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ABSTRACT

Matrix-stepsized gradient descent algorithms have been demonstrated to exhibit superior efficiency
in non-convex optimization compared to their scalar counterparts. The det-CGD algorithm, as
introduced by Li et al. (2023), leverages matrix stepsizes to perform compressed gradient descent
for non-convex objectives and matrix-smooth problems in a federated manner. The authors establish
the algorithm’s convergence to a neighborhood of the weighted stationarity point under a convex
condition for the symmetric and positive-definite stepsize matrix. In this paper, we propose a
variance-reduced version of the det-CGD algorithm, incorporating the MARINA method. Notably,
we establish theoretically and empirically, that det-MARINA outperforms both MARINA and the
distributed det-CGD algorithms in terms of iteration and communication complexities.

1 INTRODUCTION

1.1 PROBLEM SETTING

We are focusing on optimizing the finite sum non-convex objective, as defined below:

min
x∈Rd

f(x), where f(x) :=
1

n

n∑
i=1

fi(x). (1)

In this context, each function fi : Rd → R is differentiable. It is assumed that f is lower bounded by f?, while each
individual function fi is lower bounded by f?i . This type of objective function finds extensive application in various
practical machine learning algorithms, which increase not only in terms of the data size but also in the model size and
overall complexity as well. As a result, most neural network architectures result in highly non-convex empirical losses,
which need to be minimized. In addition, it becomes computationally infeasible to train these models on one device,
often excessively large, and one needs to redistribute them amongst different devices/clients. This redistribution results
in a high communication overheads, which are often become the bottleneck in this framework.

In other words, we have the following setting. The data is partitioned into n clients, where the i-th client has access to
the component function fi and its derivatives. The clients are connected to each other through a central device, called
the server. In this work, we are going to study iterative gradient descent-based algorithms that operate as follows: The
clients compute the local gradients in parallel. Then they compress these gradients to reduce the communication cost
and send them to the server in parallel. The server then aggregates these vectors and broadcasts the iterate update back
to the clients. This meta-algorithm is called federated learning. We refer the readers to Konečnỳ et al. (2016); McMahan
et al. (2017); Kairouz et al. (2021) for a more thorough introduction to federated learning.

Contributions. In this paper, we introduce a federated learning algorithm named det-MARINA. This algorithm
extends a recent method called det-CGD (Li et al., 2023), which aims to solve (1) using matrix stepsized gradient
descent. Under the matrix smoothness assumption (Safaryan et al., 2021), they demonstrate that the matrix stepsized
version of the Distributed Compressed Gradient Descent (Khirirat et al., 2018) algorithm enhances communication
complexity compared to its scalar counterpart. However, in their analysis, Li et al. (2023) show stationarity only within
a certain neighborhood due to stochastic compressors. Our algorithm addresses this issue by incorporating a variance
reduction scheme called MARINA (Gorbunov et al., 2021), which is an optimal federated learning algorithm in the
non-convex setting. We establish theoretically and empirically, that det-MARINA outperforms both MARINA and
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the distributed det-CGD algorithms in terms of iteration and communication complexities. In addition, we describe
specific matrix stepsize choices, for which algorithm beats the scalar MARINA and distributed det-CGD both in theory
and in practice.

1.2 BACKGROUND AND MOTIVATION

Ideally, for any given ε > 0, the goal is to find a point xε ∈ Rd satisfying:

f(x)− f? ≥ ε.

However, it’s important to note that in the general case, finding such an approximately global optimum is known to be
NP-hard, as discussed in Jain et al. (2017); Danilova et al. (2022).

On the contrary, convex optimization problems are well-studied, and there exists an extensive body of literature on
various methods. In the context of our work, methods based on gradient descent are of particular interest. When these
methods are applied to non-convex objectives, they treat the function f as locally convex and aim to converge to a
local minimum. Despite this simplification, such methods have gained popularity in practice due to their superior
performance compared to other approaches for non-convex optimization, such as convex relaxation-based methods
(Tibshirani, 1996; Cai et al., 2010).

Stochastic Gradient Descent. Arguably, one of the most prominent meta-methods for tackling non-convex optimiza-
tion problems is stochastic gradient descent (SGD). The formulation of SGD is presented as the following iterative
algorithm:

xk+1 = xk − γgk. (SGD)

Here, gk ∈ Rd serves as a stochastic estimator of the gradient ∇f(xk). SGD essentially mimics the classical gradient
descent algorithm, and recovers it when gk = ∇f(xk). In this scenario, the method approximates the objective function
f using a linear function and takes a step of size γ in the direction that maximally reduces this approximation. When
the stepsize is sufficiently small, and the function f is suitably smooth, it can be demonstrated that the function value
decreases, as discussed in Bubeck et al. (2015); Gower et al. (2019).

However, computing the full gradient can often be computationally expensive. In such cases, stochastic approximations
of the gradient come into play. Stochastic estimators of the gradient can be employed for various purposes, leading to
the development of different methods. These include stochastic batch gradient descent (Nemirovski et al., 2009; Johnson
& Zhang, 2013; Defazio et al., 2014), randomized coordinate descent (Nesterov, 2012; Wright, 2015), and compressed
gradient descent (Alistarh et al., 2017; Khirirat et al., 2018; Mishchenko et al., 2019). The latter, compressed gradient
descent, holds particular relevance to this paper, and we will delve into a more detailed discussion of it in subsequent
sections.

Second order methods. The stochastic gradient descent is considered as a first-order method as it uses only the
first order derivative information. Although being immensely popular, the first order methods are not always the most
optimal. Not surprisingly, using higher order derivatives in deciding update direction can yield to faster algorithms. A
simple instance of such algorithms is the Newton Star algorithm (Islamov et al., 2021):

xk+1 = xk −
(
∇2f(x?)

)−1∇f(xk), (NS)

where x? is the minimum point of the objective function. The authors establish that under specific conditions, the
algorithm’s convergence to the unique solution x? in the convex scenario occurs at a local quadratic rate. Nonetheless,
its practicality is limited since we do not have prior knowledge of the Hessian matrix at the optimal point. Despite being
proposed recently, the Newton-Star algorithm gives a deeper insight on the generic Newton method (Gragg & Tapia,
1974; Miel, 1980; Yamamoto, 1987):

xk+1 = xk − γ
(
∇2f(xk)

)−1∇f(xk). (NM)

Here, the unknown Hessian of the Newton-Star algorithm, is estimated progressively along the iterations. The latter
causes elevated computational costs, as the inverting a large square matrix is expensive. As an alternative, quasi-Newton
methods replace the inverse of the Hessian at the iterate with a computationally cheaper estimate (Broyden, 1965;
Dennis & Moré, 1977; Al-Baali & Khalfan, 2007; Al-Baali et al., 2014).
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Fixed matrix stepsizes. The det-CGD algorithm falls into this framework of the second order methods as well.
Proposed by Li et al. (2023)1, the algorithm suggests using a uniform “upper bound” on the inverse Hessian matrix.
Assuming matrix smoothness of the objective (Safaryan et al., 2021), they replace the scalar stepsize with a positive
definite matrix D. The algorithm is given as follows:

xk+1 = xk −DSk∇f(xk). (det-CGD)

• Here, D plays the role of the stepsize. It essentially uniformly upper bounds the inverse Hessian. The standard
SGD is a particular case of this method, as the scalar stepsize γ can be seen as a matrix γId, where Id is
the d-dimensional identity matrix. An advantage of using a matrix stepsize is more evident if we take the
perspective of the second order methods. Indeed, the scalar stepsize γId uniformly estimates the largest
eigenvalue of the Hessian matrix, while D can capture the Hessian more accurately. The authors show both
theoretical and empirical improvement that comes with matrix stepsizes.

• Sk is a positive semi-definite stochastic sketch matrix, that is unbiased: E[Sk] = Id. We notice that det-CGD
can be seen as a matrix stepsize instance of SGD, with gk = Sk∇f(xk). The sketch matrix can be seen
as a linear compressing operator, hence the name of the algorithm: CGD (Compressed Gradient Descent)
(see Alistarh et al. (2017); Khirirat et al. (2018)). A commonly used example of such a compressor is the
Rand-k compressor. This compressor randomly selects m entries from its input and scales them using a scalar
multiplier to ensure an unbiased estimation. By adopting this approach, instead of using all d coordinates of
the gradient, only a subset of size m is communicated. Formally, rand-τ is defined as follows:

S =
d

τ

τ∑
j=1

eije
>
ij . (2)

Here, eij denotes the ij-th standard basis vector in Rd. For a more comprehensive understanding of compres-
sion techniques, we refer to the paper by Safaryan et al. (2022b).

The neighborhood of the distributed det-CGD1. The distributed version of det-CGD follows the standard federated
learning paradigm (McMahan et al., 2017). The pseudocode of the method, as well as the convergence result of Li et al.
(2023), can be found in the appendix. Informally, their convergence result can be written as

min
k=1,...,K

E[
∥∥∇f(xk)

∥∥2

D
] ≤ O

(
(1 + α)K

K

)
+O (α) , (3)

where α > 0 is a constant that can be controlled. The crucial insight from this result is that the error bound doesn’t
diminish as the number of iterations increases. In fact, by controlling α and considering a large K, it’s impossible to
make the second term smaller than ε. This implies that the algorithm converges to a certain neighborhood surrounding
the (local) optimum. This phenomenon is a common occurrence in SGD and is primarily attributable to the variance
associated with the stochastic gradient estimator. In the case of det-CGD the stochasticity comes from the sketch Sk.

Variance reduction. To eliminate this neighborhood, various techniques for reducing variance are employed. One
of the simplest techniques applicable to CGD is gradient shifting. By replacing Sk∇f(xk) with Sk(∇f(xk) −
∇f(x?)) + ∇f(x?), the neighborhood effect is removed from the general CGD. This algorithm is an instance of a
more commonly known method called SGD? (Gower et al., 2020). However, since the exact optimum x? is typically
unknown, this technique encounters similar challenges as the Newton-Star algorithm mentioned earlier. Fortunately,
akin to quasi-Newton methods, one can employ methods that iteratively learn the optimal shift (Shulgin & Richtárik,
2022).

A line of research focuses on variance reduction for CGD based on this insight. To mitigate the neighborhood effect in
the distributed version of CGD, denoted as det-CGD1, we apply a technique called MARINA (Gorbunov et al., 2021).
MARINA cleverly combines the general shifting technique with loopless variance reduction techniques (Qian et al.,
2021). This approach introduces an alternative gradient estimator specifically designed for the federated learning setting.
Thanks to its structure, it allows to establish an upper bound on the stationarity error that diminishes significantly with a
large number of iterations. In this paper, we construct the analog of the this algorithm called det-MARINA, using
matrix stepsizes and sketch gradient compressors. For this new method, we prove a convergence guarantee similar to
(3) that without a neighborhood term.

1In the original paper, the algorithm is referred to as det-CGD, as there is a variant of the same algorithm named det-CGD2.
Since we are going to use only the first one and our framework is applicable to both, we will remove the number in the end for the
sake of brevity.
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1.3 PRIOR WORK

Numerous effective convex optimization techniques have been adapted for application in non-convex scenarios. Here’s
a selection of these techniques, although it’s not an exhaustive list: adaptivity (Dvinskikh et al., 2019; Zhang et al.,
2020b), variance reduction (J Reddi et al., 2016; Li et al., 2021), and acceleration (Guminov et al., 2019). Of particular
relevance to our work is the paper by Khaled & Richtárik (2020), which introduces a unified approach for analyzing
stochastic gradient descent for non-convex objectives. A comprehensive overview of non-convex optimization can be
found in (Jain et al., 2017; Danilova et al., 2022).

An illustrative example of a matrix stepsized method is Newton’s method, which has been a long-standing favorite
in the optimization community (Gragg & Tapia, 1974; Miel, 1980; Yamamoto, 1987). However, the computational
complexity involved in computing the stepsize as the inverse of the Hessian of the current iteration is substantial.
Instead, quasi-Newton methods employ a readily computable estimator to replace the inverse Hessian (Broyden, 1965;
Dennis & Moré, 1977; Al-Baali & Khalfan, 2007; Al-Baali et al., 2014). An important direction of research that is
relevant to our work, studies distributed second order methods. Here is a non-exhaustive list of papers in this area:
Wang et al. (2018); Crane & Roosta (2019); Zhang et al. (2020a); Islamov et al. (2021); Alimisis et al. (2021); Safaryan
et al. (2022a).

The Distributed Compressed Gradient Descent (DCGD) algorithm, initially proposed by Khirirat et al. (2018), has
seen improvements in various aspects, as documented in works such as (Li et al., 2020; Horváth et al., 2022). Its
variance reduced version with gradients shifts was studied by Shulgin & Richtárik (2022) in the (strongly) convex
setting. Additionally, there exists a substantial body of literature on other federated learning algorithms employing
unbiased compressors (Alistarh et al., 2017; Mishchenko et al., 2019; Gorbunov et al., 2021; Mishchenko et al., 2022;
Maranjyan et al., 2022; Horváth et al., 2023).

Variance reduction techniques have gained significant attention in the context of stochastic batch gradient descent that is
prevalent in machine learning. Numerous algorithms have been developed in this regard, including well-known ones
like SVRG (Johnson & Zhang, 2013), SAG (Schmidt et al., 2017), SDCA (Richtárik & Takáč, 2014), SAGA (Defazio
et al., 2014), MISO (Mairal, 2015), and Katyusha (Allen-Zhu, 2017). An overview of more advanced methods can
be found in Gower et al. (2020). Notably, SVRG and Katyusha have been extended with loopless variants, namely
L-SVRG and L-Katyusha (Kovalev et al., 2020; Qian et al., 2021). These loopless versions streamline the algorithms
by eliminating the outer loop and introducing a biased coin-flip mechanism at each step. This simplification eases
both the algorithms’ structure and their analyses, while preserving their worst-case complexity bounds. L-SVRG, in
particular, offers the advantage of setting the exit probability from the outer loop independently of the condition number,
thus, enhancing both robustness and practical efficiency.

This technique of coin flipping allows to obtain variance reduction for the CGD algorithm. A relevant example is the
DIANA algorithm proposed by Mishchenko et al. (2019). Its convergence was proved both in the convex and non-convex
cases. Later, MARINA (Gorbunov et al., 2021) obtained the optimal convergence rates, improving in communication
complexity compared to all previous first order methods. Finally, there is a line of work developing variance reduction
in the federated setting using other methods and techniques (Chraibi et al., 2019; Hanzely & Richtárik, 2020; Dinh
et al., 2020; Peng et al., 2022; Tyurin & Richtárik, 2022).

1.4 ORGANIZATION OF THE PAPER

The rest of the paper is organized as follows. Section 2 discusses the general mathematical framework. In particular,
Section 2.2 lists the assumptions the we use later in the analysis and puts them in perspective with existing work.
Section 3 presents the det-MARINA algorithm as well as the main theorem that guarantees convergence to a stationary
point.. We show the superior theoretical performance of our algorithm compared to MARINA and det-CGD in Section 4.
The details on the experimental setup and more plots can be found in the Appendix. Section 5 contains several plots,
which confirm our theoretical findings. We conclude the main section of the paper in Section 6.

2 MATHEMATICAL FRAMEWORK
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2.1 NOTATIONS

The standard Euclidean norm on Rd is defined as ‖·‖. We use Sd++ (resp. Sd+) to denote the positive definite (resp.
semi-definite) cone of dimension d. Sd is used to denote all symmetric matrices of dimension d. We use the notation
Id to denote the identity matrix of size d× d, and Od to denote the zero matrix of size d× d. Given Q ∈ Sd++ and
x ∈ Rd, ‖x‖Q :=

√
x>Qx =

√
〈x,Qx〉, where 〈·, ·〉 is the standard Euclidean inner product on Rd. For a matrix

A ∈ Sd, we use λmax (A) (resp. λmin (A)) to denote the largest (resp. smallest) eigenvalue of the matrix A. For a
function f : Rd 7→ R, its gradient and its Hessian at a point x ∈ Rd are respectively denoted as ∇f(x) and ∇2f(x).
For the sketch matrices Ski used in the algorithm, we use the superscript k to denote the iteration and subscript i to
denote the client, the matrix Ski is thus sampled for client i in the k-th iteration from sine distribution S . For any matrix
A ∈ Sd, we use the notation diag (A) ∈ Sd to denote the diagonal of matrix A.

2.2 ASSUMPTIONS AND CONDITIONS

In this section we present the assumptions we needed in order to analyze det-MARINA.
Assumption 1. (Lower Bound) There exists f? ∈ R such that, f(x) ≥ f? for all x ∈ Rd.

This is a standard assumption in optimization, as otherwise the problem of minimizing the objective would not be
correct mathematically. The same assumption is used in MARINA. We then need a matrix version of L-smoothness in
order to proceed. Previously, Safaryan et al. (2021), Wang et al. (2022) used L-matrix smoothness in the (strongly)
convex setting to analyze some variants of the DCGD. Li et al. (2023) provided the analysis of sketched gradient descent
under this assumption in the non-convex case. The assumption is formulated as follows,
Assumption 2. (Li-matrix smoothness) Assume that each function fi is Li-smooth for all i ∈ [n] = {1, 2, 3, ..., n}.
That is for each function fi, the following inequality holds:

fi(x) ≤ fi(y) + 〈∇fi(y), x− y〉+
1

2
‖x− y‖2Li

. (4)

However, we do not want to use Assumption 2 in the analysis, as in the analysis of det-MARINA one needs to upper
bound the squared difference of gradients by a multiple of squared difference of iterate. The latter is not implied from
Assumption 2 for non-convex functions, as opposed to the convex ones. Instead, we introduce the matrix version of
the L-Lipschitz continuous gradient assumption used in the analysis for MARINA of Gorbunov et al. (2021). Note that
the "smoothness" the authors are referring to is indeed the Lipschitz continuous gradient assumption, instead of the
standard smoothness assumption (Nesterov, 2003).
Definition 1. (L-Lipschitz Gradient) Assume that f : Rd → R is a continuously differentiable function and matrix
L ∈ Sd++. We say the gradient of f is L-Lipschitz if

‖∇f(x)−∇f(y)‖L−1 ≤ ‖x− y‖L , ∀x, y ∈ Rd. (5)

This condition can be interpreted as follows. The gradient of f naturally belongs to the dual space of Rd, as it is defined
as a linear functional on Rd. In the scalar case, `2-norm is self-dual, thus (5) reduces to the standard Lipschitz continuity
of the gradient. However, with the matrix smoothness assumption, we are using the L-norm for the iterates, which
naturally induces the L−1-matrix norm for the gradients in the dual space. This insight, which is originally presented
by Nemirovski & Yudin (1983), plays a key role in our analysis.

The following proposition provides us with a method to verify (5).
Proposition 1. Given twice continuously differentiable function f : Rd 7→ R with bounded Hessian,

∇2f(x) � L, (6)

where L ∈ Sd++ and the generalized inequality holds for any x ∈ Rd. Then f satisfies (5) with the matrix L.

Despite, being equivalent in the convex setting, (5) is slightly stronger compared to Assumption 2 in the non-convex
case. See Appendix B for the properties of matrix smoothness. However, in practical terms, verifying Proposition 1
serves as the pipeline for confirming both conditions. Finally, we check that (5) is indeed an extension of the standard
Lipschitz gradient assumption, as illustrated by the following remark.
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Remark 1. If we let L = LId, then (5) reduces to the standard L-Lipschitz continuous gradient assumption.

In the following, we will assume that (5) is satisfied for component functions fi.
Assumption 3. Each function fi is Li-gradient Lipschitz, while f is L-gradient Lipschitz.

In fact, the second half of the assumption is a consequence of the first one. Below, we formalize this claim.
Proposition 2. If fi is Li-gradient Lipschitz for every i = 1, . . . , n, then function f has L-Lipschitz gradient with
L ∈ Sd++ satisfying

1

n

n∑
i=1

λmax

(
L−1

)
· λmax (Li) · λmax

(
LiL

−1
)

= 1. (7)

Nevertheless, the matrix L found according to Proposition 2 is only an estimate. In principle, there might exist a better
Lf � L such that f has Lf -Lipschitz gradient.
Remark 2. In the scalar case, where L = LId, Li = LiId, the relation becomes

L2 =
1

n

n∑
i=1

L2
i .

This corresponds to the statement in Assumption 1.2 in Gorbunov et al. (2021).

3 THE MAIN RESULT

In this section, we present our algorithm det-MARINA with the main convergence result. In addition, we compute
both iteration and communication complexities and show that they are better than the ones of the MARINA algorithm,
which serves as the prototype of our method. Along the iterations of the algorithms, we are constructing a sequence of
vectors gk which are stochastic estimators of∇f(xk). At each iteration, the server samples a Bernoulli random variable
(coin flip) ck and broadcasts it in parallel to the clients, along with the current gradient estimate gk. Each client, then,
does a det-CGD-type update with the stepsize D and a gradient estimate gk. The next gradient estimate gk+1 is then
computed. With a low probability, that is when ck = 1, we take the gk+1 to be the full gradient ∇f(xk+1). Otherwise,
we update it using the compressed gradient differences at each client. Below, is the pseudocode of the algorithm.

Algorithm 1 det-MARINA
1: Input: starting point x0, stepsize matrix D, probability p ∈ (0, 1], number of iterations K
2: Initialize g0 = ∇f(x0)
3: for k = 0, 1, . . . ,K − 1 do
4: Sample ck ∼ Be(p)
5: Broadcast gk to all workers
6: for i = 1, 2, . . . in parallel do
7: xk+1 = xk −D · gk

8: Set gk+1
i =

{
∇fi(xk+1) if ck = 1

gk + Ski
(
∇fi(xk+1)−∇fi(xk)

)
if ck = 0

9: end for
10: gk+1 = 1

n

∑n
i=1 g

k+1
i

11: end for
12: Return: x̃K chosen uniformly at random from {xk}K−1

k=0

In the following theorem, we formulate the main result of this paper, which guarantees the convergence of Algorithm 1
under the abovementioned assumptions.
Theorem 1. Assume that Assumptions 1 and 3 hold, and the following condition on stepsize matrix D ∈ Sd++ holds,

D−1 �
(

(1− p) ·R(D,S)

np
+ 1

)
L, (8)
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where

R(D,S) :=
1

n

n∑
i=1

λmax

(
E
[
Ski DSki

]
−D

)
· λmax (Li) · λmax

(
L−

1
2LiL

− 1
2

)
. (9)

Then, after K-iterations of det-MARINA, we have

E
[∥∥∇f(x̃K)

∥∥2
D

det(D)1/d

]
≤

2
(
f(x0)− f?

)
det(D)1/d ·K

. (10)

Here, x̃K is chosen uniformly randomly from the first K iterates of the algorithm.

Below we state several remarks regarding the interpretation of theorem.
Remark 3. We notice that the the right-hand side of the algorithm vanishes with the number of iterations, thus solving
the issue of the distributed det-CGD. Therefore, det-MARINA is indeed the variance reduced version of det-CGD
in the distributed setting and has better convergence guarantees.

Remark 4. Theorem 1 implies the following iteration complexity for the algorithm. In order to get an ε2 stationarity
error, the algorithm requires K iterations, with

K ≥ 2(f(x0)− f?)
det(D)1/d · ε2

.

Remark 5. In the case where no compression is applied, that is we have Ski = Id, the condition (8) reduces to

D � L−1. (11)

The latter is due to E
[
Ski DSki

]
= D, which results in R(D,S) = 0. This is expected, since in the deterministic case

det-MARINA reduces to GD with matrix stepsize.

The convergence condition and rate of matrix stepsize GD can be found in Li et al. (2023). Below we do a sanity check
to verify that the convergence condition for scalar MARINA can be obtained.
Remark 6. Let us consider the scalar case. That is

Li = LiId, L = LId, D = γId and ω = λmax

(
E
[(
Ski
)>

Ski

])
− 1. (12)

Then, the condition (8) reduces to
γ(1− p)ωL2

np
− 1

γ
+ L ≤ 0. (13)

One can check that the below bound implies (13)

γ ≤

[
L

(
1 +

√
(1− p)ω
pn

)]−1

.

The latter coincides with the stepsize condition of the convergence result of scalar MARINA. Now let us look at the
right-hand side of (10). We notice that it decreases in terms of the determinant of the stepsize matrix. Therefore, one
needs to solve the following optimization problem to find the optimal stepsize:

minimize log det(D−1)

subject to D satisfying (8).

The solution of this constrained minimization problem on Sd++ is not explicit. In theory, one may show that the
constraint (8) is convex and attempt to solve the problem numerically. However, as stressed by Li et al. (2023), the
similar stepsize condition for det-CGD is not easily computed using solvers like CVXPY (Diamond & Boyd, 2016).
Instead, we may relax the problem to certain linear subspaces of Sd++. In particular, we fix a matrix W ∈ Sd++, and
define D := γW . Then, the condition on the matrix D becomes a condition for the scalar γ, which is given in the
following corollary.
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Corollary 1. Let W ∈ Sd++, defining D := γ ·W , where γ ∈ R+. then the condition in (8) reduces to the following
condition on γ

γ ≤ 2λW

1 +
√

1 + 4αβ · ΛW ,SλW
, (14)

where ΛW ,S = λmax

(
E
[
Ski WSki

]
−W

)
, λW = λ−1

max

(
W

1
2LW

1
2

)
and

α =
1− p
np

; β =
1

n

n∑
i=1

λmax (Li) · λmax

(
L−1Li

)
. (15)

This means that for every fixed W , we can find the optimal scaling γ. In the next section, we will use this corollary to
compute the communication complexity of our algorithm and to compare it with MARINA.

4 COMPARISON OF COMPLEXITIES

The following corollary states the iteration complexity for det-MARINA with W = L−1.
Corollary 2. If we take W = L−1, then the condition (14) on γ is given by

γ ≤ 2

1 +
√

1 + 4αβ · ΛL−1,S
. (16)

In order to satisfy, ε-stationarity, that is E
[∥∥∇f(x̃K)

∥∥2

D/ det(D)1/d

]
≤ ε2, we require

K ≥ K0 = O

(
∆0 · det(L)

1
d

ε2
·
(

1 +
√

1 + 4αβ · ΛL−1,S

))
, (17)

where ∆0 = f(x0)− f(x?). Moreover, this iteration complexity is always better than the one of MARINA.

The proof can be found in the Appendix. In fact, we can show that in cases where we fix W = Id and W =
diag−1 (L), the same conclusion also holds, relevant details can be found in Appendix C.2. This essentially means that
det-MARINA can always have a "larger" stepsize compared to MARINA, which leads to a better iteration complexity.
In addition, because we are using the same compressor for those two algorithms, the communication complexity of
det-MARINA is also provably better than that of MARINA.

We also give an analysis of the communication complexity of our algorithm as our main concern here is the com-
munication complexity. We first give the following definition on the expected density, which is used to analyze the
communication complexity in Gorbunov et al. (2021). The original definition is given for any unbiased compressors.
However, we are focusing on sketches in this paper, so we only restrict the definition to sketches.
Definition 2. For a given sketch matrix S ∈ Sd+, the expected density is defined as

ζS = sup
x∈Rd

E [‖Sx‖0] , (18)

where ‖x‖0 denotes the number of non-zero components of x ∈ Rd.

We can easily obtain the expected density for some commonly seen sketches, for example for rand-τ sketches, we have
ζrand-τ = τ . The latter means, that in average the clients communicate τ coordinates at each iteration. Below, we state
the communication complexity of det-MARINA with D∗L−1 and the rand-τ compressor.
Corollary 3. Assume that we are using sketch S ∼ S with expected density ζS , suppose we are running det-MARINA
with probability p and we use the optimal stepsize matrix with respect to W = L−1, then the overall communication
complexity here is given by O ((Kp+ 1)d+ (1− p)KζS). Specifically, if we pick p = ζS/d, then the communication
complexity is given by

O

(
d+

∆0 · det(L)
1
d

ε2
·

(
ζS +

√
β · ΛL−1,S

n
· ζS(d− ζS)

))
. (19)

Notice that in case where no compression is applied, the communication complexity (resp. iteration complexity) reduces
to O(d∆0·det(L)

1
d/ε2) (resp. O(∆0·det(L)

1
d/ε2)), this coincides with the rate of matrix stepsize GD (see Li et al. (2023)).

This implies that the dependence on ε is not possible to be improved further since GD is optimal in first order methods
Carmon et al. (2020).
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5 EXPERIMENTS

In this section, we conduct experimental comparisons between det-MARINA and the current state-of-the-art methods.
The results presented in both Figure 1(a) and Figure 2 confirm that det-MARINA indeed surpasses MARINA in terms
of iteration complexity and communication complexity.

Compared to det-CGD, which serves as the non-variance-reduced counterpart of det-MARINA, our algorithm
demonstrates superior performance, as evident from Figure 1(c) and Figure 4, as predicted by our theory. An overall
comparison between two non-variance-reduced methods and two variance-reduced methods is presented in Figure 1(b).
This plot highlights the significance of combining variance reduction techniques with matrix stepsize and matrix
smoothness for improved optimization performance.
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Figure 1: These plots confirm that det-MARINA improves on all previous algorithms, including DCGD, det-CGD
and MARINA. For more plots and the details of the experimental setup can be found in Appendix G.

6 CONCLUSION

We proposed det-MARINA, as variance reduced alternative to det-CGD, and we show that it outperforms both
det-CGD and MARINA. There are numerous directions to extend the matrix-stepsized non-convex algorithms. Here
we list some of them.

Extension to det-CGD2. A variant of det-CGD, called det-CGD2, was also proposed by Li et al. (2023). This
algorithm, has the same structure as (det-CGD) with the sketch and stepsize interchanged. It was shown, that this
algorithm has explicit stepsize condition in the single node setting. In Appendix E, we propose the variance reduced
extension of the distributed det-CGD2.

Extension to DASHA. However, besides MARINA, there are other existing techniques of performing variance reduction
in a non-convex setting for compressed gradient methods, such as DASHA, which offers better practicality, as it always
sends compressed gradients and do not need synchronize among all the nodes, according to Tyurin & Richtárik (2022).
We want to emphasize here the way we extend det-CGD to its variance-reduced counterpart is not limited to MARINA
type variance reduction. The same techniques used in the proof are also applicable if we want to extend det-CGD to
its DASHA type variance reduced counterpart. However, we leave this as a future work.

Other directions. i) In this paper, we have only considered (linear) sketches as the compression operator. However,
there exists a variety of compressors which are useful in practice that do not fall into this category. Extending det-CGD
and det-MARINA for general unbiased compressors is a promising future work direction. ii) Our motivation for using
a matrix stepsize is partially inspired by second-order methods, where matrix stepsize D roughly estimates the inverse
of the Hessian. Additionally, given recent successes with adaptive stepsizes (e.g., Loizou et al. (2021); Orvieto et al.
(2022); Schaipp et al. (2023)), designing an adaptive matrix stepsize tailored to our case could be viable. iii) Finally,
recent advances in federated learning (Philippenko & Dieuleveut, 2020; Gruntkowska et al., 2022) have shown that
server-to-client compression is important. Extending our results for the bidirectional federated learning is worth human
attention.
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