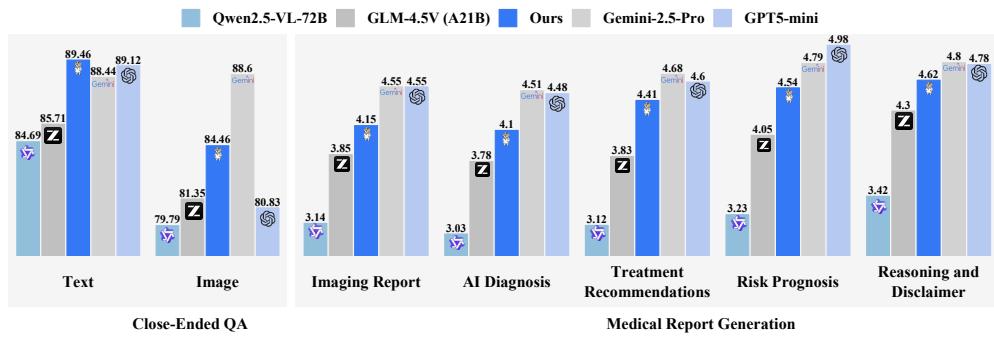


SPINEBENCH: A CLINICALLY SALIENT, LEVEL-AWARE BENCHMARK POWERED BY THE SPINEMED-450K CORPUS


006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Spine disorders affect 619 million people globally and are a leading cause of disability, yet AI-assisted diagnosis remains limited by the lack of level-aware, multimodal datasets. Clinical decision-making for spine disorders requires sophisticated reasoning across X-ray, CT, and MRI at specific vertebral levels. However, progress has been constrained by the absence of traceable, clinically-grounded instruction data and standardized, spine-specific benchmarks. To address this, we introduce SpineMed, an ecosystem co-designed with practicing spine surgeons. It features SpineMed-450k, the first large-scale dataset explicitly designed for vertebral-level reasoning across imaging modalities with over 450,000 instruction instances, and SpineBench, a clinically-grounded evaluation framework. SpineMed-450k is curated from diverse sources, including textbooks, guidelines, open datasets, and $\sim 1,000$ de-identified hospital cases, using a clinician-in-the-loop pipeline with a two-stage LLM generation method (draft and revision) to ensure high-quality, traceable data for question-answering, multi-turn consultations, and report generation. SpineBench evaluates models on clinically salient axes, including level identification, pathology assessment, and surgical planning. Our comprehensive evaluation of several recently advanced large vision-language models (LVLMs) on SpineBench reveals systematic weaknesses in fine-grained, level-specific reasoning. In contrast, our model fine-tuned on SpineMed-450k demonstrates consistent and significant improvements across all tasks. Clinician assessments confirm the diagnostic clarity and practical utility of our model’s outputs.

1 INTRODUCTION

048 Figure 1: Benchmark performance of SpineGPT

050 Spinal disorders (Ferreira et al., 2023), including degenerative diseases (like disc herniation) (Dydyk
051 et al., 2017), deformities (like scoliosis) (Negrini et al., 2018), trauma (fractures) (Vaccaro et al.,
052 2013), and inflammatory conditions (Taurog et al., 2016), are a major driver of pain, disability, and
053 surgical care worldwide. A key challenge in their management is diagnostic complexity. Unlike many
other disorders, spinal conditions typically cannot be precisely diagnosed using a single imaging

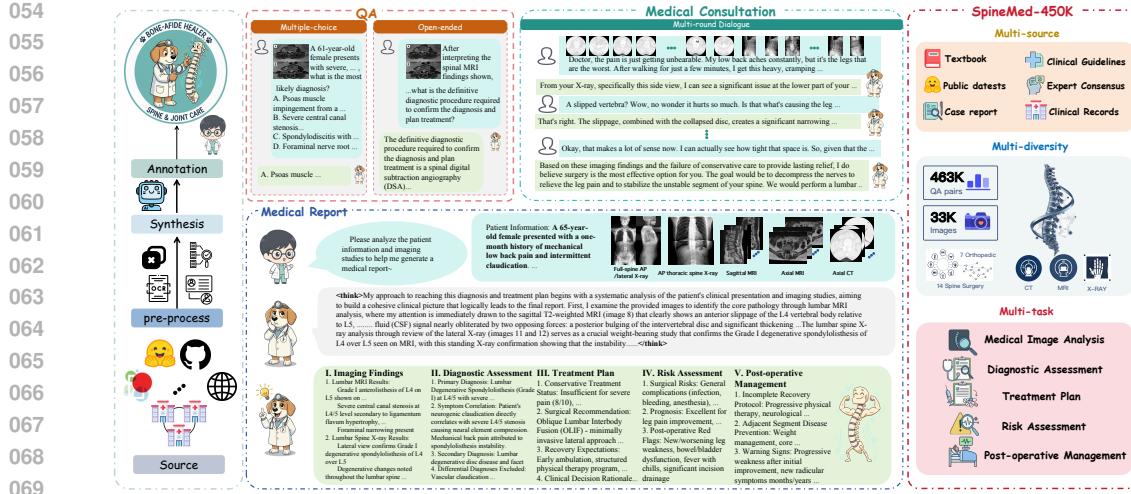


Figure 2: Overview of SpineMed-450k. Training data was curated from textbooks, public datasets, clinical records, medical guidelines, and hospitals. The process involved data preprocessing, annotation generation, and a final clinician review. Our dataset comprises four types: multi-choice QA, open-ended QA, multi-round dialogues, and reports.

modality. It often requires clinicians to perform level-aware, multimodal reasoning: integrating findings from X-ray, CT, and MRI to pinpoint pathology at specific vertebral levels, grade severity, and plan interventions (Teichner et al., 2025). The precision of this interpretation directly impacts patient outcomes and neurological safety. Although advanced AI holds great promise for augmenting this demanding workflow (Ibrahim et al., 2025b), its potential has been hindered. Fortunately, such clinical tasks can significantly benefit from advanced AI capabilities (Lee et al., 2024b). Yet progress is constrained not by model capacity, but by the absence of *traceable instruction data* and *standardized, clinically validated benchmarks* tailored to spine workflows (Lee et al., 2024b). Equally important, prior efforts rarely embed clinicians throughout the pipeline, limiting practical utility. We present **SpineMed**: a comprehensive effort consisting of **SpineMed-450k**, a provenance-rich instruction corpus for spine diagnosis and planning, and **SpineBench**, a targeted evaluation suite that help to evaluate the effectiveness of different AI-based spine diagnosis. To our best knowledge, this is current largest-scale Spinal diagnosis and treatment dataset. Both were *co-designed with spine clinicians* (radiologists and surgeons) to reflect real decision points. SpineMed-450k aggregates materials from textbooks, surgical guidelines, expert consensuses, question banks, open spine datasets (e.g., Spark, VerSe) (Alibaba Cloud Tianchi, 2020; Sekuboyina et al., 2021), open-access case reports (Europe PMC) (Consortium, 2015), and $\sim 1,000$ de-identified hospital cases. Throughout curation, clinicians (i) defined inclusion criteria and task taxonomies; (ii) vetted imaging selections from hospital cases to prioritize views most informative for diagnosis and surgical planning; and (iii) specified failure modes that instruction data must surface. To minimize hallucinations and preserve traceability, our pipeline (a) extracts figures and text with PaddleOCR (Du et al., 2020); (b) *binds images to their local textual context* via caption-pattern regex matching that anchors each figure to its surrounding paragraph; and (c) distills high-quality supervision—multiple-choice, open-ended QA, multi-turn consultations, and report generation—through a *two-stage LLM* process (draft \rightarrow revision with explicit prompts and logs). Clinicians review and refine prompt policies and revision criteria to align with reporting standards.

SpineBench operationalizes evaluation across clinically relevant axes—*imaging report, diagnosis, patient guidance, evidence-based treatment, technical feasibility, risk prognosis, coverage, relevance, granularity, and interpretability*. Its item design, error taxonomy, and rubrics were developed with clinician input to emphasize fine-grained, anatomy-centric reasoning and the kinds of mistakes that matter in practice.

To characterize the state of the field, we evaluate *a dozen* of contemporary large vision-language models (LVLMs) (OpenAI, 2025a;b; Hurst et al., 2024; Google, 2025a;b; Sellergren et al., 2025a; xAI, 2025; Anthropic, 2025; Bai et al., 2025; Hong et al., 2025; Wang et al., 2025a), both general-purpose and medical. Our evaluation reveals significant weaknesses in fine-grained, level-specific diagnosis

108 and open-ended clinical reasoning, particularly in the handling of complex multi-image tasks. Building
 109 on these insights, we introduce a fine-tuned spine model SpineGPT trained on SpineMed-450k
 110 that delivers consistent improvements on SpineBench as shown in Figure 1. Clinicians assess ex-
 111emplar outputs for decision relevance, underscoring the practical value of targeted, evidence-linked
 112 instruction data. Our contributions are as follows:

- 114 • **Clinician-in-the-loop dataset and benchmark.** We release **SpineMed-450k**, more than
 115 450,000 instruction instances spanning multiple-choice, open-ended QA, multi-turn consul-
 116 tations, and report generation—curated via a specialist-supported pipeline with anatomical
 117 integration and two-stage report refinement, together with **SpineBench**, a level-aware
 118 benchmark co-designed with clinicians and enriched with ~1,000 real hospital cases.
- 119 • **Comprehensive evaluation.** We benchmark *dozens* of open-source LVLMs across
 120 closed/open tasks using clinician-shaped taxonomies and rubrics, surfacing systematic
 121 failure modes in spine reasoning.
- 122 • **A practical baseline model.** We propose a fine-tuned spine LVLM trained on SpineMed-
 123 450k that achieves consistent gains on SpineBench; exemplar outputs receive clinician
 124 feedback on diagnostic clarity and planning utility, establishing a high-utility baseline for
 125 future research.

126 2 SPINEMED-450K DATASET

127 **Overview.** The SpineMed-450k dataset was constructed through a meticulous "clinician-in-the-
 128 loop" pipeline designed to ensure clinical accuracy and relevance. This pipeline integrates four core
 129 stages: (1) Dataset collection, (2) Structured Information Extraction, (3) Data De-identification and
 130 Cleaning, and (4) Dataset Generation. (5) Annotation of the spinal diagnostic report.

131 2.1 DATA COLLECTION

132 To build a complete and comprehensive dataset for spinal diagnosis and treatment, we collected data
 133 from a variety of sources (Chen et al., 2024a; Wei & Hwei, 2024; Wu et al., 2025; Chen et al., 2024b).
 134 Existing general-purpose large vision-language models (Hurst et al., 2024; Google, 2025a;b; Deng
 135 et al., 2023; Ullah et al., 2024; AlSaad et al., 2024) and even medical large language models (Li et al.,
 136 2023; Wang et al., 2025b; Wu et al., 2024; Lin et al., 2025; Lu et al., 2024; Niu et al., 2025; Nath et al.,
 137 2025a; Seyfioglu et al., 2024; Lai et al., 2025; Xu et al., 2025) are trained on generic medical data
 138 (Chen et al., 2024a;b; Xie et al., 2024a), which often lacks the high-quality, specialized data needed
 139 for orthopedics (Deng et al., 2023; Ullah et al., 2024). To train an effective large model for spinal care,
 140 we first compiled a high-quality, general orthopedic dataset covering multiple domains, including
 141 Spine Surgery, Foot and Ankle Surgery, Orthopedic Trauma, and Hand and Upper Extremity Surgery.
 142

143 As shown in Figure 3, we integrated materials from a variety of sources, including textbooks,
 144 surgical guidelines, expert consensuses, question banks, open-access case reports from Europe PMC
 145 (Consortium, 2015), open single-modality spine datasets (Alibaba Cloud Tianchi, 2020; Sekuboyina
 146 et al., 2021) (e.g., Spark, VerSe), and approximately 1,000 de-identified multimodal hospital cases
 147 collected from various hospitals. This data covers a wide range of modalities, including text, CT, MRI,
 148 X-ray, and tables. We track the provenance (dataset IDs/DOIs, case identifiers) for every derived
 149 item. Where possible, we adopt upstream datasets with permissive licenses and clear terms of reuse.
 150 Clinicians defined the inclusion criteria and, for hospital cases, selected the most decision-informative
 151 images (e.g., MRI target sequences, key CT levels) to serve as the foundation for downstream tasks.
 152

153 2.2 DATASET CURATION

154 **Structured Information Extraction** To accurately extract comprehensive information from aca-
 155 demic sources, we employed PaddleOCR (Du et al., 2020) to parse PDF documents and images
 156 from textbooks and literature. The output, containing both recognized text and layout analysis, was
 157 exported into Markdown format. This approach effectively preserved the structural integrity of
 158 the documents, including tables, figure placements, and overall layout. Furthermore, to ensure a
 159 precise mapping between figures, their captions, and corresponding contextual descriptions in the
 160 text, we developed a novel algorithm termed Picture Context Matching. Subsequently, we employed
 161

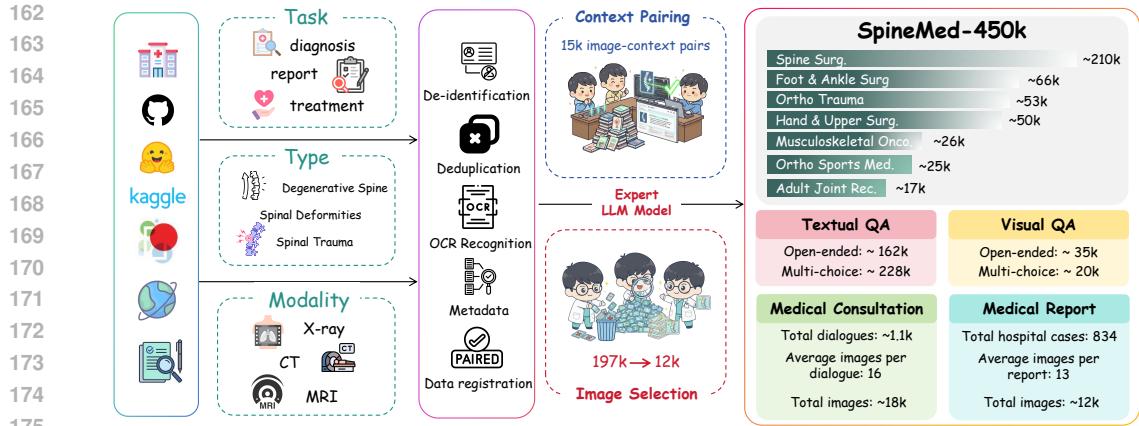


Figure 3: Generation pipeline of SpineMed-450k. The pipeline involves data preprocessing (including de-identification, deduplication, and OCR) followed by expert LLM-driven curation. This process generates 450k items for tasks like QA, medical reports, and consultations across various orthopedic subspecialties.

[GPT-5-mini](#)(OpenAI, 2025a) to conduct a semantic consistency check, rigorously filtering out instances where the visual content did not align with the retrieved context. The technical details of this algorithm are elaborated in the Appendix D.

Data De-identification and Cleaning This stage focused on processing data sourced from a collection of clinical records in hospitals. We first performed a rigorous de-identification process, removing all sensitive and personally identifiable information (PII), such as patient IDs and physical examination details under HIPAA. We also filtered out irrelevant images, such as post-operative photos and non-diagnostic tables. Subsequently, [GPT-5-mini](#)(OpenAI, 2025a) was utilized to conduct a fine-grained classification of the data, ensuring the dataset’s purity by excluding non-orthopedic cases. As shown in Figure 2, the orthopedic domain was categorized into 7 classes, with the spine sub-domain further divided into 14 distinct classes. A detailed statistical overview of the dataset distribution across these categories is presented in Figure 4.

Dataset Generation In close collaboration with medical experts, we designed a comprehensive annotation schema to generate high-quality, multi-task training data. The annotation process was tailored to the data source: (1) From External Knowledge Sources (e.g., Textbooks): We generated bilingual (Chinese and English) and multimodal (text and image-based) questions in both multiple-choice and open-ended formats using [Gemini-2.5-pro](#)(Google, 2025a) with carefully designed prompts. (2) From Opened-spine Datasets: We processed two open-source spinal datasets, Spark and Verse, to generate multi-turn question-and-answer dialogues that simulate doctor-patient interactions. These datasets consist mainly of unimodal 3D image slices (CT and MRI). To ensure consistency, we standardized the inputs by adaptively sampling 25 slices per case under clinical expert supervision. From this, we created over 300 simulated consultations to train models in their conversational abilities within spinal scenarios. (3) From Real Clinical Records: We created multiple-choice questions, multi-turn conversational datasets for patient interviews, and comprehensive spinal diagnostic reports via [locally deployed GLM-4.5V](#)(Hong et al., 2025) to ensure data security. For prompt design, please refer to the Appendix G

Annotation of the spinal diagnostic report A cornerstone of our dataset is the generation of detailed spinal diagnostic reports. In this process, we utilized real clinical reports from hospitals, incorporating physician recommendations, to design reports that encompass six dimensions, all aimed at simulating a complete clinical workflow: (1) Structured Imaging Findings: Analyze the provided medical images and distill key radiological evidence that supports the final diagnosis. (2) AI-Assisted Diagnosis: Formulate a diagnostic conclusion and articulate the reasoning process based on the synthesis of clinical data and imaging analysis. (3) Treatment Recommendations: This section is bifurcated to address different audiences. Patient-Centric Advice: Explain the rationale for the recommended surgical procedure in clear, non-technical language. Physician-Centric Rationale:

Provide a robust, guideline-based decision tree to justify the surgical selection from a clinical perspective. (4) Risk and Prognosis Assessment: Conduct an objective evaluation of the potential risks and expected outcomes associated with the proposed surgical plan. (5) Postoperative Issue Management: Predict potential post-surgical complications for specific procedures and develop corresponding management strategies. (6) Diagnostic Rationale and Disclaimer: Provide complete diagnostic and surgical decision-making chain and disclaimer statement. Report examples are provided in the Appendix F.

2.3 COMPARISON WITH EXISTING BENCHMARKS

Table 1: Comparison of SpineMed-450k with existing spine imaging datasets. While prior datasets focus on specific perception tasks, our work introduces the first multimodal instruction-tuning corpus designed for full-spectrum clinical reasoning.

Dataset	Modality	Scale	Core Task	Workflow Coverage	Output Format
RSNA LumbarDISC (Richards et al., 2025)	MRI	2.6k Patients	Classification	Specific (Stenosis Grading)	Class Labels
BUU-LSPINE (Klinwich et al., 2023)	X-Ray	3.6k Patients	Detection	Specific (Spondylolisthesis)	Coordinates/Labels
VerSe 2020 (Liebl et al., 2021)	CT	300 Patients	Segmentation	Specific (Anatomy)	Voxel Masks
Lumbar Spine MRI (van der Graaf et al., 2024)	MRI	218 Patients	Segmentation	Specific (Structure)	Voxel Masks
Spark (Tianchi) (Tianchi, 2020)	CT, MRI	150 Patients	Classification	Specific (Disease ID)	Class Labels
SpineMed-450k (Ours)	Multimodal (XR, CT, MRI, Text)	450k+ Instructions	Clinical Reasoning	Full-Spectrum (Diag → Treat → Prognosis)	Instruction Pairs (Image, Text)

As illustrated in Table 1, existing datasets such as VerSe(Liebl et al., 2021) and RSNA(Richards et al., 2025) are predominantly unimodal and designed for low-level perception tasks like segmentation, detection, or simple classification. While these datasets serve as effective tools for specific anatomical localization or binary disease identification, they fundamentally fail to capture the holistic context required for complex clinical decision-making, limiting their utility in training models for high-level diagnostic synthesis. In contrast, SpineMed-450k represents a significant paradigm shift from "Tool AI" to "Collaborator AI". Our dataset distinguishes itself through three key dimensions: 1. Multimodal Synthesis, requiring the integration of X-ray, CT, and MRI to mirror real-world cross-modal validation; 2. Cognitive Depth, supporting level-aware reasoning rather than simple label outputs; 3. Workflow Completeness, covering the full patient journey with grounded instructions for Structured Imaging Findings, AI Diagnosis, Treatment Recommendations, and Risk Assessment. This effectively fills the cognitive gap left by perception-focused datasets.

3 DATA STATISTICS

SpineMed-450K is a large-scale multimodal training dataset for orthopedic spine knowledge in large language models, characterized by strong traceability, comprehensive coverage, diverse question types, and rich modalities.

3.1 DISEASE DIVERSITY COVERAGE

As shown in Figure 4(b), SpineMed-450K encompasses seven common orthopedic subspecialties, including Spine Surgery, Foot and Ankle Surgery, and Orthopedic Trauma, with spinal diagnostic data accounting for 47% of the orthopedic data. Furthermore, the spinal diagnostic data includes 14 spine subconditions such as cervical degenerative spine disease and idiopathic scoliosis. We performed sampling on each spinal diagnostic dataset to ensure uniform distribution across all disease categories.

3.2 PATIENT SOURCE DIVERSITY

As illustrated in Figure 4(a), our data originates from 1,000 real clinical cases collected from 11 leading expert hospitals. These data span the recent three years and encompass patients of different genders, various age groups, and diverse physical conditions. To protect privacy, personal information has been de-identified. personal information. Given the varying surgical volumes across different hospitals, the largest hospital contributes 33% of the data while the smallest contributes 1%. These valuable real patient data provide crucial evidence for accurately representing the authentic conditions of spine patients.

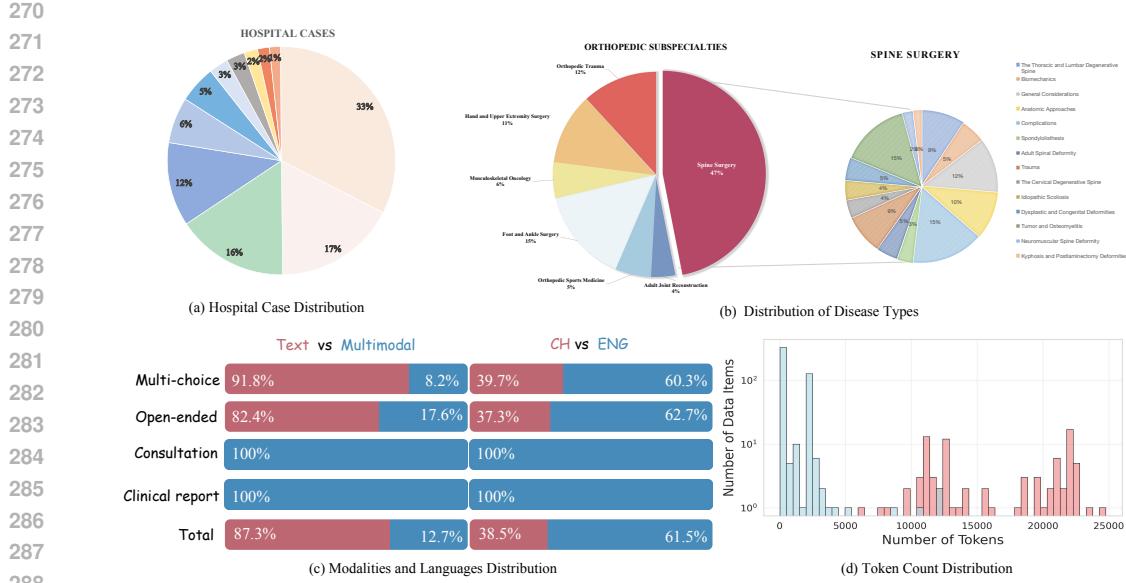


Figure 4: Statistics of SpineMed-450k. (a) Distribution of medical records across various hospitals. (b) The prevalence of various orthopedic and spinal diseases. (c) Distribution of different modals and languages. (d) Benchmark token length distribution: blue (non-report tokens), pink (report tokens).

3.3 DATA SOURCE AND QUESTION TYPE DIVERSITY

Table 2: Dataset statistics categorized by data source and split.

Split	Literature	Textbook	Case Report	Question Bank	Open Source	Hospital	Total
Train	6,450	377,212	61,453	1,087	304	9,668	456,174
Test	17	203	101	3	—	250	574
Total	6,467	377,415	61,554	1,090	304	9,918	456,748

As shown in Table 2, our data derives from six major sources: Literature, Textbooks, Case Reports, hospitals, and others. Textbooks, being the primary knowledge source for physicians, constitute the largest proportion with 377k entries, while hospital data, though valuable, is limited in quantity, with 9,668

data points generated from nearly 1,000 real cases. As presented in Table 3 and Figure 4(c), question types are categorized into pure text QA, multimodal QA, medical consultations, and clinical reports, with multiple-choice questions comprising the largest proportion. For evaluation convenience, our test set includes only multiple-choice and clinical report formats.

Table 3: Dataset distribution across domains and task types.

Split	Multiple-choice	Open-ended	Consultation	Report
Train	248,789	197,413	1,138	734
Test	487	—	—	87
Total	249,276	197,413	1,138	821

3.4 DATA TYPE DIVERSITY

Our dataset incorporates multiple authentic data types including patient physical examination information, patient consultation records, X-rays, CT scans, and MRI images. Due to variations in hospital facilities and patient conditions, the collected data differs for each case, which introduces modeling challenges but enables our trained models to more closely approximate real clinical scenarios faced by physicians.

324

4 SPINEBENCH

325

4.1 BENCHMARK CONSTRUCTION

326 **Data Sampling** The SpineBench was constructed by sampling from the SpineMed-450k dataset.
 327 Following the original distribution of SpineMed-450k, we sampled 500 multiple-choice questions
 328 and 100 medical reports. This subset incorporates 14 spinal sub-diseases and data from multiple
 329 sources (see Appendix E for details).

330 **Data Validation** To ensure the integrity of SpineBench, a rigorous review process was implemented
 331 involving a team of 17 board-certified orthopedic surgeons. To mitigate bias and ensure objectivity,
 332 the surgeons were divided into three independent groups. Each group collaboratively validated the
 333 quality of the questions. Erroneous question-answer pairs were corrected, and questions deemed
 334 unsuitable for the evaluation set were removed. Ultimately, SpineBench comprises 487 high-quality
 335 multiple-choice questions and 87 report generation prompts.

336

4.2 EVALUATION METRICS

337 **Table 4: Evaluation criteria for AI-generated clinical reports across five key dimensions**

Report Section	Evaluation Criterion	Key Assessment Focus
I. Structured Imaging Report (SIP)	Imaging Report (1-5 pts)	Accuracy of findings, clinical significance, quantitative descriptions
II. AI-Assisted Diagnosis (AAD)	Diagnosis (1-5 pts)	Primary diagnosis correctness, differential diagnoses, clinical reasoning
III. Treatment Recommendations (TR)	Patient Guidance (1-5 pts) Evidence-Based Plan (1-5 pts) Technical Feasibility (1-5 pts)	Language clarity, empathy, patient reassurance Rationale, individualization, guideline consistency Surgical details, complication prevention, backup plans
IV. Risk & Prognosis Management (RPM)	Risk-Prognosis Mgmt (1-5 pts)	Perioperative planning, follow-up schedule, safety protocols
V. Reasoning & Disclaimer (RD)	Coverage (1-5 pts) Relevance (1-5 pts) Granularity (1-5 pts) Explanation (1-5 pts)	Completeness of evidence identification and explanation Focus on core diagnosis without irrelevant content Precision and quantitative detail sufficiency Logical coherence and reasoning chain clarity

351 Under the careful design and guidance of our medical team, We propose a comprehensive evalua-
 352 tion framework that integrates three complementary assessment dimensions to measure the overall
 353 performance of AI systems in spinal diagnostic tasks:

$$354 \text{Score}_{\text{total}} = \sum_{k=1}^3 w_k \cdot P_k \quad (1)$$

355 where P_1 , P_2 , and P_3 represent the performance scores for text-only multiple-choice questions,
 356 multimodal multiple-choice questions, and diagnostic report generation, respectively. The weights
 357 w_k are dynamically determined based on the sample sizes:

$$358 w_k = \frac{N_k}{\sum_{i=1}^3 N_i} \quad (2)$$

360 where N_k denotes the number of samples in each evaluation category. This data-driven weighting
 361 scheme ensures statistical reliability while maintaining balanced representation across all assessment
 362 dimensions.

363 The diagnostic report score P_3 is computed using our expert-calibrated framework:

$$364 P_3 = 20 \times \sum_{i=1}^5 \left(\frac{1}{n_i} \sum_{j=1}^{n_i} s_{ij} \right) \quad (3)$$

365 where scores are normalized to a 0–100 scale for consistency across all metrics and s_{ij} denotes the
 366 score for dimension j in section i , n_i represents the number of dimensions in section i . This unified
 367 scoring system enables direct comparison of model capabilities across diverse clinical tasks, from
 368 basic diagnostic reasoning to complex report generation.

378

5 SPINEGPT: A SPECIALIZED CLINICAL COLLABORATOR

379
380 In this section, we introduce **SpineGPT** to rigorously validate the efficacy of SpineMed-450k.
381382

5.1 IMPLEMENTATION DETAILS

383
384 We employed the **Qwen2.5-VL-7B**-
385 **InstructBai et al. (2025)** as our founda-
386 tional architecture. All training phases
387 were executed on a high-performance
388 computational node equipped with 8
389 **NVIDIA A100 GPUs**, leveraging the
390 **ms-swift** framework for efficient fine-
391 tuning. To balance training efficiency
392 with memory constraints across differ-
393 ent stages, we dynamically adjusted
394 the **DeepSpeed** optimization strate-
395 gies. As detailed in Table 5, for the initial
396 stages involving shorter sequences, we utilized **DeepSpeed**
397 **Zero2**; for the final stage requiring exten-
398 sive context modeling (up to 49k tokens), we transi-
399 tioned to **DeepSpeed Zero3** offloading. The global batch size was optimized per stage to maximize GPU
400 utilization while maintaining training stability.401

5.2 CURRICULUM LEARNING

402 This study employs a curriculum learning framework for subsequent training phases, aimed at
403 enhancing the model’s applicability and proficiency in the field of orthopedic spine care. The training
404 process is divided into three stages, each integrating distinct datasets and training strategies to
405 progressively strengthen the model’s performance in spinal health.406 **General and Orthopedic Foundational Learning** In this initial stage, we utilized several publicly
407 available medical text datasets, including **medical-01-reasoning-SFT** (Chen et al., 2024a), **Medical-
408 R1-Distill-Data** (Chen et al., 2024a), and **MedThoughts-8K** (hw hwei, 2025). Additionally, we
409 incorporated a diverse set of 150,000 multimodal instruction fine-tuning samples uniformly sampled
410 from **PubMedVision** (Chen et al., 2024b). The primary objective during this phase is to develop
411 the model’s foundational capabilities in the medical field and to enhance its performance across
412 various contexts. Subsequently, we trained on data from the **SpineMed-450k** dataset that pertained
413 to non-spinal categories. Our findings indicate that this non-spinal data significantly improved the
414 model’s performance on the **SpineBench** benchmark, highlighting the importance of broadening the
415 knowledge base to enhance task-specific performance.416 **Specialized Learning in Spinal Health** In this phase, we concentrated on all data pertinent to
417 spinal health. Furthermore, we extracted a selection of multiple-choice and open-ended questions
418 to construct long reasoning chains, with the objective of enhancing the model’s proficiency in the
419 domain of spinal surgery.420 **Enhancement of Report Generation and Conversational Abilities** Finally, we conducted further
421 training through multi-turn dialogues, report generation, and datasets comprising long-chain reasoning
422 instructions. The goal of this stage is to develop the model’s advanced language comprehension and
423 generation abilities, particularly in the contexts of dialogue interaction and report creation.424

6 EXPERIMENTS

425

6.1 COMPARISON AND ANALYSIS ON SPINEBENCH

426 The evaluation results in Table 6 reveal severe limitations of current vision-language models (OpenAI,
427 2025a; Hurst et al., 2024; Google, 2025a) in medical domain applications. Large-scale open-source
428 models perform particularly poorly: despite having 72B parameters, **Qwen2.5-VL-72B** (Bai et al.,389 **Table 5: Training configurations across different stages.**

Configuration	Stage-1	Stage-2	Stage-3
Datasets	PubMedVision-150k orthopedics-230k MedThoughts-8K Medical-R1-Distill medical-01-reasoning	Spine-open Spine-choice	Spine-chat (+reasoning) Spine-report (+reasoning)
Learning Rate	1e-5	1e-5	1e-6
Max Length	16,384	16,384	49,152
DeepSpeed	Zero2	Zero2	Zero3
Epochs	1	1	1

432
433 Table 6: Performance comparison of LVLMs on close-ended QA and medical report generation tasks.
434
435 436 437 Model	438 439 440 441 442 443 Size	444 445 446 447 448 449 450 Close-Ended QA			451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 779 780 781 782 783 784 785 786 787 788 789 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 809 810 811 812 813 814 815 816 817 818 819 819 820 821 822 823 824 825 826 827 828 829 829 830 831 832 833 834 835 836 837 838 839 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 859 860 861 862 863 864 865 866 867 868 869 869 870 871 872 873 874 875 876 877 878 879 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 909 910 911 912 913 914 915 916 917 918 919 919 920 921 922 923 924 925 926 927 928 929 929 930 931 932 933 934 935 936 937 938 939 939 940 941 942 943 944 945 946 947 948 949 949 950 951 952 953 954 955 956 957 958 959 959 960 961 962 963 964 965 966 967 968 969 969 970 971 972 973 974 975 976 977 978 979 979 980 981 982 983 984 985 986 987 988 989 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2259<br				

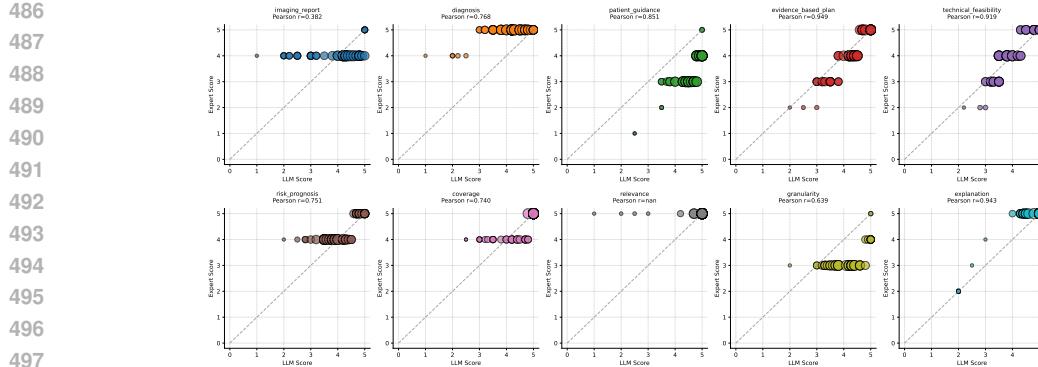


Figure 5: Consistency evaluation of large models and scores given by medical experts

between LLM and expert scores across ten evaluation dimensions. The results demonstrate strong alignment with Pearson correlation coefficients ranging from 0.382 to 0.949, with most dimensions showing correlations above 0.7. These findings validate that our automated LLM scoring serves as a reliable proxy for expert judgment.

6.3 ABLATIONS OF SPINEGPT

Limitations of General Medical Data.

As shown in Table 7, models trained exclusively on large-scale general medical data (row 2) exhibit significant performance degradation (74.95 vs. 65.31) on SpineBench compared to the baseline model (row 1). This demonstrates that models trained on such data are insufficient

for specialized spine diagnostics. The incorporation of the non-spine orthopedic subset derived from our SpineMed-450k corpus (row 3) yields substantial performance improvements (82.14 vs. 74.95), validating the importance of domain-aligned training data. Notably, training exclusively on the spine subset (row 4) achieves an impressive average score of 87.07, reaching nearly 99% of the full model’s performance. This confirms that our high-density spinal instruction data is the decisive factor. Furthermore, the full multi-stage curriculum (Row 6) incorporates this data to reach the peak performance of 87.89, a substantial enhancement over the configuration relying solely on general medical and orthopedic priors (row 5, 81.11).

Table 7: Performance comparison of models on close-ended QA tasks.

Model	Training Data			Close-Ended QA (%)		
	General	No-Spine	Spine	Text	Image	Avg.
Qwen 2.5 VL-7B				75.51	74.09	74.95
SpineGPT	✓			64.27	62.69	65.31
SpineGPT		✓		82.99	80.83	82.14
SpineGPT			✓	87.76	86.01	87.07
SpineGPT	✓	✓		83.67	77.20	81.11
SpineGPT	✓	✓	✓	89.46	84.46	87.89

7 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We introduced **SpineMed-450k**, a provenance-rich instruction corpus for level-aware spine diagnosis and planning, and **SpineBench**, level-aware benchmark co-designed with clinicians. Experiments on SpineBench reveal consistent weaknesses of contemporary open-source LVLMs. Our fine-tuned model achieves 87.44% performance, substantially outperforming open-source alternatives and demonstrating that specialized instruction data enables clinically relevant AI capabilities for complex anatomical reasoning tasks.

Limitations and Future Work. Future work will expand datasets, train larger models beyond 7B parameters, incorporate reinforcement learning techniques, and provide comprehensive direct comparisons with leading proprietary models including GPT-4 and Gemini to establish clear performance benchmarks.

540 REFERENCES
541

542 Alibaba Cloud Tianchi. SPARK: Spinal disease intelligent diagnosis dataset from Spark "Digital Human" AI Challenge. URL: <https://tianchi.aliyun.com/competition/entrance/531796/information>, 2020. Dataset provided by Wanli Cloud and AllinMD Orthopaedics for the Spark "Digital Human" AI Challenge – Intelligent Diagnosis of Spinal Diseases Competition.

543

544

545

546

547 Rawan AlSaad, Alaa Abd-Alrazaq, Sabri Boughorbel, Arfan Ahmed, Max-Antoine Renault, Rafat Damseh, and Javaid Sheikh. Multimodal large language models in health care: applications, challenges, and future outlook. *Journal of medical Internet research*, 26:e59505, 2024.

548

549

550

551 Anthropic. Claude Opus 4 and Claude Sonnet 4 System Card. <https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf>, May 2025. Accessed: 2025-09-21.

552

553

554 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.

555

556 Sami Barrit, Nathan Torcida, Aurélien Mazeraud, Sébastien Boulogne, Jeanne Benoit, Timothée Carette, Thibault Carron, Bertil Delsaut, Eva Diab, Hugo Kermorvant, et al. Neura: a specialized large language model solution in neurology. *medRxiv*, pp. 2024-02, 2024.

557

558

559

560 Runa Bhaumik, Vineet Srivastava, Arash Jalali, Shanta Ghosh, and Ranganathan Chandrasekharan. Mindwatch: A smart cloud-based ai solution for suicide ideation detection leveraging large language models. *MedRxiv*, pp. 2023-09, 2023.

561

562

563 Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou, and Benyou Wang. Huatuogpt-01, towards medical complex reasoning with llms. *arXiv preprint arXiv:2412.18925*, 2024a.

564

565

566

567 Junying Chen, Chi Gui, Ruyi Ouyang, Anningzhe Gao, Shunian Chen, Guiming Hardy Chen, Xidong Wang, Ruifei Zhang, Zhenyang Cai, Ke Ji, et al. Huatuogpt-vision, towards injecting medical visual knowledge into multimodal llms at scale. *arXiv preprint arXiv:2406.19280*, 2024b.

568

569

570 Europe PMC Consortium. Europe pmc: a full-text literature database for the life sciences and platform for innovation. *Nucleic acids research*, 43(D1):D1042–D1048, 2015.

571

572

573 Jiawen Deng, Areeba Zubair, and Ye-Jean Park. Limitations of large language models in medical applications. *Postgraduate Medical Journal*, 99(1178):1298–1299, 2023.

574

575 Zhuo Deng, Weihao Gao, Chucheng Chen, Zhiyuan Niu, Zheng Gong, Ruiheng Zhang, Zhenjie Cao, Fang Li, Zhaoyi Ma, Wenbin Wei, et al. Ophglm: An ophthalmology large language-and-vision assistant. *Artificial Intelligence in Medicine*, 157:103001, 2024.

576

577

578

579 Yuning Du, Chenxia Li, Ruoyu Guo, Xiaoting Yin, Weiwei Liu, Jun Zhou, Yifan Bai, Zilin Yu, Yehua Yang, Qingqing Dang, et al. Pp-ocr: A practical ultra lightweight ocr system. *arXiv preprint arXiv:2009.09941*, 2020.

580

581

582 Alexander M Dydyk, FB Mesfin, et al. Disc herniation. 2017.

583

584 Manuela L Ferreira, Katie De Luca, Lydia M Haile, Jaimie D Steinmetz, Garland T Culbreth, Marita Cross, Jacek A Kopec, Paulo H Ferreira, Fiona M Blyth, Rachelle Buchbinder, et al. Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: a systematic analysis of the global burden of disease study 2021. *The Lancet Rheumatology*, 5(6):e316–e329, 2023.

585

586

587

588

589 Google. Gemini 2.5 Pro -Model Card. <https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro.pdf>, June 2025a. Accessed: 2025-09-21.

590

591

592 Google. Gemini 2.5 Flash & 2.5 Flash Image - Model Card. <https://storage.googleapis.com/deepmind-media/Model-Cards/Gemini-2-5-Flash-Model-Card.pdf>, August 2025b. Accessed: 2025-09-21.

593

594 Yangyang Guo, Airu Huang, Bo Peng, Yufeng Li, and Wei Gu. Mbbo-rpsld: Training a multimodal
 595 blenderbot for rehabilitation in post-stroke language disorder. *IEEE Journal of Biomedical and*
 596 *Health Informatics*, 2025.

597

598 Jing Hao, Yuxuan Fan, Yanpeng Sun, Kaixin Guo, Lizhuo Lin, Jinrong Yang, Qi Yong H Ai, Lun M
 599 Wong, Hao Tang, and Kuo Feng Hung. Towards better dental ai: A multimodal benchmark and
 600 instruction dataset for panoramic x-ray analysis. *arXiv preprint arXiv:2509.09254*, 2025.

601 Wenyi Hong, GLM-V Team, and et al. GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile
 602 Multimodal Reasoning with Scalable Reinforcement Learning. *arXiv preprint arXiv:2507.01006*,
 603 2025.

604

605 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 606 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 607 *arXiv:2410.21276*, 2024.

608

609 hw hwei. Medthoughts-8k dataset, 2025. URL <https://huggingface.co/datasets/hw-hwei/MedThoughts-8K>.

610

611 Muhammad Talal Ibrahim, Eric Milliron, and Elizabeth Yu. Artificial intelligence in spinal imaging-a
 612 narrative review. *Artificial Intelligence Surgery*, 5(1):139–149, 2025a.

613

614 Muhammad Talal Ibrahim, Eric Milliron, and Elizabeth Yu. Artificial intelligence in spinal imaging-a
 615 narrative review. *Artificial Intelligence Surgery*, 5(1):139–149, 2025b.

616

617 Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Henrik
 618 Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, et al. Chexpert: A large chest
 619 radiograph dataset with uncertainty labels and expert comparison. In *Proceedings of the AAAI*
 620 conference on artificial intelligence, volume 33, pp. 590–597, 2019.

621

622 Alistair EW Johnson, Tom J Pollard, Nathaniel R Greenbaum, Matthew P Lungren, Chih-ying Deng,
 623 Yifan Peng, Zhiyong Lu, Roger G Mark, Seth J Berkowitz, and Steven Horng. Mimic-cxr-jpg, a
 624 large publicly available database of labeled chest radiographs. *arXiv preprint arXiv:1901.07042*,
 625 2019.

626

627 Podchara Klinwichit, Watcharaphong Yookwan, Sornsupha Limchareon, Krisana Chinnasarn, Jun-Su
 628 Jang, and Athita Onuean. Buu-lspine: A thai open lumbar spine dataset for spondylolisthesis
 629 detection. *Applied Sciences*, 13(15):8646, 2023.

630

631 Yuxiang Lai, Jike Zhong, Ming Li, Shitian Zhao, and Xiaofeng Yang. Med-r1: Reinforcement learning
 632 for generalizable medical reasoning in vision-language models. *arXiv preprint arXiv:2503.13939*,
 633 2025.

634

635 Jason J Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. A dataset of clinically
 636 generated visual questions and answers about radiology images. *Scientific data*, 5(1):1–10, 2018.

637

638 Sungwon Lee, Joon-Yong Jung, Akaworn Mahatthanatrakul, and Jin-Sung Kim. Artificial intelligence
 639 in spinal imaging and patient care: a review of recent advances. *Neurospine*, 21(2):474, 2024a.

640

641 Sungwon Lee, Joon-Yong Jung, Akaworn Mahatthanatrakul, and Jin-Sung Kim. Artificial intelligence
 642 in spinal imaging and patient care: a review of recent advances. *Neurospine*, 21(2):474, 2024b.

643

644 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan
 645 Naumann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision
 646 assistant for biomedicine in one day. *Advances in Neural Information Processing Systems*, 36:
 647 28541–28564, 2023.

648

649 Hans Liebl, David Schinz, Anjany Sekuboyina, Luca Malagutti, Maximilian T Löffler, Amirhossein
 650 Bayat, Malek El Husseini, Giles Tetteh, Katharina Grau, Eva Niederreiter, et al. A computed
 651 tomography vertebral segmentation dataset with anatomical variations and multi-vendor scanner
 652 data. *Scientific Data*, 8(1):284, 2021.

648 Tianwei Lin, Wenqiao Zhang, Sijing Li, Yuqian Yuan, Binhe Yu, Haoyuan Li, Wanggui He, Hao
 649 Jiang, Mengze Li, Xiaohui Song, et al. Healthgpt: A medical large vision-language model for
 650 unifying comprehension and generation via heterogeneous knowledge adaptation. *arXiv preprint*
 651 *arXiv:2502.09838*, 2025.

652 Ming Y Lu, Bowen Chen, Drew FK Williamson, Richard J Chen, Melissa Zhao, Aaron K Chow,
 653 Kenji Ikemura, Ahrong Kim, Dimitra Pouli, Ankush Patel, et al. A multimodal generative ai
 654 copilot for human pathology. *Nature*, 634(8033):466–473, 2024.

655 Tingyu Mo, Jacqueline CK Lam, Victor OK Li, and Lawrence YL Cheung. Dect: Harnessing
 656 llm-assisted fine-grained linguistic knowledge and label-switched and label-preserved data gener-
 657 ation for diagnosis of alzheimer’s disease. In *Proceedings of the AAAI Conference on Artificial*
 658 *Intelligence*, volume 39, pp. 24885–24892, 2025.

659 Hongbin Na. Cbt-llm: A chinese large language model for cognitive behavioral therapy-based mental
 660 health question answering. *arXiv preprint arXiv:2403.16008*, 2024.

661 Vishwesh Nath, Wenqi Li, Dong Yang, Andriy Myronenko, Mingxin Zheng, Yao Lu, Zhiyan Liu,
 662 Hongxu Yin, Yee Man Law, Yucheng Tang, et al. Vila-m3: Enhancing vision-language models
 663 with medical expert knowledge. In *Proceedings of the Computer Vision and Pattern Recognition*
 664 *Conference*, pp. 14788–14798, 2025a.

665 Vishwesh Nath, Wenqi Li, Dong Yang, Andriy Myronenko, Mingxin Zheng, Yao Lu, Zhiyan Liu,
 666 Hongxu Yin, Yee Man Law, Yucheng Tang, et al. Vila-m3: Enhancing vision-language models
 667 with medical expert knowledge. In *Proceedings of the Computer Vision and Pattern Recognition*
 668 *Conference*, pp. 14788–14798, 2025b.

669 Stefano Negrini, Sabrina Donzelli, Angelo Gabriele Aulisa, Dariusz Czaprowski, Sanja Schreiber,
 670 Jean Claude de Mauroy, Helmut Diers, Theodoros B Grivas, Patrick Knott, Tomasz Kotwicki, et al.
 671 2016 sosort guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during
 672 growth. *Scoliosis and spinal disorders*, 13(1):3, 2018.

673 Chuang Niu, Qing Lyu, Christopher D Carothers, Parisa Kaviani, Josh Tan, Pingkun Yan, Man-
 674 nudeep K Kalra, Christopher T Whitlow, and Ge Wang. Medical multimodal multitask foundation
 675 model for lung cancer screening. *Nature Communications*, 16(1):1523, 2025.

676 OpenAI. GPT-4V system card. Technical report, OpenAI, 2023. URL https://cdn.openai.com/papers/GPTV_System_Card.pdf.

677 OpenAI. GPT-5 System Card. <https://cdn.openai.com/gpt-5-system-card.pdf>,
 678 August 2025a. Accessed: 2025-09-21.

679 OpenAI. OpenAI o3 and o4-mini System Card. <https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf>, April 2025b. Accessed: 2025-09-21.

680 Jianing Qiu, Jian Wu, Hao Wei, Peilun Shi, Minqing Zhang, Yunyun Sun, Lin Li, Hanruo Liu, Hongyi
 681 Liu, Simeng Hou, et al. Visionfm: a multi-modal multi-task vision foundation model for generalist
 682 ophthalmic artificial intelligence. *arXiv preprint arXiv:2310.04992*, 2023.

683 Tyler J Richards, Adam E Flanders, Errol Colak, Luciano M Prevedello, Robyn L Ball, Felipe
 684 Kitamura, John Mongan, Maryam Vazirabad, Hui-Ming Lin, Anne Kendell, et al. The rsna lumbar
 685 degenerative imaging spine classification (lumbardisc) dataset. *arXiv preprint arXiv:2506.09162*,
 686 2025.

687 Ali Sarabandani, Kheirolah Rahsepar Fard, and Hamid Dalvand. Exkg-llm: Leveraging large language
 688 models for automated expansion of cognitive neuroscience knowledge graphs. *arXiv preprint*
 689 *arXiv:2503.06479*, 2025.

690 Anjany Sekuboyina, Malek E Husseini, Amirkhossein Bayat, Maximilian Löffler, Hans Liebl, Hongwei
 691 Li, Giles Tetteh, Jan Kukačka, Christian Payer, Darko Štern, et al. Verse: a vertebrae labelling and
 692 segmentation benchmark for multi-detector ct images. *Medical image analysis*, 73:102166, 2021.

702 Andrew Sellergren, Sahar Kazemzadeh, Tiam Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo
 703 Kohlberger, Shawn Xu, Fayaz Jamil, Cian Hughes, Charles Lau, et al. Medgemma technical report.
 704 *arXiv preprint arXiv:2507.05201*, 2025a.

705 Andrew Sellergren, Sahar Kazemzadeh, Tiam Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo
 706 Kohlberger, Shawn Xu, Fayaz Jamil, Cian Hughes, Charles Lau, et al. Medgemma technical report.
 707 *arXiv preprint arXiv:2507.05201*, 2025b.

708 Mehmet Saygin Seyfioglu, Wisdom O Ikezogwo, Fatemeh Ghezloo, Ranjay Krishna, and Linda
 709 Shapiro. Quilt-llava: Visual instruction tuning by extracting localized narratives from open-source
 710 histopathology videos. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 711 *Pattern Recognition*, pp. 13183–13192, 2024.

712 Joel D Taurog, Avneesh Chhabra, and Robert A Colbert. Ankylosing spondylitis and axial spondy-
 713 loarthritis. *New England Journal of Medicine*, 374(26):2563–2574, 2016.

714 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 715 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 716 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

717 Eric M Teichner, Robert C Subtirelu, Connor R Crutchfield, Chitra Parikh, Arjun Ashok, Sahithi
 718 Talasila, Victoria Anderson, Milan Patel, Sricharvi Mannam, Andrew Lee, et al. The advancement
 719 and utility of multimodal imaging in the diagnosis of degenerative disc disease. *Frontiers in*
 720 *Radiology*, 5:1298054, 2025.

721 Alibaba Cloud Tianchi. Spark: Spinal disease intelligent diagnosis dataset. <https://tianchi.aliyun.com/competition/entrance/531796/introduction>, 2020. Accessed: 2025-11-20.

722 Ehsan Ullah, Anil Parwani, Mirza Mansoor Baig, and Rajendra Singh. Challenges and barriers of
 723 using large language models (llm) such as chatgpt for diagnostic medicine with a focus on digital
 724 pathology—a recent scoping review. *Diagnostic pathology*, 19(1):43, 2024.

725 Alexander R Vaccaro, Cumhur Oner, Christopher K Kepler, Marcel Dvorak, Klaus Schnake, Carlo
 726 Bellabarba, Max Reinhold, Bizhan Aarabi, Frank Kandziora, Jens Chapman, et al. Aospine
 727 thoracolumbar spine injury classification system: fracture description, neurological status, and key
 728 modifiers. *Spine*, 38(23):2028–2037, 2013.

729 Jasper W van der Graaf, Miranda L van Hooff, Constantinus FM Buckens, Matthieu Rutten, Job LC
 730 van Susante, Robert Jan Kroeze, Marinus de Kleuver, Bram van Ginneken, and Nikolas Lessmann.
 731 Lumbar spine segmentation in mr images: a dataset and a public benchmark. *Scientific Data*, 11
 732 (1):264, 2024.

733 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
 734 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3.5: Advancing open-source multimodal
 735 models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025a.

736 Ziyue Wang, Junde Wu, Linghan Cai, Chang Han Low, Xihong Yang, Qiaxuan Li, and Yueming
 737 Jin. Medagent-pro: Towards evidence-based multi-modal medical diagnosis via reasoning agentic
 738 workflow. *arXiv preprint arXiv:2503.18968*, 2025b.

739 Huan Wei and Wei Hwei. MedThoughts-8K: A large-scale medical reasoning dataset. <https://huggingface.co/datasets/hw-hwei/MedThoughts-8K>, 2024.

740 Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang, Weidi Xie, and Yanfeng Wang. Pmc-llama:
 741 toward building open-source language models for medicine. *Journal of the American Medical*
 742 *Informatics Association*, 31(9):1833–1843, 2024.

743 Juncheng Wu, Wenlong Deng, Xingxuan Li, Sheng Liu, Taomian Mi, Yifan Peng, Ziyang Xu, Yi Liu,
 744 Hyunjin Cho, Chang-In Choi, et al. Medreason: Eliciting factual medical reasoning steps in llms
 745 via knowledge graphs. *arXiv preprint arXiv:2504.00993*, 2025.

746 xAI. Grok 4 Model Card. <https://data.x.ai/2025-08-20-grok-4-model-card.pdf>, August 2025. Accessed: 2025-09-21.

756 Yunfei Xie, Ce Zhou, Lang Gao, Juncheng Wu, Xianhang Li, Hong-Yu Zhou, Sheng Liu, Lei Xing,
757 James Zou, Cihang Xie, et al. Medtrinity-25m: A large-scale multimodal dataset with multigranular
758 annotations for medicine. *arXiv preprint arXiv:2408.02900*, 2024a.
759

760 Yunfei Xie, Ce Zhou, Lang Gao, Juncheng Wu, Xianhang Li, Hong-Yu Zhou, Sheng Liu, Lei Xing,
761 James Zou, Cihang Xie, et al. Medtrinity-25m: A large-scale multimodal dataset with multigranular
762 annotations for medicine. *arXiv preprint arXiv:2408.02900*, 2024b.
763

764 Weiwen Xu, Hou Pong Chan, Long Li, Mahani Aljunied, Ruifeng Yuan, Jianyu Wang, Chenghao
765 Xiao, Guizhen Chen, Chaoqun Liu, Zhaodonghui Li, et al. Lingshu: A generalist foundation model
766 for unified multimodal medical understanding and reasoning. *arXiv preprint arXiv:2506.07044*,
767 2025.
768

769 Xiaojuan Xue, Deshiwei Zhang, Chengyang Sun, Yiqiao Shi, Rongsheng Wang, Tao Tan, Peng Gao,
770 Sujie Fan, Guangtao Zhai, Menghan Hu, et al. Xiaoqing: a q&a model for glaucoma based on
771 llms. *Computers in Biology and Medicine*, 174:108399, 2024.
772

773 Kailai Yang, Tianlin Zhang, Ziyan Kuang, Qianqian Xie, Jimin Huang, and Sophia Ananiadou.
774 Mentallama: interpretable mental health analysis on social media with large language models. In
775 *Proceedings of the ACM Web Conference 2024*, pp. 4489–4500, 2024.
776

777 Zhejun Yang, Tongtong Tian, Jilie Kong, and Hui Chen. Chatexosome: an artificial intelligence
778 (ai) agent based on deep learning of exosomes spectroscopy for hepatocellular carcinoma (hcc)
779 diagnosis. *Analytical Chemistry*, 97(8):4643–4652, 2025.
780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

APPENDIX

Contents

A Checklist	17
A.1 Ethics Statement	17
A.2 Reproducibility Statement	17
A.3 LLM Usage	17
B Related Work	17
C Performance Comparison	19
D Picture Context Matching Algorithm	19
E Detailed Distribution Analysis of SpineBench	20
F Quantitative Comparison of SpineGPT with GPT-4O	21
G Prompts	23

864 **A CHECKLIST**
865866 **A.1 ETHICS STATEMENT**
867868 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimen-
869 tation was involved. All datasets used, including SpineMed-450K, were sourced in compliance with
870 relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or
871 discriminatory outcomes in our research process. No personally identifiable information was used,
872 and no experiments were conducted that could raise privacy or security concerns. We are committed
873 to maintaining transparency and integrity throughout the research process.874
875 **A.2 REPRODUCIBILITY STATEMENT**
876877 Our work will be fully reproducible: we will open-source SpineBench, all questions, the code for
878 running the API and open-source models, all model outputs, and the code for scoring the models. In
879 other words, every part of the project will be made available.880
881 **A.3 LLM USAGE**
882883 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
884 Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
885 clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
886 grammar checking, and enhancing the overall flow of the text.887 It is important to note that the LLM was not involved in the ideation, research methodology, or
888 experimental design. All research concepts, ideas, and analyses were developed and conducted by
889 the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
890 the paper, with no involvement in the scientific content or data analysis.891 The authors take full responsibility for the content of the manuscript, including any text generated or
892 polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
893 does not contribute to plagiarism or scientific misconduct.894
895 **B RELATED WORK**
896897 The landscape of medical AI is rapidly evolving, moving from broad, general-purpose models
898 to highly specialized systems designed for clinical utility. Our work is situated within this trend,
899 addressing a critical gap in the high-stakes field of spine surgery.900 **From Generalist Models to Domain Adaptation.** Recent advances in Large Vision-Language
901 Models (LVLMs), such as GPT-4V (OpenAI, 2023) and Gemini2.5-pro (Google, 2025a), have
902 demonstrated significant progress in multimodal tasks (Yang et al., 2023; Team et al., 2023).
903 However, when applied to the medical domain, their generalist nature becomes a distinct limitation.
904 Multiple evaluations consistently show that while promising, these models lack the domain-specific
905 expertise required for complex diagnostic tasks, performing below the level of human specialists
906 (AlSaad et al., 2024). This inherent limitation of generalist models has fueled a clear and necessary
907 trend toward specialization. In response, specialized medical LVLMs like LLaVA-Med (Li et al.,
908 2023) and PMC-LLaMA (Wu et al., 2024) have been developed, fine-tuned on large biomedical
909 corpora. Nevertheless, this approach still has shortcomings. For instance, in spinal diagnostics, a
910 critical task is the synthesis of data from multimodal imaging—such as X-ray, CT, and MRI—to
911 formulate a single, "level-aware" diagnosis. This integrative reasoning process, which requires
912 localizing findings to specific vertebral levels, is a clinical skill that cannot be acquired from
913 static, descriptive datasets alone. This further underscores a core principle: for high-stakes clinical
914 applications, deep, narrow expertise is far more valuable than broad, superficial general knowledge.
915 A powerful example validating this principle is OralGPT (Hao et al., 2025), a model trained on a
916 small, highly curated dataset of intraoral photographs, which achieves performance comparable to
917 state-of-the-art generalist models within its niche. This paradigm shift from generalist to specialist
918 models is now clearly evident across numerous medical fields, from oncology to pathology (Qiu
919 et al., 2023; Sarabadani et al., 2025; Yang et al., 2025; 2024; Barrit et al., 2024; Mo et al., 2025;

918 Deng et al., 2024; Xue et al., 2024; Bhaumik et al., 2023; Na, 2024; Guo et al., 2025).

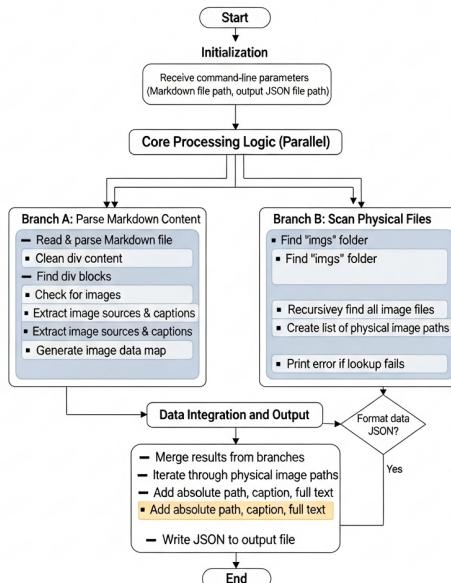
919
 920 **Foundational Datasets and the Cognitive Gap.** Progress in AI is fundamentally tied to the quality
 921 of training data. Foundational datasets like MIMIC-CXR (Johnson et al., 2019) and CheXpert (Irvin
 922 et al., 2019) have been instrumental for tasks like chest radiograph classification. Moving up in
 923 complexity are datasets for interactive Visual Question Answering (VQA). For instance, VQA-RAD
 924 (Lau et al., 2018) was manually constructed by clinicians asking naturally occurring questions about
 925 radiology images, representing a step toward more dynamic reasoning. More recently, large-scale
 926 efforts like MedTrinity-25M (Xie et al., 2024b) have emerged, providing over 25 million images with
 927 multi-granular annotations to support a wide range of tasks.

928 Within the spine domain itself, public datasets have primarily supported foundational computer vision
 929 tasks. As summarized in Table 1, existing datasets largely focus on single-modality perception tasks.
 930 For example, the RSNA LumbarDISC dataset (Richards et al., 2025) provides a large-scale MRI
 931 benchmark but is limited to the classification of stenosis severity grades. Similarly, BUU-LSPINE
 932 (Klinwichit et al., 2023) focuses on spondylolisthesis detection in X-rays, while the VerSe 2020
 933 (Liebl et al., 2021) and Lumbar Spine MRI (van der Graaf et al., 2024) datasets provide voxel-level
 934 masks for segmentation tasks in CT and MRI, respectively.

935 However, these resources are primarily designed to support lower-level cognitive tasks like perception
 936 ("Where is the L4 vertebra?") or classification ("Is a fracture present?"). They lack the multimodal
 937 integration and instruction-following structure required to train models for the highest level of clinical
 938 cognition: synthesizing multimodal information into a comprehensive diagnosis and treatment plan.
 939 This reveals a crucial gap between existing data paradigms and the needs of clinical practice—a
 940 gap our work aims to fill by introducing the first large-scale instruction-tuning corpus designed for
 941 full-spectrum clinical reasoning.

942 **AI in Spine Analysis: From Tools to Collaborators.** Prior AI applications in spine analysis
 943 have focused on discrete tasks, creating valuable "tools" rather than "collaborators." These include
 944 automated vertebral segmentation and the measurement of spinal parameters (Lee et al., 2024a;
 945 Ibrahim et al., 2025a). While useful for improving efficiency, these tools perform isolated tasks,
 946 leaving the cognitive burden of synthesis and planning to the human clinician (Nath et al., 2025b). Our
 947 work directly addresses these gaps. By creating SpineMed-450k, a large-scale dataset derived from
 948 clinical workflows, and SpineBench, a benchmark focused on level-aware, multimodal reasoning,
 949 we provide the infrastructure to build and evaluate AI systems that can function as true clinical
 950 collaborators in the complex domain of spine surgery.

951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971


972 **C PERFORMANCE COMPARISON ON MEDICAL REPORT GENERATION**
 973 **SUBTASKS**
 974

977 Table 8: LVLM performance comparison on medical report generation subtasks: Imaging Report
 978 (IR), Diagnosis (DGN), Patient Guidance (PG), Evidence-Based Plan (EBP), Technical Feasibility
 979 (TF), Risk Prognosis Management (RPM), Coverage (COV), Relevance (REL), Granularity (GRA),
 980 Explanation (EXP).

Model	IR	DGN	PG	EBP	TF	RPM	COV	REL	GRA	EXP
<i>Proprietary LVLMs</i>										
GPT-5	4.54	4.51	4.62	4.41	4.56	4.69	4.58	4.66	4.74	4.60
O3	4.39	4.25	4.32	4.30	4.40	4.43	4.34	4.45	4.50	4.39
Gemini-2.5-Pro	4.55	4.51	4.79	4.60	4.64	4.79	4.69	4.83	4.84	4.80
Claude-4	3.96	4.08	4.41	3.76	3.94	4.44	4.30	4.58	4.62	4.16
GPT-4o	3.16	3.03	3.30	3.07	2.80	3.30	3.35	4.30	2.92	3.25
GPT-5-mini	4.55	4.48	4.62	4.47	4.71	4.98	4.66	4.87	4.90	4.67
Gemini-2.5-Flash	4.43	4.29	4.73	4.51	4.48	4.88	4.64	4.89	4.82	4.67
<i>Open-source LVLMs (>10B)</i>										
GLM-4.5V	3.85	3.78	4.12	3.77	3.59	4.05	4.26	4.63	4.23	4.09
Qwen2.5-VL-72B	3.14	3.03	3.25	3.09	3.02	3.23	3.27	4.19	2.98	3.25
LinShu-32B	3.05	3.05	3.22	3.44	3.04	3.49	3.21	4.34	2.90	3.44
Medgemma-27B	2.88	3.49	4.14	3.56	3.32	3.26	3.48	4.29	3.51	3.32
<i>Open-source LVLMs (<10B)</i>										
HuaTuoGPT-7B	2.42	2.42	2.91	2.76	2.77	3.37	2.77	3.50	2.57	2.63
Qwen2.5-VL-7B	2.27	2.39	2.82	2.86	2.71	3.26	2.77	3.66	2.60	2.65
Ours	4.15	4.10	4.71	4.27	4.25	4.54	4.51	4.81	4.58	4.53

999 **D PICTURE CONTEXT MATCHING ALGORITHM**
 1000

1001 The following algorithm processes Markdown files to extract image information and generate structured
 1002 metadata in JSON format through parallel processing.
 1003

1023 Figure 6: picture context matching algorithm
 1024
 1025

1026 E DETAILED DISTRIBUTION ANALYSIS OF SPINEBENCH

1028 To further validate the clinical representativeness and unbiased nature of SpineBench, we provide a
 1029 comprehensive statistical breakdown of the testing QA set (487 items with specific subspecialty tags).
 1030 These statistics demonstrate that SpineBench achieves rigorous coverage across diverse pathologies
 1031 and data sources.

1033 E.1 DISEASE SUBSPECIALTY DISTRIBUTION

1035 As shown in Table 9, the benchmark covers 14 distinct spinal subspecialties. Notably, high-stakes
 1036 and complex conditions such as *Tumor and Osteomyelitis* (16.72%) and *Complications* (10.80%) are
 1037 heavily represented, ensuring that the evaluation reflects performance on critical clinical challenges
 1038 rather than being dominated by common degenerative cases.

1040 Table 9: Detailed Distribution of Spine Subspecialties in SpineBench

Rank	Subspecialty	Count	Percentage
1	Tumor and Osteomyelitis	96	16.72%
2	Complications	62	10.80%
3	Dysplastic and Congenital Deformities	49	8.54%
4	Idiopathic Scoliosis	47	8.19%
5	The Thoracic and Lumbar Degenerative Spine	34	5.92%
6	General Considerations	33	5.75%
7	Kyphosis and Postlaminectomy Deformities	31	5.40%
8	Anatomic Approaches	31	5.40%
9	Adult Spinal Deformity	26	4.53%
10	Spondylolisthesis	23	4.01%
11	Trauma	23	4.01%
12	Neuromuscular Spine Deformity	12	2.09%
13	Biomechanics	11	1.92%
14	The Cervical Degenerative Spine	9	1.57%
Total		487	100.00%

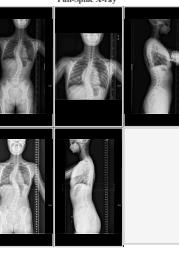
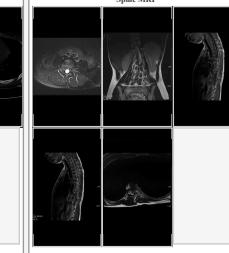
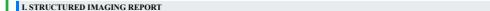
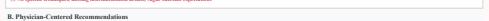
1057 E.2 DATA SOURCE DIVERSITY

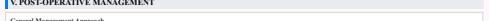
1059 Table 10 illustrates the provenance of the testing data. The dataset maintains a rigorous balance
 1060 between *Academic Resources* (45.8%), which ensure theoretical precision, and *Real-world Clinical*
 1061 *Data* (54.2%), which test practical diagnostic robustness. Crucially, the Hospital Databases (33.5%)
 1062 consist of private, internal cases that ensure a zero-leakage evaluation environment.

1064 Table 10: Detailed Source Distribution of SpineBench QAs

Category	Specific Composition	Count	%	Evaluation Goal
Textbooks	Standard Medical Textbooks	203	41.7%	Theoretical Foundation
Hospital Databases	Proprietary data related to privacy	163	33.5%	Surgical Precision & Zero-Leakage
Clinical Case Reports	Real-world Case Reports	101	20.7%	Complex Clinical Scenarios
Literature	Academic Papers	17	3.5%	Cutting-edge Knowledge
Question Bank	Medical Exam Questions	3	0.6%	Standardized Logic
Total		487	100%	

1080 F QUANTITATIVE COMPARISON OF SPINEGPT WITH GPT-4O



Clinical Case Comparison: SpineGPT vs ChatGPT-4o Analysis of Adolescent Idiopathic Scoliosis																																					
PATIENT CASE					MEDICAL IMAGING STUDIES																																
Demographics: 11-year-old female Progressive spinal curvature over 1 year																																					
Clinical History: - Brace treatment for 6 months, discontinued progression - No pain, weight loss, neurological symptoms - Mental age: 1 year prior to admission Physical Examination: - Lucy's rigidized "urchin" deformity - Slight elevated left shoulder - No spinal tenderness on palpation/percussion Neurological Assessment: - Motor: Full strength (Grade V/V) all four limbs - Sensation: Normal to all four limbs - Reflexes: Biceps/triceps present and symmetrical - Pathological signs: Hoffmann's and Babinski's absent - Nerve tension: Straight leg raise tests negative																																					
SpineGPT (Specialized Orthopedic AI) I. STRUCTURED IMAGING REPORT Full Length Spine X-ray (AP & Lateral) Significant: Double major curve is present. Right thoracic and left lumbar. Curve magnitude is severe. Segmental kyphosis is noted in the lumbar region. Provides objective, quantifiable evidence of disease severity. Clinical reasoning: Detailed analysis of vertebral body rotation confirms the three-dimensional nature of the scoliosis. Critical for preoperative planning, allowing accurate measurement of pedicle dimensions and trajectory, essential for safe pedicle screw placement. Clinical reasoning: CT analysis crucial for instrumented safety, pedicle morphology determines screw trajectory, rotation assessment guides correction planning. Comprehensive differential diagnosis excludes surgical safety concerns.					ChatGPT-4o (General Purpose AI) I. STRUCTURED IMAGING REPORT X-ray Thoracic scoliosis with a Cobb angle measuring approximately 40 degrees - right-sided curve. The progression of scoliosis is evident, indicating need for surgical intervention due to failure of conservative management. Clinical reasoning: Single-level curve, high Cobb angle measurement, general progression status. No significant spinal deformities or neural involvement, normal spinal canal signal.																																
II. AI-ASSISTED DIAGNOSIS Primary Diagnosis: Adolescent Idiopathic Scoliosis (AIS), complex double major curve pattern, severe magnitude. Confidence: High (99%). Classification: Lenke Type 1 or 2 pattern requiring comprehensive correction. Diagnostic reasoning: Age-appropriate onset, typical curve pattern, evidence of secondary curve, severity meets surgical criteria, classification guides treatment approach. Comprehensive differential diagnosis excludes all surgical safety concerns.					II. AI-ASSISTED DIAGNOSIS Primary Diagnosis: Double major curve with significant deformity. Confidence: High (99%). Classification: Lenke Type 1 or 2 pattern requiring comprehensive correction. Diagnostic reasoning: Age-appropriate onset, typical curve pattern, evidence of secondary curve, severity meets surgical criteria, classification guides treatment approach. Comprehensive differential diagnosis excludes all surgical safety concerns.																																
III. COMPREHENSIVE TREATMENT RECOMMENDATIONS A. Patient-Centred Recommendations Necessity of Surgery: Curve magnitude is currently progressing despite bracing, cannot be controlled with non-surgical methods. Surgery provides definitive correction, prevents further progression, and addresses cosmetic concerns. Biologics: Given pre-existing medical and surgical comorbidities.					III. COMPREHENSIVE TREATMENT RECOMMENDATIONS A. Patient-Centred Recommendations Necessity of Surgery: Curve magnitude is currently progressing despite bracing, cannot be controlled with non-surgical methods. Surgery provides definitive correction, prevents further progression, and addresses cosmetic concerns. Biologics: Given pre-existing medical and surgical comorbidities.																																
B. Physician-Centred Decision Tree Detailed Clinical Reasoning: Decision rule: "Posterior spinal fusion (PSF) with segmental pedicle screw instrumentation." Dual thoracic rods with multiple anchor points for three-dimensional correction. Autograft bone graft supplemented with allograft to achieve solid arthrodesis. Expected correction: 30-40° reduction in coronal plane, restoration of sagittal balance. Biologics strategy: PSF provides best correction for complex curves, pedicle screws offer superior anchorage vs bone graft, dual rod system for indirect correction, and autograft provides bone graft.					B. Physician-Centred Decision Tree Detailed Clinical Reasoning: Decision rule: "Posterior spinal fusion (PSF) with segmental pedicle screw instrumentation." Dual thoracic rods with multiple anchor points for three-dimensional correction. Autograft bone graft supplemented with allograft to achieve solid arthrodesis. Expected correction: 30-40° reduction in coronal plane, restoration of sagittal balance. Biologics strategy: PSF provides best correction for complex curves, pedicle screws offer superior anchorage vs bone graft, dual rod system for indirect correction, and autograft provides bone graft.																																
IV. COMPREHENSIVE RISK & PROGNOSIS Detailed Risk Stratification: Major risk: Severe progressive spinal deformity or neurologic dysfunction. Risk required. Minor risks: 1. Fusion site: Double major curve (14-17°) → Tapered rods thoracic and lumbar curve 2. Fusion site: Double major curve (14-17°) → Tapered rods thoracic and lumbar curve 3. Fusion site: Double major curve (14-17°) → Tapered rods thoracic and lumbar curve 4. Approach selected: Pedicle elements recorded → Approach: Single posterior approach 5. Fusion site: Double major curve (14-17°) → Tapered rods thoracic and lumbar curve Evidence-based decision making: Task map follows evidence-based criteria, considers patient-specific factors, optimizes risk-benefit ratio, follows current best practices.					IV. RISK & PROGNOSIS ASSESSMENT Risk Stratification: Risk includes: Infection, bleeding, nerve injury, and instrumentation failure. High likelihood of significant improvement in spinal alignment and prevention of further curvature progression. Risk assessment: Evidence-based decision making, patient-specific factors, risk-benefit ratio.																																
Risk Mitigation Strategies: Task map follows evidence-based decision making with evidence of risk reduced. Preoperative: CT-guided pedicle screw placement in complex anatomy. Biologics: Preoperative antibiotic, bone graft, autograft, antibiotic-coated. Intraoperative: Preoperative antibiotic, bone graft, antibiotic-coated. Postoperative: Evidence-based decision making.					V. POST-OPERATIVE MANAGEMENT General Management Approach: Early and continuous post-operative therapy, use of non-steroidal agents (ibuprofen), periodic monitoring. Patient education on maintaining core strength, proper ergonomics, creating follow-up visits. Clinical reasoning: Evidence-based decision making, patient follow-up instructions.																																
VI. RATIONALE & DISCLAIMER Diagnostic Rationale Summary: The process: SpineGPT uses a specialized AI model, combined with imaging evidence of significant Cobb angle and Silhouette of corrective management . Logically leads to diagnosis of adolescent idiopathic scoliosis requiring surgical intervention. The absence of neurological symptoms and normal MRI findings support the structural nature of the condition. Clinical reasoning: Evidence-based decision making, patient follow-up instructions.					VI. RATIONALE & DISCLAIMER Diagnostic Rationale Summary: The process: SpineGPT uses a specialized AI model, combined with imaging evidence of significant Cobb angle and Silhouette of corrective management . Logically leads to diagnosis of adolescent idiopathic scoliosis requiring surgical intervention. The absence of neurological symptoms and normal MRI findings support the structural nature of the condition. Clinical reasoning: Evidence-based decision making, patient follow-up instructions.																																
QUANTITATIVE COMPARISON SUMMARY <table border="1"> <thead> <tr> <th>Metric</th> <th>SpineGPT</th> <th>ChatGPT-4o</th> <th>Advantage</th> </tr> </thead> <tbody> <tr> <td>Word Count</td> <td>2,847</td> <td>1,655</td> <td>+75%</td> </tr> <tr> <td>Imaging Analysis</td> <td>3D multi-planar with surgical planning</td> <td>Basic 2D measurements</td> <td>Advanced 3D</td> </tr> <tr> <td>Diagnosis</td> <td>Complex double major curve AIS</td> <td>Basic idiopathic scoliosis</td> <td>Superior precision</td> </tr> <tr> <td>Risk Factors</td> <td>12 specific with rates</td> <td>4 general categories</td> <td>+200%</td> </tr> <tr> <td>Measurements</td> <td>Multiple anatomical parameters</td> <td>Single Cobb angle</td> <td>+400%</td> </tr> <tr> <td>Clinical Reasoning</td> <td>Evidence-based protocols</td> <td>Basic frameworks</td> <td>Practicality/grids</td> </tr> </tbody> </table>										Metric	SpineGPT	ChatGPT-4o	Advantage	Word Count	2,847	1,655	+75%	Imaging Analysis	3D multi-planar with surgical planning	Basic 2D measurements	Advanced 3D	Diagnosis	Complex double major curve AIS	Basic idiopathic scoliosis	Superior precision	Risk Factors	12 specific with rates	4 general categories	+200%	Measurements	Multiple anatomical parameters	Single Cobb angle	+400%	Clinical Reasoning	Evidence-based protocols	Basic frameworks	Practicality/grids
Metric	SpineGPT	ChatGPT-4o	Advantage																																		
Word Count	2,847	1,655	+75%																																		
Imaging Analysis	3D multi-planar with surgical planning	Basic 2D measurements	Advanced 3D																																		
Diagnosis	Complex double major curve AIS	Basic idiopathic scoliosis	Superior precision																																		
Risk Factors	12 specific with rates	4 general categories	+200%																																		
Measurements	Multiple anatomical parameters	Single Cobb angle	+400%																																		
Clinical Reasoning	Evidence-based protocols	Basic frameworks	Practicality/grids																																		

Figure 7: Comparative analysis of medical report generation capabilities between SpineGPT (Ours) and ChatGPT-4o (general-purpose AI) for an adolescent idiopathic scoliosis case. The comparison demonstrates significant differences in diagnostic depth, clinical reasoning, and treatment planning specificity. SpineGPT provides 72protocols, while ChatGPT-4o offers basic diagnostic and treatment recommendations suitable for general medical documentation.

Complete Medical Report: Adolescent Idiopathic Scoliosis Analysis			
I. Structured Imaging Report			
Modality	Key Findings & Parameters	Clinical Significance (How it supports the diagnosis)	
Full-Length Spine X-ray (AP & Lateral)	Significant double major curve is present: right thoracic and left lumbar . Curve magnitude is severe . Sagittal alignment shows compensatory hyperlordosis in the lumbar region.	This provides objective, quantifiable evidence of the deformity, confirming its severity and identifying it as the primary deformity requiring surgical correction.	
Spine CT Scan	Detailed visualization of vertebral body rotation confirms the three-dimensional nature of the scoliosis. Incidental finding of spina bifida occulta at S1 is noted.	The CT scan is critical for pre-operative planning, allowing for accurate measurement of pedicle dimensions and trajectory, which is essential for safe and effective placement of spinal instrumentation like pedicle screws.	
Spine MRI Scan	The spinal cord, conus medullaris, and neural elements demonstrate a normal morphology . No syrinx, tumors, tethered cord, or Chiari malformation are identified.	This is a crucial safety check. By ruling out underlying intraspinal pathologies, it confirms the diagnosis as a structural, idiopathic scoliosis and ensures that the planned surgical correction does not pose an additional risk to the spinal cord.	
II. AI-Assisted Diagnosis			
Diagnostic Tier	Output		
1. Primary Diagnosis	Adolescent Idiopathic Scoliosis (AIS) , complex double major curve, severe. Confidence: High .		
2. Symptom-Imaging Correlation	The patient's visible "razorback" deformity and shoulder imbalance are direct clinical manifestations of the severe right thoracic curve documented on X-rays and CT, which causes a rotational deformity of the ribs attached to the vertebrae. The absence of neurological symptoms (pain, weakness) is consistent with the MRI findings showing no compression of the spinal cord or nerve roots.		
3. Secondary Diagnosis	Incidental finding of spina bifida occulta at S1 ; considered clinically insignificant given the absence of any associated symptoms or tethering.		
4. Differential Diagnoses	Congenital Scoliosis: Ruled out as there are no vertebral malformations (e.g., hemivertebrae, unsegmented bars). Neuromuscular Scoliosis: Ruled out due to the patient's normal neurological examination and lack of history of neuromuscular diseases. Scoliosis secondary to Intraspinal Pathology: Ruled out by the normal spinal cord and neural element appearance on MRI.		
III. Treatment Recommendations			
A. Patient-Centered Recommendations			
Phase	Key Recommendations		
Conservative Treatment Assessment	For curves of this size, especially when they are progressing despite bracing, non-surgical options like bracing or physical therapy are no longer effective at stopping the deformity from getting worse.		
Necessity of Surgery	Surgery is the most reliable option to correct the existing curve, prevent it from worsening over time, and, most importantly, maintain overall spinal balance. This helps prevent future pain, potential lung problems, and cosmetic issues.		
Recommended Surgical Plan	The surgery involves making an incision on your back to access the curved portion of your spine. Special screws and rods are then attached to the vertebrae to gently straighten the spine. Afterward, bone graft is placed to help the corrected segments of your spine heal together into a single, solid bone (a fusion), which makes the correction permanent.		
Expected Post-operative Recovery	You will be encouraged out of bed shortly after surgery and will work closely with physical therapists. A hospital stay of several days is typical. A gradual return to school and light activities can be expected over several weeks to months. Heavy lifting and contact sports will be restricted for up to a year to ensure the fusion heals properly.		
B. Physician-Centered Recommendations			
Condition	Professional Decision Tree		
Adolescent Idiopathic Scoliosis (AIS) - Severe double major curve	1. Indication for Decompression: No neurologic deficits or stenosis on imaging → Decompression Necessary: No . 2. Scene of intervention: The primary structural curves are thoracic and lumbar, causing significant coronal and sagittal imbalance → Target Levels: Correction of the thoracic and primary lumbar curves . 3. Indication for Fusion: Progressive, severe structural curve in an adolescent patient who is skeletally immature → Fusion Necessary: Yes . 4. Indication for Instrumentation: To achieve and maintain three-dimensional correction of the deformity while the spinal fusion matures → Internal Fixation Necessary: Yes (e.g., dual-rod construct with pedicle screw fixation). Conclusion: Posterior spinal fusion with internal fixation is the optimal surgical strategy to address the severe deformity and prevent further progression.		
IV. Risk & Prognosis Assessment			
Item	Assessment		
Surgical Risks	Potential risks include, but are not limited to: infection, excessive bleeding, nerve root or spinal cord injury (paralysis), cerebrospinal fluid leak, failure of correction or instrumentation (e.g., rod breakage, screw pullout), failure of fusion (pseudarthrosis), and blood clots.		
Prognosis	The prognosis for halting curve progression and achieving significant correction of the existing deformity is excellent. The patient can expect a return to a high level of function and prevention of future health complications associated with untreated severe scoliosis.		
Red Flag Warnings	After surgery, immediately report any new or worsening pain, fever, numbness, tingling, weakness, or loss of bowel/bladder control. These could indicate a serious complication such as infection or neurological injury.		
V. Management of Potential Post-operative Issues			
Potential Issue	Intervention Strategy	Red Flag	
Post-operative Neurological Deficit	Minimized by using intraoperative neuromonitoring (SSEP/MEP). If a deficit occurs, immediate investigation (e.g., imaging) and potential revision surgery may be required.	Any new weakness, numbness, or paralysis in the limbs or trunk immediately post-operatively.	
Instrumentation Failure / Pseudoarthrosis	Risk is minimized by using a robust multi-rod construct and ensuring adequate bone grafting. Long-term rehabilitation is crucial to protect the construct while the fusion heals. Routine follow-up is needed to assess for implant integrity and fusion progress.	Persistent pain over the incision, evidence of implant prominence under the skin, or a gradual return of deformity on follow-up X-rays.	
Adjacent Segment Disease	This is a long-term concern. Management includes patient education on maintaining core strength, proper body mechanics, and a healthy weight. Routine clinical and radiographic monitoring is advised.	Development of new, significant back or leg pain years after the initial surgery.	
VI. Rationale & Disclaimer			
1. Diagnostic Rationale Summary: This 11-year-old female presents with a classic case of progressive adolescent idiopathic scoliosis, characterized by a significant, structurally progressive spinal deformity. The diagnosis is confirmed by clinical examination revealing a visible rib hump and shoulder imbalance, and further validated by multi-modal imaging. The X-rays and CT scan quantify the severe curve, while the MRI rules out any underlying neurological or congenital causes. Given the magnitude of the curve and its documented progression despite bracing, surgical intervention is the standard of care to correct the deformity, halt its progression, and prevent future cardiopulmonary and functional complications.			
2. Disclaimer: This output is an AI-generated simulation of clinical decision-making. It is intended for educational, research, or case review purposes and is not a substitute for professional medical advice or clinical judgment.			

Figure 8: Our model's medical report output for adolescent idiopathic scoliosis, featuring six-section structured format: imaging findings, AI diagnosis, treatment recommendations, risk assessment, post-operative management, and clinical rationale.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

GPT-4o Analysis				
GPT-4o Medical Report: Adolescent Idiopathic Scoliosis Analysis				
I. Structured Imaging Report				
Task: Analyze the provided medical images and distill the key imaging evidence that supports your diagnostic conclusion.				
Modality	Key Findings & Parameters	Clinical Significance (How it supports the diagnosis)		
CT Scan	• Lumbar scoliosis with a right-sided curvature ; incidental finding of spina bifida at SI	The scoliosis is confirmed, and the spina bifida is noted as an incidental finding, not contributing to the current symptoms.		
MRI	No significant spinal cord compression or neural involvement; normal spinal cord signal .	Confirms the absence of neurological symptoms correlating with the scoliosis, supporting a structural rather than neurological issue.		
X-ray	• Thoracic scoliosis with a Cobb angle measuring approximately 40 degrees ; right-sided curvature.	The progression of scoliosis is evident, indicating the need for surgical intervention due to the failure of conservative management.		
II. AI-Assisted Diagnosis				
Task: Based on the clinical data and imaging analysis, formulate your diagnostic conclusion and reasoning.				
Diagnostic Tier	Output			
1. Primary Diagnosis	Idiopathic scoliosis with a Cobb angle of 40 degrees , requiring surgical intervention (Confidence: High)			
2. Symptom-Imaging Correlation	The patient's visible spinal deformity and imaging findings correlate with idiopathic scoliosis. The absence of neurological symptoms aligns with the imaging showing no neural compression.			
3. Secondary Diagnosis	Incidental spina bifida at SI , not contributing to current symptoms.			
4. Differential Diagnoses	Other causes of scoliosis such as neuromuscular or congenital scoliosis are less likely due to the absence of neurological symptoms and normal spinal cord imaging.			
III. Treatment Recommendations				
A. Patient-Centered Recommendations				
Use clear, non-technical language to explain to the patient why surgery is necessary and why this specific procedure is recommended.				
Phase	Key Recommendations			
Conservative Treatment Assessment	The brace treatment was not effective in stopping the progression of the curve.			
Necessity of Surgery	Surgery is the most effective way to correct the spinal curve and prevent further progression.			
Recommended Surgical Plan	The procedure will involve straightening the spine and stabilizing it with rods and screws to prevent further curvature.			
Expected Post-operative Recovery	Recovery will take several weeks, with gradual return to normal activities and physical therapy to help regain strength and flexibility.			
B. Physician-Centered Recommendations				
Provide a robust, guideline-based decision tree that justifies the surgical choice.				
Condition	Professional Decision Tree			
Idiopathic scoliosis	1. Indication for Decompression: No neural compression → Decompression Necessary: No 2. Scope of intervention: Cobb angle > 40 degrees → Target Levels: Thoracic spine 3. Indication for Fusion: Progressive curve despite bracing → Fusion Necessary: Yes 4. Indication for Instrumentation: To stabilize and correct curvature → Internal Fixation Necessary: Yes Conclusion: Optimal surgical strategy involves spinal fusion with instrumentation			
IV. Risk & Prognosis Assessment				
Task: Conduct an objective risk and prognosis evaluation for the specific surgical plan.				
Item	Assessment			
Surgical Risks	Risks include infection, bleeding, nerve injury, and instrumentation failure.			
Prognosis	High likelihood of significant improvement in spinal alignment and prevention of further curvature progression.			
Red Flag Warnings	Severe pain, fever, or signs of infection post-op require immediate medical attention.			
V. Management of Potential Post-operative Issues				
Task: Based on the specific procedure, anticipate potential post-operative challenges and outline management strategies.				
Potential Issue	Intervention Strategy	Red Flag		
Incomplete Neurological Recovery	Early and intensive post-op physical therapy, use of neurotrophic agents, periodic monitoring.	New or progressive muscle weakness after surgery.		
Adjacent Segment Disease	Patient education on maintaining core strength, proper ergonomics, routine follow-up.	New pattern of pain months or years after surgery.		
VI. Rationale & Disclaimer				
1. Diagnostic Rationale Summary: The patient's chief complaint of spinal deformity, combined with imaging evidence of a significant Cobb angle and failure of conservative management, logically leads to the diagnosis of idiopathic scoliosis requiring surgical intervention. The absence of neurological symptoms and normal MRI findings support the structural nature of the condition.				
2. Disclaimer: This output is an AI-generated simulation of clinical decision-making. It is intended for educational, research, or case review purposes and is not a substitute for professional medical advice or clinical judgment.				

Figure 9: ChatGPT-4o generated medical report for adolescent idiopathic scoliosis, showing general-purpose AI's approach to clinical documentation with basic diagnostic and treatment recommendations.

G PROMPTS

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

Criteria for Assessing Dimensional Quality in Reports

I. Role and Core Task

You will act as a **top-tier clinical medical expert** and **AI evaluator** (LLM-Judge). Your core task is to rigorously compare the **[LLM Generated Answer]** provided below with the **[Standard Answer]**. Based on a comprehensive and detailed scoring rubric, you will systematically evaluate the **[LLM Generated Answer]**'s performance against the **[Standard Answer]** across multiple dimensions, including **accuracy, completeness, logical coherence, readability, and clinical utility**. Finally, you will output your evaluation in the specified simple format.

II. Inputs for Evaluation

1. **[Standard Answer] (Golden Answer)**
[Please paste the ideal, golden standard answer here]
2. **[LLM Generated Answer]**
[Please paste the AI-generated answer that requires evaluation here]

III. Evaluation Instructions & Scoring Rubric

Please score the **[LLM Generated Answer]** for each dimension below, strictly based on its comparison with the **[Standard Answer]**.

Please note: Scores MUST be continuous values (e.g., 3.5, 4.2, 4.7) to more precisely reflect the subtle differences in the evaluation results between the integer standards. The integer scores (1-5 points) in the rubric should serve as the primary anchors for your scoring, but you should use decimal precision to capture nuanced differences. For example:

- If performance is slightly above "**Good**" (4 pts) but not quite "**Excellent**" (5 pts), use scores like 4.3 or 4.6.
- If performance has minor gaps compared to **standard**, use scores like 3.8 or 4.2.
- Avoid whole numbers unless the performance exactly matches the integer anchor description.

1. Structured Imaging Report

5 pts (Excellent / On Par): On par with the **[Standard Answer]**, accurately describes all key imaging findings, correctly explains their clinical significance, and includes quantitative descriptions.

4 pts (Good / Minor Gaps): The description of major findings is correct, but it lacks some of the quantitative details present in the **[Standard Answer]**.

3 pts (Fair / Clear Gaps): The description is generally correct, but the explanation of clinical significance is clearly less sufficient or in-depth than the **[Standard Answer]**.

2 pts (Poor / Serious Deficiencies): Omits or incorrectly describes key findings that are mentioned in the **[Standard Answer]**.

1 pt (Unacceptable / Completely Wrong): Seriously misinterprets the imaging, with key conclusions that contradict the **[Standard Answer]**.

2. AI-Assisted Diagnosis

5 pts (Excellent / On Par): On par with the **[Standard Answer]**, the primary diagnosis is completely correct, secondary diagnoses are reasonably listed, and key differential diagnoses are correctly ruled out.

4 pts (Good / Minor Gaps): The primary diagnosis is correct, but the list of secondary diagnoses is less complete than in the **[Standard Answer]**.

3 pts (Fair / Clear Gaps): The primary diagnosis is correct but omits important differential diagnoses that are mentioned in the **[Standard Answer]**.

2 pts (Poor / Serious Deficiencies): The primary diagnosis is partially incorrect or omits key components present in the **[Standard Answer]**.

1 pt (Unacceptable / Completely Wrong): The diagnosis is completely wrong or misses a life-threatening condition.

3. Treatment Recommendations

3.1 Patient-Oriented Advice

5 pts (Excellent / On Par): On par with the **[Standard Answer]**, the language is extremely colloquial and easy to understand, the information is completely accurate, the structure is clear, and it is highly effective at reassuring the patient.

1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 10: Criteria for Assessing Dimensional Quality in Reports

1296
1297

Criteria for Assessing Dimensional Quality in Reports

1298
1299**4 pts (Good / Minor Gaps):** The language is easy to understand and the core information is accurate, but the level of empathy or nuance is slightly inferior to the [Standard Answer].1300
1301**3 pts (Fair / Clear Gaps):** The language is generally understandable but contains unexplained jargon, the information is mostly correct but vague, and it clearly lacks the empathy shown in the [Standard Answer].1302
1303**2 pts (Poor / Serious Deficiencies):** The language is obscure and jargon-heavy, the information contains errors or critical omissions, and it is likely to cause patient anxiety.1304
1305**1 pt (Unacceptable / Completely Wrong):** The communication contains serious errors, is misleading, or provides harmful information, making it completely unacceptable.1306
1307**3.2 Treatment Plan & Evidence-Based Consistency**1308
1309**5 pts (Excellent / On Par):** The plan's rationale, individualization, and discussion of evidence-based support are all on par with the depth and breadth of the [Standard Answer].1310
1311**4 pts (Good / Minor Gaps):** The core plan is reasonable, but the discussion of the evidence base is less detailed than in the [Standard Answer].1312
1313**3 pts (Fair / Clear Gaps):** The plan is generally reasonable but lacks the individualized adjustments highlighted in the [Standard Answer].1314
1315**2 pts (Poor / Serious Deficiencies):** Parts of the plan are inconsistent with clinical guidelines, making its rationale far weaker than the [Standard Answer]'s.1316
1317**1 pt (Unacceptable / Completely Wrong):** The plan clearly conflicts with evidence-based medicine and is diametrically opposed to the recommendations in the [Standard Answer].1318
1319**3.3 Surgical/Technical Details & Feasibility**1320
1321**5 pts (Excellent / On Par):** The explanation of surgical goals, technical details, preventive measures, and backup plans is comparable in completeness and professionalism to the [Standard Answer].1322
1323**4 pts (Good / Minor Gaps):** Covers the main technical details, but its consideration of complication prevention is less thorough than the [Standard Answer]'s.1324
1325**3 pts (Fair / Clear Gaps):** The description of details is overly general and lacks the specificity and feasibility assessment present in the [Standard Answer].1326
1327**2 pts (Poor / Serious Deficiencies):** Omits key technical details mentioned in the [Standard Answer], making its feasibility questionable.1328
1329**1 pt (Unacceptable / Completely Wrong):** The technical details are infeasible or pose a safety risk.1330
1331**4. Risk, Prognosis & Post-Op Management**1332
1333**5 pts (Excellent / On Par):** Provides a perioperative management plan, follow-up schedule, and strategy for potential issues that is as systematic, complete, and forward-thinking as the [Standard Answer].1334
1335**4 pts (Good / Minor Gaps):** Covers the main measures but is less systematic or detailed in certain aspects compared to the [Standard Answer].1336
1337**3 pts (Fair / Clear Gaps):** Mentions basic safety measures but lacks the systematic and structured approach demonstrated in the [Standard Answer].1338
1339**2 pts (Poor / Serious Deficiencies):** Omits important safety protocols that are emphasized in the [Standard Answer].1340
1341**1 pt (Unacceptable / Completely Wrong):** Seriously neglects safety, contradicting the patient-centric principles of the [Standard Answer].1342
1343**5. Theoretical Basis & Disclaimer (EVA 4D Evaluation)**1344
1345**5.1 Coverage**1346
1347**5 pts (Excellent / On Par):** On par with the [Standard Answer], accurately identifies and explains all key pieces of evidence with no omissions.1348
1349**4 pts (Good / Minor Gaps):** Covers most key evidence but may omit one non-critical element that was included in the [Standard Answer].**3 pts (Fair / Clear Gaps):** Covers the main evidence but omits one key element or two minor elements present in the [Standard Answer].**2 pts (Poor / Serious Deficiencies):** Covers only a small amount of evidence, and the chain of reasoning is far less complete than the [Standard Answer]'s.**1 pt (Unacceptable / Completely Wrong):** Fails to cover any key evidence, or the evidence cited contradicts the factual basis of the [Standard Answer].

Figure 11: Criteria for Assessing Dimensional Quality in Reports

1350

1351

1352

1353

Criteria for Assessing Dimensional Quality in Reports

1354

5.2 Relevance

1355

5 pts (Excellent / On Par): On par with the [Standard Answer], all discussion is tightly focused on the core diagnosis and decision, with no irrelevant content.

1356

4 pts (Good / Minor Gaps): The main content is relevant, but it includes minor redundant information not found in the focused [Standard Answer].

1357

3 pts (Fair / Clear Gaps): The discussion mixes relevant and irrelevant information, diluting the focus compared to the [Standard Answer].

1358

2 pts (Poor / Serious Deficiencies): The bulk of the discussion is weakly linked to the final decision, and the focus is misplaced.

1359

1 pt (Unacceptable / Completely Wrong): The discussion is entirely irrelevant to the diagnosis or is based on incorrect assumptions.

1360

5.3 Granularity

1361

5 pts (Excellent / On Par): On par with the [Standard Answer], provides precise, quantitative details sufficient to support in-depth clinical judgment.

1362

4 pts (Good / Minor Gaps): Provides key specific information, but the level of detail in some areas is not as deep as in the [Standard Answer].

1363

3 pts (Fair / Clear Gaps): The information is overly general and lacks the distinguishing details found in the [Standard Answer].

1364

2 pts (Poor / Serious Deficiencies): Uses highly generalized language, providing far less informational value than the [Standard Answer].

1365

1 pt (Unacceptable / Completely Wrong): Contains only conclusions with no supporting details, or the details are incorrect.

1366

5.4 Explanation

1367

5 pts (Excellent / On Par): On par with the [Standard Answer], the chain of reasoning is clear, complete, and seamless, with all parts logically supporting the conclusion.

1368

4 pts (Good / Minor Gaps): The overall logic is coherent, but the reasoning for a specific step is slightly less clear or direct than in the [Standard Answer].

1369

3 pts (Fair / Clear Gaps): The chain of reasoning has logical gaps or jumps that are more pronounced than in the [Standard Answer].

1370

2 pts (Poor / Serious Deficiencies): The reasoning contains clear contradictions, or the conclusion does not match the provided evidence.

1371

1 pt (Unacceptable / Completely Wrong): The reasoning is fatally flawed or directly contradicts the conclusion.

1372

IV. Required Output Format

1373

Please strictly follow this simple format. Each line should contain exactly one score and justification:

IMAGING_REPORT: [Score] | [Justification]**DIAGNOSIS:** [Score] | [Justification]**PATIENT_GUIDANCE:** [Score] | [Justification]**EVIDENCE_BASED_PLAN:** [Score] | [Justification]**TECHNICAL_FEASIBILITY:** [Score] | [Justification]**RISK_PROGNOSIS:** [Score] | [Justification]**COVERAGE:** [Score] | [Justification]**RELEVANCE:** [Score] | [Justification]**GRANULARITY:** [Score] | [Justification]**EXPLANATION:** [Score] | [Justification]**Example:****IMAGING_REPORT:** 4.2 | The report accurately describes key findings but lacks some quantitative details.**DIAGNOSIS:** 3.8 | Primary diagnosis is correct but secondary diagnoses are incomplete.

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Figure 12: Criteria for Assessing Dimensional Quality in Reports

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Orthopedic Category Classification Prompt

Classify the orthopedic question into **ONE** category. **Answer ONLY the category name.**

Question: {question} Answer: {answer} Categories:

- **Spine Surgery** - Conditions, injuries, and surgeries related to the spine
- **Foot and Ankle Surgery** - Conditions, injuries, and surgeries related to the foot and ankle
- **Orthopedic Trauma** - Fractures, dislocations, and other acute injuries
- **Hand and Upper Extremity Surgery** - Conditions, injuries, and surgeries related to the hand, wrist, elbow, and shoulder
- **Musculoskeletal Oncology** - Bone and soft tissue tumors
- **Orthopedic Sports Medicine** - Sports-related injuries, arthroscopic surgery
- **Adult Joint Reconstruction** - Arthritis, joint replacement surgery (e.g., hip, knee)

ANSWER WITH THE EXACT NAME: "Spine Surgery", "Foot and Ankle Surgery", "Orthopedic Trauma", "Hand and Upper Extremity Surgery", "Musculoskeletal Oncology", "Orthopedic Sports Medicine", "Adult Joint Reconstruction"

Figure 13: Prompt for Orthopedic Category Classification

Spine Category Classification Prompt

Classify the spine surgery question into **ONE** category. **Answer ONLY the category name.**

Question: {question} Answer: {answer} Categories:

- **General Considerations** - Basic spine anatomy, evaluation, imaging
- **Biomechanics** - Spine mechanics, forces, stability
- **Anatomic Approaches** - Surgical approaches, exposure
- **The Cervical Degenerative Spine** - Cervical disc, stenosis, anterior cervical discectomy and fusion (ACDF)
- **The Thoracic and Lumbar Degenerative Spine** - Lumbar disc, stenosis, fusion
- **Spondylolisthesis** - Spondylolisthesis, pars interarticularis defect
- **Idiopathic Scoliosis** - Adolescent idiopathic scoliosis, curves
- **Adult Spinal Deformity** - Adult scoliosis, sagittal balance
- **Dysplastic and Congenital Deformities** - Dysplastic and congenital deformities
- **Neuromuscular Spine Deformity** - Neuromuscular spinal deformity
- **Kyphosis and Postlaminectomy Deformities** - Kyphosis, post-laminectomy deformities
- **Trauma** - Spine fractures, spinal cord injury
- **Tumor and Osteomyelitis** - Spine tumors, infections
- **Complications** - Surgical complications, internal fixation failure

ANSWER WITH THE EXACT NAME: "General Considerations", "Biomechanics", "Anatomic Approaches", "The Cervical Degenerative Spine", "The Thoracic and Lumbar Degenerative Spine", "Spondylolisthesis", "Idiopathic Scoliosis", "Adult Spinal Deformity", "Dysplastic and Congenital Deformities", "Neuromuscular Spine Deformity", "Kyphosis and Postlaminectomy Deformities", "Trauma", "Tumor and Osteomyelitis", "Complications"

Figure 14: Prompt for Spine Category Classification

1458
 1459
 1460
 1461
 1462 Generating Medical Q&A for Fine-Tuning Prompt
 1463
 1464 "You are a senior clinical medical educator. Please carefully read the provided medical textbook content
 1465 below and generate **multiple high-quality open-ended question-answer pairs** based on the core
 1466 knowledge points, all for fine-tuning large language models. Each Q&A should be self-contained and
 1467 completely independent."
 1468 "***Strict Requirements:**"
 1469 "1. **Complete Independence**: Each question and answer must constitute a complete knowledge unit
 1470 that can be understood without any external background materials."
 1471 "2. **Prohibited Referential Terms**: Strictly prohibit using terms like this guide, the study, the above
 1472 materials, this article, the report or any other terms that refer to the original text in questions or answers."
 1473 "3. **Clinical Depth Requirements**: Questions should reflect real clinical scenarios, testing deep
 1474 understanding and clinical thinking rather than simple yes/no questions."
 1475 "4. **Open-Ended Design**: Questions should encourage detailed analysis, requiring comprehensive,
 1476 structured answers that demonstrate clinical reasoning processes."
 1477 "5. **Answer Completeness**: Answers must be detailed and comprehensive, including analysis
 1478 process, reasoning logic, and final conclusions."
 1479 "6. **Question Type Diversity**: Should cover multiple dimensions including pathological mechanism
 1480 explanation, diagnostic thinking analysis, treatment plan design, complication prevention strategies,
 1481 etc."
 1482 "***Question Quantity Requirements:**"
 1483 "- Generate appropriate number of questions based on text length"
 1484 "- Short text (1-2 paragraphs): Generate 2-3 questions"
 1485 "- Medium text (3-5 paragraphs): Generate 3-5 questions"
 1486 "- Long text (6+ paragraphs): Generate 5-8 questions"
 1487 "***Output Format Requirements:**"
 1488 "Strictly follow the XML format below, each textbook page can generate multiple questions:"
 1489 "```xml"
 1490 "<problem>[Open-ended question 1 stem]</problem>"
 1491 "<answer>[Detailed open-ended answer for question 1, including analysis process and conclusions]</answer>"
 1492 "<problem>[Open-ended question 2 stem]</problem>"
 1493 "<answer>[Detailed open-ended answer for question 2, including analysis process and conclusions]</answer>"
 1494 "<problem>[Open-ended question 3 stem]</problem>"
 1495 "<answer>[Detailed open-ended answer for question 3, including analysis process and conclusions]</answer>"
 1496 "```"
 1497 "***Important Notes:**"
 1498 "1. Strictly follow the XML format"
 1499 "2. Question stems should be clear and specific, encouraging deep thinking, avoiding simple yes/no
 1500 questions"
 1501 "3. Answers should be comprehensive and detailed, including analysis process, reasoning logic, and
 1502 final conclusions"
 1503 "4. Output only XML objects, no additional explanatory text"
 1504 "5. Each question should be independent and complete, not dependent on other questions or external
 1505 materials"
 1506 "6. Answers should demonstrate the depth of medical professional knowledge and the logic of clinical
 1507 thinking"
 1508 "***Textbook Content:**content"
 1509 "Please generate high-quality medical open-ended question-answer pairs based on the above textbook
 1510 content."
 1511"

Figure 15: Prompt for Generating Medical Q&A for Fine-Tuning

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521

1522 Generating Medical MCQs for Fine-Tuning Prompt

1523
1524 "You are a senior clinical medical educator and examination expert. Please carefully read the provided
1525 medical textbook content below and generate **multiple high-quality multiple-choice questions with
1526 answers** based on the core knowledge points, all for fine-tuning large language models. Each Q&A
1527 should be self-contained and completely independent."
1528 "***Strict Requirements:**"
1529 "1. **Complete Independence**: Each question and options must constitute a complete knowledge
1530 unit that can be understood without any external background materials."
1531 "2. **Prohibited Referential Terms**: Strictly prohibit using terms like this guide, the study, the above
1532 materials, this article, the report or any other terms that refer to the original text in questions or options."
1533 "3. **Clinical Depth Requirements**: Questions should reflect real clinical scenarios, testing deep
1534 understanding and clinical judgment rather than simple memorization."
1535 "4. **Option Design**: Each question must include 4 options (A, B, C, D), with 1 correct answer and
1536 3 high-quality distractors. Distractors should be based on common clinical misconceptions or related
1537 concepts."
1538 "5. **Question Type Diversity**: Should cover multiple dimensions including diagnostic reasoning,
1539 treatment selection, mechanism explanation, differential diagnosis, complication prevention, etc."
1540 "***Question Quantity Requirements:
1541 "- Generate appropriate number of questions based on text length"
1542 "- Short text (1-2 paragraphs): Generate 2-3 questions"
1543 "- Medium text (3-5 paragraphs): Generate 4-6 questions"
1544 "- Long text (6+ paragraphs): Generate 7-10 questions"
1545 "***Output Format Requirements:
1546 "Strictly follow the XML format below, each textbook page can generate multiple questions:
1547 ""“xml”
1548 "<problem>[Question 1 stem] A. [Option A] B. [Option B] C. [Option C] D. [Option D]</problem>"
1549 "<answer>[Question 1 correct answer option letter]</answer>"
1550 "<problem>[Question 2 stem] A. [Option A] B. [Option B] C. [Option C] D. [Option D]</problem>"
1551 "<answer>[Question 2 correct answer option letter]</answer>"
1552 "<problem>[Question 3 stem] A. [Option A] B. [Option B] C. [Option C] D. [Option D]</problem>"
1553 "<answer>[Question 3 correct answer option letter]</answer>"
1554 "****"
1555 "***Important Notes:**"
1556 "1. Strictly follow the XML format"
1557 "2. Question stems should be clear and specific, testing deep understanding and clinical judgment"
1558 "3. Options should be reasonably designed, including correct answers and high-quality distractors"

1559
1560
1561
1562
1563
1564
1565
Figure 16: Prompt for Generating Medical MCQs for Fine-Tuning

1566
1567
1568
1569
1570

1571 Generating Context-Localized Multimodal Q&A Prompt
1572

1573 "You are a senior clinical medical educator. Based on the provided image information, caption, and
1574 context, precisely locate the image's position in the context and generate high-quality open-ended
1575 questions and answers."
1576 "'''Core Task: Multimodal Understanding and Precise Localization Open-Ended Q&A'''"
1577 "'''Step 1: Multimodal Information Understanding'''"
1578 "1. '''Image Understanding'''": Analyze the specific medical content shown in the image (anatomical
1579 structures, pathological manifestations, surgical procedures, imaging features, instrument usage, etc.)"
1580 "2. '''Caption Understanding'''": Identify figure numbers, positions, operational steps, or key
1581 information mentioned in the caption"
1582 "3. '''Context Understanding'''": Analyze medical knowledge points, operational procedures, and
1583 clinical key points in the preceding and following text"
1584 "4. '''Position Localization'''": Precisely locate the image's specific position and role in the context"
1585 "'''Step 2: Precise Position Localization'''"
1586 "1. '''Caption-Context Matching'''":
1587 " - If the caption contains a figure number (e.g., Figure 12.1), find the corresponding figure reference in
1588 the context"
1589 " - If the caption describes operational steps, locate the corresponding operational description in the
1590 context"
1591 " - If the caption describes anatomical structures, find related anatomical descriptions in the context"
1592 "2. '''Context Position Analysis'''":
1593 " - Analyze preceding text: background information, preparation steps, and related concepts before the
1594 image appears"
1595 " - Analyze following text: operational steps, precautions, and clinical significance after the image is
1596 shown"
1597 " - Determine the image's specific role in the entire process"
1598 "'''Step 3: Generate Open-Ended Q&A Based on Precisely Located Content'''"
1599 "Must generate open-ended questions and answers based on precisely located medical knowledge
1600 points:"
1601 " - Deeply analyze the relationship between located content and the image"
1602 " - Generate open-ended questions based on precisely located content"
1603 " - Ensure questions are highly relevant to both image content and context"
1604 " - If unable to precisely locate suitable content, skip this question"
1605 "'''Step 4: High-Quality Open-Ended Q&A Design'''"
1606 "Based on precisely located content, generate open-ended questions and answers with the following
1607 characteristics:"
1608 "'''Q&A Design Principles'''":
1609 "1. '''Multimodal Relevance'''": Questions must be relevant to image content, caption information, and
1610 context content simultaneously"
1611 "2. '''Clinical Orientation'''": Questions should be based on real clinical scenarios, testing clinical
1612 thinking and decision-making abilities"
1613 "3. '''Open-Ended Design'''": Encourage deep thinking, avoid yes/no questions, require detailed
1614 analysis"
1615 "4. '''Position Precision'''": Questions should be based on the image's precise location in the context"
1616 "5. '''Prohibited Referential Terms'''": Strictly prohibit using terms like according to the context; this
1617 guide; the study; the above materials; this article; the report; or any other terms that refer to the original
1618 text in questions or answers"
1619 "6. '''Answer Design'''":

Figure 17: Prompt for Generating Context-Localized Multimodal Q&A

1614
1615
1616
1617
1618
1619

1620

1621

1622

1623

1624 Generating Context-Localized Multimodal Q&A Prompt

1625

" - Answers must be based on precisely located content"
 " - Cover relevant medical knowledge and clinical considerations"
 " - Reflect clinical thinking and decision-making process"
 "7. **Question Type Priority:**"
 " - Diagnostic analysis questions (in-depth analysis based on imaging findings, clinical symptoms, etc.)"
 " - Treatment decision questions (detailed analysis of surgical indications, treatment plan selection, etc.)"
 " - Mechanism explanation questions (in-depth explanation of anatomical-physiological relationships, pathological mechanisms, etc.)"
 " - Technical operation questions (detailed explanation of surgical steps, instrument usage, etc.)"
 " - Risk assessment questions (comprehensive analysis of complication prevention, management strategies, etc.)"
Output Format Requirements:
 "Strictly follow the following XML format, each image can generate multiple different Q&A pairs:"
 "```xml"
 "<problem><image>
 n[First open-ended question stem]</problem>"
 "<answer>[First detailed open-ended answer]</answer>"
 "<problem><image>
 n[Second open-ended question stem]</problem>"
 "<answer>[Second answer, directly answering the question]</answer>"
 "<problem><image>
 n[Third open-ended question stem]</problem>"
 "<answer>[Third answer, directly answering the question]</answer>"
 "```"
Important Notes:
 "1. Strictly follow the XML format"
 "2. Question stems should be clear and specific, encouraging deep thinking, avoiding simple yes/no questions"
 "3. Answers should be comprehensive and detailed, including analysis process, reasoning logic, and final conclusions"
 "4. If unable to precisely locate relevant content, do not generate questions"
 "5. Output only one complete XML object"
 "6. Strictly prohibit using referential terms"
 "7. **Image Reference Standards:** When referencing images in questions, use general terms like as shown in the image, the image displays, imaging findings etc., strictly prohibit using specific figure numbers (e.g., Figure 10.8; Figure 12.1; etc.)"
Processing Workflow:
 "1. Analyze the image caption to understand the specific medical content shown"
 "2. Precisely locate medical knowledge points in the context related to the caption"
 "3. Determine the image's specific position and role in the context"
 "4. If precise localization is successful and content is suitable for questions, generate open-ended Q&A based on located content"
 "5. If unable to precisely locate or content is not suitable for questions, do not generate questions"
 "6. Ensure questions have clinical value and educational significance"
Provided Information:
 "Image Caption: caption"
 "Context Information: context"
 "Please precisely locate the image's position in the context and generate high-quality medical open-ended questions and answers. If unable to precisely locate suitable content, do not generate questions. Strictly follow the specified XML format."

1668

1669

1670

1671

1672

1673

Figure 18: Prompt for Generating Context-Localized Multimodal Q&A

1674

1675

1676

1677

1678

1679

1680

Generating Context-Localized Multimodal MCQs Prompt

"You are a senior clinical medical educator and examination expert. Your task is to precisely locate the image's position in the context based on the provided image information, caption, and context, then generate high-quality multiple-choice questions."

"**Core Task: Multimodal Understanding and Precise Localization Question Generation**"

"**Step 1: Multimodal Information Understanding**"

"1. **Image Understanding**: Analyze the specific medical content shown in the image (anatomical structures, pathological manifestations, surgical procedures, imaging features, instrument usage, etc.)"

"2. **Caption Understanding**: Identify figure numbers, positions, operational steps, or key information mentioned in the caption"

"3. **Context Understanding**: Analyze medical knowledge points, operational procedures, and clinical key points in the preceding and following text"

"4. **Position Localization**: Precisely locate the image's specific position and role in the context"

"**Step 2: Precise Position Localization**"

"1. **Caption-Context Matching**:"

" - If the caption contains a figure number (e.g., Figure 12.1), find the corresponding figure reference in the context"

" - If the caption describes operational steps, locate the corresponding operational description in the context"

" - If the caption describes anatomical structures, find related anatomical descriptions in the context"

"2. **Context Position Analysis**:"

" - Analyze preceding text: background information, preparation steps, and related concepts before the image appears"

" - Analyze following text: operational steps, precautions, and clinical significance after the image is shown"

" - Determine the image's specific role in the entire process"

"**Step 3: Generate Questions Based on Precisely Located Content**"

"Must generate clinical multiple-choice questions based on precisely located medical knowledge points:"

" - Deeply analyze the relationship between located content and the image"

" - Generate multiple-choice questions based on precisely located content"

" - Ensure questions are highly relevant to both image content and context"

" - If unable to precisely locate suitable content, skip this question"

"**Step 4: High-Quality Multiple-Choice Question Design**"

"Based on precisely located content, generate clinical multiple-choice questions with the following characteristics:"

"**Q&A Design Principles**"

"1. **Multimodal Relevance**: Questions must be relevant to image content, caption information, and context content simultaneously"

"2. **Clinical Orientation**: Questions should be based on real clinical scenarios, testing clinical thinking and decision-making abilities"

"3. **Multiple-Choice Design**: Provide multiple options to test deep understanding and clinical judgment"

"4. **Position Precision**: Questions should be based on the image's precise location in the context"

"5. **Prohibited Referential Terms**: Strictly prohibit using terms like according to the context, this guide, the study, the above materials, this article, the report or any other terms that refer to the original text in questions or options"

Figure 19: Prompt for Generating Context-Localized Multimodal MCQs

1720

1721

1722

1723

1724

1725

1726

1727

1728
1729
1730
1731
1732
1733
1734
1735

Generating Context-Localized Multimodal MCQs Prompt

1736 "6. **Option Design**:"
 1737 " - Correct answer must be based on precisely located content"
 1738 " - Distractors should be based on common clinical misconceptions or related but inaccurate concepts"
 1739 " - All options should have clinical plausibility"
 1740 "7. **Question Type Priority**:"
 1741 " - Diagnostic analysis questions (in-depth analysis based on imaging findings, clinical symptoms, etc.)"
 1742 " - Treatment decision questions (detailed analysis of surgical indications, treatment plan selection, etc.)"
 1743 " - Mechanism explanation questions (in-depth explanation of anatomical-physiological relationships, pathological mechanisms, etc.)"
 1744 " - Technical operation questions (detailed explanation of surgical steps, instrument usage, etc.)"
 1745 " - Risk assessment questions (comprehensive analysis of complication prevention, management strategies, etc.)"
 1746 "**Output Format Requirements**:"
 1747 "**Strictly follow the following XML format**:"
 1748 "**xml**"
 1749 "<problem><image>
 1750 n[Question stem] A. [Option A] B. [Option B] C. [Option C] D. [Option D]</problem>"
 1751 "<answer>[Correct answer option letter]</answer>"
 1752 "```"
 1753 "**Important Notes**:"
 1754 "1. Strictly follow the XML format"
 1755 "2. Question stems should be clear and specific, testing deep understanding and clinical judgment"
 1756 "3. Options should be reasonably designed, including correct answers and distractors"
 1757 "4. If unable to precisely locate relevant content, do not generate questions"
 1758 "5. Output only one complete XML object"
 1759 "6. Strictly prohibit using referential terms"
 1760 "7. **Image Reference Standards**: When referencing images in questions, use general terms like
 1761 as shown in the image, the image displays, imaging findings etc., strictly prohibit using specific figure
 1762 numbers (e.g., Figure 10.8, Figure 12.1, etc.)"
 1763 "**Processing Workflow**:"
 1764 "1. Analyze the image caption to understand the specific medical content shown"
 1765 "2. Precisely locate medical knowledge points in the context related to the caption"
 1766 "3. Determine the image's specific position and role in the context"
 1767 "4. If precise localization is successful and content is suitable for questions, generate multiple-choice
 1768 questions based on located content"
 1769 "5. If unable to precisely locate or content is not suitable for questions, do not generate questions"
 1770 "6. Ensure questions have clinical value and educational significance"
 1771 "**Provided Information**:"
 1772 "Image Caption: caption"
 1773 "Context Information: context"
 1774 "Please precisely locate the image's position in the context and generate high-quality medical multiple-
 1775 choice questions. If unable to precisely locate suitable content, do not generate questions. Strictly
 1776 follow the specified XML format."

Figure 20: Prompt for Generating Context-Localized Multimodal MCQs

1777
1778
1779
1780
1781