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ABSTRACT

Domain randomization in reinforcement learning is an established technique for
increasing the robustness of control policies learned in simulation. By random-
izing properties of the environment during training, the learned policy can be
conformant to uncertainty along the randomized dimensions. While the envi-
ronment distribution is typically specified by hand, in this paper we investigate
the problem of automatically discovering this sampling distribution via entropy-
regularized reward maximization of a neural sampling distribution in the form of
a normalizing flow. We show that this architecture is more flexible and results in
better robustness than existing approaches to learning simple parameterized sam-
pling distributions. We demonstrate that these policies can be used to learn robust
policies for contact-rich assembly tasks. Additionally, we explore how these sam-
pling distributions, in combination with a privileged value function, can be used
for out-of-distribution detection in the context of an uncertainty-aware multi-step
manipulation planner.

1 INTRODUCTION

Reinforcement learning (RL) has proven to be a useful tool in robotics for learning control or action
policies for tasks and systems which are highly variable and/or analytically intractable (Luo & Li
(2021); Zhu et al. (2020); Schoettler et al. (2020)). However, RL approaches can be inefficient,
involving slow, minimally parallelized, and potentially unsafe data-gathering processes when per-
formed in real environments (Kober et al. (2013)). Learning in simulation eliminates some of these
problems, but introduces new issues in the form of discrepancies between the training and real-world
environments (Valassakis et al. (2020)).

Successful RL from simulation hence requires efficient and accurate models of both robot and en-
vironment during the training process. But even with highly accurate geometric and dynamic sim-
ulators, the system can still be only considered partially observable (Kober et al. (2013))—material
qualities, inertial properties, perception noise, contact and force sensor noise, manufacturing devia-
tions and tolerances, and imprecision in robot calibration all add uncertainty to the model.

To improve the robustness of learned policies against sim-to-real discrepancies, it is common to
employ domain randomization, varying the large set of environmental parameters inherent to a task
according to a given underlying distribution (Muratore et al. (2019)). In this way, policies are trained
to maximize their overall performance over a diverse set of models. These sampling distributions
are typically constructed manually with Gaussian or uniform distributions on individual parameters
with hand-selected variances and bounds. However, choosing appropriate distributions for each
of the domain randomization parameters remains a delicate process (Josifovski et al. (2022)); too
broad a distribution leads to suboptimal local minima convergence (see Figure 3), while too narrow
a distribution leads to poor real-world generalization (Mozifian et al., 2019; Packer et al., 2018).
Many existing methods rely on real-world rollouts from hardware experiments to estimate dynamics
parameters (Chebotar et al. (2019); Ramos et al. (2019); Tiboni et al. (2023); Muratore et al. (2022)).
However, for complex tasks with physical parameters that are difficult to efficiently or effectively
sample, this data may be time-consuming to produce, or simply unavailable.

An ideal sampling distribution enables the policy to focus training on areas of the distribution that
can feasibly be solved in order to maximize the overall success rate of the trained policy while not
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wasting time on unsolvable regions of the domain. Automating updates to parameter distributions
during the training process can remove the need for heuristic tuning and iterative experimentation
(Mozifian et al. (2019); OpenAI et al. (2019); Tiboni et al. (2024)). In this paper, we present GoFlow,
a novel approach for learned domain randomization that combines actor-critic reinforcement learn-
ing architectures (Schulman et al., 2017; Haarnoja et al., 2018) with a neural sampling distribution
to learn robust policies that generalize to real-world settings. By maximizing the diversity of param-
eters during sampling, we actively discover environments that are challenging for the current policy
but still solvable given enough training.

As proof of concept, we investigate one real-world use case: contact-rich manipulation for assembly.
Assembly is a critical area of research for robotics, requiring a diverse set of high-contact interac-
tions which often involve wide force bandwidths and unpredictable dynamic changes. Recently,
sim-to-real RL has emerged as a potentially useful strategy for learning robust contact-rich policies
without laborious real-world interactions Noseworthy et al. (2024); Tang et al. (2023a); Zhang et al.
(2024). We build on this work by testing our method on the real-world industrial assembly task of
gear insertion.

Lastly, we extend this classical gear insertion task to the setting of multi-step decision making under
uncertainty and partial observability. As shown in this paper and elsewhere Tiboni et al. (2024);
Mozifian et al. (2019); OpenAI et al. (2019), policies trained in simulation have an upper bound
on the environmental uncertainties that they can be conformant to. For example, a visionless robot
executing an insertion policy can only tolerate so much in-hand pose error. However, estimates of
this uncertainty can be used to inform high level control decisions, e.g., looking closer at objects to
get more accurate pose estimates or tracking objects in the hand to detect slippage. By integrating
a probabilistic pose estimation model, we can use the sampling distributions learned with GoFlow
as an out-of-distribution detector to determine whether the policy is expected to succeed under its
current belief about the world state. If the robot has insufficient information, it can act to deliberately
seek the needed information using a simple belief-space planning algorithm. For example, an in-
hand camera can be used to gather a higher resolution image for more accurate pose estimation if
necessary.

Our contributions are as follows: We introduce GoFlow, a novel domain randomization method that
combines actor-critic reinforcement learning with a learned neural sampling distribution. We show
that GoFlow outperforms fixed and other learning-based solutions to domain randomization on a
suite of simulated environments. We demonstrate the efficacy of GoFlow in a real-world contact-
rich manipulation task—gear insertion—and extend it to multi-step decision-making under uncer-
tainty. By integrating a probabilistic pose estimation model, we enable the robot to actively gather
additional information when needed, enhancing performance in partially observable settings.

2 RELATED WORK

Recent developments in reinforcement learning have proven that policies trained in simulation can
be effectively translated to real-world robots for contact-rich assembly tasks (Zhang et al., 2024;
Tang et al., 2023a; Noseworthy et al., 2024; Jin et al., 2023). One key innovation that has con-
tributed to the development of robust policies is domain randomization (Chen et al., 2021; Peng
et al., 2017), wherein environment parameters are sampled from a distribution during training such
that the learned policy can be robust to environmental uncertainty on deployment.

Some previously explored learning strategies include minimization of divergence with a target sam-
pling distribution using multivariate Gaussians (Mozifian et al., 2019), maximization of entropy
using independent beta distributions (Tiboni et al., 2024), and progressive expansion of a uniform
sampling distribution via boundary sampling (OpenAI et al., 2019). Here, we propose a novel
learned domain randomization technique using normalizing flows Rezende & Mohamed (2015) as
a neural sampling distribution, thus increasing flexibility and expressivity.

In addition to learning robust policies, such sampling distributions can be used as indicators of the
world states under which the policy is expected to succeed. Some previous works have combined
domain randomization with information gathering via system identification (Ramos et al., 2019;
Sagawa & Hino, 2024). In this work, we similarly make use of our learned sampling distribution as
an out-of-distribution detector in the context of a multi-step planning system.
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3 BACKGROUND

3.1 MARKOV DECISION PROCESS

A Markov Decision Process (MDP) is a mathematical framework for modeling decision-making.
Formally, an MDP is defined as a tuple (S,A, P,R, γ), where S is the state space, A is the action
space, P : S ×A×S → [0, 1] is the state transition probability function, where P (s′ | s, a) denotes
the probability of transitioning to state s′ from state s after taking action a, R : S × A → R is the
reward function, where R(s, a) denotes the expected immediate reward received after taking action
a in state s, γ ∈ [0, 1) is the discount factor, representing the importance of future rewards.

A policy π : S × A → [0, 1] defines a probability distribution over actions given states, where
π(a | s) is the probability of taking action a in state s. The goal is to find an optimal policy π∗ that
maximizes the expected cumulative discounted reward.

3.2 DOMAIN RANDOMIZATION

Domain randomization introduces variability into the environment by randomizing certain parame-
ters during training. Let Ξ denote the space of domain randomization parameters, and let ξ ∈ Ξ be
a specific instance of these parameters. Each ξ corresponds to a different environment configuration
or dynamics.

We can define a parameterized family of Markov Decision Processes (MDPs) where each Mξ =
(S,A, Pξ, Rξ, γ) has transition dynamics Pξ and reward function Rξ dependent on ξ. The agent
interacts with environments sampled from a distribution over Ξ, typically denoted as p(ξ). 1

The objective is to learn a policy π : S → A that maximizes the expected return across the distribu-
tion environments:

J(π) = Eξ∼p(ξ)

[
Eτ∼Pξ,π

[ ∞∑
t=0

γtRξ(st, at)

]]
, (1)

where τ = {(s0, a0, s1, a1, . . . )} denotes a trajectory generated by policy π in environment ξ.
Domain randomization aims to find a policy π∗ such that: π∗ = argmaxπ J(π).

In deep reinforcement learning, the policy π is a neural network parameterized by θ, denoted as πθ.
The agent learns the policy parameters θ through interactions with simulated environments sampled
from p(ξ). In our implementation, we employ the Proximal Policy Optimization (PPO) algorithm
(Schulman et al., 2017), an on-policy policy gradient method that optimizes a stochastic policy while
ensuring stable and efficient learning.

To further stabilize training, we pass privileged information about the environment parameters ξ to
the critic network. The critic network, parameterized by ψ, estimates the state-value function:

Vψ(st, ξ) = Eπθ

[ ∞∑
k=0

γkrt+k

∣∣∣∣ st, ξ
]
, (2)

where st is the current state, rt+k are future rewards, and γ is the discount factor. By incorporating
ξ, the critic can provide more accurate value estimates with lower variance (Pinto et al., 2017). The
actor network πθ(at|st) does not have access to ξ, ensuring that the policy relies only on observable
aspects of the state.

3.3 NORMALIZING FLOWS

Normalizing flows are a class of generative models that transform a simple base distribution into a
complex target distribution using a sequence of invertible, differentiable functions. Let z ∼ pZ(z) be

1This problem can also be thought of as a POMDP where the observation space is S and the state space is
a product of S and Ξ as discussed in Kwon et al. (2021).
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Figure 1: An architecture diagram for our actor-critic RL training setup using a normalizing flow to
seed environment parameters across episodes.

a latent variable from a base distribution (e.g., a standard normal distribution). A normalizing flow
defines an invertible transformation fϕ : Rd → Rd parameterized by neural network parameters ϕ,
such that x = fϕ(z), aiming for x to follow the target distribution.

The density of x is computed using the change of variables formula:

pX(x) = pZ(f
−1
ϕ (x))

∣∣∣∣∣det
(
∂f−1

ϕ (x)

∂x

)∣∣∣∣∣ . (3)

For practical computation, this is often rewritten as:

log pX(x) = log pZ(z)− log

∣∣∣∣det(∂fϕ(z)∂z

)∣∣∣∣ , (4)

where ∂fϕ(z)
∂z is the Jacobian of fϕ at z. By composing multiple such transformations fϕ = fϕK ◦

· · · ◦fϕ1 , each parameterized by neural network parameters ϕk, normalizing flows can model highly
complex distributions.

In our work, we employ neural spline flows (Durkan et al., 2019), a type of normalizing flow where
the invertible transformations are constructed using spline-based functions. Specifically, the param-
eters ϕ represent the coefficients of the splines (e.g., knot positions and heights) and the weights and
biases of the neural networks that parameterize these splines.

4 METHOD

In this section, we introduce GoFlow, a method for learned domain randomization that goes with
the flow by adaptively adjusting the domain randomization process using normalizing flows.

In traditional domain randomization setups, the distribution p(ξ) is predefined. However, selecting
an appropriate p(ξ) is crucial for the policy’s performance and generalization. Too broad a sam-
pling distribution and the training focuses on unsolvable environments and falls into local minima.
In contrast, too narrow a sampling distribution leads to poor generalization and robustness. Addi-
tionally, rapid changes to the sampling distribution can lead to unstable training. To address these
challenges, prior works such as Klink et al. (2021) have proposed a self-paced learner, which starts
by mastering a small set of environments, and gradually expands the tasks to solver harder and
harder problems while maintaining training stability. This strategy has subsequently been applied to
domain randomization in Mozifian et al. (2019) and Tiboni et al. (2024), where terms were included
for encouraging spread over the sampling space for greater generalization. We take inspiration from
these works to form a joint optimization problem:
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Algorithm 1 GoFlow
Require: Initial policy parameters θ, flow parameters ϕ, total training steps N , network updates K,

Monte Carlo samples M , entropy coefficient α, similarity coefficient β, and learning rate ηϕ
1: for n = 1 to N do
2: Sample {ξi}Bi=1 ∼ pϕ(ξ)
3: Train πθ with ξi initializations
4: Estimate Jξi(πθ) for each ξi via M Monte Carlo samples
5: Save current flow distribution as pϕold(ξ)
6: for k = 1 to K do
7: Ĥ ← −Eξ∼pϕ(ξ) [log pϕ(ξ)]
8: D̂KL ← Eξ∼pϕ(ξ) [log pϕ(ξ)− log pϕold(ξ)]

9: ϕ← ϕ+ ηϕ∇ϕ
(

1
B

∑B
i [log pϕ(ξ)Jξi(πθ)] + αĤ − βD̂KL

)
10: end for
11: end for

max
p(ξ),π

{
Eξ∼p(ξ) [Jξ(π)] + αH(p(ξ))− βDKL (p(ξ)∥pold(ξ))

}
, (5)

whereH(p(ξ)) is the differential entropy of p(ξ), DKL (p(ξ)∥pold(ξ)) is the divergence between the
current and previous sampling distributions, and α > 0, β > 0 are regularization coefficients that
control the tradeoff between generalizability, training stability, and the expected reward under the
sampling distribution. To our knowledge, GoFlow is the first method to optimize such an objective
with a neural sampling distribution.

Other learned domain randomization approaches propose similar objectives. Mozifian et al. (2019)
maximizes reward but replaces entropy regularization with a KL divergence to a fixed target distri-
bution and omits the self-paced KL term. Tiboni et al. (2024) includes all three objectives but frames
the reward and self-paced KL terms as constraints, maximizing entropy through a nonlinear opti-
mization process that is not easily adaptable to neural sampling distributions. We compare GoFlow
to these methods in our experiments to highlight its advantages.

The GoFlow algorithm (Algorithm 1) begins by initializing both the policy parameters θ and the nor-
malizing flow parameters ϕ. In each training iteration, GoFlow first samples a batch of environment
parameters {ξi}Bi=1 from the current distribution modeled by the normalizing flow. These sampled
parameters are used to train the policy πθ. Following the policy update, expected returns Jξi(πθ)
are estimated for each sampled environment through Monte Carlo sampling, providing a measure of
the policy’s performance in each specific setting.

After sampling these rollouts, GoFlow then perform K steps of optimization on the sampling distri-
bution. The entropy of the sampling distribution (Line 7) and divergence from the previous sampling
distribution (Line 8) are estimated using newly drawn samples. GoFlow then estimates the policy’s
performance on the sampling distribution using the previously sampled rollout trajectories. Since
we are evaluating the gradient, this can equivalently be calculated using the log of the probabil-
ity under the sampling distribution for numerical stability, as is commonly done in policy gradient
reinforcement learning (see proof in Appendix Section A.7). These terms are combined to form
a loss, which is differentiated to update the parameters of the sampling distribution (Line 9). An
architecture diagram for this approach can be seen in Figure 14.

5 DOMAIN RANDOMIZATION EXPERIMENTS

Our simulated experiments compare policy robustness in a range of domains. For full details on the
randomization parameters and bounds, see Appendix A.1.

5.1 DOMAINS

First, we examine the application of GoFlow to an illustrative 2D domain that is multimodal and
contains intervariable dependencies. The state and action space are in R2. The agent is initialized

5
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Figure 2: An illustrative domain showing the learned sampling functions over the space of unob-
served parameters for the tested baselines. Compared to other learning methods, GoFlow correctly
models the multimodality and inter-variable dependencies of the underlying reward function. This
toy domain, along with other domains in our experiments, violates some of the assumptions made
by prior works, such as the feasibility of the center point of the range.

randomly in a bounded x, y plane. An energy function is defined by a composition of Gaussians
placed in a regular circular or linear array. The agent can observe its position with Gaussian noise
proportional to the inverse of the energy function. The agent is rewarded for guessing its location,
but is incapable of moving. This task is infeasible when the agent is sufficiently far from any of the
Gaussian centers, so a sampling distribution should come to resemble the energy function. Some
example functions learned by GoFlow and baselines from Section 5.2 can be seen in Figure 2.

Second, we quantitatively compare GoFlow to existing baselines including Cartpole, Ant, Quad-
copter, and Quadruped in the IsaacLab suite of environments (Mittal et al., 2023). We randomize
over parameters such as link masses, joint frictions, and material properties.

Lastly, we evaluate our method on a contact-rich robot manipulation task of gear insertion, a partic-
ularly relevant problem for robotic assembly. In the gears domain, we randomize over the relative
pose between the gripper and the held gears along three degrees of freedom. The problem is made
difficult by the uncertainty the robot has about the precise location of the gear relative to the hand.
The agent must learn to rely on signals of proprioception and force feedback to guide the gear into
the gear shaft. The action space consists of end-effector pose offsets along three translational de-
grees of freedom and one rotational degree around the z dimension. The observation space consists
of a history of the ten previous end effector poses and velocities estimated via finite differencing.
In addition to simulated experiments, our trained policies are tested on a Franka Emika robot using
IndustReal library built on the frankapy toolkit (Tang et al., 2023b; Zhang et al., 2020).

5.2 BASELINES

In our domain randomization experiments, we compare to a number of standard RL baselines and
learning-based approaches from the literature. In our quantitative experiments, success is measured
by the sampled environment passing a certain performance threshold JT that was selected for each
environment. All baselines are trained with an identical neural architecture and PPO implementa-
tion. The success thresholds along with other hyperparameters are in Appendix A.2.

We evaluate on the following baselines. First, we compare to no domain randomization (NoDR)
which trains on a fixed environment parameter at the centroid of the parameter space. Next, we
compare to a full domain randomization (FullDR) which samples uniformly across the domain
within the boundaries during training. In addition to these fixed randomization methods, we evaluate
against some other learning-based solutions from the literature: ADR (OpenAI et al., 2019) learns
uniform intervals that expand over time via boundary sampling. It starts by occupying an initial
percentage of the domain and performs “boundary sampling” during training with some probability.
The rewards attained from boundary sampling are compared to thresholds that determine if the
boundary should be expanded or contracted. LSDR (Mozifian et al., 2019) learns a multivariate

6
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Figure 3: The coverage ratio over the target distribution across five random seeds for each of the
environments. The bands around each curve indicate the standard error.

gaussian sampling distribution using reward maximization with a KL divergence regularization term
weighted by an α hyperparameter. Lastly, DORAEMON (Tiboni et al., 2024) learns independent
beta distributions for each dimension of the domain, using a maximum entropy objective constrained
by an estimated success rate.

We measure task performance in terms of coverage, which is defined as the proportion of the total
sampling distribution for which the policy receives higher than Jt reward. We compare coverage
across environments sampled from a uniform testing distribution within the environment bounds.
Our findings in Figure 3 show that GoFlow matches or outperforms baselines across all domains.
We find that our method performs particularly well in comparison to other learned baselines when
the simpler or more feasible regions of the domain are off-center, irregularly shaped, and have inter-
parameter dependencies such as those seen in Figure 2. The reward structure and sampling ranges
of these domains often violate the regularity assumptions made by the baseline approaches, leading
to worse performance.

In addition to simulated experiments, we additionally evaluated the trained policies on a real-world
gear insertion task. The results of those real-world experiments can be seen in Table 2.

6 APPLICATION TO MULTI-STEP MANIPULATION

While reinforcement learning has proven to be a valuable technique for learning short-horizon skills
in dynamic and contact-rich settings, it often struggles to generalize to more long-horizon and open
ended problems (Sutton & Barto, 2018). The topic of sequencing short horizon skills in the context
of a higher-level decision strategy has been of increasing interest to both the planning (Mishra et al.,
2023) and reinforcement learning communities (Nasiriany et al., 2021). For this reason, we examine
the utility of these learned sampling distributions as out-of-distribution detectors, or belief-space
preconditions, in the context of a multi-step planning system.

6.1 BELIEF-SPACE PLANNING BACKGROUND

Belief-space planning is a framework for decision-making under uncertainty, where the agent main-
tains a probability distribution over possible states, known as the belief state. Instead of planning
solely in the state space S, the agent operates in the belief space B, which consists of all possible
probability distributions over S. This approach is particularly useful in partially observable environ-
ments where there is uncertainty in environment parameters and where it is important to take actions
to gain information.

Rather than operating at the primitive action level, belief-space planners often make use of high-
level actions AΠ, sometimes called skills or options. In our case, these high-level actions will be
a discrete set of pretrained RL policies. These high-level actions come with a belief-space pre-
condition and a belief-space effect, both of which are subsets of the belief space B (Kaelbling &
Lozano-Perez (2013); Curtis et al. (2024)). Specifically, a high-level action π ∈ AΠ is associated
with two components: a precondition Preπ ⊆ B, representing the set of belief states from which the
action can be applied, and an effect Effπ ⊆ B, representing the set of belief states that the action was
designed or trained to achieve. If the precondition holds—that is, if the current belief state b satisfies
b ∈ Preπ—then applying action a will achieve the effect Effπ with probability at least η ∈ [0, 1].
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Figure 4: A multi-step manipulation plan using probabilistic pose estimation to estimate and update
beliefs over time. The three rows show the robot state st, the observation ot, and the robot belief bt
at each timestep. The red dotted line in the belief indicates the marginal entropy thresholds for the
x, y, and yaw dimensions as determined by the learned normalizing flow. For full visualizations of
the belief posteriors, flow distributions, and value maps, see Figure 12 in the appendix.

More formally, if b ∈ Preπ , then Pr
(
bt+1 ∈ Effπ

∣∣ bt, π) ≥ η. Depending on the planner, η may be
set in advance, or calculated by the planner as a function of the belief.

This formalization allows planners to reason abstractly about the effects of high-level actions under
uncertainty, which can result in generalizable decision-making in long-horizon problems that require
active information gathering or risk-awareness.

6.2 COMPUTING PRECONDITIONS

In this section, we highlight the potential application of the learned sampling distribution pϕ and
privileged value function Vψ as a useful artifacts for belief-space planning. In particular, we are
interested in identifying belief-space preconditions of a set of trained skills.

One point of leverage we have for this problem is the privileged value function Vψ(s, ξ), which was
learned alongside the policy during training. One way to estimate the belief-space precondition is to
simply find the set of belief states for which the expected value of the policy is larger than JT with
probability greater than η under the belief:

Preπ =
{
b(s, ξ) ∈ B | Eb(s,ξ)

[
1Vψ(s,ξ)>JT

]
> η

}
. (6)

However, a practical issue with this computation is that the value function is likely not calibrated in
large portions of the state space that were not seen during policy training. To address this, we focus
on regions of the environment where the agent has higher confidence due to sufficient sampling, i.e.,
where pϕ(ξ) > ϵ for a threshold ϵ. This enables us to integrate the value function over the belief
distribution b(x, ξ) and the trusted region within Ξ:

Preπ =
{
b(s, ξ) ∈ B | Eb(s,ξ)

[
1Vψ(s,ξ)>JT · 1pϕ(ξ)>ϵ

]
> η

}
(7)

.

Here, η lower bounds the probability of achieving the desired effects Effπ (or value greater than JT )
after executing π in any belief state in Preπ . Figure 5 shows an example precondition for a single
step of the assembly plan.

6.3 UPDATING BELIEFS

Updating the belief state requires a probabilistic state estimation system that outputs a posterior
over the unobserved environment variables, rather than a single point estimate. We use a proba-
bilistic object pose estimation framework called Bayes3D to infer posterior distributions over object
pose (Gothoskar et al., 2023). For details on this, see Appendix A.4.1.
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Figure 5: A visual example of the precondition computation described in Section 6.2 for a single
step in the gear assembly process. The normalizing flow is thresholded to indicate the in-distribution
regions of the learned value function. The thresholded sampling distribution is further thresholded
by the value function to get the belief-space precondition. Comparing the precondition to the beliefs,
we can see that the belief is not sufficiently contained within the precondition at t = 0, but passes
the success threshold η at after closer inspection t = 4.

The benefit of this approach in contrast to traditional rendering-based pose estimation systems, such
as those presented in Wen et al. (2024) or Labbé et al. (2022), is that pose estimates from Bayes3D
indicate high uncertainty for distant, small, or occluded objects as well as uncertainty stemming
from object symmetry. Figure 12 shows the pose beliefs across the multi-step plan.

6.4 A SIMPLE BELIEF-SPACE PLANNER

While the problem of general-purpose multi-step planning in belief-space has been widely studied,
in this paper we use a simple BFS belief-space planner to demonstrate the utility of the learned sam-
pling distributions as belief-space preconditions. The full algorithm can be found in Algorithm 2.

An example plan can be seen in Figure 4. The goal is to assemble the gear box by inserting all three
gears (yellow, pink, and blue) into the shafts on the gear plate. Each gear insertion is associated with
a separate policy for each color trained with GoFlow. In addition to the trained policies, the robot
is given access to an object-parameterized inspection action which has no preconditions and whose
effects are a reduced-variance pose estimate attained by moving the camera closer to the object. The
robot is initially uncertain of the x, y, and yaw components of the 6-dof pose based on probabilistic
pose estimates. Despite this uncertainty, the robot is confident enough in the pose of the largest and
closest yellow gear to pick it up and insert it. In contrast, the blue and pink gears require further
inspection to get a better pose estimate. Closer inspection reduces uncertainty along the x and y axis,
but reveals no additional information about yaw dimension due to rotational symmetry. Despite an
unknown yaw dimension, the robot is confident in the insertion because the flow pϕ indicates that
success is invariant to the yaw dimension. For visualizations of the beliefs and flows at each step,
see Appendix A.4.

7 CONCLUSION AND DISCUSSION

In this paper, we introduced GoFlow, a novel approach to domain randomization that uses normal-
izing flows to dynamically adjust the sampling distribution during reinforcement learning. By com-
bining actor-critic reinforcement learning with a learned neural sampling distribution, we enabled
more flexible and expressive parameterization of environmental variables, leading to better gener-
alization in complex tasks like contact-rich assembly. Our experiments demonstrated that GoFlow
outperforms traditional fixed and learning-based domain randomization techniques across a variety
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of simulated environments, particularly in scenarios where the domain has irregular dependencies
between parameters. The method also showed promise in real-world robotic tasks including contact-
rich assembly.

Moreover, we extended GoFlow to multi-step decision-making tasks, integrating it with belief-space
planning to handle long-horizon problems under uncertainty. This extension enabled the use of
learned sampling distributions and value functions as preconditions leading to active information
gathering.

Although GoFlow enables more expressive sampling distributions, it also presents some new chal-
lenges. One limitation of our method is that it has higher variance due to occasional training insta-
bility of the flow. This instability can be alleviated by increasing β, but at the cost of reduced sample
efficiency (see Appendix A.2). In addition, using the flow and value estimates for belief-space plan-
ning require manual selection and tuning of several thresholds which are environment specific. The
η parameter may be converted from a threshold into a cost in the belief space planner, which would
remove one point of manual tuning. However, removing the ϵ parameter may prove more difficult, as
it would require uncertainty quantification of the neural value function. Despite these challenges, we
hope this work inspires further research on integrating short-horizon learned policies into broader
planning frameworks, particularly in contexts involving uncertainty and partial observability.

8 REPRODUCIBILITY STATEMENT

In our supplementary materials, we provide a minimal code implementation of our approach along
with all the baseline implementations and environments discussed in this paper. If accepted, we will
publish a full public release of the code on Github.
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A APPENDIX

A.1 DOMAIN RANDOMIZATION PARAMETERS

Below we describe the randomization ranges and parameter names for each environment. We also
provide the reward success threshold (JT ) and cut the max duration of some environments in order
to speed up training (tmax). Lastly, we slightly modified the Quadruped environment to only take a
fixed forward command rather than the goal-conditioned policy learned by default. Other than those
changes, the first four simulated environments official IsaacLab implementation.

• Cartpole randomization parameters (JT = 50, tmax = 2s):
– Pole mass: Min Bound = 0.01, Max Bound = 20.0
– Cart mass: Min Bound = 0.01, Max Bound = 20.0
– Slider-Cart Friction: Min Bound = 0.0, Max Bound = 1.0

• Ant randomization parameters (JT = 700, tmax = 2s):
– Torso mass: Min Bound = 0.01, Max Bound = 20.0

• Quadcopter randomization parameters (JT = 15, tmax = 2s):
– Quadcopter mass: Min Bound = 0.01, Max Bound = 20.0

• Quadruped randomization parameters (JT = 1.5, tmax = 5s):
– Body mass: Min Bound = 0.0, Max Bound = 200.0
– Left front hip joint friction: Min Bound = 0.0, Max Bound = 0.1
– Left back hip joint friction: Min Bound = 0.0, Max Bound = 0.1
– Right front hip joint friction: Min Bound = 0.0, Max Bound = 0.1
– Right back hip joint friction: Min Bound = 0.0, Max Bound = 0.1

• Humanoid randomization parameters (JT = 1000, tmax = 5s):
– Torso Mass: Min Bound = 0.01, Max Bound = 25.0
– Head Mass: Min Bound = 0.01, Max Bound = 25.0
– Left Hand Mass: Min Bound = 0.01, Max Bound = 30.0
– Right Hand Mass: Min Bound = 0.01, Max Bound = 30.0

• Gear randomization parameters (JT = 50, tmax = 4s):
– Grasp Pose x: Min Bound = -0.05, Max Bound = 0.05
– Grasp Pose y: Min Bound = -0.05, Max Bound = 0.05
– Grasp Pose yaw: Min Bound = -0.393, Max Bound = 0.393

A.2 HYPERPARAMETERS

Below we list out the significant hyperparameters involved in each baseline method, and how we
chose them based on our hyperparameter search. We run the same seed for each hyperparameter
and pick the best performing hyperparameter as the representative for our larger quantitative exper-
iments in figure 3. The full domain randomization (FullDR) and no domain randomization (NoDR)
baselines have no hyperparameters.

A.2.1 GOFLOW

We search over the following values of the α hyperparameter: [0.1, 0.5, 1.0, 1.5, 2.0]. We search over
the following values. Other hyperparameters include number of network updates per training epoch
(K = 100), network learning rate (ηϕ = 1e−3), and neural spline flow architecture hyperparameters
such as network depth (ℓ = 3), hidden features (64), and number of bins (8). We implement our
flow using the Zuko normalizing flow library Rozet et al. (2022).

A.2.2 LSDR

Similary to GoFlow , we search over the following values of the αL hyperparameter:
[0.1, 0.5, 1.0, 1.5, 2.0]. Other hyperparameters include the number of updates per training epoch
(T=100), and initial Gaussian parameters: µ = (ξmax + ξmin)/2.0 and Σ = diag (ξmax − ξmin/10)
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Figure 6: GoFlow hyperparameter sweep results for α
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Figure 7: GoFlow hyperparameter sweep results for β after fixing the best α for each environment
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Figure 8: LSDR hyperparameter sweep results for αL

A.2.3 DORAEMON

We search over the following values of the ϵD hyperparameter: [0.005, 0.01, 0.05, 0.1, 0.5]. Af-
ter fixing the best ϵD for each environment, we additionally search over the success thrshold αD:
[0.1, 0.25, 0.5, 0.75, 0.9].

Co
ve
ra
ge

Figure 9: DORAEMON hyperparameter sweep results for ϵD

A.2.4 ADR

In ADR, we fix the upper threshold to be the success threshold t+ = JT as was done in the origi-
nal paper and search over the lower bound threshold t− = [0.1t+, 0.25t+, 0.5t+, 0.75t+, 0.9t+].
The value used in the original paper was 0.5tH . Other hyperparameters include the expan-
sion/contraction rate, which we interpret to be a fixed fraction of the domain interval, ∆ =
0.1 ∗

[
ξmax − ξmin

]
, and boundary sampling probability pb = 0.5.
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Figure 10: DORAEMON hyperparameter sweep results for αD after fixing the best ϵD
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Figure 11: ADR hyperparameter sweep results for t−

A.3 COVERAGE VS RANGE EXPERIMENTS

We compare coverage vs. range scale in the ant domain. We adjust the parameter lower and up-
per bounds outlined in Appendix A.1 and see how the coverage responds to those changes during
training. The parameter range is defined relative to a nominal midpoint m set to the original domain
parameters: [m − (m − lower) ∗ scale,m + (upper −m) ∗ scale)]. The results of our experiment
are shown in Figure 13

A.4 MULTI-STEP PLANNING DETAILS

A.4.1 UPDATING BELIEFS VIA PROBABILISTIC POSE ESTIMATION

Updating the belief state b requires a probabilistic state estimation system that outputs a posterior
over the state space S, rather than a single point estimate. Given a new observation o, we use
a probabilistic object pose estimation framework (Bayes3D) to infer posterior distributions over
object pose (Gothoskar et al., 2023).

The pose estimation system uses inference in an probabilistic generative graphics model with uni-
form priors on the translational x, y, and rotational yaw (or rx) components of the 6-dof pose
(since the object is assumed to be in flush contact with the table surface) and an image likelihood
P (orgbd | rx, x, y). The object’s geometry and color information is given by a mesh model. The
image likelihood is computed by rendering a latent image imrgbd with the object pose corresponding
to (rx, x, y) and calculating the per-pixel likelihood:

P (orgbd | rx, x, y) ∝
∏
i,j∈C

[pout + (1− pout) · Pin(orgbd[i, j] | rx, x, y)] (8)

Pin(orgbd[i, j] | rx, x, y) ∝ exp

(
−
||orgb[i, j]− imrgb[i, j]||1

brgb
− ||od[i, j]− imd[i, j]||1

bd

)
(9)

where i and j are pixel row and column indices, C is the set of valid pixels returned by the renderer,
brgb and bd are hyperparameters that control posterior sensitivity to the color and depth channels,
and pout is the pixel outlier probability hyperparameter. For an observation orgbd, we can sample
from P (rx, x, y | orgbd) ∝ P (orgbd | rx, x, y) to recover the object pose posterior with a tempering
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Figure 12: A visualization of the beliefs over the object pose under the initial image (first three
columns) and after closer inspection (last three columns) as generated from the posterior of the
model described in Section 6.3. The colormap corresponds to the log probability of the posterior
pose estimate. All plots are centered around the most likely pose estimate under the image model.
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Figure 13: Coverage vs range experiment results

0.0 0.5 1.0 1.5
Timesteps ×107

5

0

5

En
tro

py

Cartpole

0.0 1.5 3.0
Timesteps ×106

0.0

2.5

5.0

En
tro

py

Ant

0 3 6 9
Timesteps ×106

2

0

2

En
tro

py

Quadcopter

0.0 2.5 5.0 7.5
Timesteps ×106

5

0

5

En
tro

py

Anymal

0.0 0.6 1.2 1.8
Timesteps ×107

0

10

En
tro

py

Humanoid

0.0 0.8 1.6 2.4
Timesteps ×106

10

0

En
tro

py

Gears

FullDR NoDR DORAEMON GOFLOW LSDR ADR

Figure 14: Entropy during the training process for each method

exponential factor α to encourage smoothness. We first find the maximum a posteriori (MAP)
estimate of object pose using coarse-to-fine sequential Monte Carlo sampling (Del Moral et al.,
2006) and then calculate a posterior approximation using a grid centered at the MAP estimate.

The benefit of this approach in contrast to traditional rendering-based pose estimation systems, such
as those presented in Wen et al. (2024) or Labbé et al. (2022), is that our pose estimates indicate
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high uncertainty for distant, small, occluded, or non-visible objects as well dimensions along which
the object is symmetric. A visualization of the pose beliefs at different points in the multi-step plan
can be seen in Figure 12 in the Appendix.

A.4.2 BELIEF-SPACE PLANNING ALGORITHM

Algorithm 2 Belief-Space Planner Using BFS
Require: Initial belief state b0, goal condition G ⊆ B, set of skills AΠ, success threshold η

1: Initialize the frontier F ← {b0}
2: Initialize the visited set V ← ∅
3: Initialize the plan dictionary Plan mapping belief states to sequences of skills
4: while F is not empty do
5: Dequeue b from F
6: if b ∈ G then
7: return Plan[b] ▷ Return the sequence of skills leading to b
8: end if
9: for all skills π ∈ AΠ do

10: if b ∈ Preπ given η then
11: b′ ← sample(Effπ)
12: if b′ /∈ V then
13: Add b′ to F and V
14: Update Plan[b′]← Plan[b] + [π]
15: end if
16: end if
17: end for
18: end while
19: return Failure ▷ No plan found

Cartpole Ant Quadcopter Quadruped Humanoid Gears

FullDR .017±.012 .003±.002 .003±.004 .001±.000 .200±.198 .001±.000

NoDR .005±.000 .000±.000 .000±.000 .062±.048 .000±.000 .010±.000

DORAEMON .005±.000 .000±.000 .000±.000 .023±.022 .124±.248 .020±.018

LSDR .110±.006 .000±.000 .002±.002 .011±.002 .278±.230 .003±.000

ADR .004±.000 .000±.000 .000±.000 .114±.026 .000±.000 .072±.044

GoFlow .109±.080 .072±.038 .019±.010 .178±.220 .321 ± .068 .104±.028

Table 1: Mean and standard deviation of coverage, with all statistically significant entries bolded.

A.5 REAL-WORLD EXPERIMENTS

In addition to simulated experiments, we compare GoFlow against baselines on a real-world gear
insertion task. In particular, we tested insertion of the pink medium gear over 10 trials for each
baseline. To test this, we had the robot perform 10 successive pick/inserts of the pink gear into
the middle shaft of the gear plate. Instead of randomizing the pose of the gear, we elected to fix
the initial pose of the gear and the systematically perturb the end-effector pose by a random ±0.01
meter translational offset along the x dimension during the pick. We expect some additional grasp
pose noise due to position error during grasp and object shift during grasp. This led to a randomized
in-hand offset while running the trained insertion policy. Our results show that GoFlow can indeed
more robustly generalize to real-world robot settings under pose uncertainty.
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FullDR NoDR DORAEMON LSDR ADR GoFlow

Success Rate 6/10 3/10 5/10 5/10 5/10 9/10

Table 2: Real-world experimental results with the statistically significant results bolded.

A.6 STATISTICAL TESTS

We performed a statistical analysis of the simulated results reported in Figure 3 and the real-world
experiments in Table 2. For the simulated results, we recorded the final domain coverages across
all seeds and performed pairwise t-tests between each method and the top-performing method. The
final performance mean and standard deviation are reported in Table 1. Any methods that were not
significantly different from the top performing method (p < 0.05) are bolded. This same method
was used to test significance of the real-world results.

A.7 DERIVATION OF THE REWARD-WEIGHTED FLOW GRADIENT

In one component of our optimization, we aim to maximize the expected reward:

Eξ∼pϕ(ξ) [Jξ(π)] ,

where pϕ(ξ) is parameterized by ϕ, which are the parameters of the normalizing flow sampling
distribution. The expectation can be written as:

Eξ∼pϕ(ξ) [Jξ(π)] =
∫
pϕ(ξ)Jξ(π) dξ.

Taking the gradient with respect to ϕ, we use the log-derivative trick:

∇ϕpϕ(ξ) = pϕ(ξ)∇ϕ log pϕ(ξ).

Substituting this into the integral:

∇ϕEξ∼pϕ(ξ) [Jξ(π)] =
∫
pϕ(ξ)∇ϕ log pϕ(ξ)Jξ(π) dξ.

Rewriting as an expectation:

∇ϕEξ∼pϕ(ξ) [Jξ(π)] = Eξ∼pϕ(ξ) [Jξ(π)∇ϕ log pϕ(ξ)] .

In practice, this expectation is approximated using samples {ξi}Bi=1 drawn from pϕ(ξ):

∇ϕEξ∼pϕ(ξ) [Jξ(π)] ≈
1

B

B∑
i=1

Jξi(π)∇ϕ log pϕ(ξi).

This expression is used to update the parameters of our normalizing flow as shown in Line 9 of
Algorithm 1.
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