
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MITIGATING PARAMETER INTERFERENCE IN MODEL
MERGING VIA SHARPNESS-AWARE FINETUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-scale deep learning models with a pretraining-finetuning paradigm have led
to a surge of numerous task-specific models finetuned from a common pretrained
model. Recently, several research efforts have been made on merging these large
models into a single multi-task model, particularly with simple arithmetic on pa-
rameters. Such merging methodology faces a central challenge: interference be-
tween model parameters finetuned on different tasks. Few recent works have fo-
cused on desiging a new finetuning scheme that can lead to small parameter in-
terference, however at the cost of the performance of each task-specific finetuned
model and thereby limiting that of a merged model. To improve the performance
of a merged model, we note that a finetuning scheme should aim for (1) smaller
parameter interference and (2) better performance of each finetuned model on the
corresponding task. In this work, we aim to design a new finetuning objective
function to work towards these two goals. In the course of this process, we find
such objective function to be strikingly similar to sharpness-aware minimization
(SAM) objective function, which aims to achieve generalization by finding flat
minima. Drawing upon our observation, we propose to finetune pretrained mod-
els via SAM or its variants. The experimental and theoretical results showcase the
effectiveness and orthogonality of our proposed approach, improving performance
upon various merging and finetuning methods.

1 INTRODUCTION

Foundation model, a large deep learning model pretrained on large-scale datasets, has shown great
advancement across a wide range of downstream tasks, after finetuning on each task (Achiam et al.,
2023; Saab et al., 2024; Ding et al., 2023). Recent successes of the pretraining-finetuning paradigm
have given rise to a burst of task-specific open-source models in communities, such as Hugging
Face. Diversity yet ready availability of large task-specific models have naturally elicited a question
from researchers: Can we combine these large models into one, while retaining the performance on
each task?

Traditionally, a single multi-task model is obtained by jointly training on data across all tasks (Caru-
ana, 1997; Crawshaw, 2020; Vandenhende et al., 2022). However, given the size of foundation
models and the number of tasks, joint training on all tasks incurs significant computational costs.
Motivated by the accessibility, variety, abundance, and common origin of task-specific models, sev-
eral research efforts have focused on merging multiple finetuned models into a single model via
simple arithmetic on parameters of these models, thereby removing the need for joint training (Il-
harco et al., 2023; Yadav et al., 2023; Yang et al., 2024b; Matena & Raffel, 2022; Jin et al., 2023;
Daheim et al., 2024; Li et al., 2023; Yang et al., 2024a). However, a central challenge remains:
parameters of different task-specific models interfere or conflict with each other, leading to the per-
formance degradation of a merged multi-task model on each task.

To bridge such performance gap, several works have tried to reduce the parameter interference dur-
ing the process of merging (Yadav et al., 2023; Jin et al., 2023; Yang et al., 2024b; Wang et al., 2024;
Yu et al., 2024). Another line of works focuses on finding a new finetuning scheme that results in
task-specific models whose parameters have lower parameter interference (also often referred to as
better weight disentanglement with respect to model outputs) (Ortiz-Jimenez et al., 2023; Tang et al.,
2024; Jin et al., 2024) and thus less performance degradation after merging. Few studies (Wortsman

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al., 2022a; Ilharco et al., 2023; Wortsman et al., 2022b) suggest that the effectiveness of linear
arithmetic on parameters in the process of merging may be owed to the linearity of finetuning pro-
cess. Conversely, Ortiz-Jimenez et al. (2023) have refuted such hypothesis by showing that there
is a huge performance drop with approximation of finetuned models with a linearized pretrained
model. Another observation they make is that such post-hoc linearized models led to less parameter
interference. Based on this observation, few recent works Ortiz-Jimenez et al. (2023); Tang et al.
(2024); Jin et al. (2024) have tried to explicitly linearize finetuning processes in order to induce
weight disentanglement.

In this work, we note that we need to simultaneously work towards two goals for effective model
merging: (1) reducing parameter interference between finetuned models while (2) maintaining the
performance of task-specific finetuned models on respective datasets. Therefore, during finetuning
process, we aim to directly optimize for both performance on each task and weight disentanglement
with respect to performance. In the course of designing a finetuning objective function that aligns
with our goals, we find striking resemblances between our goals and sharpness-aware minimization
(SAM) (Foret et al., 2021), which aims for better generalization by finding flat minima via mini-
mization of both loss values and loss sharpness. In particular, we find the similarities between the
minimization of both loss values and loss sharpness in SAM and joint optimization for performance
and weight disentanglement of finetuned models in our goal.

Drawing upon our observations, we propose to finetune pretrained models via SAM or its improved
variants (particularly, ASAM in this work), in order to achieve better performance on each task,
lower parameter interference, and thus better overall performance of a merged multi-task model.
Our extensive experimental results demonstrate that our proposal greatly improves the overall per-
formance of a merged model. The effectiveness of our proposed method is owed to achieving better
performance of each task-specific model and less performance gap between task-specific models
and a merged model. We further highlight the generalizability and orthogonality of our approach
by demonstrating performance improvements when applied together with various merging methods
and finetuning methods for model merging.

2 RELATED WORKS

Model Merging. The recent emergence of large foundation models and pretraining-finetuning
paradigm has motivated researchers to explore ways of merging multiple finetuned models into a
single model without retraining. Model merging, the merging of models with simple arithmetic on
parameters, has garnered a significant amount of attention for its flexibility and simplicity. However,
parameters of different task-specific models may interfere with each other during merging process,
resulting in performance degradation on each task, compared to task-specific models.

To address the parameter interference issue, researchers focus on either designing a merging pro-
cess (Utans, 1996; Ilharco et al., 2023; Yadav et al., 2023) or designing a finetuning process to mit-
igate the parameter interference. Initiated with simple averaging (Utans, 1996; Shoemake, 1985),
research works on merging process focus on representing task-specific models as task vectors for
easier manipulation of knowledge (Ilharco et al., 2023), or weighting parameters (Matena & Raffel,
2022; Jin et al., 2023; Yang et al., 2024b) or selecting parameters (Yadav et al., 2023; Wang et al.,
2024; Yu et al., 2024) according to the estimated importance of each parameter with respect to given
tasks.

In parallel, if task-specific model parameters have less interference with each other to begin with, the
effectiveness of model merging can be amplified. As such, few recent works have focused on design-
ing a finetuning process such that resulting finetuned model parameters will have less interference
and result in less performance gap between a merged model and task-specific models. Ortiz-Jimenez
et al. (2023) show that linearized finetuning (finetuning in the space tangent to pretrained initializa-
tion) leads to less interference (specifically better weight disentanglement with respect to model
outputs), aspring other linearized finetuning methods (Jin et al., 2024; Tang et al., 2024).

Sharpness-Aware Minimization (SAM). Foret et al. (2021) introduce a new optimization objec-
tive function that minimizes both loss and loss sharpness to seek flat loss minima that may lead to
better generalization performance. SAM defines loss sharpness as a maximum loss difference mea-
sured at current parameters and nearby parameters (obtained by perturbing current parameters). Sev-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

eral follow-up works have strived to improve SAM via improving perturbation methods (Mi et al.,
2022; Kwon et al., 2021), improving gradient (Wang et al., 2023; Zhao et al., 2022), or combining
other flatness-aware optimizers (Cha et al., 2021; Kaddour et al., 2022) for better generalization.
While previous studies have primarily focused on single-task learning, Phan et al. (2022) incorpo-
rates SAM into joint multi-task training as a regularization technique for multi-task learning. We
note that our method and Phan et al. (2022) target two different scenarios. Phan et al. (2022) target a
traditional multi-task learning scenario, where the training is performed on all tasks jointly. By con-
trast, our work tackles multi-task model merging, where the goal is to merge different task-specific
models, each of which is independently finetuned from a common pretrained model without the
knowledge of other tasks. This approach eliminates the need to train all tasks at the same time and
avoids retraining from scratch when new tasks are introduced. The lack of the knowledge of other
tasks also brings several challenges, such as parameter interference between different task-specific
models that cause degradation of single-task performance after merging.

In this work, we introduce a new objective function for single-task finetuning aimed for model merg-
ing, from which we present a new insight that draws connections between the objective of multi-task
model merging and that of sharpness-aware minimization (SAM). Furthermore, we theoretically (in
Appendix D) and empirically show that, SAM can reduce parameter interference, even without the
knowledge of other tasks during finetuning.

3 BACKGROUND

Sharpness-aware minimization (SAM). To achieve better generalization, SAM Foret et al. (2021)
seeks for wider minima by minimizing both loss value and loss sharpness during optimization,
where the loss sharpness is formulated as a difference between a loss at the current parameters and
the maximum loss value at nearby parameter values:

min
θ

[
max

ϵ:∥ϵ∥2≤ρ
L(θ + ϵ;D)− L(θ;D)︸ ︷︷ ︸

loss sharpness

]
+ L(θ;D)︸ ︷︷ ︸

loss

, (1)

where ϵ is a perturbation vector which is bounded above by a predefined ρ that controls the radius
of the neighborhood; and θ are network parameters to be optimized for a given loss function L
over a dataset D. For efficiency, Foret et al. (2021) approximates the inner maximization via Taylor
approximation. Then, along with canceling identical terms L(θ;D) with opposite signs, the original
optimization is reduced to

min
θ

L(θ + ϵ̂;D) where ϵ̂ ≜ ρ
∇θL(θ;D)

∥∇θL(θ;D)∥
. (2)

However, the same neighborhood radius for all parameters may impact each parameter differently,
especially if their scales differ by several factors. To take such varying scales of parameters into
account, Adaptive SAM (ASAM) (Kwon et al., 2021) proposes to scale the perturbation vector ϵ
according to the scale of each parameter as follows:

ϵ̂ASAM ≜ ρ
θ2∇θL(θ;D)

∥∇θL(θ;D)∥
. (3)

Adjusting the scale of perturbations according that of parameters can be even more effective in the
pretraining-finetuning paradigm, since pretrained models likely have parameters of different scales
after training on large-scale datasets.

Problem setting. In the pretraining-finetuning paradigm, there exists a large pretrained model f :
X ×Θ → Y , parameterized by trained parameters θ0 ∈ Θ, that is in turn finetuned to T downstream
tasks. Each downstream task, indexed by t, is accompanied with a dataset D(t) = {(x(t)

i , y
(t)
i)}Nt

i=1,
where x

(t)
i ∈ X(t) ⊆ X is an input with a corresponding label y(t)i ∈ Y (t) ⊆ Y . Employing

a standard loss function (e.g., cross-entropy loss for classification) and an optimizer (e.g., SGD),
finetuning a pretrained model fθ0

to each downstream task t will lead to a task-specific model fθt

with its parameters θt:
θt = argmin

θ
L(θ;D(t)). (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Task arithmetic. To perform an arithmetic on model parameters and merge models into a single
model, Ilharco et al. (2023) have introduced the concept of task vector, which is essentially a vector
pointing to task-specific parameters θt from pretrained model parameters θ0, obtained by taking
a difference between them: τt = θt − θ0. Ilharco et al. (2023) note that a task vector τt can be
considered as the representation of the knowledge learned for a task t. As such, they claim that the
knowledge of each task can be manipulated by a simple arithmetic on pretrained model parameters:
θ0 + αtθt, where αt > 0 will add the knowledge of task t while αt < 0 will result in forgetting the
knowledge of task t, while |αt| controls the extent of learning/forgetting. Using these task vectors τt
with corresponding task coefficients αt, task-specific models can be merged into a merged multi-task
model, parameterized by θmerge as follows:

θmerge = θ0 +

T∑
t=1

αtτt. (5)

4 MITIGATING PARAMETER INTERFERENCE VIA SHARPNESS-AWARE
FINETUNING

Since a merged model is formed by simply performing linear arithmetic on task vectors, there is a
high chance for interference among tasks (Ilharco et al., 2023). Such interference leads to the perfor-
mance degradation on downstream tasks after merging. Some works focus on reducing interference
during merging process, which is a challenging task as finetuned model parameters are fixed. On
the other hand, few recent works propose to modify a finetuning process that results in task-specific
models whose parameters have less interference with each other. In particular, they show that fine-
tuning a (partially) linearized model or its linear layers only results in less interference. However,
such linearization of finetuning results in the performance degradation of each task-specific model,
limiting the overall performance of a merged model.

In this work, we claim that we need to achieve both (1) less performance gap between a merged
model and each finetuned model (i.e., less parameter interference) and (2) generalization perfor-
mance of each finetuned model on each respective dataset. As such, we aim to design a new objective
function for finetuning to achieve these two objectives:

θt = argmin
θ

L(θmerge(θ); D(t))− L(θ; D(t))︸ ︷︷ ︸
Objective (1)

+L(θ; D(t))︸ ︷︷ ︸
Objective (2)

, (6)

where θmerge(θ) is to demonstrate that θmerge changes as θ is optimized, while considering parame-
ters for other tasks to be fixed. While this objective function already looks similar to the SAM objec-
tive function in Equation 1, after some simplifications (deriviations are delineated in Appendix B),
we get the final objective function as follows:

θt = argmin
θ

L(θ +
∑
s̸=t

αsτs + (αt − 1)τ ; D(t)), (7)

where
∑

s ̸=t αsτs+(αt−1)τ represents the parameter offsets a model merging would introduce to
the parameters of a task-specific model θ undergoing optimization on a task t. Hence,

∑
s̸=t αsτs+

(αt − 1)τ can be considered as perturbations that would cause parameter interference during model
merging, from the perspective of each task-specific model. However, we do not assume access to
other tasks, as each task-specific model is independently trained. Since other tasks are unknown, we
consider

∑
s̸=t αsτs+(αt−1)τ to be random perturbations. Furthermore, because the perturbation∑

s̸=t αsτs +(αt − 1)τ depends on τ = θ− θ0 and is thus varying during training, we use ASAM
that models ϵ̂ as parameter-dependent perturbation (Equation 3). In other words, we use ϵ̂ASAM as a
surrogate of

∑
s̸=t αsτs + (αt − 1)τ , thereby our final objective function for finetuning aimed for

model merging is Equation 2 with ϵ̂ASAM from Equation 3.

From our perspective described above, we can consider parameter interference to be caused by pa-
rameter perturbations

∑
s ̸=t αsτs + (αt − 1)τ that would be introduced during model merging, the

information of which is however not available during finetuning for each task. The perturbations
will bring a model to a new location in the loss landscape, away from the found local minimum.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

If the region around the local minimum is not flat enough, the new location (i.e., merged model
parameters) brought by perturbations will most likely have a higher loss, resulting in a large per-
formance gap between a merged model and a task-specific model. In other words, to minimize the
interference caused by parameter perturbations, it is essential to identify flat minima. Flat minima
can effectively prevent the loss from increasing after parameter perturbations (e.g., model merging).
Thus, we argue that finding flat minima (or equivalently, minimizing sharpness) via sharpness-aware
finetuning can greatly reduce parameter interference.

In the subsequent section, we experimentally validate our argument by showing that sharpness-
aware finetuning leads to better weight disentanglement (Figure 1 and Figure 2), better cross-task
linearity (Figure 3), and better joint-task loss linearity (Figure 4 and Figure 5), which are the signs
of less parameter interference. Better performance by our proposed method, compared to standard
SGD and other finetuning schemes specifically designed for model merging, further underlines the
effectiveness of sharpness-aware finetuning in reducing parameter interference. Then, at the end of
the subsequent section, we also theoretically show that the capability of SAM to reduce the dominant
Hessian eigenvalues induces joint-task loss linearity (the linearity of loss on all joint tasks).

5 SAM MITIGATES PARAMETER INTERFERENCE

Figure 1: Weight disentanglement visualization of two fine-tuned models across two tasks.
Each pixel in the heatmap corresponds to the disentanglement error between interpolation θmerge =
θ0 + α1τ1 + α2τ2 and two fine-tuned model parameter θ1 = θ0 + α1τ1 and θ2 = θ0 + α2τ2,
evaluated on task 1 and task 2. We use CLIP ViT-B/32 on the EuroSAT-SUN397 and DTD-MNIST
task pairs to generate these visualizations. The light regions indicate low-loss areas in the parameter
space. The red box highlights the search space used to find the optimal task coefficient α of task
arithmetic.

Ortiz-Jimenez et al. (2023) argue that for model merging via task arithmetic to be effective, weight
disentanglement (a task vector for one task not affecting the outputs of task-specific model on other
tasks) is a necessary condition. In this work, we show that SAM indeed achieves better weight
disentanglement, in comparison to a standard objective function.

Weight Disentanglement. Weight disentanglement is met when task-specific parameter update
τt does not affect the output of task-specific models on input from other task datasets, imparting
influence on a model only on input x(t) from a given task t. Ortiz-Jimenez et al. (2023) formally
expresses the localized influence of task vectors on the input space as

f (x;θmerge) = f

(
x;θ0 +

T∑
s=1

αsτs

)
(8)

= f (x;θ0 + αtτt) when x ∈ X(t). (9)

To evaluate how well weight disentanglement is satisfied, Ortiz-Jimenez et al. (2023) quantify dis-
entanglement error as the discrepancy between the output of a merged model and t-th task-specific
model on input data of t-th task. Lower disentanglement errors imply that each task contributes

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Weight disentanglement visualization of merged models on the eight tasks across two
tasks. Each pixel in the heatmap corresponds to the disentanglement error between the multi-task
model parameter θmerge = θ0 +

∑T
t=1 αtτt, merged from eight fine-tuned model parameters, and

each single-task fine-tuned model parameter, evaluated on tasks 1 and 2. To visualize the landscape
of the merged multi-task model on a 2D heatmap, we adjust only two task coefficients corresponding
to the evaluation tasks. We also use CLIP ViT-B/32 on the four task pair as in Figure 1 to compare
the difference between the interpolation model θmerge and the merged model θmerge. The meaning of
the light regions and the red box is the same as in Figure 1.

appropriately without adversely affecting others. Ortiz-Jimenez et al. (2023) consider merging of
two tasks while computing weight disentanglement error as follows:

ξ(α1, α2) =

2∑
t=1

Ex∈X(t) [dist (f(x;θ0 + αtτt), f(x;θ0 + α1τ1 + α2τ2))] , (10)

where ξ(α1, α2) is the disentanglement error with respect to two given tasks and visualized in Fig-
ure 1. We further stress-test and evaluate the disentanglement error while considering merging of
all task-specific models (T = 8 in this work), thereby evaluating how well an actual merged model
achieves weight disentanglement. However, it is difficult to visualize if all T task coefficients are
adjusted. In this work, for ease of visualization, we adjust task-coefficients of two tasks while fixing
other task coefficients but still considering all task vectors:

ξall(α1, α2) = (11)

2∑
t=1

Ex∈X(t)

dist

f(x;θ0 + αtτt), f(x;θ0 + α1τ1 + α2τ2 +
∑

s/∈{1,2}

αsτs)

 , (12)

where ξall(α1, α2) represents the total disentanglement error across all tasks (visualized in Figure 2,
and dist(·, ·) is a distance metric measuring the divergence between the outputs of the individually
fine-tuned model and the merged model. Small ξ(α1, α2) or ξall(α1, α2) implies that the merged
model parameter θmerge accurately reflects the individual contributions of each task, signifying re-
duced parameter interference. Indeed, the visualizations of weight disentanglement when consid-
ering two tasks in Figure 1 and all tasks (T = 8) in Figure 2 demonstrate the effectiveness of
SAM-applied finetuning in achieving better weight disentanglement. In particular, we note that the
weight disentanglement error of the model merging with standard finetuning optimization increases
significantly when considering all tasks in model merging, compared to considering two tasks. On
the other hand, SAM-applied finetuning reduces the weight disentanglement even when considering
all tasks, further higlighting the effectiveness of sharpness-aware finetuning in model merging.

Cross-Task Linearity. Cross-Task Linearity (CTL) (Zhou et al., 2024) is a property that ensures
the linear separability of task influences on the model outputs across all layers of the network.
To satisfy CTL, for every layer ℓ, the model response to a combination of task vectors should be
approximately equal to the combination of the individual task responses scaled by their respective
coefficients. Formally, CTL condition can be defined as:

f (ℓ) (x;λθs + (1− λ)θt) ≈ λf (ℓ)(x;θs) + (1− λ)f (ℓ)(x;θt), (13)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Block 6 Block 7 Block 8 Block 9 Block 10 Block 11
0.0

0.1

0.2

0.3

0.4

0.5

CT
L

sc
or

e

i: DTD, j: MNIST

Block 6 Block 7 Block 8 Block 9 Block 10 Block 11
0.0

0.1

0.2

0.3

0.4

0.5

CT
L

sc
or

e

i: EuroSAT, j: SUN397

w/o ASAM w/ ASAM

Figure 3: Verification of CTL between merged model and fine-tuned models. We compare
ED(s)∪D(t) [1−cos(ℓ)(x; 2λτs, 2λτt)] of each fine-tuning methods. The values for the last six blocks
are evaluated on the two task pairs DTD-MNIST and EuroSAT-SUN397. We set the scaling term λ
to 0.3.

where λ ∈ R is a scaling term; x ∈ X(s) ∪ X(t); θs,θt are parameters of task-specific models
finetuned on task s and t respectively; and f (ℓ) (x;θ) represents the response (or a feature) of ℓ-th
layer of a network f for the given input x.

This linearity at each layer implies that the influence of one task on another is minimal, thereby
facilitating effective weight disentanglement. Zhou et al. (2024) demonstrate that satisfying CTL
condition leads to reducing the disentanglement error ξ(α).

To evaluate whether CTL is satisfied, the following cosine similarity metric is used:

cos(ℓ)(x; 2λτs, 2λτt)

= cos

[
f (ℓ)(x;θ0 + λ(τs + τt)),

1

2
f (ℓ)(x;θ0 + 2λτs) +

1

2
f (ℓ)(x;θ0 + 2λτt)

]
,

(14)

where x ∈ X(s) ∪X(t).

The metric measures the cosine similarity between the model output when trained on the combined
task vectors and the averaged outputs of models trained on individual tasks. Following the settings
in (Zhou et al., 2024), we use the metric ED[1− cos(ℓ)(x; 2λτs, 2λτt)] to evaluate how well CTL is
satisfied, where smaller values of ED[1− cos(ℓ)(x; 2λτs, 2λτt)] indicate stronger CTL. Since satis-
fying CTL leads to better weight disentanglement, smaller values of ED[1− cos(ℓ)(x; 2λτs, 2λτt)]
should result in lower disentanglement error ξ(α1, α2), as noted by Zhou et al. (2024).

Figure 3 shows that SAM-applied finetuning reduces ED[1− cos(ℓ)(x; 2λτs, 2λτt)] in comparison
to standard optimization, demonstrating that SAM results in not just better weight disentanglement,
but also better cross-task linearity.

Joint-Task Loss Landscape. We empirically demonstrate that SAM-applied finetuning reduces
parameter interference by finding flatter minima across the joint tasks. Figure 4 shows the joint-task
loss landscape visualizations for two fine-tuned models trained on corresponding two tasks. We
observe that SAM-applied finetuning allows models to reach flatter minima across the joint tasks
compared to SGD, particularly around the boundaries of the task coefficients search space in task
arithmetic. SAM-applied finetuning increases the likelihood of finding a merged model connected
to each fine-tuned model along a low-loss path, which indicates a smaller performance gap between
the merged model and the individual fine-tuned models. Consequently, SAM makes it easier to find
a merged model with reduced parameter interference compared to SGD.

Yet, the capability of interpolation between pre-trained weights and two task vectors may not be the
same as that of a multi-task model merged from more than two fine-tuned task-specific models due
to interference between the parameters of different models (Yadav et al., 2023). Therefore, we also
visualize the loss landscape of the multi-task model θmerge built by merging all 8 tasks, denoted as
θmerge = θ0 +

∑8
t=1 αtτt. To represent the loss of the every-task-merged model on a 2D heatmap,

we vary only the two task coefficient of θmerge corresponding to the tasks being evaluated.

Figure 5 shows the loss landscape of the multi-task model built by the eight fine-tuned models.
Compared to Figure 4, the minima in the landscape shrink in every case as the number of tasks to
be merged increases. However, while the minima found by SGD shrink significantly, the minima

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Joint-task loss landscape visualization of two fine-tuned models across two tasks.
Each pixel in the heatmap corresponds to the loss values L(θmerge;D(1)) + L(θmerge;D(2)) of the
interpolation θmerge = θ0 + α1τ1 + α2τ2 between pre-trained model θ0 and two task vectors τ1
and τ2, evaluated on task 1 and task 2. The setting of the model, task pair, light regions, and red
box is the same as in Figure 1. We use CLIP ViT-B/32 on the EuroSAT-SUN397 and DTD-MNIST
task pairs to generate these visualizations. The light regions indicate low-loss areas in the parameter
space. The red box highlights the search space used to find the optimal task coefficient α of task
arithmetic.

Figure 5: Joint-task loss landscape visualization of merged models on the eight tasks across two
tasks. Each pixel in the heatmap corresponds to the loss values L(θmerge;D(1)) + L(θmerge;D(2))

of the multi-task model θmerge = θ0 +
∑8

t=1 αtτt merged by eight fine-tuned models, evaluated
on tasks 1 and 2. We adjust only the two task coefficients corresponding to the evaluation tasks to
visualize the weight disentanglement on a 2D map, as in Figure 2. The setting of the model, task
pair, light regions, and red box is the same as in Figure 4. We use CLIP ViT-B/32 on the four task
pair as in Figure 4 to compare the difference between the interpolation model θmerge and the merged
model θmerge.

found by our method are less affected by this shrinkage in all cases. This suggests that our method
maintains the ability to reduce parameter interference and preserve the performance of the merged
model, even as more tasks are merged.

Theoretical Results. Here, we theoretically demonstrate that SAM leads to joint-task loss linearity:
Theorem 1 (SAM Induces Joint-Task Loss Linearity (proof in Appendix D.2). Given parameters
θs and θt, let δ be defined as the difference between the interpolated Joint-Task Loss and the convex
combination of individual losses:

δ = LJTL(αθs + (1− α)θt;D)− αLJTL(θs;D)− (1− α)LJTL(θt;D). (15)
Then, it holds that:

|δ| ≤ 1

2
α(1− α)(λmax(θs;Ds) + λmax(θt;Dt))∥θt − θs∥2 + ϵ. (16)

By Property 1 in Appendix D, SAM reduces the dominant Hessian eigenvalues λmax(θs;Ds) and
λmax(θt;Dt), thereby decreasing the deviation δ. This reduction makes the approximation in Equa-
tion 18 closer, thereby inducing Joint-Task Loss Linearity.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Multi-task performance across different finetuning methods. We report the average
absolute and normalized accuracies for three finetuning baselines: SGD, FTTS, and FTLO. Results
are shown for three finetuning methods, grouped by whether ASAM is applied. ViT-B/32 is used as
the image encoder of CLIP, with task arithmetic as the model merging method in every case across
eight tasks.

Finetuning method (→)
SGD FTTS FTLO

Abs. Norm. Abs. Norm. Abs. Norm.

w/o ASAM 68.23 75.47 78.35 86.83 75.93 85.74
w/ ASAM (Ours) 69.45 76.32 79.38 87.72 77.49 88.77

Theorem 1 establishes a direct connection between the ability of SAM to reduce the dominant Hes-
sian eigenvalues and the induction of Joint-Task Loss Linearity. Through Property 1 and Theorem 1,
we can observe that the lower dominant Hessian eigenvalues for parameters θ along the line segment
θ0θt between the pretrained parameter θ0 and the finetuned parameter θt ensure the linearity of the
interpolated Joint-Task Loss. The merged model parameter θmerge via such interpolation maintains
a stable and low Joint-Task Loss due to this linearity. Consequently, since parameter interference
leads to an increase in Joint-Task Loss, the linearity induced by SAM effectively suppresses param-
eter interference. Thus, SAM induces Joint-Task Loss Linearity, which is intrinsically connected to
the reduction of parameter interference, facilitating more stable and effective model merging.

6 EXPERIMENTS

In this section, following the settings of previous works Ortiz-Jimenez et al. (2023), we conduct
experiments on diverse vision tasks to demonstrate the effectiveness of SAM-applied finetuning
in improving the overall performance of a merged model. We compare against three finetuning
baselines: SGD, linearized finetuning in the tangent space (FTTS) (Ortiz-Jimenez et al., 2023),
and finetuning linear layers only (FTLO) (Jin et al., 2024). We also validate the effectiveness,
applicability, and generalizability of SAM-applied finetuning with three different model merging
methods: weighted average, task arithmetic (Ilharco et al., 2023), and TIES (Yadav et al., 2023)
across two backbones: ViT-B/32 and ViT-B/16 (Dosovitskiy et al., 2021). Moreover, we empirically
show that SAM reduces the parameter interference through the lens of joint-task loss landscape and
weight disentanglement.

6.1 TRAINING SETUP

Following the same training protocol outlined in Ilharco et al. (2022), we finetune three CLIP (Rad-
ford et al., 2021) models: (a) ViT-B/32, (b) ViT-B/16, (c) ViT-L/14. Our experiments are conducted
across eight diverse datasets: (1) Cars (Krause et al., 2013), (2) DTD (Cimpoi et al., 2014), (3)
EuroSAT (Helber et al., 2019), (4) GTSRB (Stallkamp et al., 2011), (5) MNIST (Deng, 2012),
(6) RESISC45 (Cheng et al., 2017), (7) SUN397 (Xiao et al., 2016), (8) SVHN (Netzer et al.,
2011). All finetuning processes begin from the same CLIP pretrained checkpoint obtained from the
open clip (Radford et al., 2021) repository. We finetune each model for 8000 iterations with a
batch size of 128 and a learning rate of 10−5 for all backbones and all finetuning methods. The learn-
ing rate schedule follows a cosine annealing approach with 500 warm-up steps, and optimization is
performed using the AdamW (Loshchilov & Hutter, 2019). Consistent with Ilharco et al. (2022),
we freeze the weights of the classification layer derived from encoding a standard set of zero-shot
template prompts for each dataset. This strategy ensures that no additional learnable parameters
are introduced during finetuning and does not compromise model accuracy. For more experimental
details, please refer to Appendix A.

6.2 MAIN RESULTS

We evaluate the effectiveness of SAM-applied finetuning in closing the performance gap between a
merged model and each task-specific models, in comparison to other three finetuning baselines.

Table 1 shows that SAM-applied finetuning achieves the higher absolute and normalized accuracies
in every case, compared to other finetuning methods. Normalized accuracy is defined as the abso-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Multi-task performance across different model merging methods and image encoder
models. We report the average absolute and normalized accuracies for three model merging meth-
ods: weighted average, task arithmetic, and TIES merging. We also compare the performance of
two different models used as the image encoder of CLIP: ViT-B/32 and ViT-B/16. All cases are
finetuned using SGD and evaluated across eight tasks.

Merging method (→)
Weighted average Task arithmetic TIES merging
Abs. Norm. Abs. Norm. Abs. Norm.

ViT-B/32

w/o ASAM 65.72 72.91 68.23 75.47 74.57 82.29
w/ ASAM (Ours) 66.76 73.62 69.45 76.32 75.45 82.86

ViT-B/16

w/o ASAM 71.58 77.37 73.40 79.31 77.94 84.04
w/ ASAM (Ours) 71.84 77.53 76.77 82.50 80.14 86.23

lute accuracy divided by the corresponding accuracy of the finetuned task-specific model, evaluating
the performance gap between a merged model and task-specific models. These results suggest that
SAM-applied finetuning not only improves performance in downstream tasks but also narrows the
performance gap between the merged model and finetuned models, improving the overall perfor-
mance. Moreover, SAM-applied finetuning synergizes not only standard SGD but also with other
finetuning methods (FTTS (Ortiz-Jimenez et al., 2023) and FTLO (Jin et al., 2024)), enhancing
performance in multi-task settings during model merging, demonstrating its generalizability and ap-
plicability. In particular, FTTS (Ortiz-Jimenez et al., 2023) and FTLO (Jin et al., 2024) demonstrate
better multi-task performance compared to SGD, as these finetuning methods reduce interference
between tasks by encouraging weight disentanglement (Malladi et al., 2023; Ortiz-Jimenez et al.,
2023). Thus, the performance improvement brought by SAM-applied finetuning on top of these
finetuning methods demonstrates the orthogonality of our proposal.

In Table 2, we display the multi-task performance across different model merging methods and
image encoder models used in CLIP. Our method outperforms in every combination of model merg-
ing methods and image encoder models. Notably, our method achieves better performance in both
weighted average and task arithmetic. Weighted average is a specific case of task arithmetic, where
αt =

1
T , while task arithmetic searches for the optimal task coefficient within a given search space.

This suggests that our method finds flatter minima that covers the task coefficients search space in
task arithmetic compared to SGD. Moreover, SAM-applied finetuning also performs better in the
case of TIES merging, indicating that interference mitigation by our method complements the miti-
gation achieved by TIES merging. As a result, applying our method to TIES merging yields the best
performance among all combinations.

7 CONCLUSION

In this work, we draw connections between two research fields of machine learning: sharpness-
aware minimization and multi-task model merging. Particularly, the connections are drawn from
the formulation of two objectives of model merging: (1) reducing parameter interference between
task-specific models and (2) achieving better generalization of each task-specific model. Upon ob-
servation, we propose to apply SAM to finetuning process to improve the overall performance of a
merged model. Experimental results demonstrate that SAM-applied finetuning indeed results in less
performance interference and better performance of a merged model, even when applied together
with other merging and finetuning methods designed for model merging. Motivated by the effec-
tiveness and applicability of our proposal, we hope that this work encourages further research on
investigating the relationship between sharpness-aware optimization and model merging, opening a
new research avenue.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report, 2023. https://arxiv.org/pdf/2303.08774.

Atish Agarwala and Yann Dauphin. Sam operates far from home: eigenvalue regularization as a
dynamical phenomenon. In ICML, 2023.

Rich Caruana. Multitask learning. Machine Learning, 1997.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. Swad: Domain generalization by seeking flat minima. In NeurIPS, 2021.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 2017.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In CVPR, 2014.

Michael Crawshaw. Multi-task learning with deep neural networks: A survey, 2020. https:
//arxiv.org/abs/2009.09796.

Nico Daheim, Thomas Möllenhoff, Edoardo Maria Ponti, Iryna Gurevych, and Mohammad Emtiyaz
Khan. Model merging by uncertainty-based gradient matching. In ICLR, 2024.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 2012.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware training
for free. In NeurIPS, 2022.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In ICLR, 2021.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2019.

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Si-
mon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpo-
lating weights. In NeruIPS, 2022.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In ICLR, 2023.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon W. Aver-
aging weights leads to wider optima and better generalization. In UAI, 2018.

Ruochen Jin, Bojian Hou, Jiancong Xiao, Weijie Su, and Li Shen. Fine-tuning linear layers only
is a simple yet effective way for task arithmetic, 2024. https://arxiv.org/abs/2407.
07089.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. In ICLR, 2023.

11

https://arxiv.org/pdf/2303.08774
https://arxiv.org/abs/2009.09796
https://arxiv.org/abs/2009.09796
https://arxiv.org/abs/2407.07089
https://arxiv.org/abs/2407.07089

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt J. Kusner. When do flat minima optimizers
work? In NeurIPS, 2022.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In ICCV Workshop, 2013.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In ICLR, 2021.

Tao Li, Weihao Yan, Zehao Lei, Yingwen Wu, Kun Fang, Ming Yang, and Xiaolin Huang. Efficient
generalization improvement guided by random weight perturbation, 2022. https://arxiv.
org/pdf/2211.11489.

Tao Li, Pan Zhou, Zhengbao He, Xinwen Cheng, and Xiaolin Huang. Friendly sharpness-aware
minimization. In CVPR, 2024.

Weishi Li, Yong Peng, Miao Zhang, Liang Ding, Han Hu, and Li Shen. Deep model fusion: A
survey, 2023. https://arxiv.org/abs/2309.15698.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In CVPR, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
view of language model fine-tuning. In ICML, 2023.

Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging. In NeurIPS,
2022.

Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji, and Dacheng Tao. Make
sharpness-aware minimization stronger: A sparsified perturbation approach. In NeurIPS, 2022.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y. Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop, 2011.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. In NeurIPS, 2023.

Hoang Phan, Lam Tran, Quyen Tran, Ngoc N. Tran, Tuan Truong, Nhat Ho, Dinh Phung, and
Trung Le. Improving multi-task learning via seeking task-based flat regions, 2022. https:
//arxiv.org/pdf/2211.13723.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In ICML,
2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2019. https://arxiv.org/pdf/1910.10683.

Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, David Stutz, Ellery Wulczyn, Fan Zhang,
Tim Strother, Chunjong Park, Elahe Vedadi, et al. Capabilities of gemini models in medicine,
2024. https://arxiv.org/pdf/2404.18416.

Ken Shoemake. Animating rotation with quaternion curves. In SIGGRAPH, 1985.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: a multi-class classification competition. In IJCNN, 2011.

Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu, Bo Du, Yixin Chen, and Dacheng Tao.
Parameter efficient multi-task model fusion with partial linearization. In ICLR, 2024.

12

https://arxiv.org/pdf/2211.11489
https://arxiv.org/pdf/2211.11489
https://arxiv.org/abs/2309.15698
https://arxiv.org/pdf/2211.13723
https://arxiv.org/pdf/2211.13723
https://arxiv.org/pdf/1910.10683
https://arxiv.org/pdf/2404.18416

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Joachim Utans. Weight averaging for neural networks and local resampling schemes. In AAAI
Workshop, 1996.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Denxin Dai,
and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeruIPS, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
ICLR, 2019.

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, François Fleuret, and Pascal Frossard.
Localizing task information for improved model merging and compression. In ICML, 2024.

Pengfei Wang, Zhaoxiang Zhang, Zhen Lei, and Lei Zhang. Sharpness-aware gradient matching for
domain generalization. In CVPR, 2023.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In ICLR,
2022.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In ICML, 2022a.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In CVPR, 2022b.

Jianxiong Xiao, Krista A. Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
Exploring a large collection of scene categories. International Journal of Computer Vision, 2016.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models. In NeurIPS, 2023.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities,
2024a. https://arxiv.org/abs/2408.07666.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning. In ICLR, 2024b.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. In ICML, 2024.

Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving gen-
eralization in deep learning. In ICML, 2022.

Zhanpeng Zhou, Zijun Chen, Yilan Chen, Bo Zhang, and Junchi Yan. On the emergence of cross-
task linearity in the pretraining-finetuning paradigm. In ICML, 2024.

13

https://arxiv.org/abs/2408.07666

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

A.1 FINETUNING BASELINES

We compare the following three finetuning baselines with and without SAM:

(1) SGD: This refers to standard finetuning that uses only an optimizer such as AdamW (Loshchilov
& Hutter, 2019).

(2) FineTuning in the Tangent Space (FTTS) (Ortiz-Jimenez et al., 2023): This finetunes the model
in the tangent space at its pretrained initialization. It achieves this by linearizing the model using a
first-order Taylor expansion flin(θ;D) = f(θ0;D)+ (θ−θ0)

⊤∇f(θ0;D), where θ0 represents the
parameters of the pretrained model and D is the training dataset. The method freezes θ0 and updates
only θ.

(3) FineTuning Linear Layers Only (FTLO) (Jin et al., 2024): This exclusively finetunes the linear
layers within the attention module. Therefore, this method can only be applied to model architec-
tures that include attention modules such as Transformer (Vaswani et al., 2017).

We utilize ASAM (Kwon et al., 2021) as a default SAM method in every experiments, since it finds
minima adaptively by considering correlation between generalization gap and sharpness. We set the
ρ value of ASAM to 0.5, following the default setup outlined in ASAM, along with all other ASAM
hyperparameters.

A.2 MERGING METHODS

We merge the models that achieve the best performance for each corresponding task. These best
models are selected based on their performance on a validation set split, which is split from the
training set at a 0.1 ratio, as specified in Ilharco et al. (2023).

We use the following model merging methods as baselines:

(1) Weighted Average: This merges finetuned models by averaging their parameters element-wise,
denoted as θmerge =

1
T

∑T
t=1 θt, where θt represents the finetuned parameters for each correspond-

ing downstream task, T is the number of downstream tasks being merged.

(2) Task arithmetic (Ilharco et al., 2023): This method calculates task vectors τt = θt − θ0 for
each downstream task t, where θt represents the finetuned parameters for task t and θ0 represents
the pretrained parameters. A linear combination of these task vectors is then added to the pre-
trained parameters, denoted as θmerge = θ0 +

∑T
t=1 αtτt, where αt is a task coefficient that scales

the corresponding task vector. This method generalizes the weighted average when αt = 1
T for

t = 1, 2, . . . , T .

Since the search space for αt becomes too large as the number of tasks increases, we set the task
coefficients to be the same for all tasks and search for the optimal coefficient within the range
[0.1, 0.3, 0.5, 0.7, 0.9, 1.0] using the validation set of each task.

(3) TIES merging (Yadav et al., 2023): This method mitigates parameter interference before merg-
ing models. First, it trims parameters changed that change minimally during fine-tuning, as these
small changes in each model can become more pronounced after element-wise parameter merging.
Second, it resolves parameter interference due to sign conflicts by determining the sign of each
parameter through a majority election before merging the models.

We apply TIES merging to task arithmetic. To find the optimal merged model, we search for the
task coefficients in task arithmetic within the range [0.1, 0.3, 0.5, 0.7, 0.9, 1.0] and the percentile of
parameters to be pruned to zero within [0.7, 0.8, 0.9], using the validation set for each task.

A.3 VISUALIZATION SETUP

We produce the joint-task loss landscape and disentanglement error under two distinct settings: (1)
merging two finetuned models across two tasks, and (2) merging models finetuned on eight tasks
across two tasks.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

1. Two Finetuned Models Across Two Tasks: In the first setting, we define the merged model
as:

θmerge = θ0 + α1τ1 + α2τ2,

where τ1 and τ2 represent the parameters of models finetuned on tasks 1 and 2, respectively.

2. Merged Models on Eight Tasks Across Two Tasks: In the second setting, we define the
merged model as:

θmerge = θ0 + α1τ1 + α2τ2 +
∑

k/∈{1,2}

ατk,

with α = 0.3, where τk denotes the parameters of the additional six tasks.

For both settings, we use (α1, α2) pairs spanning from −0.5 to 1.5 with 21 evenly spaced points
along each axis, resulting in a 21×21 grid.

Joint-task Loss Landscape (Figure 4) We produce the joint-task loss landscape by computing
the combined loss:

L(θmerge;D(1)) + L(θmerge;D(2)),

for each (α1, α2) pair on the defined grid.

Disentanglement Error We evaluate the disentanglement error ξ(α1, α2) for both settings to
quantify the discrepancy between the desired and actual influences of individual tasks on the merged
model’s outputs. The disentanglement error is defined as:

ξ(α1, α2) =

T∑
t=1

Ex∼µi
[dist (f(x;θ0 + αtτt), f(x;θmerge))] .

For each (α1, α2) task coefficient pair on the grid, we compute ξ(α1, α2) and visualize the error
values using contour plots to identify regions where disentanglement is effective.

Since task coefficients are real numbers, we utilize contour plots to effectively visualize the varia-
tions in loss landscape and disentanglement error across the continuous (α1, α2) parameter space.

B DERIVATION OF EQUATION 7

We start with simplifying Equation 6, which is the objective function that incorporates the goals of
model merging:

θt = argmin
θ

L(θmerge(θ); D(t))− L(θ; D(t)) + L(θ; D(t))

= argmin
θ

L(θmerge(θ); D(t)).

Here, we consider task coefficients {αs} and other task vectors {τs}s̸=t to be fixed. Since Then,
instead of θmerge = θ0+

∑T
s=1 αsτs in Equation 5, we express θmerge(θ) as θ0+

∑
s̸=t αsτs+αtτ ,

where τ = θ − θ0, since θt has not been found yet during the process of optimizing θ for task t.
We now have

θt = argmin
θ

L(θ0 +
∑
s̸=t

αsτs + αtτ ; D(t))

= argmin
θ

L(θ0 + τ − τ +
∑
s ̸=t

αsτs + αtτ ; D(t))

= argmin
θ

L(θ − τ +
∑
s̸=t

αsτs + αtτ ; D(t)) ∵ θ = θ0 + τ

= argmin
θ

L(θ +
∑
s ̸=t

αsτs + (αt − 1)τ ; D(t)).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C ADDITIONAL RESULTS

C.1 EFFECT OF THE NUMBER OF STEPS DURING FINETUNING

SAM has the capability to increase training epochs while still improving accuracy (Foret et al.,
2021). Therefore, we conduct an ablation study to evaluate whether SAM can enhance the per-
formance of a single downstream task by doubling the number of training steps. In this study, we
employ ASAM. As shown in Table 3, it appears that SGD converges, as performance plateaus after
2000 steps. In contrast, SAM continues to improve performance consistently up to 8000 steps.

Table 3: Average accuracies of finetuned ViT-B/32 over steps across the eight tasks.

Finetuning Steps 2000 4000 8000

SGD 90.37 90.21 90.48
ASAM 90.50 90.84 91.03

C.2 FINETUNING PERFORMANCE OF SAM VARIANTS

To empirically justify our choice of SAM variant for our main experiments, we evaluate various
SAM variants on the same datasets (i.e., eight vision tasks) as our main experiments. In particular,
we investigate how the performance of a merged model changes when applying SAM (Foret et al.,
2021), ASAM (Kwon et al., 2021), Friendly SAM (Li et al., 2024), WA-SAM (Kaddour et al., 2022),
SAGM (Wang et al., 2023), PGN (Zhao et al., 2022), SSAM-F (Mi et al., 2022), and SSAM-D (Mi
et al., 2022), as shown in Table 4. The results demonstrate that ASAM brings better performance
improvement, compared to SAM and other SAM variants. As a result, ASAM shows the best single-
task performance among other variants. Therefore, we use ASAM as a default SAM variant in all
experiments.

Table 4: Average accuracy of finetuned ViT-B/32 over steps across various SAM variants and fine-
tuning methods.

SAM variants Accuracy

SGD 90.45
SAM 90.16
ASAM 91.29
Friendly SAM 90.29
WA-SAM 91.06
SAGM 90.96
PGN 90.90
SSAM-F 90.80
SSAM-D 90.60

C.3 CROSS-TASK LINEARITY

We provide additional results that demonstrate that SAM-applied finetuning satisfies cross-task lin-
earity on other pairs of datasets in Figure 6. We utilize ViT-B/32 as the image encoder to visualize
this figure, just the same as Figure 3. The results show that our method achieves lower CTL scores
across all layers for various task combinations. This suggests that our approach better satisfies
CTL for a broader range of data, implying improved weight disentanglement and task arithmetic
properties. Consequently, it can be concluded that our method reduces parameter interference and
minimizes the performance gap.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11
0.0

0.1

0.2

0.3

0.4

0.5

CT
L

sc
or

e

i: Cars, j: RESISC45
w/o ASAM
w/ ASAM

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11
0.0

0.1

0.2

0.3

0.4

0.5

CT
L

sc
or

e

i: Cars, j: SUN397
w/o ASAM
w/ ASAM

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11
0.0

0.1

0.2

0.3

0.4

0.5

CT
L

sc
or

e

i: DTD, j: EuroSAT
w/o ASAM
w/ ASAM

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11
0.0

0.1

0.2

0.3

0.4

0.5

CT
L

sc
or

e

i: DTD, j: MNIST
w/o ASAM
w/ ASAM

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11
0.0

0.1

0.2

0.3

0.4

0.5

CT
L

sc
or

e

i: GTSRB, j: SVHN
w/o ASAM
w/ ASAM

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11
0.0

0.1

0.2

0.3

0.4

0.5

CT
L

sc
or

e

i: EuroSAT, j: GTSRB
w/o ASAM
w/ ASAM

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11
0.0

0.1

0.2

0.3

0.4

0.5

CT
L

sc
or

e

i: EuroSAT, j: SUN397
w/o ASAM
w/ ASAM

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11
0.0

0.1

0.2

0.3

0.4

0.5

CT
L

sc
or

e

i: RESISC45, j: MNIST
w/o ASAM
w/ ASAM

Figure 6: Verification of all blocks CTL between merged model and fine-tuned models. We
compare ED(s)∪D(t) [1− cos(ℓ)(x; 2λτs, 2λτt)] We set the scaling term λ to 0.3.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Multi-task performance when merging a CLIP image encoder on every 8 tasks. We re-
port the average absolute and normalized accuracies for different 5 model merging methods. Results
are shown for the 6 finetuning methods, categorized by whether ASAM is applied.

Merging methods (→) Weighted average Task arithmetic TIES merging
Finetuning baselines (↓) Abs. Norm. Abs. Norm. Abs. Norm.

ViT-B/32

SGD w/o ASAM 65.72 72.91 68.23 75.47 74.57 82.29
SGD w/ ASAM (Ours) 66.76 73.62 69.45 76.32 75.45 82.86

FTTS w/o ASAM 72.47 82.04 78.35 86.83 76.89 86.84
FTTS w/ ASAM (Ours) 75.10 86.10 79.38 87.72 73.77 84.46

FTLO w/o ASAM 65.96 73.83 75.93 85.74 77.39 85.89
FTLO w/ ASAM (Ours) 65.34 72.78 77.49 88.77 76.30 84.62

ViT-B/16

SGD w/o ASAM 71.58 77.37 73.40 79.31 77.94 84.04
SGD w/ ASAM (Ours) 71.84 77.53 76.77 82.50 80.14 86.23

FTTS w/o ASAM 77.20 84.87 79.37 87.33 81.09 89.05
FTTS w/ ASAM (Ours) 78.09 86.45 79.78 88.26 78.41 86.72

FTLO w/o ASAM 70.97 77.11 80.00 86.55 78.25 84.91
FTLO w/ ASAM (Ours) 71.03 76.78 82.59 89.11 79.49 85.92

C.4 LOSS BETWEEN A MERGED MODEL AND FINETUNED MODELS

To demonstrate that SAM-applied finetuning indeed reduces the loss sharpness and the performance
gap between a merged model and finetuned models, we visualize loss changes as we traverse along a
linear path between a merged model and a finetuned model on a given task in Figure 7. SAM-applied
finetuning indeed results in reduced loss barrier, leading to less performance gap as exhibited in less
weight disentanglement error, better cross-task linearity, and better overall performance in our main
paper.

C.5 ADDITIONAL RESULTS OF FINTUNING BASELINES AND MODEL MERGING METHODS

Following Section 6.2, we conduct experiments on all combinations of finetuning baselines (SGD,
FTTS, FTLO) and model merging methods (weighted average, task arithmetic, TIES), as summa-
rized in Table 5. In the case of weighted average, our method leads to performance improvements in
most cases, and for task arithmetic, it achieves performance improvements in all cases. For weighted
average, our method improves performance in most cases, while task arithmetic consistently yields
performance improvements across all cases. In contrast, TIES shows performance improvements in
only half of the cases. Upon closer examination, when linear finetuning methods such as FTTS and
FTLO — which regularize the model output to satisfy linearity — are used without ASAM, TIES
generally outperforms task arithmetic. However, with ASAM applied, TIES consistently performs
worse than task arithmetic.

This seems that since the combination of linear finetuning and ASAM has already enhanced weight
disentanglement and reduced parameter interference, parameter trimming via TIES may rather re-
move critical parameters not noisy parameters, leading to performance degradation. Specifically,
with SGD, the combination of TIES and ASAM delivers the best performance. Conversely, with
FTTS and FTLO, task arithmetic paired with ASAM achieves superior results. In some instances,
TIES combined with ASAM performs similarly to weighted average. Thus, for linear finetuning
methods like FTTS and FTLO, combining ASAM with TIES can negatively impact performance.
Additional analysis of this behavior is reserved for future work.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Interpolation

1.0

1.5

2.0

2.5

(
t+

(1
)

m
er

ge
)

Loss Barrier (w/o ASAM): 0.75
Loss Barrier (w/ ASAM): 0.59

Task: Cars

w/o ASAM
w/ ASAM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Interpolation

1.0

1.5

2.0

2.5

(
t+

(1
)

m
er

ge
)

Loss Barrier (w/o ASAM): 0.60
Loss Barrier (w/ ASAM): 0.51

Task: DTD

w/o ASAM
w/ ASAM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Interpolation

1.0

1.5

2.0

2.5

3.0

(
t+

(1
)

m
er

ge
)

Loss Barrier (w/o ASAM): 0.80
Loss Barrier (w/ ASAM): 0.40

Task: SUN397

w/o ASAM
w/ ASAM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Interpolation

0.2

0.4

0.6

0.8

1.0

(
t+

(1
)

m
er

ge
)

Loss Barrier (w/o ASAM): 0.42
Loss Barrier (w/ ASAM): 0.33

Task: SVHN

w/o ASAM
w/ ASAM

Figure 7: Test loss barrier between the merged model and each finetuned model.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 6: Multi-task performance of task arithmetic with and without hyperparameter tun-
ing. We compare the average absolute and normalized accuracies of task arithmetic whether the
hyperparameter is tuned. The fixed hyperparameter α is 0.4 for every 8 vision tasks.

Finetuning baselines (↓) w/o tuning w/ tuning w/o tuning w/ tuning
Abs. Norm. Abs. Norm. Abs. Norm. Abs. Norm.

ViT-B/32 ViT-B/16

SGD w/o ASAM 46.34 48.72 68.23 75.47 46.91 49.98 73.40 79.31
SGD w/ ASAM (Ours) 57.27 62.06 69.45 76.32 71.37 76.34 76.77 82.50

FTTS w/o ASAM 72.89 81.97 78.35 86.83 76.69 84.05 79.37 87.33
FTTS w/ ASAM (Ours) 75.21 85.78 79.38 87.72 78.87 87.17 79.78 88.26

FTLO w/o ASAM 48.20 55.29 75.93 85.74 77.36 83.60 80.00 86.55
FTLO w/ ASAM (Ours) 79.68 88.77 77.49 87.92 82.50 88.95 82.59 89.11

C.6 MERGING WITH FIXED αt

Previous research (Ilharco et al., 2023; Jin et al., 2023; Matena & Raffel, 2022; Yadav et al., 2023)
on model merging has focused on finding better merged models through hyperparameter tuning.
However, such methods become increasingly costly as the number of hyperparameters grows, and
they need to be re-applied whenever tasks are added or changed. Therefore, it is essential to create
a robust merged model that performs well regardless of the selected hyperparameters.

Our method achieves robustness by identifying flatter minima for joint loss and weight disentangle-
ment compared to SGD, enabling the discovery of optimal hyperparameters across a wider range
of conditions. To support this claim, we evaluate task arithmetic by fixing the task coefficients α
to 0.4 for all merging tasks, following the recommendation of Ilharco et al. (2023). As shown in
Table 6, our method outperforms other fine-tuning baselines in all cases, achieving improvements
of up to 30% in both absolute accuracy and normalized accuracy. Additionally, there are several
cases where the performances are nearly identical to those of hyperparameter tuning. Therefore, our
method ensures that a merged model with reliable performance can be obtained, even when arbitrary
hyperparameters are chosen.

C.7 MULTI-TASK PERFORMANCE OF OTHER FLAT-MINIMA TECHNIQUES

Table 7: Multi-task performance across different flat-minima techniques. We compare the av-
erage absolute and normalized accuracies of ViT-B/32 for five finetuning methods including three
flat-minima techniques: SWA, RWP, and SAGM. We also compare the performance of merged
model with and without hyperparameter tuning. All cases are merged with eight vision tasks by task
arithmetic.

Finetuning baselines (↓) w/o tuning w/ tuning
Abs. Norm. Abs. Norm.

SGD 46.34 48.72 68.23 75.47

SWA 48.94 52.46 68.58 76.11
RWP 34.97 36.58 62.48 73.02
SAGM 40.18 42.93 64.36 71.16

ASAM (Ours) 57.27 62.06 69.45 76.32

We also evaluate the performance of other flat-minima techniques, in addition to SAM variants like
ASAM. Flat-minima techniques, including SWA (Izmailov et al., 2018), RWP (Li et al., 2022), and
SAGM (Wang et al., 2023), are finetuning methods designed to minimize the loss while finding flat-
minima during model training. As shown in Table 7, both our method and SWA improve multi-task

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

performance compared to SGD. However, RWP and SAGM show worse performance than SGD.
In addition, as discussed in Appendix C.6, we also present the results of performance evaluation
without hyperparameter tuning in Table 7. Our method not only achieves the best performance
when the hyperparameters are tuned but also outperforms in cases without tuning. Furthermore, the
performance gap between our method and SGD, as well as other flat-minima techniques, widens
significantly in these scenarios. This demonstrates that our method is superior to other flat-minima
techniques and exhibits less performance degradation due to variations in parameter settings.

The primary difference among flat-minima techniques lies in the strategies used to derive pertur-
bations. This seems to influence how effectively these techniques can reduce the performance gap
between each finetuned model and merged model. Our method introduces perturbations by mini-
mizing the loss difference between the current point in the parameter space and the point with the
highest loss in its neighborhood during finetuning. This approach aligns closely with the objective
of model merging, which aims to minimize the loss difference between the merged model and the
individual finetuned models. Therefore, perturbation strategies derived from finetuning objectives
similar to the model merging objective could result in greater performance improvements compared
to other flat-minima techniques.

C.8 RESULTS IN NATURAL LANGUAGE PROCESSING

Table 8: Multi-task performance of the merged model across four natural language under-
standing tasks. We report the average absolute and normalized accuracies on four GLUE bench-
mark tasks: CoLA, MPRC, RTE, and SST-2. We finetune Flan-T5-base using either SGD or SGD
with ASAM and merged the four GLUE tasks.

Finetuning CoLA MRPC RTE SST-2 Average
baselines (↓) Abs. Norm. Abs. Norm. Abs. Norm. Abs. Norm. Abs. Norm.

SGD 58.77 75.58 25.74 29.75 37.55 43.52 64.11 68.68 46.54 54.38
FTTS 66.06 92.61 28.19 34.96 1.81 2.35 87.39 94.90 45.86 56.21
FTLO 66.83 96.67 67.40 79.71 0 0 13.30 14.50 36.88 47.72
ASAM (Ours) 68.65 99.31 42.16 52.92 49.82 60.00 45.30 49.38 51.48 75.47

To demonstrate the effectiveness of our method in other domains, we evaluate our method on NLP
tasks. Following the evaluation settings of Ilharco et al. (2023), we finetune the Flan-T5-Base (Raf-
fel et al., 2019; Wei et al., 2022) on four NLU tasks: CoLA, MRPC, RTE, and SST-2 in GLUE
benchmark (Wang et al., 2019). All finetuning processes start from the Flan-T5 pretrained check-
point available on HuggingFace. We finetune each model for 8000 iterations with a batch size of
16 and a learning rate of 10−5. AdamW is used as the optimizer, and a linear annealing approach
without warmup is applied as the learning rate scheduler. For efficient finetuning, we convert all
downstream NLP tasks into a text-to-text format, following the approach in Jin et al. (2024). We
measure the multi-task performance of the multi-task model merged by all four tasks using task
arithmetic.

As shown in Table 8, our method outperforms SGD on all tasks except RTE. These results indicate
that our method can enhance performance not only in vision tasks but also in NLP tasks. As shown
in Table 8, our method outperforms SGD on all tasks except RTE, and on average, it achieves better
multi-task performance compared to SGD.

C.9 TRAINING COSTS OF FINETUNING

Table 9 presents a comparison of training costs between SGD and our method across various mod-
els and finetuning methods. We use AdamW as the optimizer for all training, setting the batch
size to 64 only for finetuning ViT-B/16 using FTTS, while using a batch size of 128 for all other
cases. Additionally, all training is conducted using Nvidia GeForce RTX 3090 GPUs. Training time
approximately doubles after applying ASAM, while VRAM usage increases slightly.

Recently, there has been active research aimed at reducing the computational cost of SAM (Du
et al., 2022; Liu et al., 2022). Model merging is an approach designed to efficiently build multi-task

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 9: Training cost of SAM finetuning.

Fintuning baselines (↓) ViT-B/32 ViT-B/16
Time (it/s) VRAM (GB) Time (it/s) VRAM (GB)

SGD 3.75 7.3 1.01 21.5
FTTS 1.93 12.6 1.07 20.9
FTLO 4.61 5.8 1.25 19.0
ASAM (Ours) 1.98 7.8 0.50 21.6

models, and since our work seeks to establish a connection between model merging and SAM, we
believe our research can significantly contribute to works focused on improving the efficiency of
SAM.

D THEORETICAL DETAILS

D.1 CONNECTION BETWEEN SAM OBJECTIVE AND PARAMETER INTERFERENCE

Definition 1 (Joint-Task Loss). Joint-Task Loss, denoted as LJTL(θ;D), represents the aggregate
loss over multiple tasks. Here, θ denotes the model parameters, and D is the combined dataset
formed by the union of individual task datasets Ds and Dt. Formally, it is defined as:

LJTL(θ;D) = L(θ;Ds) + L(θ;Dt),

where D = Ds ∪ Dt, (17)

where L(θ;Ds) and L(θ;Dt) denote the loss functions for datasets Ds and Dt, respectively.
Definition 2 (Joint-Task Loss Linearity). Joint-Task Loss Linearity (JTL Linearity) describes the
linear relationship between the Joint-Task Loss of an interpolated model and the weighted sum of
the individual Joint-Task Losses of task-specific models. Specifically, for datasets Ds and Dt, with
their respective fine-tuned parameters θs and θt, JTL Linearity holds if:

LJTL(αθs + (1− α)θt;D) ≈ αLJTL(θs;D) + (1− α)LJTL(θt;D), (18)

where α ∈ [0, 1] is a scalar coefficient. This approximation implies that the Joint-Task Loss of the
parameter combination αθs+(1−α)θt is approximately equal to the weighted sum of the individual
Joint-Task Losses.
Property 1 (SAM Reduces the Dominant Hessian Eigenvalue λmax). Let H(θ;D) = ∇2

θL(θ;D)
be the Hessian matrix respect to the model parameter θ. The dominant Hessian eigenvalue
λmax(θ;D) is the largest eigenvalue of H(D;θ):

λmax(θ;D) = max
∥v∥2=1

v⊤H(θ;D)v. (19)

Agarwala & Dauphin (2023) demonstrated that SAM provides strong regularization of the eigen-
values throughout the learning trajectory. As illustrated in Figure 8, we further discover that SAM
not only regularizes the learning trajectory but also reduces the dominant Hessian eigenvalue for pa-
rameters θ along the line segment between the pretrained parameter θ0 and the finetuned parameter
θt.

D.2 PROOF OF THEOREM 1

Proof. We aim to show that:

|δ| ≤ 1

2
α(1− α)(λs + λt)∥θt − θs∥2 + ϵ, (20)

where λs = λmax(θs;Ds), λt = λmax(θt;Dt) (21)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

m
ax

(
,

(t)
)

w/o ASAM
w/ ASAM
mean w/o ASAM
mean w/ ASAM

Figure 8: Comparison of the dominant Hessian eigenvalue for parameters on the line segment
between the pretrained parameter and finetuned parameter. We compare the dominant Hessian
eigenvalue λmax(θ;D(t)) of parameter θ along the line segment θ0θt, where θ = θ0 + γ(θt − θ0)
for γ ∈ [0, 1], D(t) denotes the dataset for task k. The line represents the mean of the dominant
Hessian eigenvalues for all tasks.

Recall that the Joint-Task Loss is defined as LJTL(θ;D) = L(θ;Ds) + L(θ;Dt), define δ as:

δ = LJTL(αθs + (1− α)θt;D)− αLJTL(θs;D)− (1− α)LJTL(θt;D)

= [L(αθs + (1− α)θt;Ds)− αL(θs;Ds)− (1− α)L(θt;Ds)]

+ [L(αθs + (1− α)θt;Dt)− αL(θs;Dt)− (1− α)L(θt;Dt)]

= δs + δt, (22)
where δs = L(αθs + (1− α)θt;Ds)− αL(θs;Ds)− (1− α)L(θt;Ds),

δt = L(αθs + (1− α)θt;Dt)− αL(θs;Dt)− (1− α)L(θt;Dt).

Performing a third-order Taylor expansion of L(αθs + (1− α)θt;Ds) around θs:

L(αθs + (1− α)θt;Ds) = L(θs;Ds) + (1− α)∇θL(θs;Ds)
⊤(θt − θs)

+
1

2
(1− α)2(θt − θs)

⊤Hs(θt − θs) +Rs, (23)

where Hs = ∇2
θL(θs;Ds) and Rs is the remainder term.

Similarly, expand L(θt;Ds) around θs:

L(θt;Ds) = L(θs;Ds) +∇θL(θs;Ds)
⊤(θt − θs) +

1

2
(θt − θs)

⊤Hs(θt − θs) +R′
s. (24)

Multiply both sides by (1− α):

(1− α)L(θt;Ds) = (1− α)L(θs;Ds) + (1− α)∇θL(θs;Ds)
⊤(θt − θs)

+
1

2
(1− α)(θt − θs)

⊤Hs(θt − θs) + (1− α)R′
s. (25)

Compute δs:

δs = L(αθs + (1− α)θt;Ds)− αL(θs;Ds)− (1− α)L(θt;Ds)

=

[
L(θs;Ds) + (1− α)∇θL(θs;Ds)

⊤(θt − θs) +
1

2
(1− α)2(θt − θs)

⊤Hs(θt − θs) +Rs

]
− αL(θs;Ds)−

[
(1− α)L(θs;Ds) + (1− α)∇θL(θs;Ds)

⊤(θt − θs)

+
1

2
(1− α)(θt − θs)

⊤Hs(θt − θs) + (1− α)R′
s

]
. (26)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Simplify the expression:

δs = L(θs;Ds)− αL(θs;Ds)− (1− α)L(θs;Ds)

+ (1− α)∇θL(θs;Ds)
⊤(θt − θs)− (1− α)∇θL(θs;Ds)

⊤(θt − θs)

+
1

2
(1− α)2(θt − θs)

⊤Hs(θt − θs)−
1

2
(1− α)(θt − θs)

⊤Hs(θt − θs)

+Rs − (1− α)R′
s. (27)

= −1

2
α(1− α)(θt − θs)

⊤Hs(θt − θs) + (Rs − (1− α)R′
s) . (28)

Similarly, compute δt by expanding around θt:

δt = −1

2
α(1− α)(θt − θs)

⊤Ht(θt − θs) + (Rt − αR′
t) , (29)

where Ht = ∇2
θL(θt;Dt). (30)

Combining δs and δt:

δ = δs + δt = −1

2
α(1− α)(θt − θs)

⊤(Hs +Ht)(θt − θs) + ϵ, (31)

where ϵ = (Rs − (1− α)R′
s) + (Rt − αR′

t) . (32)

Since (θt − θs)
⊤Hs(θt − θs) ≤ λs∥θt − θs∥2 and (θt − θs)

⊤Ht(θt − θs) ≤ λt∥θt − θs∥2, |δ| is
bounded as:

|δ| ≤ 1

2
α(1− α)(λs + λt)∥θt − θs∥2 + ϵ, (33)

where ϵ = (Rs − (1− α)R′
s) + (Rt − αR′

t) is the remainder term.

24

	Introduction
	Related Works
	Background
	Mitigating Parameter Interference via Sharpness-Aware Finetuning
	SAM mitigates parameter interference
	Experiments
	Training Setup
	Main Results

	Conclusion
	Experimental details
	Finetuning Baselines
	Merging Methods
	Visualization Setup

	Derivation of Equation 7
	Additional Results
	Effect of the Number of Steps during Finetuning
	Finetuning Performance of SAM variants
	Cross-Task Linearity
	Loss between a Merged Model and Finetuned Models
	Additional Results of Fintuning Baselines and Model Merging Methods
	Merging with Fixed t
	Multi-Task Performance of Other Flat-Minima Techniques
	Results in Natural Language Processing
	Training Costs of finetuning

	Theoretical details
	Connection between SAM Objective and Parameter Interference
	Proof of theorem 1

