
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FLOW-BASED MAXIMUM ENTROPY DOMAIN
RANDOMIZATION FOR MULTI-STEP ASSEMBLY

Anonymous authors

Paper under double-blind review

ABSTRACT

Domain randomization in reinforcement learning is an established technique for
increasing the robustness of control policies learned in simulation. By random-
izing properties of the environment during training, the learned policy can be
conformant to uncertainty along the randomized dimensions. While the envi-
ronment distribution is typically specified by hand, in this paper we investigate
the problem of automatically discovering this sampling distribution via entropy-
regularized reward maximization of a neural sampling distribution in the form of
a normalizing flow. We show that this architecture is more flexible and results in
better robustness than existing approaches to learning simple parameterized sam-
pling distributions. We demonstrate that these policies can be used to learn robust
policies for contact-rich assembly tasks. Additionally, we explore how these sam-
pling distributions, in combination with a privileged value function, can be used
for out-of-distribution detection in the context of an uncertainty-aware multi-step
manipulation planner.

1 INTRODUCTION

Reinforcement learning (RL) has proven to be a useful tool in robotics for learning control or action
policies for tasks and systems which are highly variable and/or analytically intractable (Luo & Li
(2021); Zhu et al. (2020); Schoettler et al. (2020)). However, RL approaches can be inefficient,
involving slow, minimally parallelized, and potentially unsafe data-gathering processes when per-
formed in real environments (Kober et al. (2013)). Learning in simulation eliminates some of these
problems, but introduces new issues in the form of discrepancies between the training and real-world
environments (Valassakis et al. (2020)).

Successful RL from simulation hence requires efficient and accurate models of both robot and en-
vironment during the training process. But even with highly accurate geometric and dynamic sim-
ulators, the system can still be only considered partially observable (Kober et al. (2013))—material
qualities, inertial properties, perception noise, contact and force sensor noise, manufacturing devia-
tions and tolerances, and imprecision in robot calibration all add uncertainty to the model.

To improve the robustness of learned policies against sim-to-real discrepancies, it is common to
employ domain randomization, varying the large set of environmental parameters inherent to a task
according to a given underlying distribution (Muratore et al. (2019)). In this way, policies are trained
to maximize their overall performance over a diverse set of models. These sampling distributions
are typically constructed manually with Gaussian or uniform distributions on individual parameters
with hand-selected variances and bounds. However, choosing appropriate distributions for each
of the domain randomization parameters remains a delicate process (Josifovski et al. (2022)); too
broad a distribution leads to suboptimal local minima convergence (see Figure 3), while too narrow
a distribution leads to poor real-world generalization (Mozifian et al., 2019; Packer et al., 2018).
Many existing methods rely on real-world rollouts from hardware experiments to estimate dynamics
parameters (Chebotar et al. (2019); Ramos et al. (2019); Tiboni et al. (2023); Muratore et al. (2022)).
However, for complex tasks with physical parameters that are difficult to efficiently or effectively
sample, this data may be time-consuming to produce, or simply unavailable.

An ideal sampling distribution enables the policy to focus training on areas of the distribution that
can feasibly be solved in order to maximize the overall success rate of the trained policy while not

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

wasting time on unsolvable regions of the domain. Automating updates to parameter distributions
during the training process can remove the need for heuristic tuning and iterative experimentation
(Mozifian et al. (2019); OpenAI et al. (2019); Tiboni et al. (2024)). In this paper, we present GoFlow,
a novel approach for learned domain randomization that combines actor-critic reinforcement learn-
ing architectures (Schulman et al., 2017; Haarnoja et al., 2018) with a neural sampling distribution
to learn robust policies that generalize to real-world settings. By maximizing the diversity of param-
eters during sampling, we actively discover environments that are challenging for the current policy
but still solvable given enough training.

As proof of concept, we investigate one real-world use case: contact-rich manipulation for assembly.
Assembly is a critical area of research for robotics, requiring a diverse set of high-contact interac-
tions which often involve wide force bandwidths and unpredictable dynamic changes. Recently,
sim-to-real RL has emerged as a potentially useful strategy for learning robust contact-rich policies
without laborious real-world interactions Noseworthy et al. (2024); Tang et al. (2023a); Zhang et al.
(2024). We build on this work by testing our method on the real-world industrial assembly task of
gear insertion.

Lastly, we extend this classical gear insertion task to the setting of multi-step decision making under
uncertainty and partial observability. As shown in this paper and elsewhere Tiboni et al. (2024);
Mozifian et al. (2019); OpenAI et al. (2019), policies trained in simulation have an upper bound
on the environmental uncertainties that they can be conformant to. For example, a visionless robot
executing an insertion policy can only tolerate so much in-hand pose error. However, estimates of
this uncertainty can be used to inform high level control decisions, e.g., looking closer at objects to
get more accurate pose estimates or tracking objects in the hand to detect slippage. By integrating
a probabilistic pose estimation model, we can use the sampling distributions learned with GoFlow
as an out-of-distribution detector to determine whether the policy is expected to succeed under its
current belief about the world state. If the robot has insufficient information, it can act to deliberately
seek the needed information using a simple belief-space planning algorithm. For example, an in-
hand camera can be used to gather a higher resolution image for more accurate pose estimation if
necessary.

Our contributions are as follows: We introduce GoFlow, a novel domain randomization method that
combines actor-critic reinforcement learning with a learned neural sampling distribution. We show
that GoFlow outperforms fixed and other learning-based solutions to domain randomization on a
suite of simulated environments. We demonstrate the efficacy of GoFlow in a real-world contact-
rich manipulation task—gear insertion—and extend it to multi-step decision-making under uncer-
tainty. By integrating a probabilistic pose estimation model, we enable the robot to actively gather
additional information when needed, enhancing performance in partially observable settings.

2 RELATED WORK

Recent developments in reinforcement learning have proven that policies trained in simulation can
be effectively translated to real-world robots for contact-rich assembly tasks (Zhang et al., 2024;
Tang et al., 2023a; Noseworthy et al., 2024; Jin et al., 2023). One key innovation that has con-
tributed to the development of robust policies is domain randomization (Chen et al., 2021; Peng
et al., 2017), wherein environment parameters are sampled from a distribution during training such
that the learned policy can be robust to environmental uncertainty on deployment.

Some previously explored learning strategies include minimization of divergence with a target sam-
pling distribution using multivariate Gaussians (Mozifian et al., 2019), maximization of entropy
using independent beta distributions (Tiboni et al., 2024), and progressive expansion of a uniform
sampling distribution via boundary sampling (OpenAI et al., 2019). Here, we propose a novel
learned domain randomization technique using normalizing flows Rezende & Mohamed (2015) as
a neural sampling distribution, thus increasing flexibility and expressivity.

In addition to learning robust policies, such sampling distributions can be used as indicators of the
world states under which the policy is expected to succeed. Some previous works have combined
domain randomization with information gathering via system identification (Ramos et al., 2019;
Sagawa & Hino, 2024). In this work, we similarly make use of our learned sampling distribution as
an out-of-distribution detector in the context of a multi-step planning system.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 BACKGROUND

3.1 MARKOV DECISION PROCESS

A Markov Decision Process (MDP) is a mathematical framework for modeling decision-making.
Formally, an MDP is defined as a tuple (S,A, P,R, γ), where S is the state space, A is the action
space, P : S ×A×S → [0, 1] is the state transition probability function, where P (s′ | s, a) denotes
the probability of transitioning to state s′ from state s after taking action a, R : S × A → R is the
reward function, where R(s, a) denotes the expected immediate reward received after taking action
a in state s, γ ∈ [0, 1) is the discount factor, representing the importance of future rewards.

A policy π : S × A → [0, 1] defines a probability distribution over actions given states, where
π(a | s) is the probability of taking action a in state s. The goal is to find an optimal policy π∗ that
maximizes the expected cumulative discounted reward.

3.2 DOMAIN RANDOMIZATION

Domain randomization introduces variability into the environment by randomizing certain parame-
ters during training. Let Ξ denote the space of domain randomization parameters, and let ξ ∈ Ξ be
a specific instance of these parameters. Each ξ corresponds to a different environment configuration
or dynamics.

We can define a parameterized family of Markov Decision Processes (MDPs) where each Mξ =
(S,A, Pξ, Rξ, γ) has transition dynamics Pξ and reward function Rξ dependent on ξ. The agent
interacts with environments sampled from a distribution over Ξ, typically denoted as p(ξ). 1

The objective is to learn a policy π : S → A that maximizes the expected return across the distribu-
tion environments:

J(π) = Eξ∼p(ξ)

[
Eτ∼Pξ,π

[∞∑
t=0

γtRξ(st, at)

]]
, (1)

where τ = {(s0, a0, s1, a1, . . .)} denotes a trajectory generated by policy π in environment ξ.
Domain randomization aims to find a policy π∗ such that: π∗ = argmaxπ J(π).

In deep reinforcement learning, the policy π is a neural network parameterized by θ, denoted as πθ.
The agent learns the policy parameters θ through interactions with simulated environments sampled
from p(ξ). In our implementation, we employ the Proximal Policy Optimization (PPO) algorithm
(Schulman et al., 2017), an on-policy policy gradient method that optimizes a stochastic policy while
ensuring stable and efficient learning.

To further stabilize training, we pass privileged information about the environment parameters ξ to
the critic network. The critic network, parameterized by ψ, estimates the state-value function:

Vψ(st, ξ) = Eπθ

[∞∑
k=0

γkrt+k

∣∣∣∣ st, ξ
]
, (2)

where st is the current state, rt+k are future rewards, and γ is the discount factor. By incorporating
ξ, the critic can provide more accurate value estimates with lower variance (Pinto et al., 2017). The
actor network πθ(at|st) does not have access to ξ, ensuring that the policy relies only on observable
aspects of the state.

3.3 NORMALIZING FLOWS

Normalizing flows are a class of generative models that transform a simple base distribution into a
complex target distribution using a sequence of invertible, differentiable functions. Let z ∼ pZ(z) be

1This problem can also be thought of as a POMDP where the observation space is S and the state space is
a product of S and Ξ as discussed in Kwon et al. (2021).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Flow

Simulator

Actor

Episode Start Each Step Training Only

Critic

Observations

Figure 1: An architecture diagram for our actor-critic RL training setup using a normalizing flow to
seed environment parameters across episodes.

a latent variable from a base distribution (e.g., a standard normal distribution). A normalizing flow
defines an invertible transformation fϕ : Rd → Rd parameterized by neural network parameters ϕ,
such that x = fϕ(z), aiming for x to follow the target distribution.

The density of x is computed using the change of variables formula:

pX(x) = pZ(f
−1
ϕ (x))

∣∣∣∣∣det
(
∂f−1

ϕ (x)

∂x

)∣∣∣∣∣ . (3)

For practical computation, this is often rewritten as:

log pX(x) = log pZ(z)− log

∣∣∣∣det(∂fϕ(z)∂z

)∣∣∣∣ , (4)

where ∂fϕ(z)
∂z is the Jacobian of fϕ at z. By composing multiple such transformations fϕ = fϕK ◦

· · · ◦fϕ1 , each parameterized by neural network parameters ϕk, normalizing flows can model highly
complex distributions.

In our work, we employ neural spline flows (Durkan et al., 2019), a type of normalizing flow where
the invertible transformations are constructed using spline-based functions. Specifically, the param-
eters ϕ represent the coefficients of the splines (e.g., knot positions and heights) and the weights and
biases of the neural networks that parameterize these splines.

4 METHOD

In this section, we introduce GoFlow, a method for learned domain randomization that goes with
the flow by adaptively adjusting the domain randomization process using normalizing flows.

In traditional domain randomization setups, the distribution p(ξ) is predefined. However, selecting
an appropriate p(ξ) is crucial for the policy’s performance and generalization. Too broad a sam-
pling distribution and the training focuses on unsolvable environments and falls into local minima.
In contrast, too narrow a sampling distribution leads to poor generalization and robustness. Addi-
tionally, rapid changes to the sampling distribution can lead to unstable training. To address these
challenges, prior works such as Klink et al. (2021) have proposed a self-paced learner, which starts
by mastering a small set of environments, and gradually expands the tasks to solver harder and
harder problems while maintaining training stability. This strategy has subsequently been applied to
domain randomization in Mozifian et al. (2019) and Tiboni et al. (2024), where terms were included
for encouraging spread over the sampling space for greater generalization. We take inspiration from
these works to form a joint optimization problem:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 GoFlow
Require: Initial policy parameters θ, flow parameters ϕ, total training steps N , network updates K,

Monte Carlo samples M , entropy coefficient α, similarity coefficient β, and learning rate ηϕ
1: for n = 1 to N do
2: Sample {ξi}Bi=1 ∼ pϕ(ξ)
3: Train πθ with ξi initializations
4: Estimate Jξi(πθ) for each ξi via M Monte Carlo samples
5: Save current flow distribution as pϕold(ξ)
6: for k = 1 to K do
7: Ĥ ← −Eξ∼pϕ(ξ) [log pϕ(ξ)]
8: D̂KL ← Eξ∼pϕ(ξ) [log pϕ(ξ)− log pϕold(ξ)]

9: ϕ← ϕ+ ηϕ∇ϕ
(

1
B

∑B
i [log pϕ(ξ)Jξi(πθ)] + αĤ − βD̂KL

)
10: end for
11: end for

max
p(ξ),π

{
Eξ∼p(ξ) [Jξ(π)] + αH(p(ξ))− βDKL (p(ξ)∥pold(ξ))

}
, (5)

whereH(p(ξ)) is the differential entropy of p(ξ), DKL (p(ξ)∥pold(ξ)) is the divergence between the
current and previous sampling distributions, and α > 0, β > 0 are regularization coefficients that
control the tradeoff between generalizability, training stability, and the expected reward under the
sampling distribution. To our knowledge, GoFlow is the first method to optimize such an objective
with a neural sampling distribution.

Other learned domain randomization approaches propose similar objectives. Mozifian et al. (2019)
maximizes reward but replaces entropy regularization with a KL divergence to a fixed target distri-
bution and omits the self-paced KL term. Tiboni et al. (2024) includes all three objectives but frames
the reward and self-paced KL terms as constraints, maximizing entropy through a nonlinear opti-
mization process that is not easily adaptable to neural sampling distributions. We compare GoFlow
to these methods in our experiments to highlight its advantages.

The GoFlow algorithm (Algorithm 1) begins by initializing both the policy parameters θ and the nor-
malizing flow parameters ϕ. In each training iteration, GoFlow first samples a batch of environment
parameters {ξi}Bi=1 from the current distribution modeled by the normalizing flow. These sampled
parameters are used to train the policy πθ. Following the policy update, expected returns Jξi(πθ)
are estimated for each sampled environment through Monte Carlo sampling, providing a measure of
the policy’s performance in each specific setting.

After sampling these rollouts, GoFlow then perform K steps of optimization on the sampling distri-
bution. The entropy of the sampling distribution (Line 7) and divergence from the previous sampling
distribution (Line 8) are estimated using newly drawn samples. GoFlow then estimates the policy’s
performance on the sampling distribution using the previously sampled rollout trajectories. Since
we are evaluating the gradient, this can equivalently be calculated using the log of the probabil-
ity under the sampling distribution for numerical stability, as is commonly done in policy gradient
reinforcement learning (see proof in Appendix Section A.7). These terms are combined to form
a loss, which is differentiated to update the parameters of the sampling distribution (Line 9). An
architecture diagram for this approach can be seen in Figure 14.

5 DOMAIN RANDOMIZATION EXPERIMENTS

Our simulated experiments compare policy robustness in a range of domains. For full details on the
randomization parameters and bounds, see Appendix A.1.

5.1 DOMAINS

First, we examine the application of GoFlow to an illustrative 2D domain that is multimodal and
contains intervariable dependencies. The state and action space are in R2. The agent is initialized

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: An illustrative domain showing the learned sampling functions over the space of unob-
served parameters for the tested baselines. Compared to other learning methods, GoFlow correctly
models the multimodality and inter-variable dependencies of the underlying reward function. This
toy domain, along with other domains in our experiments, violates some of the assumptions made
by prior works, such as the feasibility of the center point of the range.

randomly in a bounded x, y plane. An energy function is defined by a composition of Gaussians
placed in a regular circular or linear array. The agent can observe its position with Gaussian noise
proportional to the inverse of the energy function. The agent is rewarded for guessing its location,
but is incapable of moving. This task is infeasible when the agent is sufficiently far from any of the
Gaussian centers, so a sampling distribution should come to resemble the energy function. Some
example functions learned by GoFlow and baselines from Section 5.2 can be seen in Figure 2.

Second, we quantitatively compare GoFlow to existing baselines including Cartpole, Ant, Quad-
copter, and Quadruped in the IsaacLab suite of environments (Mittal et al., 2023). We randomize
over parameters such as link masses, joint frictions, and material properties.

Lastly, we evaluate our method on a contact-rich robot manipulation task of gear insertion, a partic-
ularly relevant problem for robotic assembly. In the gears domain, we randomize over the relative
pose between the gripper and the held gears along three degrees of freedom. The problem is made
difficult by the uncertainty the robot has about the precise location of the gear relative to the hand.
The agent must learn to rely on signals of proprioception and force feedback to guide the gear into
the gear shaft. The action space consists of end-effector pose offsets along three translational de-
grees of freedom and one rotational degree around the z dimension. The observation space consists
of a history of the ten previous end effector poses and velocities estimated via finite differencing.
In addition to simulated experiments, our trained policies are tested on a Franka Emika robot using
IndustReal library built on the frankapy toolkit (Tang et al., 2023b; Zhang et al., 2020).

5.2 BASELINES

In our domain randomization experiments, we compare to a number of standard RL baselines and
learning-based approaches from the literature. In our quantitative experiments, success is measured
by the sampled environment passing a certain performance threshold JT that was selected for each
environment. All baselines are trained with an identical neural architecture and PPO implementa-
tion. The success thresholds along with other hyperparameters are in Appendix A.2.

We evaluate on the following baselines. First, we compare to no domain randomization (NoDR)
which trains on a fixed environment parameter at the centroid of the parameter space. Next, we
compare to a full domain randomization (FullDR) which samples uniformly across the domain
within the boundaries during training. In addition to these fixed randomization methods, we evaluate
against some other learning-based solutions from the literature: ADR (OpenAI et al., 2019) learns
uniform intervals that expand over time via boundary sampling. It starts by occupying an initial
percentage of the domain and performs “boundary sampling” during training with some probability.
The rewards attained from boundary sampling are compared to thresholds that determine if the
boundary should be expanded or contracted. LSDR (Mozifian et al., 2019) learns a multivariate

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Co
ve
ra
ge

Figure 3: The coverage ratio over the target distribution across five random seeds for each of the
environments. The bands around each curve indicate the standard error.

gaussian sampling distribution using reward maximization with a KL divergence regularization term
weighted by an α hyperparameter. Lastly, DORAEMON (Tiboni et al., 2024) learns independent
beta distributions for each dimension of the domain, using a maximum entropy objective constrained
by an estimated success rate.

We measure task performance in terms of coverage, which is defined as the proportion of the total
sampling distribution for which the policy receives higher than Jt reward. We compare coverage
across environments sampled from a uniform testing distribution within the environment bounds.
Our findings in Figure 3 show that GoFlow matches or outperforms baselines across all domains.
We find that our method performs particularly well in comparison to other learned baselines when
the simpler or more feasible regions of the domain are off-center, irregularly shaped, and have inter-
parameter dependencies such as those seen in Figure 2. The reward structure and sampling ranges
of these domains often violate the regularity assumptions made by the baseline approaches, leading
to worse performance.

In addition to simulated experiments, we additionally evaluated the trained policies on a real-world
gear insertion task. The results of those real-world experiments can be seen in Table 2.

6 APPLICATION TO MULTI-STEP MANIPULATION

While reinforcement learning has proven to be a valuable technique for learning short-horizon skills
in dynamic and contact-rich settings, it often struggles to generalize to more long-horizon and open
ended problems (Sutton & Barto, 2018). The topic of sequencing short horizon skills in the context
of a higher-level decision strategy has been of increasing interest to both the planning (Mishra et al.,
2023) and reinforcement learning communities (Nasiriany et al., 2021). For this reason, we examine
the utility of these learned sampling distributions as out-of-distribution detectors, or belief-space
preconditions, in the context of a multi-step planning system.

6.1 BELIEF-SPACE PLANNING BACKGROUND

Belief-space planning is a framework for decision-making under uncertainty, where the agent main-
tains a probability distribution over possible states, known as the belief state. Instead of planning
solely in the state space S, the agent operates in the belief space B, which consists of all possible
probability distributions over S. This approach is particularly useful in partially observable environ-
ments where there is uncertainty in environment parameters and where it is important to take actions
to gain information.

Rather than operating at the primitive action level, belief-space planners often make use of high-
level actions AΠ, sometimes called skills or options. In our case, these high-level actions will be
a discrete set of pretrained RL policies. These high-level actions come with a belief-space pre-
condition and a belief-space effect, both of which are subsets of the belief space B (Kaelbling &
Lozano-Perez (2013); Curtis et al. (2024)). Specifically, a high-level action π ∈ AΠ is associated
with two components: a precondition Preπ ⊆ B, representing the set of belief states from which the
action can be applied, and an effect Effπ ⊆ B, representing the set of belief states that the action was
designed or trained to achieve. If the precondition holds—that is, if the current belief state b satisfies
b ∈ Preπ—then applying action a will achieve the effect Effπ with probability at least η ∈ [0, 1].

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: A multi-step manipulation plan using probabilistic pose estimation to estimate and update
beliefs over time. The three rows show the robot state st, the observation ot, and the robot belief bt
at each timestep. The red dotted line in the belief indicates the marginal entropy thresholds for the
x, y, and yaw dimensions as determined by the learned normalizing flow. For full visualizations of
the belief posteriors, flow distributions, and value maps, see Figure 12 in the appendix.

More formally, if b ∈ Preπ , then Pr
(
bt+1 ∈ Effπ

∣∣ bt, π) ≥ η. Depending on the planner, η may be
set in advance, or calculated by the planner as a function of the belief.

This formalization allows planners to reason abstractly about the effects of high-level actions under
uncertainty, which can result in generalizable decision-making in long-horizon problems that require
active information gathering or risk-awareness.

6.2 COMPUTING PRECONDITIONS

In this section, we highlight the potential application of the learned sampling distribution pϕ and
privileged value function Vψ as a useful artifacts for belief-space planning. In particular, we are
interested in identifying belief-space preconditions of a set of trained skills.

One point of leverage we have for this problem is the privileged value function Vψ(s, ξ), which was
learned alongside the policy during training. One way to estimate the belief-space precondition is to
simply find the set of belief states for which the expected value of the policy is larger than JT with
probability greater than η under the belief:

Preπ =
{
b(s, ξ) ∈ B | Eb(s,ξ)

[
1Vψ(s,ξ)>JT

]
> η

}
. (6)

However, a practical issue with this computation is that the value function is likely not calibrated in
large portions of the state space that were not seen during policy training. To address this, we focus
on regions of the environment where the agent has higher confidence due to sufficient sampling, i.e.,
where pϕ(ξ) > ϵ for a threshold ϵ. This enables us to integrate the value function over the belief
distribution b(x, ξ) and the trusted region within Ξ:

Preπ =
{
b(s, ξ) ∈ B | Eb(s,ξ)

[
1Vψ(s,ξ)>JT · 1pϕ(ξ)>ϵ

]
> η

}
(7)

.

Here, η lower bounds the probability of achieving the desired effects Effπ (or value greater than JT)
after executing π in any belief state in Preπ . Figure 5 shows an example precondition for a single
step of the assembly plan.

6.3 UPDATING BELIEFS

Updating the belief state requires a probabilistic state estimation system that outputs a posterior
over the unobserved environment variables, rather than a single point estimate. We use a proba-
bilistic object pose estimation framework called Bayes3D to infer posterior distributions over object
pose (Gothoskar et al., 2023). For details on this, see Appendix A.4.1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

belief (t=0) belief (t=4)

x (mm) x (mm)x (mm)x (mm) x (mm)

yaw (rad) yaw (rad) yaw (rad) yaw (rad) yaw (rad)

y
o�

se
t (

m
m

)
y

o�
se

t (
m

m
)

lo
g(

p)
lo

g(
p)

-5

-12

-6

-8

va
lu

e
va

lu
e

60

0

60

0

lo
g(

p)
lo

g(
p)

-2.5

-2.5

-4

-4

preimage

Figure 5: A visual example of the precondition computation described in Section 6.2 for a single
step in the gear assembly process. The normalizing flow is thresholded to indicate the in-distribution
regions of the learned value function. The thresholded sampling distribution is further thresholded
by the value function to get the belief-space precondition. Comparing the precondition to the beliefs,
we can see that the belief is not sufficiently contained within the precondition at t = 0, but passes
the success threshold η at after closer inspection t = 4.

The benefit of this approach in contrast to traditional rendering-based pose estimation systems, such
as those presented in Wen et al. (2024) or Labbé et al. (2022), is that pose estimates from Bayes3D
indicate high uncertainty for distant, small, or occluded objects as well as uncertainty stemming
from object symmetry. Figure 12 shows the pose beliefs across the multi-step plan.

6.4 A SIMPLE BELIEF-SPACE PLANNER

While the problem of general-purpose multi-step planning in belief-space has been widely studied,
in this paper we use a simple BFS belief-space planner to demonstrate the utility of the learned sam-
pling distributions as belief-space preconditions. The full algorithm can be found in Algorithm 2.

An example plan can be seen in Figure 4. The goal is to assemble the gear box by inserting all three
gears (yellow, pink, and blue) into the shafts on the gear plate. Each gear insertion is associated with
a separate policy for each color trained with GoFlow. In addition to the trained policies, the robot
is given access to an object-parameterized inspection action which has no preconditions and whose
effects are a reduced-variance pose estimate attained by moving the camera closer to the object. The
robot is initially uncertain of the x, y, and yaw components of the 6-dof pose based on probabilistic
pose estimates. Despite this uncertainty, the robot is confident enough in the pose of the largest and
closest yellow gear to pick it up and insert it. In contrast, the blue and pink gears require further
inspection to get a better pose estimate. Closer inspection reduces uncertainty along the x and y axis,
but reveals no additional information about yaw dimension due to rotational symmetry. Despite an
unknown yaw dimension, the robot is confident in the insertion because the flow pϕ indicates that
success is invariant to the yaw dimension. For visualizations of the beliefs and flows at each step,
see Appendix A.4.

7 CONCLUSION AND DISCUSSION

In this paper, we introduced GoFlow, a novel approach to domain randomization that uses normal-
izing flows to dynamically adjust the sampling distribution during reinforcement learning. By com-
bining actor-critic reinforcement learning with a learned neural sampling distribution, we enabled
more flexible and expressive parameterization of environmental variables, leading to better gener-
alization in complex tasks like contact-rich assembly. Our experiments demonstrated that GoFlow
outperforms traditional fixed and learning-based domain randomization techniques across a variety

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

of simulated environments, particularly in scenarios where the domain has irregular dependencies
between parameters. The method also showed promise in real-world robotic tasks including contact-
rich assembly.

Moreover, we extended GoFlow to multi-step decision-making tasks, integrating it with belief-space
planning to handle long-horizon problems under uncertainty. This extension enabled the use of
learned sampling distributions and value functions as preconditions leading to active information
gathering.

Although GoFlow enables more expressive sampling distributions, it also presents some new chal-
lenges. One limitation of our method is that it has higher variance due to occasional training insta-
bility of the flow. This instability can be alleviated by increasing β, but at the cost of reduced sample
efficiency (see Appendix A.2). In addition, using the flow and value estimates for belief-space plan-
ning require manual selection and tuning of several thresholds which are environment specific. The
η parameter may be converted from a threshold into a cost in the belief space planner, which would
remove one point of manual tuning. However, removing the ϵ parameter may prove more difficult, as
it would require uncertainty quantification of the neural value function. Despite these challenges, we
hope this work inspires further research on integrating short-horizon learned policies into broader
planning frameworks, particularly in contexts involving uncertainty and partial observability.

8 REPRODUCIBILITY STATEMENT

In our supplementary materials, we provide a minimal code implementation of our approach along
with all the baseline implementations and environments discussed in this paper. If accepted, we will
publish a full public release of the code on Github.

REFERENCES

Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac, Nathan Ratliff,
and Dieter Fox. Closing the sim-to-real loop: Adapting simulation randomization with real world
experience. In 2019 International Conference on Robotics and Automation (ICRA), pp. 8973–
8979. IEEE, 2019.

Xiaoyu Chen, Jiachen Hu, Chi Jin, Lihong Li, and Liwei Wang. Understanding domain random-
ization for sim-to-real transfer. CoRR, abs/2110.03239, 2021. URL https://arxiv.org/
abs/2110.03239.

Aidan Curtis, George Matheos, Nishad Gothoskar, Vikash Mansinghka, Joshua Tenenbaum, Tomás
Lozano-Pérez, and Leslie Pack Kaelbling. Partially observable task and motion planning with
uncertainty and risk awareness, 2024. URL https://arxiv.org/abs/2403.10454.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential monte carlo samplers. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 68(3):411–436, 2006.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. In
Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019.

Nishad Gothoskar, Matin Ghavami, Eric Li, Aidan Curtis, Michael Noseworthy, Karen Chung,
Brian Patton, William T Freeman, Joshua B Tenenbaum, Mirko Klukas, et al. Bayes3d: fast
learning and inference in structured generative models of 3d objects and scenes. arXiv preprint
arXiv:2312.08715, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Peng Jin, Yu Lin, Yu Song, Tao Li, and Wei Yang. Vision-force-fused curriculum learning for
robotic contact-rich assembly tasks. Frontiers in Neurorobotics, 17:1280773, October 2023. doi:
10.3389/fnbot.2023.1280773.

10

https://arxiv.org/abs/2110.03239
https://arxiv.org/abs/2110.03239
https://arxiv.org/abs/2403.10454

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Josip Josifovski, Mohammadhossein Malmir, Noah Klarmann, Bare Luka Žagar, Nicolás Navarro-
Guerrero, and Alois Knoll. Analysis of randomization effects on sim2real transfer in reinforce-
ment learning for robotic manipulation tasks. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 10193–10200. IEEE, 2022.

Leslie Kaelbling and Tomas Lozano-Perez. Integrated task and motion planning in belief space.
The International Journal of Robotics Research, 32:1194–1227, 08 2013. doi: 10.1177/
0278364913484072.

Pascal Klink, Hany Abdulsamad, Boris Belousov, Carlo D’Eramo, Jan Peters, and Joni Pajarinen.
A probabilistic interpretation of self-paced learning with applications to reinforcement learning.
CoRR, abs/2102.13176, 2021. URL https://arxiv.org/abs/2102.13176.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. RL for latent mdps:
Regret guarantees and a lower bound. CoRR, abs/2102.04939, 2021. URL https://arxiv.
org/abs/2102.04939.

Yann Labbé, Lucas Manuelli, Arsalan Mousavian, Stephen Tyree, Stan Birchfield, Jonathan Trem-
blay, Justin Carpentier, Mathieu Aubry, Dieter Fox, and Josef Sivic. Megapose: 6d pose estima-
tion of novel objects via render & compare, 2022. URL https://arxiv.org/abs/2212.
06870.

Jieliang Luo and Hui Li. A learning approach to robot-agnostic force-guided high precision assem-
bly. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
2151–2157. IEEE, 2021.

Utkarsh A. Mishra, Shangjie Xue, Yongxin Chen, and Danfei Xu. Generative skill chaining:
Long-horizon skill planning with diffusion models, 2023. URL https://arxiv.org/abs/
2401.03360.

Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,
Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State,
Marco Hutter, and Animesh Garg. Orbit: A unified simulation framework for interactive robot
learning environments. IEEE Robotics and Automation Letters, 8(6):3740–3747, 2023. doi:
10.1109/LRA.2023.3270034.

Melissa Mozifian, Juan Camilo Gamboa Higuera, David Meger, and Gregory Dudek. Learning
domain randomization distributions for transfer of locomotion policies. CoRR, abs/1906.00410,
2019. URL http://arxiv.org/abs/1906.00410.

Fabio Muratore, Michael Gienger, and Jan Peters. Assessing transferability from simulation to real-
ity for reinforcement learning. IEEE transactions on pattern analysis and machine intelligence,
43(4):1172–1183, 2019.

Fabio Muratore, Theo Gruner, Florian Wiese, Boris Belousov, Michael Gienger, and Jan Pe-
ters. Neural posterior domain randomization. In Aleksandra Faust, David Hsu, and Ger-
hard Neumann (eds.), Proceedings of the 5th Conference on Robot Learning, volume 164 of
Proceedings of Machine Learning Research, pp. 1532–1542. PMLR, 08–11 Nov 2022. URL
https://proceedings.mlr.press/v164/muratore22a.html.

Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Augmenting reinforcement learning with behav-
ior primitives for diverse manipulation tasks. CoRR, abs/2110.03655, 2021. URL https:
//arxiv.org/abs/2110.03655.

Michael Noseworthy, Bingjie Tang, Bowen Wen, Ankur Handa, Nicholas Roy, Dieter Fox, Fabio
Ramos, Yashraj Narang, and Iretiayo Akinola. Forge: Force-guided exploration for robust
contact-rich manipulation under uncertainty, 2024. URL https://arxiv.org/abs/2408.
04587.

11

https://arxiv.org/abs/2102.13176
https://arxiv.org/abs/2102.04939
https://arxiv.org/abs/2102.04939
https://arxiv.org/abs/2212.06870
https://arxiv.org/abs/2212.06870
https://arxiv.org/abs/2401.03360
https://arxiv.org/abs/2401.03360
http://arxiv.org/abs/1906.00410
https://proceedings.mlr.press/v164/muratore22a.html
https://arxiv.org/abs/2110.03655
https://arxiv.org/abs/2110.03655
https://arxiv.org/abs/2408.04587
https://arxiv.org/abs/2408.04587

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba,
and Lei Zhang. Solving rubik’s cube with a robot hand. CoRR, abs/1910.07113, 2019. URL
http://arxiv.org/abs/1910.07113.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song.
Assessing generalization in deep reinforcement learning. CoRR, abs/1810.12282, 2018. URL
http://arxiv.org/abs/1810.12282.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer
of robotic control with dynamics randomization. CoRR, abs/1710.06537, 2017. URL http:
//arxiv.org/abs/1710.06537.

Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel. Asym-
metric actor critic for image-based robot learning. CoRR, abs/1710.06542, 2017. URL http:
//arxiv.org/abs/1710.06542.

Fabio Ramos, Rafael Carvalhaes Possas, and Dieter Fox. Bayessim: adaptive domain randomization
via probabilistic inference for robotics simulators. CoRR, abs/1906.01728, 2019. URL http:
//arxiv.org/abs/1906.01728.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
Proceedings of the 32nd International Conference on Machine Learning (ICML). PMLR, 2015.

François Rozet et al. Zuko: Normalizing flows in pytorch, 2022. URL https://pypi.org/
project/zuko.

Shogo Sagawa and Hideitsu Hino. Gradual domain adaptation via normalizing flows, 2024. URL
https://arxiv.org/abs/2206.11492.

Gerrit Schoettler, Ashvin Nair, Jianlan Luo, Shikhar Bahl, Juan Aparicio Ojea, Eugen Solowjow, and
Sergey Levine. Deep reinforcement learning for industrial insertion tasks with visual inputs and
natural rewards. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 5548–5555. IEEE, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

Bingjie Tang, Michael A. Lin, Iretiayo Akinola, Ankur Handa, Gaurav S. Sukhatme, Fabio Ramos,
Dieter Fox, and Yashraj Narang. Industreal: Transferring contact-rich assembly tasks from simu-
lation to reality, 2023a. URL https://arxiv.org/abs/2305.17110.

Bingjie Tang, Michael A Lin, Iretiayo Akinola, Ankur Handa, Gaurav S Sukhatme, Fabio Ramos,
Dieter Fox, and Yashraj Narang. Industreal: Transferring contact-rich assembly tasks from simu-
lation to reality. In Robotics: Science and Systems, 2023b.

Gabriele Tiboni, Karol Arndt, and Ville Kyrki. Dropo: Sim-to-real transfer with offline domain
randomization. Robotics and Autonomous Systems, pp. 104432, 2023. ISSN 0921-8890. doi:
https://doi.org/10.1016/j.robot.2023.104432. URL https://www.sciencedirect.com/
science/article/pii/S0921889023000714.

Gabriele Tiboni, Pascal Klink, Jan Peters, Tatiana Tommasi, Carlo D’Eramo, and Georgia Chal-
vatzaki. Domain randomization via entropy maximization, 2024. URL https://arxiv.
org/abs/2311.01885.

Eugene Valassakis, Zihan Ding, and Edward Johns. Crossing the gap: A deep dive into zero-shot
sim-to-real transfer for dynamics. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 5372–5379. IEEE, 2020.

12

http://arxiv.org/abs/1910.07113
http://arxiv.org/abs/1810.12282
http://arxiv.org/abs/1710.06537
http://arxiv.org/abs/1710.06537
http://arxiv.org/abs/1710.06542
http://arxiv.org/abs/1710.06542
http://arxiv.org/abs/1906.01728
http://arxiv.org/abs/1906.01728
https://pypi.org/project/zuko
https://pypi.org/project/zuko
https://arxiv.org/abs/2206.11492
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2305.17110
https://www.sciencedirect.com/science/article/pii/S0921889023000714
https://www.sciencedirect.com/science/article/pii/S0921889023000714
https://arxiv.org/abs/2311.01885
https://arxiv.org/abs/2311.01885

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bowen Wen, Wei Yang, Jan Kautz, and Stan Birchfield. Foundationpose: Unified 6d pose estimation
and tracking of novel objects, 2024. URL https://arxiv.org/abs/2312.08344.

Kevin Zhang, Mohit Sharma, Jacky Liang, and Oliver Kroemer. A modular robotic arm control
stack for research: Franka-interface and frankapy. arXiv preprint arXiv:2011.02398, 2020.

Xiang Zhang, Masayoshi Tomizuka, and Hui Li. Bridging the sim-to-real gap with dynamic compli-
ance tuning for industrial insertion, 2024. URL https://arxiv.org/abs/2311.07499.

Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash Ku-
mar, and Sergey Levine. The ingredients of real-world robotic reinforcement learning. arXiv
preprint arXiv:2004.12570, 2020.

13

https://arxiv.org/abs/2312.08344
https://arxiv.org/abs/2311.07499

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DOMAIN RANDOMIZATION PARAMETERS

Below we describe the randomization ranges and parameter names for each environment. We also
provide the reward success threshold (JT) and cut the max duration of some environments in order
to speed up training (tmax). Lastly, we slightly modified the Quadruped environment to only take a
fixed forward command rather than the goal-conditioned policy learned by default. Other than those
changes, the first four simulated environments official IsaacLab implementation.

• Cartpole randomization parameters (JT = 50, tmax = 2s):
– Pole mass: Min Bound = 0.01, Max Bound = 20.0
– Cart mass: Min Bound = 0.01, Max Bound = 20.0
– Slider-Cart Friction: Min Bound = 0.0, Max Bound = 1.0

• Ant randomization parameters (JT = 700, tmax = 2s):
– Torso mass: Min Bound = 0.01, Max Bound = 20.0

• Quadcopter randomization parameters (JT = 15, tmax = 2s):
– Quadcopter mass: Min Bound = 0.01, Max Bound = 20.0

• Quadruped randomization parameters (JT = 1.5, tmax = 5s):
– Body mass: Min Bound = 0.0, Max Bound = 200.0
– Left front hip joint friction: Min Bound = 0.0, Max Bound = 0.1
– Left back hip joint friction: Min Bound = 0.0, Max Bound = 0.1
– Right front hip joint friction: Min Bound = 0.0, Max Bound = 0.1
– Right back hip joint friction: Min Bound = 0.0, Max Bound = 0.1

• Humanoid randomization parameters (JT = 1000, tmax = 5s):
– Torso Mass: Min Bound = 0.01, Max Bound = 25.0
– Head Mass: Min Bound = 0.01, Max Bound = 25.0
– Left Hand Mass: Min Bound = 0.01, Max Bound = 30.0
– Right Hand Mass: Min Bound = 0.01, Max Bound = 30.0

• Gear randomization parameters (JT = 50, tmax = 4s):
– Grasp Pose x: Min Bound = -0.05, Max Bound = 0.05
– Grasp Pose y: Min Bound = -0.05, Max Bound = 0.05
– Grasp Pose yaw: Min Bound = -0.393, Max Bound = 0.393

A.2 HYPERPARAMETERS

Below we list out the significant hyperparameters involved in each baseline method, and how we
chose them based on our hyperparameter search. We run the same seed for each hyperparameter
and pick the best performing hyperparameter as the representative for our larger quantitative exper-
iments in figure 3. The full domain randomization (FullDR) and no domain randomization (NoDR)
baselines have no hyperparameters.

A.2.1 GOFLOW

We search over the following values of the α hyperparameter: [0.1, 0.5, 1.0, 1.5, 2.0]. We search over
the following values. Other hyperparameters include number of network updates per training epoch
(K = 100), network learning rate (ηϕ = 1e−3), and neural spline flow architecture hyperparameters
such as network depth (ℓ = 3), hidden features (64), and number of bins (8). We implement our
flow using the Zuko normalizing flow library Rozet et al. (2022).

A.2.2 LSDR

Similary to GoFlow , we search over the following values of the αL hyperparameter:
[0.1, 0.5, 1.0, 1.5, 2.0]. Other hyperparameters include the number of updates per training epoch
(T=100), and initial Gaussian parameters: µ = (ξmax + ξmin)/2.0 and Σ = diag (ξmax − ξmin/10)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Co
ve
ra
ge

Figure 6: GoFlow hyperparameter sweep results for α

Co
ve
ra
ge

Figure 7: GoFlow hyperparameter sweep results for β after fixing the best α for each environment

Co
ve
ra
ge

Figure 8: LSDR hyperparameter sweep results for αL

A.2.3 DORAEMON

We search over the following values of the ϵD hyperparameter: [0.005, 0.01, 0.05, 0.1, 0.5]. Af-
ter fixing the best ϵD for each environment, we additionally search over the success thrshold αD:
[0.1, 0.25, 0.5, 0.75, 0.9].

Co
ve
ra
ge

Figure 9: DORAEMON hyperparameter sweep results for ϵD

A.2.4 ADR

In ADR, we fix the upper threshold to be the success threshold t+ = JT as was done in the origi-
nal paper and search over the lower bound threshold t− = [0.1t+, 0.25t+, 0.5t+, 0.75t+, 0.9t+].
The value used in the original paper was 0.5tH . Other hyperparameters include the expan-
sion/contraction rate, which we interpret to be a fixed fraction of the domain interval, ∆ =
0.1 ∗

[
ξmax − ξmin

]
, and boundary sampling probability pb = 0.5.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Co
ve
ra
ge

Figure 10: DORAEMON hyperparameter sweep results for αD after fixing the best ϵD

0.0 0.5 1.0 1.5
Timesteps ×107

0.002

0.004

0.006

Su
cc

es
s R

at
e

Cartpole

0.0 1.5 3.0
Timesteps ×106

0.05

0.00

0.05

Su
cc

es
s R

at
e

Ant

0 3 6 9
Timesteps ×106

0.05

0.00

0.05

Su
cc

es
s R

at
e

Quadcopter

0.0 2.5 5.0 7.5
Timesteps ×106

0.00

0.05

0.10

Su
cc

es
s R

at
e

Anymal

0.8 1.6 2.4
Timesteps ×106

0.05

0.10

0.15

Su
cc

es
s R

at
e

Gears

t =0.9 t =0.75 t =0.5 t =0.25 t =0.1

Figure 11: ADR hyperparameter sweep results for t−

A.3 COVERAGE VS RANGE EXPERIMENTS

We compare coverage vs. range scale in the ant domain. We adjust the parameter lower and up-
per bounds outlined in Appendix A.1 and see how the coverage responds to those changes during
training. The parameter range is defined relative to a nominal midpoint m set to the original domain
parameters: [m − (m − lower) ∗ scale,m + (upper −m) ∗ scale)]. The results of our experiment
are shown in Figure 13

A.4 MULTI-STEP PLANNING DETAILS

A.4.1 UPDATING BELIEFS VIA PROBABILISTIC POSE ESTIMATION

Updating the belief state b requires a probabilistic state estimation system that outputs a posterior
over the state space S, rather than a single point estimate. Given a new observation o, we use
a probabilistic object pose estimation framework (Bayes3D) to infer posterior distributions over
object pose (Gothoskar et al., 2023).

The pose estimation system uses inference in an probabilistic generative graphics model with uni-
form priors on the translational x, y, and rotational yaw (or rx) components of the 6-dof pose
(since the object is assumed to be in flush contact with the table surface) and an image likelihood
P (orgbd | rx, x, y). The object’s geometry and color information is given by a mesh model. The
image likelihood is computed by rendering a latent image imrgbd with the object pose corresponding
to (rx, x, y) and calculating the per-pixel likelihood:

P (orgbd | rx, x, y) ∝
∏
i,j∈C

[pout + (1− pout) · Pin(orgbd[i, j] | rx, x, y)] (8)

Pin(orgbd[i, j] | rx, x, y) ∝ exp

(
−
||orgb[i, j]− imrgb[i, j]||1

brgb
− ||od[i, j]− imd[i, j]||1

bd

)
(9)

where i and j are pixel row and column indices, C is the set of valid pixels returned by the renderer,
brgb and bd are hyperparameters that control posterior sensitivity to the color and depth channels,
and pout is the pixel outlier probability hyperparameter. For an observation orgbd, we can sample
from P (rx, x, y | orgbd) ∝ P (orgbd | rx, x, y) to recover the object pose posterior with a tempering

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 12: A visualization of the beliefs over the object pose under the initial image (first three
columns) and after closer inspection (last three columns) as generated from the posterior of the
model described in Section 6.3. The colormap corresponds to the log probability of the posterior
pose estimate. All plots are centered around the most likely pose estimate under the image model.

1.5 3.0
Timesteps ×106

10 6

10 3

100

Co
ve

ra
ge

GOFLOW

1.5 3.0
Timesteps ×106

10 6

10 4

10 2

100

Co
ve

ra
ge

FullDR

1.5 3.0
Timesteps ×106

10 6

10 4

10 2

100

Co
ve

ra
ge

NoDR

1.5 3.0
Timesteps ×106

10 6

10 4

10 2

100

Co
ve

ra
ge

DORAEMON

1.5 3.0
Timesteps ×106

10 6

10 4

10 2

100

Co
ve

ra
ge

ADR

1.5 3.0
Timesteps ×106

10 6

10 3

100
Co

ve
ra

ge
LSDR

scale=0.1 scale=0.25 scale=0.5 scale=0.75 scale=0.9

Figure 13: Coverage vs range experiment results

0.0 0.5 1.0 1.5
Timesteps ×107

5

0

5

En
tro

py

Cartpole

0.0 1.5 3.0
Timesteps ×106

0.0

2.5

5.0

En
tro

py

Ant

0 3 6 9
Timesteps ×106

2

0

2

En
tro

py

Quadcopter

0.0 2.5 5.0 7.5
Timesteps ×106

5

0

5

En
tro

py

Anymal

0.0 0.6 1.2 1.8
Timesteps ×107

0

10

En
tro

py

Humanoid

0.0 0.8 1.6 2.4
Timesteps ×106

10

0

En
tro

py

Gears

FullDR NoDR DORAEMON GOFLOW LSDR ADR

Figure 14: Entropy during the training process for each method

exponential factor α to encourage smoothness. We first find the maximum a posteriori (MAP)
estimate of object pose using coarse-to-fine sequential Monte Carlo sampling (Del Moral et al.,
2006) and then calculate a posterior approximation using a grid centered at the MAP estimate.

The benefit of this approach in contrast to traditional rendering-based pose estimation systems, such
as those presented in Wen et al. (2024) or Labbé et al. (2022), is that our pose estimates indicate

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

high uncertainty for distant, small, occluded, or non-visible objects as well dimensions along which
the object is symmetric. A visualization of the pose beliefs at different points in the multi-step plan
can be seen in Figure 12 in the Appendix.

A.4.2 BELIEF-SPACE PLANNING ALGORITHM

Algorithm 2 Belief-Space Planner Using BFS
Require: Initial belief state b0, goal condition G ⊆ B, set of skills AΠ, success threshold η

1: Initialize the frontier F ← {b0}
2: Initialize the visited set V ← ∅
3: Initialize the plan dictionary Plan mapping belief states to sequences of skills
4: while F is not empty do
5: Dequeue b from F
6: if b ∈ G then
7: return Plan[b] ▷ Return the sequence of skills leading to b
8: end if
9: for all skills π ∈ AΠ do

10: if b ∈ Preπ given η then
11: b′ ← sample(Effπ)
12: if b′ /∈ V then
13: Add b′ to F and V
14: Update Plan[b′]← Plan[b] + [π]
15: end if
16: end if
17: end for
18: end while
19: return Failure ▷ No plan found

Cartpole Ant Quadcopter Quadruped Humanoid Gears

FullDR .017±.012 .003±.002 .003±.004 .001±.000 .200±.198 .001±.000

NoDR .005±.000 .000±.000 .000±.000 .062±.048 .000±.000 .010±.000

DORAEMON .005±.000 .000±.000 .000±.000 .023±.022 .124±.248 .020±.018

LSDR .110±.006 .000±.000 .002±.002 .011±.002 .278±.230 .003±.000

ADR .004±.000 .000±.000 .000±.000 .114±.026 .000±.000 .072±.044

GoFlow .109±.080 .072±.038 .019±.010 .178±.220 .321 ± .068 .104±.028

Table 1: Mean and standard deviation of coverage, with all statistically significant entries bolded.

A.5 REAL-WORLD EXPERIMENTS

In addition to simulated experiments, we compare GoFlow against baselines on a real-world gear
insertion task. In particular, we tested insertion of the pink medium gear over 10 trials for each
baseline. To test this, we had the robot perform 10 successive pick/inserts of the pink gear into
the middle shaft of the gear plate. Instead of randomizing the pose of the gear, we elected to fix
the initial pose of the gear and the systematically perturb the end-effector pose by a random ±0.01
meter translational offset along the x dimension during the pick. We expect some additional grasp
pose noise due to position error during grasp and object shift during grasp. This led to a randomized
in-hand offset while running the trained insertion policy. Our results show that GoFlow can indeed
more robustly generalize to real-world robot settings under pose uncertainty.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

FullDR NoDR DORAEMON LSDR ADR GoFlow

Success Rate 6/10 3/10 5/10 5/10 5/10 9/10

Table 2: Real-world experimental results with the statistically significant results bolded.

A.6 STATISTICAL TESTS

We performed a statistical analysis of the simulated results reported in Figure 3 and the real-world
experiments in Table 2. For the simulated results, we recorded the final domain coverages across
all seeds and performed pairwise t-tests between each method and the top-performing method. The
final performance mean and standard deviation are reported in Table 1. Any methods that were not
significantly different from the top performing method (p < 0.05) are bolded. This same method
was used to test significance of the real-world results.

A.7 DERIVATION OF THE REWARD-WEIGHTED FLOW GRADIENT

In one component of our optimization, we aim to maximize the expected reward:

Eξ∼pϕ(ξ) [Jξ(π)] ,

where pϕ(ξ) is parameterized by ϕ, which are the parameters of the normalizing flow sampling
distribution. The expectation can be written as:

Eξ∼pϕ(ξ) [Jξ(π)] =
∫
pϕ(ξ)Jξ(π) dξ.

Taking the gradient with respect to ϕ, we use the log-derivative trick:

∇ϕpϕ(ξ) = pϕ(ξ)∇ϕ log pϕ(ξ).

Substituting this into the integral:

∇ϕEξ∼pϕ(ξ) [Jξ(π)] =
∫
pϕ(ξ)∇ϕ log pϕ(ξ)Jξ(π) dξ.

Rewriting as an expectation:

∇ϕEξ∼pϕ(ξ) [Jξ(π)] = Eξ∼pϕ(ξ) [Jξ(π)∇ϕ log pϕ(ξ)] .

In practice, this expectation is approximated using samples {ξi}Bi=1 drawn from pϕ(ξ):

∇ϕEξ∼pϕ(ξ) [Jξ(π)] ≈
1

B

B∑
i=1

Jξi(π)∇ϕ log pϕ(ξi).

This expression is used to update the parameters of our normalizing flow as shown in Line 9 of
Algorithm 1.

19

	Introduction
	Related Work
	Background
	Markov Decision Process
	Domain Randomization
	Normalizing Flows

	Method
	Domain Randomization Experiments
	Domains
	Baselines

	Application to Multi-step manipulation
	Belief-space planning background
	Computing preconditions
	Updating beliefs
	A simple belief-space planner

	Conclusion and discussion
	Reproducibility Statement
	Appendix
	Domain Randomization Parameters
	Hyperparameters
	GoFlow
	LSDR
	DORAEMON
	ADR

	Coverage vs Range Experiments
	Multi-Step Planning Details
	Updating beliefs via probabilistic pose estimation
	Belief-space planning algorithm

	Real-world experiments
	Statistical Tests
	Derivation of the Reward-Weighted Flow Gradient

