-task learning. arXiv preprint arXiv:1711.01239, 2017.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and Anders Søgaard. Sluice networks:
Learning what to share between loosely related tasks. stat, 1050:23, 2017.

Victor Sanh, Thomas Wolf, and Sebastian Ruder. A hierarchical multi-task approach for learning
embeddings from semantic tasks. In AAAI’19, volume 33, pages 6949–6956, 2019.

12



Under review as a conference paper at ICLR 2022

Tobias Scheffer, Christian Decomain, and Stefan Wrobel. Active hidden markov models for informa-
tion extraction. In Frank Hoffmann, David J. Hand, Niall Adams, Douglas Fisher, and Gabriela
Guimaraes, editors, Advances in Intelligent Data Analysis, pages 309–318, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controllers. In Proc. of the international conference on simulation of adaptive behavior: From
animals to animats, pages 222–227, 1991.

Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann LeCun.
Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv
preprint arXiv:1312.6229, 2013.

Burr Settles and Mark Craven. An analysis of active learning strategies for sequence labeling tasks.
In EMNLP’08, pages 1070–1079. Association for Computational Linguistics, 2008.

Anders Søgaard and Yoav Goldberg. Deep multi-task learning with low level tasks supervised at
lower layers. In ACL’16, pages 231–235, 2016.

Trevor Standley, Amir R Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? arXiv preprint arXiv:1905.07553,
2019.

Sandeep Subramanian, Adam Trischler, Yoshua Bengio, and Christopher Pal. Learning general
purpose distributed sentence representations via large scale multi-task learning. arXiv preprint
arXiv:1804.00079, 2018.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pages 3104–3112, 2014.

Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer across
domains and tasks. In Proceedings of the IEEE International Conference on Computer Vision,
pages 4068–4076, 2015.

Jianfei Yu and Jing Jiang. Learning sentence embeddings with auxiliary tasks for cross-domain
sentiment classification. In EMNLP’16, pages 236–246, 2016.

Amir R. Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio Savarese.
Taskonomy: Disentangling task transfer learning. In CVPR’18, pages 3712–3722, 2018.

Amir R Zamir, Alexander Sax, Nikhil Cheerla, Rohan Suri, Zhangjie Cao, Jitendra Malik, and
Leonidas J Guibas. Robust learning through cross-task consistency. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11197–11206, 2020.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In NIPS’15, pages 649–657, 2015.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

13


