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Abstract

Large-scale pre-trained vision-language models
(e.g., CLIP) have shown powerful zero-shot trans-
fer capabilities in image recognition tasks. Re-
cent approaches typically employ supervised fine-
tuning methods to adapt CLIP for zero-shot multi-
label image recognition tasks. However, obtain-
ing sufficient multi-label annotated image data for
training is challenging and not scalable. In this pa-
per, we propose a new language-driven framework
for zero-shot multi-label recognition that elimi-
nates the need for annotated images during train-
ing. Leveraging the aligned CLIP multi-modal
embedding space, our method utilizes language
data generated by LLMs to train a cross-modal
classifier, which is subsequently transferred to
the visual modality. During inference, directly
applying the classifier to visual inputs may limit
performance due to the modality gap. To address
this issue, we introduce a cross-modal mapping
method that maps image embeddings to the lan-
guage modality while retaining crucial visual in-
formation. Comprehensive experiments demon-
strate that our method outperforms other zero-
shot multi-label recognition methods and achieves
competitive results compared to few-shot meth-
ods.

1. Introduction
Large-scale multi-modal pre-trained models, such as Con-
trastive Language-Image Pre-training (CLIP) (Radford et al.,
2021), have shown impressive capabilities in cross-modal
representation learning. CLIP leveraged contrastive learn-
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ing from 400 million image-text pairs to map images and
texts into a shared embedding space. Such models show re-
markable generalization capabilities in various downstream
vision tasks (Zhou et al., 2022; Zhao et al., 2022; Luo et al.,
2023; Wang et al., 2023; Zhang et al., 2024).

Multi-label recognition (MLR) is an important vision task,
which aims to describe what is present in an image using
multiple labels. Compared to single-label image recognition
tasks, which solely focus on the subject objects in an im-
age, MLR tasks must recognize images with more complex
scenarios and multiple objects. Many works have achieved
great improvements in adopting CLIP to multi-label recog-
nition tasks. For instance, ADDS (Xu et al., 2022) learned
a transformer decoder to facilitate the fusion of the seman-
tics from dual-modal information sources. DualCoOp (Sun
et al., 2022) learned positive and negative prompts to adapt
the knowledge learned in CLIP to multi-label image recogni-
tion. HSPNet (Ramesh et al., 2022) proposed a hierarchical
semantic prompt network to explore the hierarchical seman-
tic relationship in the CLIP model. Although these methods
can achieve remarkable performance of multi-label image
recognition, they usually require sufficient labeled images
to fine-tune the model. Unfortunately, the collection of
large-scale and high-quality annotated multi-label datasets
remains challenging and resource-intensive.

To mitigate this issue, researchers have developed a new set-
ting, i.e., multi-label zero-shot learning (ML-ZSL), in which
an image is associated with potentially multiple seen and
unseen classes, but only labels of seen classes are provided
during training. Recent methods (Zhang et al., 2016; Ben-
Cohen et al., 2021; He et al., 2023; Pu et al., 2023; Chen
et al., 2022) commonly utilized label embeddings in the se-
mantic space to transfer the knowledge from seen classes to
unseen classes. However, these methods still require image
data annotated by seen classes to train the model and suffer
from significant performance degradation due to the lack of
annotated image data.

Generally speaking, compared with the collection of large-
scale annotated image datasets, it is significantly easier to
collect large amounts of natural language data. If we can
find a cohesive alignment of semantics across vision and
language modalities, then we can explore the information
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of language data to promote the performance of MLR in the
vision space. Inspired by this motivation, to diminish the
reliance on collecting large-scale annotated image datasets,
we propose a new zero-shot multi-label image recognition
framework using language-only data for training. The pro-
posed framework is illustrated in Figure 1. Specifically, to
collect sufficient high-quality language data, we exploit a
Large Language Model (LLM) such as GPT-3 (Brown et al.,
2020) to generate textual descriptions for all image cate-
gories in a dataset. Compared with collecting textual data
on the web, generating data using LLM is more straightfor-
ward and requires less manual post-processing. Considering
that only training the model with language data will lead
to a modality gap phenomenon between texts and images,
we further propose a simple and effective mapping method
to transfer the image embedding into the text embedding
space to reduce the impact of the modality gap. In particu-
lar, we set up a series of label-specific text embeddings and
represent the image embedding as a linear combination of
text embeddings. At the same time, we retain the impor-
tant visual information by fusing the mapped embedding
and the original image embedding. Additionally, we take
full advantage of the powerful CLIP model to extract both
global and local image information, enhancing our classi-
fier’s ability to recognize multiple objects in an image. The
main contributions can be summarized as follows:

• We propose a new language data-driven framework
for zero-shot multi-label recognition. The method can
train a Cross-Modal Classifier (CoMC) with language
data for the multi-label image recognition tasks, which
efficiently eliminates the requirement of large-scale
high-quality annotated image data.

• We propose a simple yet efficient cross-modal mapping
method to align the text and vision embeddings, which
can effectively reduce the modality gap.

• Extensive experiment results show that without using
image data to train the model, our method still performs
significantly better than many zero-shot methods and
few-shot methods for MLR.

2. Related Work
Multi-label Zero-shot Learning. Zero-shot learning aims
to train a model for classifying objects of unseen classes.
Most studies focus on single-label recognition tasks, which
classify an image into one category (Novack et al., 2023;
Pratt et al., 2023; Naeem et al., 2023). Although these
methods have achieved significant success, they cannot be
well transferred to zero-shot multi-label recognition tasks,
which is more challenging and more practical in real-world
applications. In most early works, labels were split into
seen and unseen categories, and models trained on images

with seen labels were applied to unseen labels during infer-
ence. LabelEM (Akata et al., 2015) introduced a function
that measures the compatibility between image and label to
learn a joint image-label embedding. Fast0Tag (Zhang et al.,
2016) and SDL (Ben-Cohen et al., 2021) learned one or
multiple diverse principal embedding vectors of the image.
Generally speaking, multiple objects are usually distributed
across multiple regions of an image. To obtain the relevant
object regions, LESA (Huynh & Elhamifar, 2020) designed
a shared multi-attention mechanism. Deep0Tag (Rahman
et al., 2019) learned a region proposal network to automati-
cally locate relevant image patches. BiAM (Narayan et al.,
2021) enhanced the region-based features by minimizing
the inter-class feature entanglement. Though significant
progress has been made, existing methods still overly rely
on large-scale annotated image data and generally have com-
plex network architectures or loss functions.

Vision-language Pre-trained Models. With the increase of
large-scale visual text pairs collected from the Internet, vi-
sual language pretraining (VLP) has become a hot research
topic in recent years (Luo et al., 2020; Huang et al., 2020;
Kim et al., 2021; Li et al., 2022; Jia et al., 2021; Radford
et al., 2021). Among them, CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021) learned visual and textual
representations from millions of image-text pairs collected
from the Internet, showing superior zero-shot transferability
in various downstream tasks. To further improve the VLP
performance, some works (Mu et al., 2022; Li et al., 2021)
utilized additional self-supervision within-modality. FILIP
(Yao et al., 2021) considered capturing finer-grained image-
text relationships. For the above methods, fine-tuning is nec-
essary when adopting these VL models to downstream tasks.
However, directly fine-tuning the whole model consumes
a lot of computational resources and may compromise the
original representation learning capability of the model. To
address this issue, CoOp (Zhou et al., 2022) introduced the
concept of prompt tuning to the vision domain, providing
an efficient way to fine-tune the VL models. Furthermore,
DualCoOp (Sun et al., 2022) learned dual prompts to adapt
CLIP to multi-label learning tasks. For the above methods,
a common limitation is that these methods require anno-
tated image data to fine-tune the VL models to ensure their
performance. TaI-DPT (Guo et al., 2023) treated text data
as images for prompt tuning. While both our method and
TaI-DPT use text data for training, we distinguish ourselves
by leveraging the aligned embedding space of VL models to
train a cross-modal classifier using text embeddings directly.

3. Method
The proposed framework is shown in Figure 1. First, we
adopt an LLM to generate a diverse multi-label text dataset.
Then, we use the CLIP text encoder to encode the input
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Figure 1. An overview of our framework. Our method is based on a pre-trained contrastive model CLIP containing a visual encoder and a
text encoder. (Top) During training, we learned a classifier for multi-label recognition based on the CLIP text embedding. The pre-trained
CLIP image and text encoders are kept frozen. (Bottom) At inference, we use a simple mapping method to map the image embedding
into text embedding space with the help of a series of label-specific text embeddings. Then the mapped embedding is fused with the
original image embedding for multi-label recognition.

text, and then train a multi-label classifier to recognize the
textual data. Thanks to the aligned image-text embedding
space of CLIP, we can transfer the classifier trained by texts
to zero-shot image recognition. At inference, to enhance
the discriminative ability to recognize multiple objects ap-
pearing in different regions of the image, global and local
visual embeddings are both extracted using the CLIP image
encoder. Furthermore, we propose a simple yet efficient
mapping method to reduce the modality gap between the
text embedding space and the image embedding space. Then
the mapped embedding is fed into the multi-label classifier
for image recognition.

3.1. LLM-based Multi-label Text Data Generation

As mentioned in the previous section, we attempt to train
a language-driven network to address the dependence is-
sue on large-scale annotated images. Therefore, the first
work is to collect the high-quality language data associated
with the multi-label training data. Directly collecting and
labeling text data from the web can be labor-intensive, and
the collected data may prove unusable if it lacks sufficient
diversity. Large Language Models (LLM), such as GPT-
3 (Brown et al., 2020), offer a more efficient approach to
acquiring high-quality textual training data.

We leverage GPT-3 to generate the text data for the training
of our multi-label classifier. Specifically, we first sample sev-
eral labels randomly from the label set of the target dataset.
To guide GPT-3 in generating concise textual descriptions,
we employ the following LLM-prompt: ‘Please make a
brief sentence to describe a photo that contains ...’, filled in

with the label names we sampled. This process is iterated to
generate 40,000 sentences covering various combinations of
labels. This approach allows us to acquire a large-scale high-
quality text dataset efficiently. Leveraging this generated
text dataset, we proceed to train our multi-label classifier.

3.2. Text-only Training of Cross-modal Classifier

The pre-trained vision-language models generally adopt
contrastive learning to find an embedding alignment space
for image and text modalities. As proved in (Zhang et al.,
2022), such shared embedding space learned by these pre-
trained multi-modal models makes the cross-modal transfer
possible. In other words, it is possible to replace the image
inputs with text inputs as good proxies to promote the per-
formance of pre-trained vision-based models. Inspired by
this motivation, we try to train a multi-label image classifier
using text data.

In our work, we simply use a single linear classifier to per-
form multi-label recognition. Let C = {c1, c2, . . . , cN}
be the label set of the target dataset, where N is the
number of labels. The text training set is denoted as
D = {(Ti,Yi)}Mi=1, where M is the number of texts;
Yi = {yi,1, yi,2, . . . , yi,N} denotes the ground truth labels
of the text Ti; yi,j for j ∈ {1, 2, . . . , N} is 1 if the text Ti
is generated from the label cj and 0 otherwise. Given a text
Ti, we use the CLIP text encoder to extract its embedding,
formulated as follows:

ti = Et(Ti) (1)
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where ti ∈ Rd is the text embedding, d is the dimension of
text embedding; Et(·) denotes the CLIP text encoder. Then
the l2 normalized text embedding is fed into the multi-label
classifier fθ to compute the confidence score:

Pi = fθ(
ti

∥ti∥2
) (2)

where Pi = {pi,1, pi,2, . . . , pi,N} and pi,j for j ∈
{1, 2, . . . , N} being the probability that the text Ti is gen-
erated from label cj . Following (Guo et al., 2023), we use
ranking loss Lranking to measure the discrepancy between
confidence scores and ground-truth labels. Formally, the
training objective is:

Lranking =
∑

j∈{c+}

∑
k∈{c−}

max(0,m− (pi,j − pi,k)) (3)

where {c+} and {c−} denote the positive classes and neg-
ative classes, respectively. m is the margin value to deter-
mine how much larger the similarity score between positive
classes should be than between negative classes. We set the
margin value m = 1 in ranking loss.

The detailed processes to train a language-driven cross-
modal classifier are summarized in Algorithm 1.

Algorithm 1 Training process of CoMC.

1: Input: Text dataset D = {(Ti,Yi)}Mi=1, classifier fθ,
text encoder Et(·), learning rate δ, training epochs T ,
the number of iteration I , batch size B.

2: Initialize: Text encoder Et(·) is initialized as the pa-
rameters in the pre-trained CLIP. The parameter θ of
the classifier is randomly initialized.

3: for t = 1 to T do
4: for k = 1 to I do
5: Sample batch {(Ti,Yi)}Bi=1 ⊂ D;
6: for i = 1 to B do
7: Extract the text embedding ti of text Ti accord-

ing to Eq.(1);
8: Calculate the confidence scores Pi using Eq.(2);
9: end for

10: Calculate the ranking loss Lranking using Eq.(3)
and update the parameters of classifier θ using
Adam optimizer.

11: end for
12: end for
13: Output: The parameters of the classifier θ.

3.3. Inference Stage

After training a multi-label classifier using textual descrip-
tions generated by LLM, now we have to apply this classifier
to image embeddings to achieve cross-modal transfer.

Fine-grained Image Embeddings. Vision-language mod-
els based on contrastive learning have demonstrated impres-
sive success in zero-shot vision recognition tasks. However,
CLIP (Radford et al., 2021) only focuses on matching each
image with a single label during its training, hence it is not
suitable to handle the multi-label recognition cases. In ad-
dition, standard CLIP only uses a global image embedding
to align the image to a single label. As a result, its embed-
ding can only describe the most dominant objects in the
image while ignoring other objects in the image. To better
distinguish multiple objects in the MLR task, we propose
to extract both global embedding vg ∈ Rd and the flattened
feature map F ∈ RK×d before the attention pooling layer
of CLIP image encoder. d is the dimension of CLIP embed-
ding. K = H × W denotes the spatial dimension of the
flattened feature map, where H and W are the height and
width of the feature map, respectively. We then split F into
multiple local embeddings along the spatial dimension, and
get local embeddings set Vl = {vl

1,v
l
2, . . . ,v

l
K}, where

vl
j ∈ Rd denotes the local embedding of the spatial region

j.

The two kinds of feature embeddings describe the image
more comprehensively, which enables our method to obtain
a more discriminative classifier yet better performance on
multi-label/multi-object recognition tasks.

Mapping Image-to-Text. Our target is to train a classifier
with language-only data that can be transferred to the vision
modality. Therefore, the encoded text embeddings should
match the corresponding images. However, as shown in
(Liang et al., 2022), although the pre-trained contrastive
model CLIP aligned the text embedding and image em-
bedding, there still exists a modality gap between the text
embedding space and image embedding space. It may limit
the performance of the multi-label image recognition if we
directly feed the image embedding into the classifier trained
by the text embedding. (Ramesh et al., 2022) establish a re-
lationship between images and texts in a supervised manner.
However, it requires a large amount of paired image-text
data to train the model. To reduce the influence of the modal-
ity gap, we propose a simple mapping method to map the
image embedding into the text embedding space.

Specifically, different from the conventional mapping meth-
ods, such as adding contrastive loss or mapping networks,
we try to represent the image embeddings as the linear
combination of a series of text embeddings, where the lin-
ear combination weights are computed according to the
similarity relationships of the image embedding and label-
specific text embedding. First, following (Radford et al.,
2021), we construct a text template ‘a photo of a/an
[c].’ for each class ‘c’ in the target image dataset. Then
the text templates are fed into the CLIP text encoder to ex-
tract feature set S = {s1, s2, . . . , sN}, where N denotes
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the number of classes. si can be viewed as a label-specific
text embedding for the i-th class ci. We compute the cosine
similarity between image embedding (including the global
embedding and local embedding) and text embedding cor-
responding to each class in S and then normalize it using
softmax to obtain the weights for each label-specific text
embedding. Then the mapped global and local embeddings
in the text embedding space are calculated as:

mg =

N∑
i=1

wg
i · si =

N∑
i=1

exp(s⊤i v
g/τ)∑N

i=1 exp(s
⊤
i v

g/τ)
· si (4)

ml
j =

N∑
i=1

wl
i,j · si =

N∑
i=1

exp(s⊤i v
l
j/τ)∑N

i=1 exp(s
⊤
i v

l
j/τ)

· si (5)

where mg and ml
j denote the mapped global image em-

bedding and local image embedding, respectively. τ is
the temperature parameter. And the mapped local image
embedding set M l = {ml

j}Kj=1. These label-specific text
embeddings are computed before the inference stage and
cached in memory.

For the language-driven models, another issue is that the
mapped embedding may lose some important visual infor-
mation owing to the simple selected text templates. To
address this issue, we further introduce a weighted fusion
strategy to retain the original visual information as follows:

ug = αvg + (1− α)mg (6)

ul
j = αvl

j + (1− α)ml
j (7)

where α is a weighting factor. ug and ul
j represent the fused

global image embedding and fused local image embedding,
respectively. The two fused embeddings are then fed into the
multi-label classifier fθ to compute the confidence scores
of all labels as follows:

P glob = fθ(u
g) (8)

P loc
j = fθ(u

l
j) (9)

where P glob = {pglob1 , pglob2 , . . . , pglobN } is the global confi-
dence score and P loc

j = {plocj,1 , p
loc
j,2 , . . . , p

loc
j,N} denotes the

local confidence scores for each spatial region j. Now each
input image is associated with one global confidence score
P glob and K local confidence scores P loc

j . To aggregate
these local confidence scores, we extract the highest con-
fidence score that class i obtains among all local regions.
Let

qi = max
j=1,...,K

plocj,i (10)

The aggregation score for all classes is given by:

P agg = {q1, q2, . . . , qN} (11)

Table 1. Comparison with zero-shot learning methods without im-
age training on MS-COCO, VOC2007, and NUS-WIDE. The
evaluation is based on mAP (%).

Method MS-COCO VOC2007 NUS-WIDE

Zero-shot CLIP 47.3 76.2 36.4
CLIP-DPT 49.7 77.3 37.4
TaI-DPT 65.1 88.3 46.5

CoMC 68.7 89.4 48.2

Finally, P glob and P agg are combined by calculating the
average to obtain the final predicted probability for all labels
as follows:

P final =
1

2
(P glob + P agg) (12)

The detailed processes of the inference stage are summa-
rized in Algorithm 2. Our cross-modal mapping method
can efficiently map the image embedding to the text em-
bedding space, reducing the impact of the modality gap.
Meanwhile, it retains the visual information of the original
image embedding for visual recognition. When adapting
to different datasets, we can just simply replace the classes
in the text template with the classes of the target dataset
without additional training.

Algorithm 2 Inference process of CoMC.

1: Input: Test image I, Classifier fθ, Image encoder
Ev(·), Updated parameters θ of the classifier.

2: Initialize: Image encoder Ev(·) is initialized by the
pre-trained CLIP parameters. Classifier fθ is initialized
by θ.

3: Extract the global embedding vg and local embedding
set {vl

i}Ki=1 by Ev(·);
4: Calculate the mapped embeddings mg and {ml

i}Ki=1

using Eq.(4)(5);
5: Calculate the fuse embeddings ug and {ul

i}Ki=1 using
Eq.(6)(7);

6: Compute the global confidence score P glob and local
confidence scores {P loc

i }Ki=1 using Eq.(8)(9);
7: Aggreate the local confidence scores to P agg using

Eq.(10);
8: P final = 1

2 (P
glob + P agg).

9: Output: The final predicted probability P final.

4. Experiment
4.1. Experimental Setup

Datasets. We conduct experiments on MS-COCO (Lin
et al., 2014), VOC2007 (Everingham et al., 2010), and

5



Language-Driven Cross-Modal Classifier for Zero-Shot Multi-Label Image Recognition

Table 2. Comparison with related multi-label zero-shot learning methods with image training on the NUS-WIDE dataset. We report the
results in terms of mAP, as well as precision (P), recall (R), and F1 score at K ∈ {3, 5}.

Method Top-3 Top-5 mAPP R F1 P R F1

CONSE (Norouzi et al., 2013) 17.5 28.0 21.6 13.9 37.0 20.2 9.4
LabelEM (Akata et al., 2015) 15.6 25.0 19.2 13.4 35.7 19.5 7.1
Fast0Tag (Zhang et al., 2016) 22.6 36.2 27.8 18.2 48.4 26.4 15.1

One Attention per Label (Kim et al., 2018) 20.9 33.5 25.8 16.2 43.2 23.6 10.4
LESA (M=10) (Huynh & Elhamifar, 2020) 25.7 41.1 31.6 19.7 52.5 28.7 19.4

BiAM (Narayan et al., 2021) - - 33.1 - - 30.7 26.3
SDL (M=7) (Ben-Cohen et al., 2021) 24.2 41.3 30.5 18.8 53.4 27.8 25.9

MKT (He et al., 2023) 27.7 44.3 34.1 21.4 57.0 31.1 37.6
DualCoOp (Sun et al., 2022) 37.3 46.2 41.3 28.7 59.3 38.7 43.6

CoMC 33.5 53.5 41.2 24.8 66.1 36.1 48.2

Table 3. Comparison with multi-label few-shot methods on VOC2007 and MS-COCO. The evaluation is based on mAP (%) for 0-shot,
1-shot, 2-shot, 4-shot, 8-shot, and 16-shot with treating all classes as novel classes.

Method
VOC2007 MS-COCO

0-shot 1-shot 2-shot 4-shot 8-shot 16-shot 0-shot 1-shot 2-shot 4-shot 8-shot 16-shot

CoOp - 79.3 83.2 83.8 84.5 85.7 - 52.6 57.3 58.1 59.2 59.8
CoOp-DPT - 83.2 88.1 88.2 90.0 90.1 - 65.8 66.2 67.6 68.1 68.9

CoMC 89.4 89.7 90.1 90.6 91.4 92.1 68.7 68.9 69.3 70.4 70.9 71.4

NUS-WIDE (Chua et al., 2009) to evaluate the superior-
ity of the proposed method on multi-label recognition tasks.
As our method does not use any image for training, we adopt
their official test set to evaluate our method. Specifically,
MS-COCO contains 80 categories, and we take the official
val2014 (40K images) splits for testing. VOC2007 con-
tains 20 categories and we use the official test (5K images)
splits for testing. NUS-WIDE contains 161,789 training im-
ages from 81 categories and we use the remaining 107,859
images as test samples.

Implementation Details. For a fair comparison, we use
CLIP ResNet-50 as the image encoder and CLIP Trans-
former as the text encoder. The multi-label classifier mainly
contains a single linear layer, where the input units are equal
to the embedding dimension of the CLIP encoder and the
output units are equal to the number of classes in the target
dataset. During training, we keep the two CLIP encoders
frozen and only train the parameters of the linear classifier.
We use a cosine learning rate decay with an initial learning
rate of 1e-4. We train our classifier using the Adam opti-
mizer with a batch size of 256 to optimize the classifier for
30 epochs. For inference, the input images are resized into
224× 224. The text templates are fed into the CLIP text en-
coder to produce their feature embeddings. The weighting
factor α is set to 0.7, 0.4, and 0.5 on MS-COCO, VOC2007,
and NUS-SIDE, respectively. The temperature parameter τ
is set to 1/100. For text data generation, GPT-3 DaVinci-002

(Brown et al., 2020) model is adopted, where 40000 textual
descriptions are generated for each dataset.

4.2. Experimental Results and Analysis

4.2.1. COMPARSION WITH ZERO-SHOT LEARNING
METHODS

In the traditional zero-shot multi-label recognition task,
datasets are usually split into seen classes and unseen classes.
Previous works use the seen classes for training and then
predict the unseen classes during inference. In our work,
there is no labeled image data used for training, so we com-
pared our work with methods not using image training and
methods using image training, respectively.

Comparison with Methods without Image Training. We
compare our method with the following baselines: Zero-
shot CLIP (Radford et al., 2021), CLIP-DPT (Guo et al.,
2023), and TaI-DPT (Guo et al., 2023). Table 1 shows the
zero-shot multi-label recognition performance of the above
three methods and our method on the three datasets. We can
observe that under the zero-shot setting, the performance
of our method on the three datasets is 3.6%, 1.1%, and
1.7% higher than the top-1 ranked method TaI-DPT (Guo
et al., 2023), respectively, showing the effectiveness of our
method. Different from TaI-DPT which uses caption data
from public image caption datasets, our method adopts the
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Table 4. Ablation study on the main component of CoMC. Local-
emb refers to local image embeddings, Mapping refers to cross-
modal mapping. The mAP (%) values on MS-COCO, VOC2007,
and NUS-WIDE are reported.

Model Local-emb Mapping MS-COCO VOC2007 NUS-WIDE

CoMC % % 65.9 86.4 45.0
CoMC % ! 66.2 88.5 47.6
CoMC ! % 67.9 87.5 45.1
CoMC ! ! 68.7 89.4 48.2

Table 5. Effect of different LLMs for generating datasets. The
evaluation is based on mAP (%).

Method MS-COCO VOC2007 NUS-WIDE

Zero-shot CLIP 47.3 76.2 36.4

CoMC (ChatGLM-6b) 66.2 85.1 42.8
CoMC (Llama-2-7b) 66.1 87.5 46.9
CoMC (GPT-3) 68.7 89.4 48.2

text data generated by LLM for training and assisting in
image recognition. This illustrates that the text data gener-
ated by LLM can cover a richer combination of categories.
Moreover, compared with the original Zero-shot CLIP, our
method surpasses it by a large margin. This also shows that
the original CLIP classifier of computing similarity between
images and texts does not work well on the MLR task.

Comparison with Methods with Image Training. We
compare our method with the following eight baselines:
CONSE (Norouzi et al., 2013), LabelEM (Akata et al.,
2015), Fast0Tag (Zhang et al., 2016), One Attention per
Label (Kim et al., 2018), LESA (Huynh & Elhamifar, 2020),
BiAM (Narayan et al., 2021), SDL (Ben-Cohen et al., 2021),
MKT (He et al., 2023), and DualCoOp (Sun et al., 2022).
We follow (Sun et al., 2022) to report mAP over all cate-
gories as well as precision, recall, and F1 score at Top-3 and
Top-5 predictions in each image on the NUS-WIDE dataset.
Table 2 shows the experimental results of our method and
the above nine methods on the NUS-WIDE datasets at the
zero-shot learning case. From the table, we can observe that
our model achieves the highest mAP value which is 4.6%
higher than the second-best method DualCoOp. MKT is
also a CLIP-based method, our method surpasses MKT with
an absolute gain of 10.6% mAP and improves the F1 score
by absolute gains of 7.1% and 5.0% at K = 3 and K = 5,
respectively. Moreover, our method does not use any images
for model training, demonstrating our its superiority.

4.2.2. COMPARSION WITH FEW-SHOT LEARNING
METHODS.

Following experimental settings in (Guo et al., 2023), we
treat all classes as novel classes and select 1, 2, 4, 8, and 16
shot samples for each class for training. To implement our

Table 6. Effect of different CLIP visual backbones. The mAP (%)
values of CLIP, CLIP-DPT, and the proposed CoMC are reported.

Backbone Method MS-COCO VOC2007 NUS-WIDE

RN50
CLIP 47.3 76.2 36.4

CLIP-DPT 49.7 77.3 37.4
CoMC 68.7 89.4 48.2

RN101
CLIP 48.6 76.8 37.2

CLIP-DPT 54.1 81.3 38.3
CoMC 71.2 90.0 48.8

ViT-B/32
CLIP 49.4 76.6 37.8

CLIP-DPT 55.2 82.7 38.9
CoMC 71.9 89.9 48.6
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Figure 2. Effect of the size of textual training data on MS-COCO,
VOC2007, and NUS-WIDE. The mAP (%) is reported.

CoMC in a few-shot setting, we use the labeled samples to
fine-tune our classifier after training with text data. In Table
3, we provide a comparison of our CoMC and two few-shot
learning methods CoOp and CoOp-DPT, where CoOp-DPT
is an extension of CoOp proposed by (Guo et al., 2023). We
see that zero-shot CoMC is 1.2% better than 4-shot CoOp-
DPT on VOC2007 and 0.6% better than 8-shot CoOp-DPT
on MS-COCO. Besides, the performance of CoMC gets a
stable improvement on two datasets as the number of labeled
samples increases, this also demonstrates the effectiveness
of our CoMC.

4.3. Ablation Study

Ablation of Cross-modal Mapping. To reduce the impact
of the modality gap, we design a simple cross-modal map-
ping method to map the image embedding into text embed-
ding space. To verify the effectiveness of cross-modal map-
ping, we wipe out cross-modal mapping in our method. The
result is shown in Table 4, without cross-modal mapping,
the performance of the model on three datasets decreases
substantially. This indicates the importance of bridging the
modality gap between images and texts and demonstrates
the effectiveness of our designed linear representation and
fusion-based cross-modal mapping approach.
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(a) (b) (c)
Figure 3. Analysis of the weighting factor α. We set α from 0 to 1 on three datasets: (a) MS-COCO, (b) VOC2007, and (c) NUS-WIDE.

(a) Embeddings of image-text pairs from MS-COCO (b) Mapped embeddings and text embeddings 

Figure 4. Visualization of embeddings in 2D space by t-SNE. We
randomly sample 300 image-text pairs from the MSCOCO training
set for visualization.

Ablation of Fine-grained Image Embeddings. Different
from the existing works only focus on global image features,
we leveraged both global and local image embeddings to
enhance the ability to recognize multiple objects in the im-
age. To verify the effectiveness of local image embeddings,
we remove the local embedding and only use the global
image embedding for classification. The experimental re-
sults are shown in Table 4. We can find that adding local
image embeddings helps to improve the performance by
a margin of 2.5%, 0.9%, and 0.6% on three datasets. The
result demonstrates that the proposed fine-grained image
embedding fusion approach is effective in enhancing the
performance of MLR tasks.

4.4. Method Analysis

Effect of Language Data Size. To investigate the influence
of language data size, we conducted experiments with differ-
ent sizes (sentence numbers) of the generated text training
data on the three datasets. The experimental results are
provided in Figure 2. We find that increasing the size of
training data can effectively improve the performance of
our CoMC for all three datasets. It is worth noting that
our method achieves impressive results when 50% of the
language data is used. Overall, our method is data-efficient
as the language data can be easily obtained.

Effect of Different LLMs. To investigate the influence
of different text data generation models, we further used

Llama-2-7B (Touvron et al., 2023) and ChatGLM-6B (Du
et al., 2021) to generate the text dataset, both models are
much smaller and more accessible than GPT-3. As shown
in Table 5, we find that the model based on the text dataset
generated by GPT-3 works best. This suggests that LLM
with a larger number of parameters like GPT-3 can have a
stronger capability to generate high-quality text data. It is
worth noting that when we use smaller open-source models
like Chatglm and Llama, the performance of our method is
still significantly better than Zero-shot CLIP.

Effect of Visual Backbones. We evaluate the scalability
of our model across three CLIP visual backbones: RN50,
RN101, and ViT-B/32. Tabel 6 shows the result of CLIP,
CLIP-DPT, and our proposed CoMC with different visual
backbones. As the visual backbone network gets larger, the
performance of our CoMC obtains consistent improvement.
In addition, our model substantially outperforms CLIP-DPT
with three different visual backbones.

Analysis of the Weighting Factor α. We conduct experi-
ments on the three datasets with different α between 0 and
1. The results are shown in Figure 3. The larger the α is,
the larger the proportion of the original image embedding.
When α is set to 0, no original image embedding is added.
When α is set to 1, no cross-modal mapping is done and
only image embedding is used for classification. On the
three datasets, the model performance shows a similar trend
when the value of α is increasing from 0 to 1. Fusing the
original image embedding and mapped embedding achieves
the best performance on all three datasets. When α is greater
than the optimal value, the performance of the model shows
a decreasing trend. This suggests that the modality gap does
limit the performance of cross-modal transfer. When the
value of α is less than 0.4, the performance of our model is
significantly degraded on the three datasets. This is mainly
because the text templates we set are too simple, using only
the mapped embedding loses too much important visual
information for MLR. These phenomena indicate that a bal-
anced fusion of the original image embedding and mapped
embedding is very important to obtain satisfactory perfor-
mance.
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4.5. Visualization

To further confirm the effectiveness of our cross-modal map-
ping, we randomly sample 300 image-text pairs from the
MS-COCO training set and visualize their original CLIP em-
beddings and the mapped embeddings using t-SNE (Van der
Maaten & Hinton, 2008). In Figure 4(a), we can see that im-
age embeddings and text embeddings fall into two separate
subspaces. A clear modality gap exists between images and
texts. The mapped embeddings obtained by our method are
shown in Figure 4(b), which demonstrates that our cross-
modal mapping can effectively reduce the modality gap.

5. Conclusion
To mitigate the reliance on annotated image data, we pro-
pose a novel framework for zero-shot multi-label image
recognition using language-only supervision. We utilize
large language models (LLMs) to efficiently generate high-
quality textual datasets for training. To address the modality
gap between image and text, we design a simple yet effec-
tive cross-modal mapping method. This method enables
our classifier, trained solely on language data, to be effi-
ciently transferred to the visual modality for multi-label
image recognition. Extensive experimental results demon-
strate that, even without any image data for training, our
method significantly outperforms existing zero-shot meth-
ods for multi-label recognition and achieves competitive
performance compared to few-shot methods.
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