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ABSTRACT

The randomized smoothing with various noise distributions is a promising ap-
proach to protect classifiers from £, adversarial attacks. However, it requires an
ensemble of classifiers trained with different noise types and magnitudes, which is
computationally expensive. In this work, we present an efficient method for ran-
domized smoothing that does not require any re-training of classifiers. We built
upon denoised smoothing, which prepends denoiser to the pre-trained classifier.
We investigate two approaches to the image denoising problem for randomized
smoothing and show that using the score function suits for both. Moreover, we
present an efficient algorithm that can scale to randomized smoothing and can
be applied regardless of noise types or levels. To validate, we demonstrate the
effectiveness of our methods through extensive experiments on CIFAR-10 and
ImageNet, under various /,, adversaries.

1 INTRODUCTION

The deep image classifiers are susceptible to deliberate noises as known as adversarial at-
tacks (Szegedy et al [2013 |Goodfellow et al., |[2014; |Carlini & Wagner, 2017)). Even though many
works proposed heuristics that can annul or mitigate adversarial attacks, most of them were broken
by stronger attacks (Athalye et al., 2018; |Athalye & Carlini, 2018). The vulnerability of empirical
defenses had led the researchers to scrutinize on certified defenses, which ensure the models to have
constant output within the allowed set around given input. Unfortunately, many provable defenses
are not feasible to large-scale neural networks because of their constraints on the architecture.

On the other hand, randomized smoothing is a practical method that does not restrain the choice
of neural networks. The randomized smoothing converts any base classifier to a smoothed clas-
sifier by making predictions over randomly perturbed samples. Then the smoothed classifiers are
guaranteed to have a £, certified radius, which is theoretically derived by the noise type used for
smoothing. Since (Cohen et al.| (2019) derived tight ¢5 certified radius for Gaussian randomized
smoothing, sequential works studied the certification bounds for various distributions (Teng et al.,
2020; |Yang et al.| [2020). As base classifiers are required to predict randomly perturbed samples,
natural classifiers are not sufficient for randomized smoothing. Therefore, many works proposed
training ensemble of base classifiers accustomed for randomized smoothing. However, since each
trained classifier only applies to specific noise distribution and level, it is expensive to protect against
various /,, adversaries and robustness strength.

In this work, we tackle the inefficiency of training random-ensemble of base classifiers by using one
universal image denoiser to the pre-trained classifier. The idea of using denoiser for randomized
smoothing was first introduced by Salman et al.|(2020) and is refer to denoised smoothing. One step
further, we study general image denoising problem for randomized smoothing with two different
approaches: 1) direct training of image denoiser, and 2) solve the optimization problem by using
a generative model to project to the learned data manifold. Then, we show that the score function,
which is the gradient of log-density, is crucial for both approaches. We exploit multi-scale denois-
ing score matching (Song & Ermon,, [2019) for score estimation, and propose an efficient algorithm
simulated annealing for image denoising. Remark that we only require one score network to certify
various noise distributions and levels. We provide experimentations on ImageNet and CIFAR-10
datasets to show the efficacy of our methods. Specifically, our denoisers perform better than original
denoised smoothing, while can be applied to various noise types without any re-training. Further-
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more, we compare with the random-ensemble based method, which we refer to white-box smoothing,
and show that our method works are comparable to them. In sum, we list our contributions:

e We propose novel score-based image denoisers for randomized smoothing.

e We improve denoised smoothing, which was originally proposed by [Salman et al.| (2020)
and generalize to other distributions without training any neural networks.

2 RANDOMIZED SMOOTHING AND DENOISED SMOOTHING

2.1 BACKGROUNDS ON RANDOMIZED SMOOTHING

Let f : R — ) be a classifier and ¢ be a distribution on R¢. Then the randomized smoothing with
q is a method that converts the base classifier f to the associated smoothed classifier g, where g(x)
returns the class which is most likely to be predicted by the base classifier f when x is perturbed by
a random noise sampled from ¢, i.e.,

g(x) =argmax Pr [f(x+u)=c|. (1)

ccy  uvg(u)

The noise distribution is usually a symmetric log-concave distribution, i.e. g(u) = exp(—¢(u)) for
some even and convex ¢. Note that to control the robustness/accuracy tradeoff, we embed the noise
level X to ¢, then we have gx(u) = exp(—¢(%)). We mix the notations ¢ and ¢ throughout the

paper.

Robustness guarantee for smoothed classifiers Suppose an adversary can perturb the input x
inside the allowed set B, which is usually an ¢, ball centered at x. For the case when B is {5 ball
and ¢ is Gaussian distribution A"(0, o%1), g(x) is robust within the radius

of. _ _
R=5(# ) -0 @
where ® is inverse cumulative distribution function, and p; = max.Pr[f(x + u) = ¢| and

P2 = MaX..qx) Pr[f(x +u) = c|. |Cohen et al. (2019) first derived the certified radius by us-
ing Neyman-Pearson lemma, and later Salman et al.|(2019a)) showed alternative derivation using the
Lipschitz property of smoothed classifier. Furthermore when ¢ is a centered Laplace distribution,
the robustness certificate for ¢; radius was derived by [Teng et al.| (2020). Later, the proof methods
are generalized to various distributions (may not be log-concave) that can certify various ¢, radius
(Yang et al.| 2020). Remark that the robustness guarantee depends on the noise distribution ¢, and
the performance of base classifier f under random perturbation with gy .

2.2 RANDOMIZED SMOOTHING VIA IMAGE DENOISING

Even though the randomized smoothing can convert any classifier to a provably robust classifier, the
smoothed classifier from natural classifiers are below the standard as they are not capable of predict-
ing randomly perturbed samples. Many previous studies focused on training classifiers accustomed
to randomized smoothing, which spans from noisy data augmentation (Cohen et al.,2019; L1 et al.,
2019) to its variants such as adversarial training (Salman et al., 2019a) or stability training (Lee
et al.| 2019; Zhai et al.} 2019). However, such methods are computationally expensive and require a
massive number of classifiers per noise types and levels.

The idea of prepending denoiser to the classifier was first introduced by [Salman et al.| (2020). By
training denoiser Dy : R? — RY, the smoothed classifier converted from f o Dy outperforms
‘no-denoiser’ baseline. They proposed training denoisers with mean squared error (MSE) loss or
classification (CLF) loss, or combining both methods. Formally, they are

Lyse(0) = EXNLDJINQ[”DG(X +u)—x |2]7 (3)

Lerr(0) = Expung[Lor(F(Do(x + 1)), f(x))]- )
where Lcg is the cross-entropy loss and F' is soft version of hard classifier f. They showed that
training with CLF loss makes perform better than denoiser with only MSE loss. Alternatively,
Saremi & Srivastaval (2020) trained neural empirical bayes estimator that can refine the white noise.

Nonetheless, those methods still suffer from expensive training of numerous denoisers with respect
to each noise types and levels.
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3 SCORE-BASED IMAGE DENOISING

3.1 FORMULATION OF IMAGE DENOISING PROBLEM

The image denoising is an example of linear inverse problem, which can be formulated as following:
given an observationy = x + u with u ~ ¢(u) finds X(y) that is close to original x. Let x ~ p(x)
then the distribution of y is p,(y) = [p(y,x)dx = [p(y|x)p(x)dx = [q(y — x)p(x)dx =
(P q)(y)-

One-step denoiser Like equation [3] the most common approach to achieve denoiser is to train
denoising autoencoder (DAE) Dy with MSE loss (Zhang et al.,[2017; ?). Suppose ¢ is a Gaussian
distribution \V'(0, 02I) and let the distribution of y by p,2. Then the following proposition (Robbins|
1956;|Lu & Stephens, [2019; Saremi1 & Hyvarinen| 2020) reveals the relationship between the optimal
denoiser Dy+ and p,2.

Proposition 3.1. Assume 0% € arg ming Lysg(0), then the following equation holds:
Dy-(y) =y + 0?Vy log p,2(y) (5)

The proof of proposition is in Appendix A. Let us define the score function of density p(x) by
V« log p(x), then the optimal DAE can be obtained by estimating the score of p,2. Let s¢(-;0) be
score network that estimates score of smoothed density p,2. Then the denoiser from sy is given by

x(y) =y +0°s9(y;0). (6)
Remark that it is only valid when ¢ is Gaussian distribution.

Multi-step denoiser Consider the maximum a posteriori (MAP) estimator that maximizes the
conditional distribution p(x|y). Formally the MAP loss is given by,

argmin Lyap(x; y) = arg min — log p(x|y) )
= argmin - log p(x) — log p(y|x) + log p(y) ®)
= arg min — log p(x) — log g(y — x) ©)
= arg min — log p(x) + ¢(y — x). (10)

Note that we simply remove density term p(y) and rewrite with g. Lastly, we rewrite ¢ with ¢. Since
the density p(x) is usually intractable for high-dimensional dataset, one may use approximation to
make the MAP loss tractable. Many recent works focused on using cutting edge generative models
such as generative adversarial network (GAN) or invertible neural networks to approximate p(x) in
equation@] (Ulyanov et al.,|2018; Whang et al.,[2020; |Asim et al., 2020). However, GAN suffer from
mode collapse, and invertible neural networks require extremely long steps to reach local minima,
which are not sufficient for randomized smoothing.

Instead, we aim to approximate the gradient of Lyap by the score of Gaussian smooth densities. Let
the approximate MAP loss with & by

Lyar,z(x;y) = —log ps2(x) + ¢(y — x). 1D
Then we can approximate the gradient of Lyap,s(x;y) by score network and perform gradient
descent initialized with xy = y as following:
X1 = Xt — AV, Lvar,5 (%) = Xt + a(Se(xt55) + Vi, d(y — %t))- (12)
Remark that the proposed method can be applied to any log-concave noise distributions. Following
theorem shows the recovery guarantee of our methods when ¢ is a Gaussian distribution.

Theorem 3.2. Let x* be local optimum of p(x), and y = x* + u where u ~ N (0,021). Assume
—logp is p-strongly convex within the neighborhood B.(x) = {z : ||z — x|| < r}. Then, the
gradient descent method on approximate loss Lyap 52 (X;y) initialized by xg =y converges to its
local minima x(y; &) € argmin Lyp 52(X;y) that satisfies:

1 ~2
Elk(y:5) x|, < 220+ 10%) |

— 245 1
14 po?+ po? oVd (13)
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The proof of theorem [3.2]is in Appendix A. Remark that the upper bound in equation [T3]increases
as o increases, which shows that the recovery becomes harder as o becomes larger. Also the upper
bound is strictly increasing function of &, and has the minimum when ¢ = 0.

3.2 EFFICIENT IMAGE DENOISING WITH SIMULATED ANNEALING

From theorem 3.2, for small & the error bound is tight but the approximation is inaccurate at nascent
steps. Otherwise, when ¢ is large, the error bound is too large. To arbiter the tradeoff, and to
make the method scalable, we propose simulated annealing for score-based image denoising. Let
{o:}E_, be a decreasing sequence of noise levels, then simulated annealing runs 7" steps of approx-
imate gradient descent for each o;. The algorithm for simulated annealing for image denoising is in
Algorithm [T}

Algorithm 1 Simulated Annealing for denoising

Require: y, {o;}E ,,a,T
1: initialize xg =y
2: fori<+1:Ldo
3. i - 02)5?
. 1 (3

4 fort < 1:7do

5 Xep1 < Xt + @i (89,0, (X¢) + Vi, 0(x¢ — y))
6 end for

7: Xg < X7

8: end for

9: return xr

Note that|Song & Ermon|(2019;|2020) used annealed Langevin dynamics for generative modeling.
Our approach is similar to them, but we consider the image denoising problem instead. Also, note
that|Kingma & Cun|(2010) trained score network for image denoising, but they used primitive neural
networks where exact score-matching was possible.

3.3 SCORE ESTIMATION VIA SCORE MATCHING

Score estimation has been studied through various topics such as generative modeling (Song et al.,
2020; |Song & Ermonl, [2019) and reinforcement learning (Sutton et al., 2000). Score matching is a
method that trains a score network sy(x) to estimate score. The original score matching objective is
given by

1
Excepe) | r(VxS0(x)) + 5llso(x)][3 |- (14)

However, due to heavy computation of tr(Vsy(x)), and since we are only interested in score of
smoothed densities, we use different approach.

Denoising Score Matching Denoising score matching is a method that learns the score of
smooth densities. More concretely, the score network sy estimates the score of density p,2(y) =
J N (x,0%I)p(x)dx. The objective was proved to be equivalent to the following (Vincent, 201 1):

Eyreq, > (v xepo) 11503 0) = Viy 1og g2 (1) 3] (15)
Remark that the optimal score network satisfies sg- (x; o) = V log p,2(x) foreach o, andas ¢ — 0,
Se+ .o (x) = Vlog p(x).

Multi-Scale Denoising Score Matching Recently, training score network with multi-scale de-
noising score matching has been proposed (Song & Ermon, 2019). Multi-scale denoising score
matching trains one score network with various noise magnitudes. Given a sequence of noise levels
{o:}L |, which is the variance of centered Gaussian distribution, by rewriting the denoising score
matching objective for each o;, we have

so(y;04) + yU2x

i

2
]. (16)

2

1
£(97 Ui) = iEerp,y~N(x,o’i2[) |:



Under review as a conference paper at ICLR 2021

(d)

Figure 1: (a) the original image sampled from ImageNet dataset, (b) the perturbed image with
Gaussian noise(c = 1.0), (c) the denoised image with one-step denoiser, (d) the progress of multi-
step denoiser, the last image is the final denoised image.

Then the total loss is
L
1
o) = =S 02L(0; 0,
['(97 {01}1:1) L p 0 ['(97 UZ)? (17)

note that each loss is weighted by ¢; which allows the loss of each noise level has the same order of
magnitude. It is worth to notify that our method is unsupervised, and classifier-free.

Here we demonstrate some advantages of multi-scale denoising score matching. First, through
learning various noise magnitudes at once, it suffices to train only one neural network to apply image
denoising. Therefore, we can do randomized smoothing regardless of the noise level. Second, the
noise makes the support of the score function to be whole space, making score estimation more
consistent. Moreover, a large amount of noise fills the low-density region, which helps to estimate
the score of the non-Gaussian or off-the-manifold samples. Empirically, we found out that multi-
scale learning helps the denoising performance. See Appendix C for details.

4 EXPERIMENTS

We study the performance of our proposed denoiser applied for randomized smoothing. We ex-
perimented on ImageNet and CIFAR-10 [Krizhevsky et al.| (2009) datasets. For
comparison, we measured the certified accuracy at R, which is the fraction of test set for which the
smoothed classifier correctly predicts and certifies robust at an £,, radius bigger than R. Due to com-
putational issue, we conducted our experiments with N = 10, 000 samples and failure probability
a = 0.001. Everything besides, we follow the same experimental procedures as in
(2019). At first, we depict the perceptual performance of our proposed denoisers.

4.1 VISUAL PERFORMANCE OF PROPOSED DENOISERS.

We demonstrate the visual performance of our denoiser. For an image sampled from the ImageNet
dataset, we perturbed the image with Gaussian noise (¢ = 1.0), and the denoised images from each
one-step and multi-step methods are different. Note that the result from the one-step denoiser is
more blurry, but the multi-step denoiser produces a sharper edge. We refer to Appendix D for more
examples of CIFAR-10 and ImageNet under various noise types.

4.2 CERTIFICATION WITH ONE-STEP DENOISER

We experimented the performance of one-step denoiser for Gaussian randomized smoothing. We
compare with 1) white-box smoothing, which is canonical approach that trains base classifiers with
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{5 radius (CIFAR-10) 025 050 075 100 125 1.50

white-box smoothing (Cohen et al.:2019) 59 45 31 21 18 13
denoised smoothing (Query Access) (Salman et al.,[2020) 45 20 15 13 11 10
denoised smoothing (Full Access) (Salman et al., 2020) 56 41 28 19 16 13
denoised smoothing (Our method) 60 42 28 19 11 6

Table 1: Certified accuracy of ResNet-110 on CIFAR-10 at various /5 radii.

{5 radius (ImageNet) 025 050 0.75 1.00 125 1.50

white-box smoothing (Cohen et al.:2019) 62 52 45 39 34 29
denoised smoothing (Query Access)(Salman et al.,[2020) 48 31 19 12 7 4
denoised smoothing (Full Access)(Salman et al.,2020) 50 33 20 14 11 6
denoised smoothing (Our method) 56 41 30 24 17 11

Table 2: Certified accuracy of ResNet-50 on ImageNet at various ¢, radii.

Gaussian data augmentation (Cohen et al., [2019), and 2) the denoised smoothing with denoisers
trained by [Salman et al.[(2020). As|Salman et al.|(2020) trained denoisers with various methods, we
just compare with their best values. Note that they assumed query access and full access, which are
discriminated based on how much information on the base classifier is provided. Remark that our
method is 'no access’ that we don’t need any classifier information. For all experiments on denoised
smoothing, we used same ResNetl10 classifier for CIFAR-10 and pytorch pretrained ResNet50
classifier for ImageNet. In addition, as our method is unbiased to the base classifiers, we found
out that using stronger classifier results in better certified accuracy. See Appendix C for additional
experiments.

CIFAR-10 The results for CIFAR-10 are shown in Table 1. Remark that even without using clas-
sifier loss, our method outperforms the query access baseline, and slightly better than the full access
baseline. Also, the results are comparable to white-box smoothing, which is an upper bound on our
framework. We suspect two reasons for the performance boost: the use of better architecture and
the effect of multi-scale training. We conducted additional experiments on the effect of multi-scale
training, and found out that multi-scale training helps learning the score estimation and therefore
helps denoised smoothing. The results for additional experiments are in Appendix C. However,
note that using classifier loss helps for large radii certification because the images denoised from
large-scale noise is too blurry that conventional classifiers can’t predict it.

ImageNet The results for ImageNet are shown in Table 2. Note that our method outperforms
previous denoised smoothing baselines. We believe the same reason as in CIFAR-10. However,
there is still a large gap between denoised smoothing and white-box smoothing, which is due to the
difficulty of learning score function of high-resolution images.

4.3 CERTIFICATION WITH MULTI-STEP DENOISER

We demonstrate the effectiveness of our multi-step denoiser on denoised smoothing using various
noise types. For a baseline, we compare with white-box smoothing which is training classifiers
with noisy data augmentation. We experimented on Gaussian noise (Cohen et al., 2019)), Laplace
noise (Teng et al., [2020), and uniform noise (Yang et al., [2020) for both CIFAR-10 and ImageNet.
For all experiments, we used ResNet110 classifiers for CIFAR-10 and ResNet50 classifiers for Ima-
geNet. See Appendix B for more details. It is important to claim that all experiments are done with
the only one score-network for each CIFAR-10 and ImageNet.

Note that for CIFAR-10, the denoised smoothing with our denoiser is slightly worse than white-box
smoothing except for uniform distribution. As|Yang et al.[(2020) reported, the uniform distribution
is well-fitted to the convolutional neural network, therefore the white-box smoothing achieves higher
performance. For ImageNet, we’ve found out that score estimation on ImageNet is difficult, and the
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Figure 2: The performance of multi-step denoiser for denoised smoothing. The blue lines are our
methods, and red lines are white-box smoothing which are experimented by each authors. (a) {5
certified accuracy with Gaussian smoothing on CIFAR-10, (b) ¢; certified accuracy with Laplace
smoothing on CIFAR-10, (c) ¢; certified accuracy with uniform smoothing on CIFAR-10, (d) o
certified accuracy with Gaussian smoothing on ImageNet, (e) ¢; certified accuracy with Laplace
smoothing on ImageNet, (f) ¢; certified accuracy with uniform smoothingon ImageNet,.

denoising algorithm takes too long time to be certify with myriad of samples. However, we found
out that our approach can stack up against white-box smoothing.

5 RELATED WORKS

5.1 DEFENSE AGAINST ADVERSARIAL ATTACKS

Empirical Defense methods The empirical defenses include erasing adversarial perturbation and
making models predict well in the presence of adversarial examples. The former defenses are similar
to our approach that they use trained denoiser (Meng & Chen, 2017} [Liao et al., 2018)), or project
the adversarial examples to the learned data manifold using generative models (Song et al., 2017}
Samangouei et al., | 2018)). However, all these methods are broken by adaptive attacks (Athalye et al.,
2018 |Athalye & Carlini, 2018} [Tramer et al., [2020), while our method has provable robustness.
The latter defenses are referred to adversarial training (Madry et al., [2017; [Kurakin et al.| 2016}
Zhang et al., 2019), which augments adversarial examples at training. Although the adversarial
training methods are shown to have great empirical robustness against various adversarial attacks,
they suffer from the undiscovered attacks.

Certified Defense methods provides provable guarantees that the classifier’s prediction remains
unchanged within a neighborhood of an input. Those methods are mainly based on certification
methods that are either exact or conservative. The exact certification methods are based on Satisfi-
ability Modulo theories solvers (Katz et al.l [2017; [Ehlers, |2017) or mixed-integer linear program-
ming (Fischetti & Jo,[2018}; [Tjeng et al.,[2019; [Lomuscio & Maganti, 2017). However, those meth-
ods have the computational burden and depend on the architecture of the neural network. Otherwise,
conservative methods are based on Lipschitz bound of the neural network, which is more compu-
tationally efficient (Jordan et al., 2019; |Salman et al.| [2019b; [Wong & Kolter, |2018} [Raghunathan
et al.| 2018)). However, the above methods aren’t scaled for practical neural networks. Instead, ran-
domized smoothing which is the Weierstrass transformation of a classifier is shown to be scalable
with architecture independence.
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Randomized smoothing was first presented with guarantee derived from differential privacy per-
spective (Lecuyer et al., [2019). Then using |Li et al.| (2019) showed tighter certificates using a-
divergence minimization of original and smoothed distributions. Recently, Cohen et al.| (2019) pro-
posed the tightest /5 robust guarantee with Gaussian distribution. Furthermore, series of works
derived certification bounds for various /¢, adversaries including ¢;-adversary (Teng et al., 2020),
l+ (Zhang et al.||2020) and ¢, (Lee et al.l 2019} |Levine & Feizi). Later, Yang et al.| (2020) showed
generic proof methods for certification with Wulff Crystal theory.

Even though randomized smoothing does not constrain the base classifier, to achieve non-trivial ro-
bustness, several works have proposed custom-trained methods for randomized smoothing (Lecuyer
et al., 2019} |Cohen et al., 2019; [Salman et al. |2019a; [2020; [Yang et al., 2020). Alternatively,
Lecuyer et al.[(2019) trained denoising autoencoders to promote to scale PixelDP to practical neural
networks. Our work is based on|Salman et al.|(2020), with some improvements and generalizations.
Note that 1) our approach does not require any information on the base classifier, and 2) we propose
general image denoising that doesn’t require training denoisers per noise types or levels.

5.2 IMAGE DENOISING

The image denoising had a huge development by exploiting deep neural networks (Zhang et al.,
2017; Jin et al., |2017; Tai et al., 2017). Moreover, inverse imaging using generative models have
been studied. [Ulyanov et al.| (2018) showed that GAN can act as an image prior and be used for
various inverse imaging problems. On the other hand, |Asim et al.| (2019) claimed that GAN suf-
fers from mode collapse, and is biased toward the dataset that isn’t sufficient for general image
denoising. Instead, several studies (Asim et al., 2019; |[Whang et al., 2020) showed that invertible
neural networks such as Glow (Kingma & Dhariwall [2018)) or ReaINVP (Dinh et al.||2016), can be
used for the deep image before various inverse imaging applications. Our work is based on score
function, where using score function for inverse imaging is less studied. Note that Kingma & Cun
(2010) used regularized score matching for image denoising, but their neural network is primeval,
and regularized score matching is hard to be scale to practical neural networks.

6 CONCLUSION

In this work, we presented a score-based image denoising methods for randomized smoothing. Our
method does not require any re-training of classifiers, and trains only one score network that can be
used for denoising of any noise type and level. We empirically found out that our denoiser performs
better than conventional image denoisers and denoisers trained with the classification loss, while
comparable to the random ensemble approach.

We believe that current randomized smoothing is theoretically well-designed but needs to be scalable
to be deployed for real world applications. On that perspective, our approach is a good initial
point that can endow robustness to any classifier without any re-training. However, the hardness of
estimating score function of high-dimensional data should be compromised. We believe using better
architecture or devising faster optimization algorithm might help.
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