
Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

Filippo Rinaldi * 1 Giacomo Capitani * 1 Lorenzo Bonicelli 1 Donato Crisostomi 2 Federico Bolelli 1

Elisa Ficarra 1 Emanuele Rodolà 2 Simone Calderara 1 Angelo Porrello 1

Abstract
Foundation models serve as the backbone for nu-
merous specialized models developed through
fine-tuning. However, when the underlying pre-
trained model is updated or retrained (e.g., on
larger and more curated datasets), the fine-tuned
model becomes obsolete, losing its utility and re-
quiring retraining. This raises the question: is it
possible to transfer fine-tuning to a new release
of the model? In this work, we investigate how
to transfer fine-tuning to a new checkpoint with-
out having to re-train, in a data-free manner. To
do so, we draw principles from model re-basin
and provide a recipe based on weight permuta-
tions to re-base the modifications made to the
original base model, often called task vector. In
particular, our approach tailors model re-basin
for Transformer models, taking into account the
challenges of residual connections and multi-head
attention layers. Specifically, we propose a two-
level method rooted in spectral theory, initially
permuting the attention heads and subsequently
adjusting parameters within select pairs of heads.
Through extensive experiments on visual and tex-
tual tasks, we achieve the seamless transfer of
fine-tuned knowledge to new pre-trained back-
bones without relying on a single training step
or datapoint. Code is available at https://
github.com/aimagelab/TransFusion.

1. Introduction
Recently, there has been a notable shift among researchers
and practitioners towards fine-tuning pre-trained models,
rather than building them from scratch. This method lever-
ages backbones developed on large-scale datasets, consider-

*Equal contribution 1AImageLab, University of Modena and
Reggio Emilia, Italy. 2Sapienza, University of Rome, Italy. Corre-
spondence to: Filippo Rinaldi <filippo.rinaldi@unimore.it>.

Proceedings of the 42 st International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

𝜃𝐴
𝑓𝑡

𝜃𝐴 + 𝜏

𝜃𝐵

𝜃𝐵
𝑓𝑡

𝜃𝐵 + 𝜋 𝜏

𝜋 𝜃𝐴
𝑙𝑜𝑤ℎ𝑖𝑔ℎ

𝑙𝑜𝑠𝑠

𝑓𝑖𝑛𝑒 − 𝑡𝑢𝑛𝑖𝑛𝑔

𝑖𝑑𝑒𝑎𝑙

𝜋 ∙ 𝑟𝑒 − 𝑏𝑎𝑠𝑖𝑛

𝜏

𝜋 𝜏
𝜃𝐴

Figure 1: Transporting task vector τ from a fine-tuned base
model θftA = θA + τ to a new release θB .

ably decreasing the amount of data and training time needed
to tailor models for specific downstream tasks. For this
reason, pre-trained backbones such as OpenAI’s CLIP (Rad-
ford et al., 2021) are being extensively utilized as base foun-
dation models. As a result, the corresponding fine-tuned
versions play a crucial role in numerous real-world appli-
cations like medical imaging (Lu et al., 2024) and satellite
image analysis (Mall et al., 2024).

However, while these pre-trained backbones are widely
adopted, their evolution poses new challenges, with tech
companies and academic institutions frequently releasing
updated checkpoints. Often, these updates do not modify the
underlying architecture but simply consist of new weights,
trained on increasingly large datasets compared to their pre-
decessors (Ilharco et al., 2021). Moreover, the additional
training data may be more curated or specifically tailored
to specialized domains, boosting their zero-shot capabilities
considerably.

To take advantage of newly released checkpoints, the typ-
ical approach is to retrain them on the downstream task.
This means fine-tuning the new checkpoint on the same data
already used to adapt the original model. Besides the consid-
erable costs associated with re-training the new model, this
strategy is also unviable in certain scenarios. Indeed, the
data for the downstream task might be no longer available
due to compliance with privacy or storage constraints.

1

https://github.com/aimagelab/TransFusion
https://github.com/aimagelab/TransFusion

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

This raises an important question: can we re-use the fine-
tuning that has already been performed on the newly re-
leased model? Precisely, the overall aim of this paper is
to investigate whether we can transport the previous fine-
tuning, in a training-free manner. To understand the idea
of transport, we consider the weights of the original base
model as θA, and their fine-tuning as θftA = θA + τ . The
task vector (Ilharco et al., 2023; Ortiz-Jimenez et al., 2024)
τ = θftA − θA represents a direction from θA that embodies
all adjustments made during the fine-tuning process. Hence,
our goal is to find a procedure π(·) that can transport the
task vector τ into an appealing basin of the newly released
model θB (see Fig. 1). In this approach, the procedure
π(·) must be designed to ensure that the modified weights
θftB = θB + π(τ) achieve low loss on the downstream task.

When designing the transportation function π(·), the ideal
approach should be data-free and training-free to meet the
concerns above. Nevertheless, if the two base models θA
and θB differ significantly (due to varying initialization,
training strategies, or datasets), the knowledge acquired
during fine-tuning of θA may not transfer to θB with a mere
addition of the original task vector (i.e., θftB = θB + τ). To
bridge the gap in representation spaces and facilitate the
transfer, intuitively, we have to make the two base models
“compatible”, such that they “speak the same language”.
To address this challenge, we could rebase one of the two
models (for instance, θA), such that any linear interpolation
between the weights of the edited θ′A and θB yields an
intermediate model that performs comparably to both θA
and θB . This indicates that the models are now aligned and
thus share a common low-loss basin. Notably, this concept
of re-basin models shares similarities with the approach
described in (Ainsworth et al., 2023), where alignment is
achieved by finding optimal permutations of the rows in the
weight matrices. In this paper, we build upon this idea and
explore its application in the context of fine-tuning, with a
task vector being permuted and finally applied to θB .

While model re-basin presents an appealing framework, it
currently faces several technical hindrances. To date, suc-
cessful applications of model re-basin have been limited to
Multi-Layer Perceptrons (MLPs) and Convolutional Neural
Networks (CNNs) (Ainsworth et al., 2023). Unfortunately,
the application of model re-basin to multi-head attention
layers, despite their widespread use in Transformer-based
architectures, has been largely overlooked, with a few very
recent attempts based on Optimal Transport (see Sec. 5).
However, these recent methods do not guarantee functional
equivalence between the permuted model and the original,
unpermuted model. The primary obstacle lies in managing
the weights associated with multiple attention heads. As
we discuss in Sec. 3, indeed, to apply standard permutation-
based approaches (Ainsworth et al., 2023; Singh & Jaggi,
2020; Imfeld et al., 2024), the heads must be concatenated

and treated as a single unified projection. This way, after
applying permutations, each head of the edited model may
incorporate rows from different original heads — an issue
we refer to as head contamination. This is problematic be-
cause, without preserving the logical separation of heads
during permutation, it becomes impossible to invert the
permutation process and recover the original, unpermuted
output of the attention block. Furthermore, existing meth-
ods struggle when two addends in the computational graph
rely on distinct permutation matrices, a situation common
in residual connections such as h′ = h+ f(h). Differently,
we avoid averaging the respective permutation matrices,
thereby preserving their discrete nature.

To address these issues, we propose a structured two-level
approach for effective re-basin of Transformer-based mod-
els, called TransFusion. To avoid head contamination,
TransFusion firstly seeks optimal mappings between pairs
of heads (inter-head permutations); subsequently, we re-
strict permutations to only the rows within these coupled
heads (intra-head permutations).We mathematically prove
that this two-level permutation strategy prevents head con-
tamination and preserves functional equivalence between
the original and permuted models. Notably, the inter-head
permutations are optimized leveraging a distance metric that
is invariant to permutations of the rows and columns within
the heads. Such a metric is founded on spectral theory (Jo-
vanović & Stanić, 2012) and employs the singular values
of the weight matrices, which are unaffected by orthogonal
transformations like those induced by permutations.

We show that transporting task vectors allows the transfer
of knowledge into a new checkpoint in a data-free manner.
In practice, this means we can improve the zero-shot per-
formance of the new version on the downstream task. We
also demonstrate that the transport retains the generalization
capabilities on a support set — a crucial factor to justify
updating the base model to the new release. To summarize:

Motivation. Given a fine-tuned Transformer model
f(·, θftA = θA+τ) we aim to transfer the task vector
τ into a new release f(·, θB) in a data-free manner.
Contributions. i) We introduce a novel data-free
method for aligning Transformers. ii) We propose a
permutation-invariant spectral measure to manage
multi-head attention layers. iii) We reveal the practi-
cality of applying a task vector from one base model
θA to a new release θB .

2. Background
Given two models with weights θA and θB , model re-
basin (Ainsworth et al., 2023) investigates how to permute
the units of one model to facilitate the alignment of two mod-

2

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

els. The two models are then merged in the weight space,
resulting in an interpolated model that achieves performance
comparable to that of the two original ones.

Following the notation of (Ainsworth et al., 2023), re-basin
is defined as any operation defined on the weights of two
models θA and θB that maps one of the two models onto
the local loss region (basin) of the other one. To assess the
effectiveness of re-basin, one common approach is to check
the property of linear mode connectivity (Frankle et al.,
2020; Entezari et al., 2022) between the permuted model
and the other, reference model. Informally, this involves
checking if the model weights laying on the linear path
connecting θA and θB also result in a low loss value.

To reach such a property, existing model re-basin techniques
leverage the permutation symmetries inherent in neural net-
works (Entezari et al., 2022). These symmetries allow the
swapping of the units within a layer without changing the
functionality of the network. To show that, we consider the
activation of the ℓ-th layer of an MLP:

zℓ+1 = σ(Wℓzℓ + bℓ), z0 = x, (1)

where Wℓ and bℓ are the weight matrix and bias vector and
σ denotes an element-wise activation function. In this case,
the following relation holds for any permutation matrix P :

zℓ+1 = P⊤Pzℓ+1 = P⊤Pσ(Wℓzℓ + bℓ), (2)

= P⊤σ(PWℓzℓ + Pbℓ), where P ∈ Sd, (3)

with Sd denoting the set of d × d permutation matrices.
Thanks to this relation, we can essentially permute the
weights and biases of a layer using a matrix P . Therefore,
when we apply the permutation P to the parameters of a
layer, the resulting output undergoes the same permutation.
However, to ensure that the transformed model remains
functionally equivalent to the original, the next layer must
process the output in its original, unpermuted form. This
can be achieved equivalently by permuting the weights of
the subsequent layer using the inverse permutation P⊤. Ac-
cordingly, we define a transformed set of weights θ′ as:

W ′
ℓ = PWℓ, b′ℓ = Pbℓ, W ′

ℓ+1 = Wℓ+1P
⊤. (4)

Git Re-Basin. Ainsworth et al. (2023) exploit Eq. (2) to
induce weight alignment between θA and θB . Formally, we
consider the ℓ-th feed-forward layer, with weight matrices
W

(A)
ℓ and W

(B)
ℓ for θA and θB respectively. Given that

each row of W (A)
ℓ and W

(B)
ℓ represents a distinct feature, if

[W
(A)
ℓ]i,: ≈ [W

(B)
ℓ]j,:, then it makes sense to associate the

units i and j. Therefore, we could formalize the alignment
as finding the permutation matrix that maximizes the dot
product between PℓW

(A)
ℓ and W

(B)
ℓ . However, to preserve

functional equivalence, we have to account for the term

P⊤
ℓ−1 related to the permutation of the previous layer —see

Eq. (4). This results in a global optimization across layers:

argmax
π={Pℓ}L

1

〈
W

(B)
1 , P1W

(A)
1

〉
+
〈
W

(B)
2 , P2W

(A)
2 P⊤

1

〉
+

+ · · ·+
〈
W

(B)
L ,W

(A)
L P⊤

L−1

〉
. (5)

where ⟨A,B⟩ =
∑

i,j Ai,jBi,j is the inner product between
real-valued matrices. As discussed in (Ainsworth et al.,
2023), the optimization problem described in Eq. (5) corre-
sponds to the Symmetric Orthogonal Bilinear Assignment
Problem (SOBLAP), which is unfortunately NP-hard. Its
relaxation re-casts it as a series of Linear Assignment Prob-
lems (LAPs), focusing on one permutation Pℓ at a time
while keeping the others fixed. In formal terms:

argmax
Pℓ

〈
W

(B)
ℓ , PℓW

(A)
ℓ P⊤

ℓ−1

〉
+
〈
W

(B)
ℓ+1 , Pℓ+1W

(A)
ℓ+1Pℓ

⊤
〉
.

(6)
Notably, each LAP can be solved with efficient, polynomial-
time methods like the Hungarian algorithm (Jonker & Vol-
genant, 1988). The outcome is a set of permutation matrices
π = {Pℓ}L1 , which, when applied to model θA, result in a
new model θA′ = π(θA). Notably, this model is function-
ally equivalent and, theoretically, it resides in the low-loss
basin of θB . However, as optimizing a series of LAPs is a
coarse approximation of the SOBLAP, there are no strong
guarantees regarding the optimality of the solution.

3. TransFusion: An Approach For Re-basin
Transformer Models

Objective. Our approach, named TransFusion, is designed
to transfer task-specific knowledge between transformer-
based models that have undergone different pre-training.
Specifically, it starts with an initial weight set θA and a
task vector τ = θftA − θA, derived after fine-tuning on a
downstream task. The goal is to adapt τ to a new parameter
configuration θB . This process aims to preserve the inher-
ent properties of θB — for example, its superior zero-shot
capabilities compared to θA — and to integrate specialized
knowledge carried out by τ for the downstream task. Finally,
we aim to enable model transfer in a data-free manner.

Weight Matching. To achieve these objectives, we start
by aligning the weights of θA with those of θB . This is
accomplished with a novel data-free weight matching strat-
egy tailored for Transformer architectures. The procedure
is deeply discussed in Sec. 3.1. Briefly, we tackle various
shortcomings of existing methods and handle two building
blocks of attention-based networks, namely the residual
paths and the multi-head attention mechanism. To manage
the latter, we introduce a novel two-step process that em-
ploys a permutation-invariant spectral metric to match pairs

3

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

of heads within the same layer of θA and θB . Subsequently,
we permute features within the matched heads to optimize
weight alignment, as detailed in Sec. 2.

Transport. We end up with a functionally equivalent model
θ′A = π(θA), where π(·) yields a permutation of every layer
in θA. Afterwards, π(·) is used to transport the task vector
τ = θft − θA into the low-loss basin of θB (see Sec. 3.2).

3.1. Attention Alignment for Transformer Models

A Transformer-based block consists of a multi-head atten-
tion layer and an MLP block, connected through residual
connections. Considering the MLP, this builds upon stan-
dard linear projections, which we treat as discussed in Sec. 2.
Instead, we adopt a novel, tailored approach for multi-head
attention layers addressing a common pitfall. Considering
multiple heads, current methods view their projections as a
whole linear layer, thereby joining the corresponding weight
matrices before applying permutations. However, such an
approach does not reflect the organization of attention in dis-
tinct, parallel heads. For example, this can result in artifacts,
where units from separate heads in the original model are
mixed together — an issue we call head contamination. This
compromises the structural separability of attention heads
and precludes the preservation of functional equivalence,
that is, the ability to permute and subsequently unpermute
the weight matrices while yielding identical model outputs.

In the following, we present our proposal against head con-
tamination (see Step 1 and 2) and a practical approach to
handle residual connections (Step 3). The complete method-
ology is outlined in Algorithm 1.

Step 1: Inter-Head Alignment
Consider the q(uery), k(ey), and v(alue) projection matrices
Wq , Wk, and Wv ∈ Rdm×dm — with dm denoting the total
embedding dimension of the attention module. We partition
each matrix into H = #heads matrices (one for each head)
of shape dk × dm, where dk = dm

H . This results in a tensor
W̃q = split(Wq, H) ∈ RH×dk×dm for the query projection
matrix Wq. The same operation is applied for Wk and Wv

to obtain W̃k and W̃v .

The first step involves defining a distance metric between
pairs of heads, such that we can identify and execute the
optimal swap between heads in θA and θB (see Fig. 2). We
employ a distance metric that is invariant to permutations
of rows and columns within the H sub-matrices in W̃q , W̃k,
and W̃v . In this respect, one might question why invariance
is crucial for comparisons between different heads. We note
that the initial, natural order of units does not necessarily
correspond to the optimal alignment that could be achieved.
Consequently, the metric used in this initial phase must be
insensitive to the specific ordering of head features, thereby
ensuring an agnostic comparison of the heads.

𝜃𝐵
𝑆𝑉𝐷 𝑆𝑉𝐷

𝜃𝐴 𝜃𝐴
′

𝑃

Ʃ0

Ʃ1

Ʃ2

Ʃ0

Ʃ1

Ʃ2

𝑃

𝜃𝐴
′𝜃𝐴𝜃𝐵

𝐼𝑁
𝑇
𝐸
𝑅

𝐼𝑁
𝑇
𝑅
𝐴

𝐻0

𝐻1𝐻2

𝐻1𝐻1𝐻1 𝐻1

𝐻2

𝐻1𝐻0

𝐻1 𝐻1

𝐻0

𝐻1𝐻2

𝐻1

𝐻0 𝐻2 𝐻2
𝑖𝑛𝑡𝑟𝑎

𝑖𝑛𝑡𝑒𝑟

Figure 2: Inter- (Step 1) and intra-head alignment (Step 2).

To achieve the permutation-invariance property, we employ
a distance based on the singular values of the sub-matrices
representing the heads. Specifically, given two heads hB

i =
[W̃]Bi,:,: ∈ Rdk×dm from model θB and hA

j = [W̃]Aj,:,: from
model θA, we compute the distance as:

dij = ∥Σi − Σj∥ , (7)

where Σi and Σj denote the singular values of hB
i and

hA
j respectively. These can be computed through the Sin-

gular Value Decomposition (SVD); in formal terms, con-
sidering the i-th head, the SVD decompose its weight
hB
i = UiΣiV

T
i , where Ui and Vi are orthogonal matri-

ces, and Σi is a diagonal matrix containing the singular
values of hi. As demonstrated in Appendix A.1, the Eu-
clidean distance between singular values remains invariant
to permutations.

To take into account the distance for query, key and value
projections jointly, we construct a distance matrix D ∈
RH×H , where each element Dij = dqij+dkij+dvij represents
an inter-head alignment cost that is calculated as the sum of
the pairwise distances across q, k and v matrices. We hence
employ D to find the optimal inter-head permutation:

Pinter head = argmin
P∈SH

H∑
i=1

Di,P [i], (8)

where Di,P [i] is the distance between the i-th head of model
θB and the P [i]-th (candidate) head of model θA. The
solution Pinter head can be practically determined with the
Hungarian algorithm. The corresponding permutation is
applied to each W̃A

q , W̃A
k , and W̃A

v , thereby reordering the
heads of θA to increase alignment with those of θB .

Step 2: Intra-Head Alignment
After matching each pair of heads (hB

i , h
A
P [i]), we aim to

swap individual units between hB
i and hA

P [i]. To do so,
as in Git Re-Basin (Ainsworth et al., 2023), we seek for
permutations that maximize the inner product between the

4

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

Algorithm 1 Weight Matching

Require: θA =
{
W

(A)
ℓ

}L

ℓ=1
and θB =

{
W

(B)
ℓ

}L

ℓ=1

Ensure: A permutation π = {P1, . . . , PL−1} of θA.
1: Initialize: P1 ← I, . . . , PL−1 ← I
2: repeat
3: for ℓ ∈ 1, . . . , L− 1 do
4: if ℓ is a MHA layer then
5: Pℓ ← Multi-Head Attention Alignment (Alg. 2)
6: else
7: Pℓ ← Solving LAP as in Eq. (6)
8: until convergence

corresponding H sub-portions of the projection weights hB
i

and hA
P [i], as follows:

Pintra head = {P (i)
intra head}

H
i=1,

where P
(i)
intra head = argmax

P∈Sdk

〈
hB
i , PhA

P [i]

〉
. (9)

In this formula, the cost considers the dot products across
query, key, and value sub-matrices. In the end, the optimiza-
tion yields H permutation matrices P (i)

intra head ∈ Sdk
.

In summary, this two-step process ensures both global inter-
head and local intra-head alignment while preserving the
structural integrity of the multi-head attention mechanism.
The comprehensive procedure for aligning multi-head atten-
tion layers, combining these alignment stages, is formalized
in Algorithm 2. Specifically, these individual alignment
steps are unified into a single composed permutation, de-
noted as Pattn, which is applied directly to the projection
matrices of the multi-head attention layer. Crucially, it can
be shown that our structured composed permutation pre-
serves functional equivalence: despite reordering and per-
muting the heads and their internal dimensions, the attention
computation remains unchanged (up to a corresponding per-
mutation of its outputs). We formalize this in the following
theorem.

Theorem 3.1 (Equivariance of Multi-Head Attention to
Structured Permutations). Let Pinter head ∈ SH be a per-
mutation over the H attention heads, and let Pintra head =

{P (i)
intra head}Hi=1 be a set of independent permutations acting

within each head (of size dk = dm

H). Then applying the
composed block permutation Pattn to each of the projection
matrices Wq,Wk,Wv ∈ Rdm×dm is functionally equivalent
to permuting the output of the multi-head attention module.
The resulting attention output O′ satisfies: O′ = OPattn,
where O is the unpermuted output.

A complete proof of Theorem 3.1 is provided in Ap-
pendix A.2.

Algorithm 2 Attention Alignment

Require: Weights W̃
(A)
q P⊤

ℓ−1, W̃ (A)
k P⊤

ℓ−1, W̃ (A)
v P⊤

ℓ−1 ∈
θA and W̃

(B)
q , W̃ (B)

k , W̃ (B)
v ∈ θB for multi-head atten-

tion projection layer ℓ and previous layer ℓ− 1.

Ensure: Permutation Pℓ-attn for W̃ (A)
q , W̃ (A)

k , W̃ (A)
v .

1: Step 1: Inter-Head Alignment
2: Create spectral distance matrix D (Eq. (7)).
3: Pinter ← Solve LAP on D (Eq. (8)).
4: Step 2: Intra-Head Alignment
5: for h = 1 to H head pairs from Pinter do
6: P

(h)
intra ← Solve LAP for head pair h (Eq. (9)).

7: Pℓ-attn ← Pinter◦
{
P

(h)
intra

}H
h=1

▷ compose permutations

Step 3: Managing of Residual Connections
Each transformer block incorporates two residual connec-
tions: the first bypasses the multi-head attention layer, and
the second bypasses the feed-forward network:

zattn = W0 MHA(x),

zi = zattn + x,

zf = W2ReLU(W1zi),

zout = zf + zi,

(10)

where x is the input, W0 is the weight of the attention
mechanism, and W1 and W2 those of the feed-forward layer.
For simplicity, we omit layer normalization as it can be
regarded as a standard linear projection.

In each residual block, the input and the intermediate output
are summed to produce the final output. However, we note
that there are several sources of potential mismatch between
the two addends: intuitively, if the two addends have un-
dergone different permutations, it is reasonable to suspect a
potential mismatch in their representations.

+

𝑃𝑖𝑛

𝑃𝑤0

𝑃𝑖𝑛𝑀𝐻𝐴

𝑥

𝑃𝑤0

𝑃𝑖𝑛
𝑇

𝐼

Figure 3: Residu-
als block and per-
mutations.

To clarify the interaction between
permutations in residual blocks, con-
sider Fig. 3, which represents the first
residual zi = zattn + x. When the
weights of the model are permuted,
the input x comes with its own per-
mutation Pin, which has to be ac-
counted using P⊤

in . Moreover, the
attention projection W0 adds its own
permutation matrix PW0

. This leads
to the following relation:

zi = PW0zattn + Pinx. (11)

When examining the permutations/summations that impact
on zi, there are two main issues: issue I) the residual branch
lacks transformations that could account for the matrix Pin;

5

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

Table 1: Comparison of permutation-based methods on visual tasks, in terms of task accuracy [↑] and support accuracy [↑].

Method EUROSAT DTD GTSRB SVHN
TASK SUPP. TASK SUPP. TASK SUPP. TASK SUPP.

θB zero-shot 49.02 68.73 47.50 68.73 43.42 68.73 45.97 68.73
θB + τ -7.62 -16.15 -0.15 -0.10 -5.39 -0.70 -22.00 -16.45
θB + π(τ) (Optimal Transport) -14.05 -5.28 -0.53 -1.18 -2.43 -1.30 -12.30 -2.70
θB + π(τ) (GiT Re-Basin) +0.95 -0.48 -0.91 -0.02 +0.76 -0.05 +0.79 +0.30

TRANSFUSION (OURS) +4.95 -0.06 +0.21 -0.08 +1.10 -0.40 +3.64 -0.48

issue II) the projection W0 adds its own permutation PW0

of which the residual branch has no information about.

To maintain coherence between the two addends, they must
be transformed under identical permutations. To enforce
this consistency, we redefine the identity mapping made by
the residual connection. We replace it with a composition,
Ii = PW0P

⊤
in , consisting of two permutations — one to

address issue I and another for issue II — as follows:

zi = PW0zattn + IiPinx = PW0zattn + PW0x, (12)

which highlights how the two addends now share the same
permutation. An analogous process applies to the second
residual connection yielding zout (see Appendix A.3 for the
full procedure). As a final technical note, we remark that the
permutation matrix PW2

associated to the second residual
block in Eq. (10) has to be considered as input permutation
for the subsequent layer.

3.2. Transporting Task Vectors from θA to θB

By applying π to model θA, we would have a functionally
equivalent model θ′A = π(θA) with stronger linear-mode
connectivity with θB compared to the original θA. How-
ever, to allow knowledge transfer from the fine-tuned model
θftA = θA + τ to θB , we do not apply the permutations
directly on θA, but rather on the task vector τ , as follows:

task vector : τ = θftA − θA, (13)

transport : θ̃ftB = θB + απ(τ), (14)

where α is a non-negative scaling factor (Wortsman et al.,
2022b) modulating the influence of π(τ) on θB .

By leveraging the concept of transporting task vectors, we
have several notable advantages, especially in a scenario
with multiple models fine-tuned on distinct tasks from the
same base model θA. In this scenario, the weight matching
process between θA and θB needs to be conducted only
once. Indeed, a permutation set π can be established and
reused to transfer any number of task vectors. This ap-
proach avoids the additional computational costs associated
with learning separate transport functions for each transfer.
Moreover, transporting multiple task vectors using the same

reference model θA allows their combination at destina-
tion θB , which basically means we could still apply model
merging (Wortsman et al., 2022a) after re-basin.

3.3. Complexity Analysis

In this subsection, we assess the computational complexity
of the proposed weight matching procedure. The key insight
is that the method is highly efficient compared to full re-
training, and scales polynomially with model size.

Proposition 3.2. Let L be the number of layers and dm the
embedding dimension of each transformer block. The over-
all computational complexity of our weight matching pro-
cedure is dominated by O(Ld3m). This complexity matches
that of Git Re-Basin, making our approach comparably
efficient in terms of computational cost.

The proof is provided in Appendix A.5 and illustrates the
per-layer contribution of both MLP and attention blocks.

4. Experiments
This section is structured into three main parts. Initially, we
empirically assess the transportation of task vectors, involv-
ing extensive experiments across both visual and natural
language processing (NLP) tasks (Sec. 4.1). Subsequently,
we examine the capability of our methodology to align the
weights of two Transformer models while maintaining func-
tional equivalence (Sec. 4.2). Finally, several ablative stud-
ies show the impact of our techniques on addressing multi-
head attention layers and residual connections (Sec. 4.3).

4.1. TransFusion of Task Vectors

Visual Classification Tasks. As reference architecture, we
consider the CLIP ViT-B/16 Vision Transformer (Radford
et al., 2021) from Open-CLIP (Cherti et al., 2023). We refer
to θA as the original pre-training weights and θB as those
used for the re-basin. We use CommonPool pre-training for
θA and Datacomp for θB , both cited in (Gadre et al., 2024).

Considering the base model θA, we fine-tune the correspond-
ing model on several computer vision tasks (Radford et al.,
2021; Ilharco et al., 2023). We employ DTD (Cimpoi et al.,

6

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

Table 2: Comparison of permutation-based methods on NLP
tasks, in terms of task accuracy [↑].

Method QQP SST2 RTE COLA

θB 55.00 50.69 54.51 40.94
θB + τ -8.29 +0.23 -2.53 -0.77
θB + τ (OT) -8.31 +5.39 -1.08 -1.25
θB + τ (GiT Re-Basin) +3.58 +5.73 +2.17 +1.44

TRANSFUSION (OURS) +6.50 +5.96 +3.61 +2.49

2014), EuroSAT (Helber et al., 2019), GTSRB (Stallkamp
et al., 2011), and SVHN (Netzer et al., 2011) and obtain
multiple, independent fine-tuned models like θftA = θA + τ .
Afterwards, we empirically assess the transportation of τ to
the new weights θB . In this respect, we adopt two metrics to
characterize the quality of the transported model θB +π(τ):
i) the zero-shot performance on the original task (special-
ized knowledge), and ii) the zero-shot performance on a
support, unseen set to evaluate the preservation of broader
capabilities. In our experiments, ImageNet-R (Hendrycks
et al., 2021) serves as a support dataset.

We report the results in Tab. 1 as drops (-) or gains (+)
in accuracy relative to the zero-shot performance of θB .
As baselines, we provide the results of vanilla transporta-
tion (no permutations applied on τ) and those of Git Re-
Basin (Ainsworth et al., 2023) and Optimal Transport
(OT) (Imfeld et al., 2024), two existing methods for model
re-basin. Specifically, the comparison with OT is notewor-
thy since this approach is designed for Transformer models
(like ours).

As can be seen, our method enhances zero-shot performance
on the downstream tasks and preserves generalization on
the support dataset, outperforming existing permutation-
based methods. Considering the results of our approach, it
is particularly noteworthy that we enhance performance on
the downstream task while maintaining generalization, all
achieved without the use of any data.

In the experiments shown in Tab. 1, we consistently set the
scaling coefficient for the (permuted) task vector as α = 1
(see Sec. 3.2). To investigate sensitivity and performance
changes while varying α, we kindly refer the reader to Fig. 4
(more datasets are in Appendix A.4). This illustrates the
drop/gain in accuracy for θB+ατ (blue) and our θB+απ(τ)
(red). This drop/gain is measured w.r.t. the zero-shot accu-
racy of θB , and α varies within the range [0.01, 2.0]. The
outcome is that applying the permuted π(τ) to θB leads to
tangible improvements in the downstream task (top row),
especially α ≈ 1. Moreover, when α ≥ 0.5, the permuted
task vector is considerably more reliable in terms of gener-
alization (higher accuracy on the support set).

0 1 2

10

0

Ta
sk

 -
G

ai
n

(%
) SVHN

Task Vector
Ours

0 1 2

EUROSAT

0 1 2
Alpha

15

10

5

0

Su
pp

. -
 G

ai
n

(%
)

0 1 2
Alpha

Figure 4: Zero-shot gain/drop relative to θB of naive θB +
ατ (blue) and our strategy θB + απ(τ) (red) varying α.

NLP Classification Tasks. Herein, we investigate a
different setting that involves closed-vocabulary text clas-
sification — specifically, a set of tasks from the GLUE
benchmark (Wang et al., 2019). We consider a model
θ = {ϕ, ω} composed of a pre-trained Transformer en-
coder ϕ and a classification head ω. We then evaluate
the transport of the learned task vector τϕ = ϕft

A − ϕA

on a new feature extractor ϕB . As access to data of the
downstream task is restricted, we are unable to train a new
classifier for θB: consequently, we re-use the originally
fine-tuned classifier, denoted as ωft. The goal is to evaluate
whether transporting the task vector τϕ aligns the repre-
sentation yielded by ϕB + π(τϕ) with the original, fine-
tuned classifier ωft. In our experiments, we employed
two variants of the ViT-B-16 text encoder, pretrained re-
spectively on the commonpool-l-s1b-b8k (θA) and
datacomp-l-s1b-b8k (θB) (Gadre et al., 2024).

Tab. 2 presents the evaluation for the GLUE benchmark.
Unexpectedly, simply applying the classification head from
the original feature extractor ϕA yields poor performance
(see first line of Tab. 2, θB). On the other hand, transporting
τϕ with Git Re-Basin and Optimal Transport performs rea-
sonably, with good gains on QQP and SST2. Moreover, our
approach leads to the highest and more consistent perfor-
mance gains, highlighting the potential of our framework.

4.2. TransFusion Improves Alignment and Preserves
Functional Equivalence

While the previous analyses focus on transferring task vec-
tors, we now delve into the effectiveness of our approach
in terms of weight alignment. In detail, we consider two
ViT-B/16 models (Dosovitskiy et al., 2021) A and B trained

7

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

0.0 0.2 0.4 0.6 0.8 1.0

1.0

2.0

3.0

Lo
ss

ViT-B/16
Vanilla
No Residual
Ours

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

1.0

2.0

3.0

Lo
ss

OT
Git Re-Basin
Ours

Figure 5: Loss values on CIFAR-10 test set during model
interpolation. Top: Our permutation approach vs. vanilla
interpolation and no residual variant. Bottom: Comparison
with Optimal Transport and Git Re-Basin methods, which
fail to preserve functional equivalence as α→ 0.

independently on CIFAR-10 (Krizhevsky et al., 2009) from
scratch, which means they underwent different initializa-
tions and batch orders. After training, we apply our permu-
tation strategy to θA and analyze the resulting alignment of
π(θA) and θB in terms of linear mode connectivity: follow-
ing (Ainsworth et al., 2023), we evaluate the loss landscape
L ((1− α)π (θA) + αθB) , α ∈ [0, 1] while interpolating
between the two models.
As shown by Fig. 5 (top), applying the permutation π yields
an interpolated model that exhibits consistent lower loss
compared to the vanilla approach that does not permute
θA (π(θA) = θA). Moreover, the no residual approach
underscores the critical role of properly handling residual
connections in our method — both during the permutation
of θA and throughout the interpolation process between
models. Similarly, in Fig. 5 (bottom) we assess the loss
landscape using π derived from the Optimal Transport (OT)
hard alignment method (Imfeld et al., 2024) and Git Re-
Basin (Ainsworth et al., 2023). While these works show a
more favorable loss landscape than naive interpolation, we
observe that the resulting interpolated model struggles and
achieves high loss when α→ 0, highlighting that both OT
and Git Re-Basin do not preserve functional equivalence.
We conjecture that such a lack stems from potential weak-
nesses in effectively permuting layers featuring residual
connections and multi-head attention blocks. In virtue of
the results achieved by our approach, we can claim it rep-
resents the first successful data-free method to interpolate
between two Transformer models in weight space, while
ensuring the functional equivalence of π(θA).

Table 3: TransFusion results by head alignment strategy.

Head Align. EUROSAT GTSRB SVHN
TASK SUPP. TASK SUPP. TASK SUPP.

θB zero-shot 49.02 68.73 43.42 68.73 45.97 68.73
Brute Force +1.32 -0.21 +0.60 -0.46 +3.39 -0.40
No Att-Align +2.22 -0.47 +0.71 +0.05 +0.24 -0.08

OURS (FULL) +4.95 -0.06 +1.10 -0.40 +3.64 -0.48

4.3. Ablative Analysis

On the Strategy to Manage Multiple Heads. We herein
explore the significance of an appropriate policy for permut-
ing the projection layers within multi-head attention mecha-
nisms. Specifically, we present the outcomes of transferring
τ with varying strategies to permute attention projection
layers. As potential alternatives, we firstly consider brute
force alignment, which considers all possible head pair
combinations within each attention layer. Then, for each
candidate pair, the intra-head alignment cost is computed
by optimizing the objective in Eq. (9). The final permutation
is then derived with the Hungarian algorithm, which selects
pairs with the highest intra-alignment scores.

After, we compare our approach with one that pairs heads in
A and B according to their natural order, thereby avoiding
head contamination by design. Nevertheless, the preserva-
tion of original head ordering comes at the cost of ignoring
functional mismatches between attention units. We refer to
this further baseline as no attention alignment.

The results of these experiments are detailed in Tab. 3. Our
attention-alignment strategy achieves superior performance
on the downstream task (θB + π(τ)) compared to alterna-
tive approaches, while maintaining comparable zero-shot
capabilities. The comparison with the brute force approach
underscores the effectiveness of our permutation-invariant
costs in modeling inter-head relationships, demonstrating
superior performance over a brute force alignment that opti-
mizes for the best match within each candidate pair of heads.
Furthermore, our results suggest that preserving the origi-
nal head ordering (as in the no-alignment strategy) yields
better performance than brute-force inter-head matching
for two of the three experimental tasks. This underscores
the menace of head contamination and the importance of
structure-aware alignment methodologies over indiscrimi-
nate similarity maximization.

Few Shot Fine-tuning. There are practical scenarios in
which retaining data is infeasible. If such constraints are not
present, our proposed method can be effectively combined
with fine-tuning. To illustrate this, we follow (Zhang et al.,
2024) and start with a small subset consisting of 10 shots
per class, learning a scaling coefficient per layer, denoted

8

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

Table 4: Fine-tuning results with permuted task vectors.

Method EUROSAT DTD GTSRB SVHN

θB zero-shot 49.02 47.50 43.42 45.97
θB + ατ +7.93 -1.44 +4.70 -15.98
θB + απ(τ) +10.00 +1.21 +6.80 +10.52

as α = [α1, . . . , α|L|]. The results in Tab. 4 clearly indicate
a substantial improvement when fine-tuning a model that
has undergone re-basin using our approach, represented as
θB +απ(τ). In contrast, fine-tuning directly from θB +ατ ,
without permutation, yields inferior outcomes. This empha-
sizes that re-basing and fine-tuning should not be considered
mutually exclusive but complementary strategies.

5. Related Work
Mode Connectivity occurs when paths of nearly constant
loss connect different solutions within the loss landscape
of neural networks (NNs) (Garipov et al., 2018; Freeman
& Bruna, 2017; Garipov et al., 2018; Draxler et al., 2018).
When such paths are linear, we refer to linear mode connec-
tivity (LMC) (Frankle et al., 2020). Entezari et al. (2022)
conjecture that solutions found by Stochastic Gradient De-
scent (SGD) can be linearly connected when accounting for
permutation symmetries. Motivated by this, several works
first align the models into a shared optimization space by
permuting their neurons, and then merge them through a
simple average (Ainsworth et al., 2023; Jordan et al., 2023;
Stoica et al., 2024; Peña et al., 2023; Crisostomi et al., 2024;
Navon et al., 2023; Singh & Jaggi, 2020). Most relevant
to our work, Imfeld et al. (2024) applies optimal transport
to align activations in transformer-based networks. How-
ever, unlike the latter, our method accounts for the logical
division of multi-head attention projections, preserving the
functional equivalence of the permuted models.

Weight Interpolation and Task Arithmetic. Emerging re-
search reveals that the output of NNs can be manipulated
through algebraic operations in weight space (Ilharco et al.,
2022; Wortsman et al., 2022a). Central to this paradigm
are task vectors τ (Ilharco et al., 2023), which encode task-
specific knowledge and exhibit compositional properties:
combining vectors through addition enables multi-task gen-
eralization while their negation can suppress learned behav-
iors without significantly impacting unrelated tasks.

Beyond arithmetic, weight interpolations further unlock un-
expected capabilities: blending fine-tuned and pre-trained
weights often yields single-task performance superior to
standalone fine-tuning (Frankle et al., 2020; Izmailov et al.,
2018; Matena & Raffel, 2022; Ramé et al., 2023; Rame et al.,
2022; Wortsman et al., 2022b), suggesting a reconciliation
of specialized adaptation with generalization capabilities.

Multi-task merging via parameter averaging (Ilharco et al.,
2022; 2023; Wortsman et al., 2022a; Yadav et al., 2024)
not only circumvents catastrophic forgetting (French, 1999;
McCloskey & Cohen, 1989; Porrello et al., 2025) but syn-
thesizes models that retain diverse expertise, even serving as
superior starting points for future adaptation (Choshen et al.,
2022). The benefits of weight ensembles and interpolations
extend beyond just fine-tuned models; they also apply to
models that are trained from scratch. Techniques such as
those proposed by (Ainsworth et al., 2023; Singh & Jaggi,
2020), leverage permutation symmetries to facilitate coher-
ent interpolation between models trained in different ways.
Collectively, these findings position weight-space manipula-
tion as a scalable toolkit for resource-efficient model engi-
neering, where arithmetic and interpolation replace brute-
force retraining.

6. Discussion and Conclusions
For TransFusion to succeed, the source expert must perform
strongly on the target task. This insight directly explains the
diminished results on DTD in Tab. 1: while our fine-tuning
achieves performance well above 95% on all other datasets,
DTD reaches only 75% accuracy. We attribute this degraded
task vector quality to DTD’s inherently challenging char-
acteristics — featuring merely 40 examples per class on
average, compared to roughly 1,000 examples per class in
our other datasets. Although our proposal delivers substan-
tial gains without requiring access to data from the original
task, we acknowledge significant room for improvement.
We believe most of the lost performance could be recov-
ered through two complementary directions: incorporating
a modest amount of additional data, or employing more so-
phisticated matching metrics for permutation discovery that
better reflect activation distributions rather than relying on
simple dot product similarity for linear layers. Such exten-
sions represent promising avenues for future investigation.

Acknowledgments
This work was supported by the Italian Ministerial
grants PRIN 2022: ”B-Fair: Bias-Free Artificial Intelli-
gence Methods for Automated Visual Recognition” (CUP
E53D23008010006) and by the University of Modena
and Reggio Emilia and Fondazione di Modena through
the ”Fondo di Ateneo per la Ricerca - FAR 2024” (CUP
E93C24002080007). The work also received funding from
DECIDER, the European Union’s Horizon 2020 research
and innovation programme under GA No. 965193 and
“AIDA: explAinable multImodal Deep learning for person-
Alized oncology” (Project Code 20228MZFAA). We ac-
knowledge the CINECA award under the ISCRA initiative
for providing high-performance computing resources.

9

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

Impact Statement
Our approach to transferring fine-tuning between model
versions without requiring re-training or additional data
holds the potential to significantly lower the barriers to
maintaining state-of-the-art AI technologies. By enabling
seamless updates, this method could empower organizations,
especially those with limited resources, to keep pace with
technological advancements, thereby democratizing access
to sophisticated AI tools. This democratization can foster
innovation across diverse sectors, potentially leveling the
playing field between large entities and smaller, resource-
constrained organizations.

The idea of aligning models with minor variations in archi-
tecture, such as different layer counts, is also worth explor-
ing. One simple approach could involve selectively pruning
layers from the model with more layers to match its coun-
terpart—removing redundant or unimportant layers—while
an alternative strategy might replicate the last block of the
smaller network multiple times to achieve parity. We plan
to investigate these strategies further in future work.

However, as we facilitate easier transitions between model
versions, it is crucial to ensure that these updates do not
compromise the integrity of the models. Dependence on
outdated or poorly validated models poses significant risks,
particularly when used in critical applications. Therefore, it
is imperative that as this technology is adopted, continuous
efforts are made to monitor, validate, and refine these models
to safeguard against biases and errors that may arise from
rapid model evolution. Future research should focus on
developing robust frameworks for evaluating the ethical
implications, fairness, and transparency of AI models as
they evolve, ensuring that advancements in AI technology
are implemented responsibly and ethically.

References
Ainsworth, S., Hayase, J., and Srinivasa, S. Git Re-Basin:

Merging Models modulo Permutation Symmetries. In
International Conference on Learning Representations,
2023.

Cherti, M., Beaumont, R., Wightman, R., Wortsman, M.,
Ilharco, G., Gordon, C., Schuhmann, C., Schmidt, L.,
and Jitsev, J. Reproducible scaling laws for contrastive
language-image learning. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition,
2023.

Choshen, L., Venezian, E., Slonim, N., and Katz, Y. Fusing
finetuned models for better pretraining. arXiv preprint
arXiv:2204.03044, 2022.

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and
Vedaldi, A. Describing Textures in the Wild. In Pro-

ceedings of the IEEE conference on Computer Vision and
Pattern Recognition, 2014.

Crisostomi, D., Fumero, M., Baieri, D., Bernard, F., and
Rodola, E. C2M3: Cycle-Consistent Multi-Model Merg-
ing. Advances in Neural Information Processing Systems,
2024.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale. In International Conference
on Learning Representations, 2021.

Draxler, F., Veschgini, K., Salmhofer, M., and Hamprecht,
F. Essentially No Barriers in Neural Network Energy
Landscape. In International Conference on Machine
Learning, 2018.

Entezari, R., Sedghi, H., Saukh, O., and Neyshabur, B. The
Role of Permutation Invariance in Linear Mode Connec-
tivity of Neural Networks. In International Conference
on Learning Representations, 2022.

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. Linear
Mode Connectivity and the Lottery Ticket Hypothesis. In
International Conference on Machine Learning, 2020.

Freeman, C. D. and Bruna, J. Topology and Geometry of
Half-Rectified Network Optimization. In International
Conference on Learning Representations, 2017.

French, R. M. Catastrophic forgetting in connectionist net-
works. Trends in Cognitive Sciences, 3(4), 1999.

Gadre, S. Y., Ilharco, G., Fang, A., Hayase, J., Smyrnis, G.,
Nguyen, T., Marten, R., Wortsman, M., Ghosh, D., Zhang,
J., et al. Datacomp: In search of the next generation of
multimodal datasets. Advances in Neural Information
Processing Systems, 2024.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P.,
and Wilson, A. G. Loss Surfaces, Mode Connectivity,
and Fast Ensembling of DNNs. Advances in Neural
Information Processing Systems, 2018.

Helber, P., Bischke, B., Dengel, A., and Borth, D. EuroSAT:
A Novel Dataset and Deep Learning Benchmark for Land
Use and Land Cover Classification. IEEE Journal of Se-
lected Topics in Applied Earth Observations and Remote
Sensing, 12(7), 2019.

Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F.,
Dorundo, E., Desai, R., Zhu, T., Parajuli, S., Guo, M.,
Song, D., Steinhardt, J., and Gilmer, J. The Many Faces
of Robustness: A Critical Analysis of Out-of-Distribution
Generalization. IEEE International Conference on Com-
puter Vision, 2021.

10

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

Ilharco, G., Wortsman, M., Wightman, R., Gordon, C., Car-
lini, N., Taori, R., Dave, A., Shankar, V., Namkoong, H.,
Miller, J., Hajishirzi, H., Farhadi, A., and Schmidt, L.
OpenCLIP, 2021.

Ilharco, G., Wortsman, M., Gadre, S. Y., Song, S., Hajishirzi,
H., Kornblith, S., Farhadi, A., and Schmidt, L. Patching
open-vocabulary models by interpolating weights. Ad-
vances in Neural Information Processing Systems, 2022.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Schmidt, L.,
Hajishirzi, H., and Farhadi, A. Editing Models with Task
Arithmetic. In International Conference on Learning
Representations, 2023.

Imfeld, M., Graldi, J., Giordano, M., Hofmann, T., Anag-
nostidis, S., and Singh, S. P. Transformer Fusion with
Optimal Transport. In International Conference on Learn-
ing Representations, 2024.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D.,
and Wilson, A. G. Averaging Weights Leads to Wider
Optima and Better Generalization. arXiv preprint
arXiv:1803.05407, 2018.

Jonker, R. and Volgenant, T. A shortest augmenting path
algorithm for dense and sparse linear assignment prob-
lems. In Papers of the 16th Annual Meeting of DGOR in
Cooperation with NSOR/Vorträge der 16. Jahrestagung
der DGOR zusammen mit der NSOR, 1988.

Jordan, K., Sedghi, H., Saukh, O., Entezari, R., and
Neyshabur, B. REPAIR: REnormalizing Permuted Acti-
vations for Interpolation Repair. In International Confer-
ence on Learning Representations, 2023.

Jovanović, I. and Stanić, Z. Spectral distances of graphs.
Linear Algebra and its Applications, 436(5), 2012.

Krizhevsky, A., Hinton, G., et al. Learning Multiple Layers
of Features from Tiny Images. Technical Report, Univer-
sity of Toronto, 2009.

Lu, M. Y., Chen, B., Williamson, D. F., Chen, R. J., Liang,
I., Ding, T., Jaume, G., Odintsov, I., Le, L. P., Gerber, G.,
et al. A visual-language foundation model for computa-
tional pathology. Nature Medicine, 30, 2024.

Mall, U., Phoo, C. P., Liu, M. K., Vondrick, C., Hariharan,
B., and Bala, K. Remote Sensing Vision-Language Foun-
dation Models without Annotations via Ground Remote
Alignment. In International Conference on Learning
Representations, 2024.

Matena, M. S. and Raffel, C. A. Merging Models with
Fisher-Weighted Averaging. Advances in Neural Infor-
mation Processing Systems, 35, 2022.

McCloskey, M. and Cohen, N. J. Catastrophic Interfer-
ence in Connectionist Networks: The Sequential Learn-
ing Problem. In Psychology of learning and motivation,
volume 24, pp. 109–165. Academic Press, 1989.

Navon, A., Shamsian, A., Achituve, I., Fetaya, E., Chechik,
G., and Maron, H. Equivariant Architectures for Learning
in Deep Weight Spaces. In International Conference on
Machine Learning, 2023.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
Ng, A. Y., et al. Reading Digits in Natural Images with
Unsupervised Feature Learning. In Neural Information
Processing Systems Workshops. Granada, 2011.

Ortiz-Jimenez, G., Favero, A., and Frossard, P. Task Arith-
metic in the Tangent Space: Improved Editing of Pre-
Trained Models. Advances in Neural Information Pro-
cessing Systems, 2024.

Peña, F. A. G., Medeiros, H. R., Dubail, T., Aminbeidokhti,
M., Granger, E., and Pedersoli, M. Re-basin via implicit
Sinkhorn differentiation. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition,
2023.

Porrello, A., Bonicelli, L., Buzzega, P., Millunzi, M., Calder-
ara, S., and Cucchiara, R. A Second-Order Perspective
on Model Compositionality and Incremental Learning. In
International Conference on Learning Representations,
2025.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning Transferable Visual Models From Natural
Language Supervision. In International Conference on
Machine Learning, 2021.

Rame, A., Kirchmeyer, M., Rahier, T., Rakotomamonjy, A.,
patrick gallinari, and Cord, M. Diverse Weight Averaging
for Out-of-Distribution Generalization. In Advances in
Neural Information Processing Systems, 2022.

Ramé, A., Ahuja, K., Zhang, J., Cord, M., Bottou, L., and
Lopez-Paz, D. Model Ratatouille: Recycling Diverse
Models for Out-of-Distribution Generalization. In Inter-
national Conference on Machine Learning, 2023.

Singh, S. P. and Jaggi, M. Model Fusion via Optimal Trans-
port. Advances in Neural Information Processing Systems,
2020.

Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. The
German Traffic Sign Recognition Benchmark: A multi-
class classification competition. In The 2011 interna-
tional joint conference on neural networks. IEEE, 2011.

11

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

Stoica, G., Bolya, D., Bjorner, J., Ramesh, P., Hearn, T.,
and Hoffman, J. ZipIt! Merging Models from Different
Tasks without Training. In International Conference on
Learning Representations, 2024.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE A Multi-Task Benchmark and
Analysis Platform for Natural Language Understanding.
In International Conference on Learning Representations,
2019.

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R.,
Gontijo-Lopes, R., Morcos, A. S., Namkoong, H.,
Farhadi, A., Carmon, Y., Kornblith, S., et al. Model
soups: averaging weights of multiple fine-tuned models
improves accuracy without increasing inference time. In
International Conference on Machine Learning, 2022a.

Wortsman, M., Ilharco, G., Kim, J. W., Li, M., Kornblith,
S., Roelofs, R., Lopes, R. G., Hajishirzi, H., Farhadi,
A., Namkoong, H., et al. Robust fine-tuning of zero-
shot models. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, 2022b.

Yadav, P., Tam, D., Choshen, L., Raffel, C. A., and Bansal,
M. TIES-Merging: Resolving Interference When Merg-
ing Models. Advances in Neural Information Processing
Systems, 36, 2024.

Zhang, F. Z., Albert, P., Rodriguez-Opazo, C., van den
Hengel, A., and Abbasnejad, E. Knowledge Composition
using Task Vectors with Learned Anisotropic Scaling. Ad-
vances in Neural Information Processing Systems, 2024.

12

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

A. Appendix
A.1. On the Invariance to Permutations of our Metric

for Inter-head Alignment

Proposition A.1. Let h ∈ Rm×n be arbi-
trary. For any h, denote its singular values by
σ(h) = (σ1(h), σ2(h), . . . , σmin(m,n)(h)), where
σ1(h) ≥ σ2(h) ≥ · · · ≥ 0. For two matrices h1, h2 of the
same shape, define

dp(h1, h2) = ∥σ(h1)− σ(h2)∥p , (15)

where ∥ · ∥p is the usual p-norm for vectors. Then, for any
permutation matrices Pr ∈ Rm×m and Pc ∈ Rn×n, the
row- and column-permuted matrix

h′ = PrhPc (16)

has exactly the same singular values as h. In particular,

dp(h, h
′) = 0 (17)

for every p, making d invariant under row- and column-
permutations of h.

Proof. If P is a permutation matrix, then P⊤P = I , i.e. it
is orthogonal. Furthermore, the singular values of any matrix
h are given by the square root of the eigenvalues of h⊤h. If
h′ = Pr hPc, then

(h′)⊤(h′) = (Pr hPc)
⊤ (Pr hPc) (18)

= P⊤
c h⊤ P⊤

r Pr hPc (19)

= P⊤
c h⊤ hPc . (20)

Since P⊤
c h⊤hPc is a similarity transform of h⊤h, which does

not change the eigenvalues, h⊤h and (h′)⊤h′ have the same eigen-
values, and in turn h and h′ share the same singular values. hence
σ(h′) = σ(h), and therefore

dp(h, h
′) = ∥σ(h)− σ(h′)∥p = 0 , (21)

proving that, for any row or column permutation of h, the distance
d(h, h′) remains unchanged.

A.2. Proof of Equivariance of Multi-Head Attention to
Structured Permutations 3.1

Proof. We provide a detailed, step-by-step proof showing
that our two-stage alignment procedure—inter-head reorder-
ing followed by intra-head permutations—preserves the
functionality of a multi-head self-attention layer. Let:

• X ∈ RS×dmodel be the input sequence.

• Wq,Wk,Wv ∈ Rdmodel×dmodel be the query, key, and
value projection matrices.

• H be the number of attention heads, each of dimen-
sionality dk = dmodel/H .

Define:

Q = XWq, K = XWk, V = XWv, (22)

and split them by head:

Q = [Q1, Q2, . . . , QH], Qi ∈ RS×dk , (23)

and similarly for K and V . Let Pinter be an inter-head per-
mutation in SH , with induced permutation vector π, and let
P

(i)
intra ∈ Sdk

be the intra-head permutation for head i. We
form the block-permutation matrix:

Pattn =

H∑
i=1

Ei,π(i) ⊗ P
(i)
intra, (24)

where Ei,π(i) is a binary H ×H matrix with a single 1 at
(i, π(i)), and ⊗ denotes the Kronecker product.

Step 1: Permuting the projection weights

Applying Pattn to the query projections gives:

Q′ = XWqPattn = QPattn

=

 H∑
j=1

QjPattn[j, i]

H

i=1

=
[
Qπ−1(i)P

π−1(i)
intra

]H
i=1

Hence,

Q′
i = Qπ−1(i) P

π−1(i)
intra , (25)

where the new head Q′
i corresponds to the head designated

by the inter-head permutation π−1(i), modified according
to P

π−1(i)
intra . The same applies to:

K ′
i = Kπ−1(i)P

π−1(i)
intra , V ′

i = Vπ−1(i)P
π−1(i)
intra . (26)

Step 2: Permuting the attention scores

Because each P
(i)
intra is orthogonal (PPT = I), the attention

scores satisfy:

A′
i = softmax

(
Q′

iK
′
i
T

√
dk

)

= softmax

Qπ−1(i)P
π−1(i)
intra (P

π−1(i)
intra)TKT

π−1(i)√
dk

= softmax

(
Qπ−1(i)K

T
π−1(i)√

dk

)
= Aπ−1(i).

Thanks to the orthogonality of the intra-head permutation
blocks, the attention scores are only influenced by the inter-
head permutation.

13

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

Step 3: Permuting the value outputs

For each head,

O′
i = A′

iV
′
i = Aπ−1(i)Vπ−1(i)P

π−1(i)
intra = Oπ−1(i)P

π−1(i)
intra .

(27)

Step 4: Reconstructing the final output

Concatenating all heads yields:

O′ = [O′
1, O

′
2, . . . , O

′
H] = OPattn. (28)

Conclusion. Applying Pattn to the projection matrices
is thus equivalent to permuting the output of multi-head
attention. The self-attention layer remains functionally
equivalent, and the original output can be recovered via
O = O′PT

attn.

A.3. Full Procedure to Manage Residual Connections

Proof. We begin with the standard formulation of a transformer
block, ignoring LayerNorm for simplicity:

zattn = W0 MHA(x),

zi = zattn + x,

zf = W2ReLU(W1zi),

zout = zf + zi.

(29)

Ignoring the ReLU activation function as well, we examine the
impact of applying a permutation to one layer within a transformer
block and then reversing it in the subsequent layer. This transfor-
mation leads to:

zattn = PW0W0P
⊤
attn

(
Pattn MHAP⊤

in (Pinx)
)
,

zi = PW0zattn + Pinx,

zf = PW2W2P
⊤
W1

(
PW1W1P

⊤
W0

(zi)
)
,

zout = PW2zf + PW0zi.

(30)

To ensure consistency in the permutation applied to both addends
within each residual block, we replace the identity mapping with
a permutation composition I, where Ii = PW0P

⊤
in and Iout =

PW2P
⊤
W0

. This results in:

zi = PW0zattn + IiPinx = PW0zattn + PW0x,

zout = PW2zf + IoutPW0zi = PW2zf + PW2zi.
(31)

After incorporating these compositions, the permutations remain
consistent across each residual path, simplifying the block equa-
tions to:

zattn = PW0W0

(
MHA(x)

)
,

zi = PW0zattn + PW0x,

zf = PW2W2

(
W1(zi)

)
,

zout = PW2zf + PW2zi.

(32)

With PW2 serving as the input permutation for the subsequent
layer.

0 1 2
15
10
5
0
5

Ta
sk

 -
G

ai
n

(%
) GTSRB

0 1 2

DTD

Task Vector
Ours

0 1 2
Alpha

15

10

5

0

Su
pp

. -
 G

ai
n

(%
)

0 1 2
Alpha

Figure 6: Zero-shot gain/drop relative to θB of naive θB +
ατ (blue) and our strategy θB + απ(τ) (red) varying α.

A.4. Extended Comparison on the Application of the
Task Vector

In Fig. 6, we extend the sensitivity analysis of the scaling co-
efficient α — originally presented in Fig. 4 — to additional
visual classification tasks.

A.5. Proof of Proposition 3.2

Proposition A.2. Proof. To assess how computational
complexity scales with model size, we define:

• L: number of layers, evenly divided into MLP (L2) and
self-attention (L2).

• H: number of attention heads.

• Each MLP layer contains two linear projections with
dimension (dm, dh) and (dh, dm), assuming dm = dh.

• Self-attention layers have Q, K, and V matrices, each
of size (dm, dm).

We now estimate the complexity for a single iteration of the
weight-matching algorithm.

MLP Layers. The main computational cost comes from
computing a pairwise similarity matrix between rows of pro-
jection matrices (O(d3m)), and solving a (dm, dm) assign-
ment via Hungarian algorithm (O(d3m)). Hence, per-layer
cost is:

O(d3m) (33)

14

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

Self-Attention Layers. Split into two steps: inter-head
and intra-head permutation.

Inter-head permutation:

• 6H SVDs over matrices of size (dm

H , dm)

O

(
6d3m
H

)
(34)

• Distance matrix over heads:

O

(
3H2dm

2

)
(35)

• Hungarian algorithm over (H,H) matrix:

O(H3) (36)

Intra-head permutation:

• Per-head similarity:

O

((
dm
H

)2

dm

)
= O

(
d3m
H2

)
(37)

• Hungarian algorithm per head:

O

((
dm
H

)3
)

(38)

Summed over H heads:

O

(
H

(
d3m
H2

+

(
dm
H

)3
))

= O

(
d3m
H

+
d3m
H2

)
(39)

Total Self-Attention Cost per Layer.

O

(
6d3m
H

+
3H2dm

2
+H3 +

d3m
H

+
d3m
H2

)
(40)

Final Complexity. Summing across L
2 MLP and L

2 atten-
tion layers:

O

(
L

2
d3m+

L

2

(6d3m
H

+
3H2dm

2
+H3+

d3m
H

+
d3m
H2

))
. (41)

This expression can be algebraically simplified to a more
compact equivalent form:

O

(
L

(
d3m +

d3m
H

+
d3m
H2

+H3 +H2dm

))
. (42)

So, the complexity scales polynomially with dm and H , and
remains significantly lower than data-based fine-tuning.

15

