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ABSTRACT

As AI becomes more capable, we entrust it with more general and consequential
tasks. The risks from failure grow more severe with increasing task scope. It is
therefore important to understand the ways extremely capable AI models will fail:
Will they fail by systematically pursuing goals we do not intend? Or will they fail
by being a hot mess, and taking nonsensical actions that do not further any goal?
We operationalize this question using a bias-variance decomposition of the errors
made by AI models: An AI’s incoherence on a task is measured over test-time ran-
domness as the fraction of its error that stems from variance rather than bias in task
outcome. Across all tasks and frontier models we measure, we find that the longer
models spend reasoning and taking actions, the more incoherent they become. We
observe that incoherence changes with model scale in a way that is task and ex-
periment dependent. However, in several settings larger, more capable models are
more incoherent than smaller models. Consequently, scale alone seems unlikely to
eliminate incoherence. Instead, as more capable AIs pursue harder tasks, requir-
ing more sequential action and thought, our results predict failures to be accom-
panied by more incoherent behavior. This suggests a future where AIs sometimes
cause industrial accidents (due to unpredictable misbehavior), but are less likely
to exhibit consistent pursuit of a misaligned goal. This increases the relative im-
portance of alignment research targeting reward hacking or goal misspecification.

1 INTRODUCTION

There are an increasing number of predictions that AI will soon be more capable than human be-
ings (Kwa et al., 2025; Maslej et al., 2025; Pimpale et al., 2025), and will replace human labor in
many domains (Chen et al., 2025b; Handa et al., 2025; Dominski & Lee, 2025; Eloundou et al.,
2024; Johnston & Makridis, 2025). We already rely on AI for consequential tasks such as writing
critical software (DeepMind, 2025; Appel et al., 2025), determining bail amounts (Fine et al., 2025),
and deciding what stories to present in news feeds (Liu et al., 2024; Gao et al., 2024b; Yada & Ya-
mana, 2024). Despite its increasing capabilities, AI often behaves in ways we do not intend. Due to
its high-stakes use cases, it is important to understand how and when AI can be expected to fail.

One class of AI risk is misalignment risk (Bostrom, 2014; Russell, 2019; Greenblatt et al., 2024).
Misalignment risk is the concern that AI will pursue a goal that is different from the goal its creators
intended to instill, and that it will pursue that goal with superhuman competence. If a superhuman
agent pursues a misaligned goal, it might do things like seize power as an instrumental step to
achieving its goal(Hubinger et al., 2019).

However, this scenario assumes that unintended behavior stems from systems that not only pursue
the wrong objective, but remain coherent optimizers over a long horizon. Large language models
(LLMs), prior to reinforcement learning, are dynamical systems, but not optimizers. They have to
be trained to act as an optimizer, and trained to align with human intent. It is not clear which of
these trained properties will tend to be more robust, and which will be most likely to cause failures
in superhuman systems. In practice, AI models often fail in ways that seem random and do not
further any coherent goal (Spiess, 2025; Nolan, 2025). Like humans, when AIs act undesirably, it is
often because they are a hot mess and do not act in a way that is consistent with any goal: The hot
mess theory of intelligence (Sohl-Dickstein, 2023) suggests that as entities become more intelligent,
their behavior tends to become more incoherent, and less well described through a single goal. If
true for AI systems, this shifts both the likelihood and the focus of misalignment scenarios.
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Figure 1: AI can fail because it is misaligned, and produces consistent but undesired
outcomes, or because it is incoherent, and does not produce consistent outcomes at all. These
failures correspond to bias and variance respectively. As we extrapolate risks from AI, it
is important to understand whether failures from more capable models performing more
complex tasks will be bias or variance dominated. Bias dominated failures will look like model
misalignment, while variance dominated failures will resemble industrial accidents. (top left)
Qualitatively, we observe that AI models fail in unpredictable and inconsistent ways. Often, these
failures can be fixed by resampling. (top right) To quantify this observation, we decompose errors
made by AI into two terms, bias and variance. We illustrate this using a multiple choice task: bias
is the tendency to pick a specific incorrect answer; variance is the tendency to pick inconsistenly
among options. In turn, we define incoherence as the fraction of model error caused by variance.
(lower left) Experimentally, we find that as models reason longer and take more sequential actions,
they become more incoherent. (lower right) We find that as models become more capable, and
overall error rate drops, incoherence changes in a way that depends on task difficulty. Easy tasks
become less incoherent, while hard tasks trend towards increasing incoherence.

In this paper, we therefore ask the questions: When a model does something other than what we
intend, what fraction of its deviation is due to bias (consistent pursuit of the wrong goal), and what
fraction to variance (randomness in behavior and outcome)? As we scale model intelligence and
task complexity, how does this decomposition change? Asymptotically, as extremely capable models
perform extremely complex tasks, which class of undesired behavior will dominate?

We address these questions by measuring the scaling behavior of AI errors decomposed into

ERROR = BIAS2 + VARIANCE ,

and further define incoherence as the proportion of variance to the total error. This decomposition
allows us to distinguish the relative contributions of different types of AI failure, and, impor-
tantly, how they change as models become more intelligent and perform longer horizon tasks.
Bias-dominated failures correspond to systematic misalignment—consistent pursuit of the wrong
objective—whereas variance-dominated failures indicate inconsistent outcomes.

In our experiments, we find that across a variety of tasks—multiple-choice benchmarks, agentic
coding, safety & alignment—models become more incoherent the longer they spend reasoning and
taking actions (Fig. 2), even when analysis is restricted to natural variation in thinking tokens for
a fixed task (Fig. 3). We find that larger and more intelligent systems are often more incoherent
(Fig. 4). Concretely, more capable models consistently achieve lower error, but their coherence
varies: they become more coherent on easy tasks but less coherent on hard tasks as model size

2
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increases (Fig. 5); humans also subjectively judge more intelligent entities as more incoherent.
We validate these findings by measuring scaling laws in a synthetic environment where models
are trained as explicit optimizers, revealing asymptotic dominance of variance with increasing size
(Fig. 6). Ensembling and larger reasoning budgets reduce incoherence (Fig. 7), and we believe
other forms of error correction forms may behave similarly. We discuss our results in Section 5.

2 BACKGROUND

2.1 BIAS–VARIANCE DECOMPOSITION

Definition. In supervised settings, the bias–variance decomposition expresses the ex-
pected error of a predictor as the sum of three terms: BIAS2, VARIANCE, and irreducible
noise (Kohavi & Wolpert, 1996). Although originally formulated for regression, analogous de-
compositions exist for classification tasks (Kohavi & Wolpert, 1996; Domingos, 2000), with a
similar interpretation: the bias reflects the error of the classifier’s mean or mode prediction and
variance quantifies its deviation. Several such decompositions exist, including the 0/1 error (Kong
& Dietterich, 1995; Breiman, 1996; Kohavi & Wolpert, 1996; Tibshirani, 1996; Friedman, 1997;
Domingos, 2000), Brier score (Degroot & Fienberg, 2018), and cross-entropy error (Heskes, 1998).
We present a Kullback-Leibler (KL) decomposition in the main text. For additional definitions
see Appx. A. We ran experiments with KL, Brier, and 0/1 formulations. All three decompositions
produce qualitatively similar results, and we provide plots for all three in appendices.

Let x be the input with label classes c ∈ {1, . . . , C} for which the model fε produces a probability
distribution (potentially one-hot) over class labels fε(x) ∈ RC , with ε denoting the stochasticity
of the training process. The target is one-hot encoded through y(x) ∈ RC . For clarity, we omit
the dependence of y and fε on x. We assume the irreducible noise to be 0. Then, the expected
cross-entropy error can be decomposed into (Yang et al., 2020):

Eε [CE(y, fε)]︸ ︷︷ ︸
ERROR

= Eε

[
C∑

c=1

y[c] log(fε[c])

]
= DKL

(
y∥f̄

)︸ ︷︷ ︸
BIAS2

+Eε

[
DKL(f̄∥fε)

]︸ ︷︷ ︸
VARIANCE

, (1)

where y[c] denotes the c-th element of the vector, DKL is the Kullback-Leibler divergence, and f̄ε is
the average of log-probabilities after normalization: f̄ [c] ∝ exp (Eε [log(fε[c])]) for c = 1, . . . , C.
We denote this decomposition as KL-BIAS and KL-VARIANCE. This is an instance of the general
decomposition for Bregman Divergences (Pfau, 2013).

Different usage to classical literature. In discussions of the bias–variance tradeoff, the setup typi-
cally assumes a deterministic model (e.g., a regressor), with bias and variance estimated by retraining
under different seeds or data sampling. That means the expectation is over training randomness ε.
Our setting differs: rather than retraining multiple models, we analyze a fixed model and take the
expectation over input (e.g., few-shots) and output (sampling) randomness ε for the same task.

Incoherence. Throughout this paper, our main metric of interest is the proportion of the variance
to the total error, which we define as INCOHERENCE. Formally, consider a set of questions
Q = {qi}i≤N and a model fε. We then denote incoherence as

INCOHERENCE(Q, fε) :=

∑
i VARIANCE(qi, fε)∑

i ERROR(qi, fε)
. (2)

Since ERROR(qi, fε) = BIAS(qi, fε)
2 + VARIANCE(qi, fε), INCOHERENCE is a relative value in

[0, 1]: a value of 0 means that the model never deviates from its average behavior and any error
will be consistent; a value of 1 means that every error the model makes is inconsistent. Importantly,
a model can achieve a lower overall error rate, but have a higher incoherence, which makes it a
comparable measure across error levels and model capabilities. We see such cases in Section 3.

2.2 SCALING BEHAVIOR OF LARGE LANGUAGE MODELS

Scaling laws. Model performance generally follows predictable power-law scaling with respect to
model size N , dataset size D, and compute C (Kaplan et al., 2020; Hoffmann et al., 2022). Most
prominently, taking the parameters N as an argument, the cross-entropy loss broadly behaves as
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l(N) ∝ N−α for some exponent α. This slope α informs us about the rate of improvement. In
Section 3.2 we will compute scaling laws independently for bias and variance loss contributions, to
judge which asymptotically dominates.

Reasoning and inference compute. Besides the model and dataset size, the most promising recent
development uses inference compute as an axis of scale. Specifically, so-called reasoning models
are trained with reinforcement learning (RL) to think in long chains of thought before providing an
answer, which improves performance with larger thinking budgets (Snell et al., 2024; Jaech et al.,
2024; Guo et al., 2025; Anthropic, 2025b; OpenAI, 2025a; Team, 2025a; Team et al., 2025; Chen
et al., 2025a; Zhong et al., 2024; Muennighoff et al., 2025). The length of reasoning is an important
aspect of our analysis, which we see as a process of sequential action steps (Lightman et al., 2023).

3 EXPERIMENTS

Overview. We present our results grouped by observations: first, growing incoherence as a function
of reasoning length (3.1) and scaling laws with model scale (3.2); this is followed by the effects of
reasoning budgets and ensembling (3.3). The details of all experimental setups are in Appx. B.

Tasks. We run experiments on the following tasks, which all have well-defined targets used for inco-
herence measurements, since bias is only defined relative to a target. For a discussion, see Section 5.

• Multiple Choice Tasks. We use the popular scientific reasoning benchmark GPQA (Rein et al.,
2024), and general knowledge benchmark MMLU (Hendrycks et al., 2021). Target responses are
simply the correct answer.

• Agentic Coding. This focuses on SWE-BENCH (Jimenez et al., 2023), where agents solve
GitHub issues using tools, and success is measured with unit tests.

• Safety and Alignment. We assess models using the advanced AI risk subset of Model-Written
Evals (MWE; Perez et al., 2023), both with the original multiple choices and in an open-ended
format with answer options removed.

• Synthetic Settings. We train transformers of varying scales to directly emulate an optimizer
descending an ill-conditioned quadratic loss. The transformer is tasked with predicting string
representations of optimizer update steps based on the current state. This is a simple toy model of
an LLM that has been trained to act as an optimizer. See Section 3.2.2 for details.

• Survey. In addition to experiments using LLMs, we report the survey results of
Sohl-Dickstein (2023) (previously released in blog form), where disjoint sets of human
subjects subjectively ranked the intelligence and coherence of AI models, humans, non-human
beings, and organizations. The details are provided in Appx. B.5.

Setup and Metrics. Across all tasks, unless otherwise noted, we obtain at least 30 samples to esti-
mate bias and variance per question. We find this sample count to be sufficient for stable estimates
(see Appx. C.5 and B). Each sample is run with a different seed for autoregressive generation. For
GPQA and MMLU, samples additionally use a different random few-shot context. We report the
following metrics (details in Appx. A and B):

• For multiple choice questions, our main metric of interest is the KL-INCOHERENCE, i.e., the
incoherence with respect to KL-BIAS and KL-VARIANCE (Equations 1 and 2). We find the same
qualitative behavior for other decompositions, as reported in Appx. C.1.

• For open-ended MWE safety questions, we embed solely the answers (i.e., without reasoning
chains) using a text embedding model (text-embedding-3-large). Consequently, we re-
port the variance of the embedding vectors in the Euclidean norm.

• For SWE-BENCH, we assign binary vectors for each sample and task: each vector is of size Ti,
the number of unit tests for task i, and encodes which tests a model’s code passes. The coverage
error then computes the mean squared difference to a vector of all 1’s, which we decompose into
bias and variance contributions.

Models. We evaluate the following frontier models: CLAUDE SONNET 4 (Anthropic, 2025a) with
reasoning enabled, O3-MINI (OpenAI, 2025a), and O4-MINI (OpenAI, 2025b). When analyzing
scaling w.r.t. model size as a (imperfect) proxy for intelligence, we use the QWEN3 model family
with thinking enabled (Team, 2025a). In Sect. 3.2.2, we train our own autoregressive transformers
on a synthetic optimization task.
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Figure 2: Across a variety of settings, as models reason longer or take more actions, they
become more incoherent. We assess frontier models (CLAUDE SONNET 4, O3-MINI, O4-MINI,
QWEN3) across a variety of different tasks (MCQ, Agentic Coding, Alignment). We evaluate with
many samples to estimate bias and variance terms for each question. When sorting questions by av-
erage reasoning lengths and grouping into buckets, a clear trend emerges: incoherence increases sig-
nificantly with reasoning length. In other words, for questions where models reason longer and take
many actions, their errors are dominated by variance. We make a similar observation for the vari-
ance of text embeddings to open-ended safety questions ((c), right), and in a synthetic setting (d).

2× 103 3× 103 4× 103

Avg. Reasoning (Tokens)

0.30

0.35

0.40

0.45

0.50

K
L
 I

n
co

h
er

en
ce

 (
V

ar
ia

n
ce

E
rr

or
)

GPQA: Incoherence

Sonnet 4 (δ= 0.066)

o3 Mini (δ= 0.064)

o4 Mini (δ= 0.084)

Groups

 Median CoT per Q

>  Median CoT per Q

3× 103 4× 103

Avg. Reasoning (Tokens)

0.35

0.40

0.45

0.50

K
L
 I

n
co

h
er

en
ce

 (
V

ar
ia

n
ce

E
rr

or
)

GPQA: Incoherence

1.7B (δ= 0.072)

4B (δ= 0.091)

8B (δ= 0.083)

14B (δ= 0.089)

32B (δ= 0.110)

Groups

 Median CoT per Q

>  Median CoT per Q

(a) GPQA: Frontier Models (left) and QWEN3 (right)

Sonnet 4 o3 Mini o4 Mini
Model

0.0

0.1

0.2

0.3

0.4

0.5

In
co

h
er

en
ce

 (
V

ar
ia

n
ce

C
ov

er
ag

e 
E

rr
or

)

0.18

0.22

0.12

0.25

0.47

0.56

SWE-Bench: Incoherence

Below Median #Actions

At/Above Median #Actions
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Figure 3: For a fixed task and reasoning budget, natural variation in reasoning length and
action count is predictive of incoherence. We analyze GPQA (left, (a)) and SWE-BENCH (b) by
splitting samples into above- or below-median reasoning length (GPQA) or actions (SWE-BENCH)
per question. We then compute performance and incoherence for both groups. (a) The naturally
longer reasoning shows increased incoherence for both frontier models (left) and QWEN3 (right).
(b) Similar observations apply to SWE-BENCH, where longer action sequences display higher
incoherence for test coverage (right). This effect is much stronger than through larger reasoning
budgets (Fig. 7), and the difference in accuracy or score is minimal between both groups (Fig. 17).

3.1 THE RELATION BETWEEN REASONING LENGTH, ACTION LENGTH AND INCOHERENCE

The longer models spend reasoning and taking actions, the more incoherent they become.

Sorting by reasoning & action length. We begin with a key experimental observation. Fig. 2
shows all setups with reasoning tokens (or actions for SWE-BENCH, optimization steps for the
synthetic setting) on the x-axis and incoherence or variance on the y-axis. For Figures 2(a) to 2(c),
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lines show different question sets across and within models, obtained by sorting by average length
and grouping into equal buckets, with incoherence computed per group.

Across all conditions, longer reasoning and action sequences increase incoherence or variance. For
GPQA, incoherence increases with different slopes per model family (and reasoning length distribu-
tions); notably, for QWEN3, incoherence levels and slopes are nearly identical across all sizes, even
though larger models perform better (cf. Figure 9). Similar patterns appear for frontier models on
MWE. For SWE-BENCH, both baseline incoherence and slopes vary: O4-MINI shows higher base-
line incoherence but smaller slope; O3-MINI has the largest slope but lowest baseline incoherence.

Example analysis. To illustrate, we provide real experimental transcripts in Fig. 19. The example
shows CLAUDE SONNET 4 responding differently with nearly every sample to a disconnection
question, displaying high incoherence. This connects to open-ended MWE results in Fig. 2(c),
where embedding variance correlates strongly with average reasoning length, and bias is not
well-defined. We provide additional insight on incoherence through absolute answer change rates
in Appx. C.4, and all open-ended MWE plots in Fig. 24.

Discussion: Task complexity. Sorting questions by reasoning length implicitly selects for task
difficulty (see accuracies in Fig. 8 and 9), suggesting incoherence rises with task complexity. While
perhaps unsurprising, this is an important experimental observation; higher complexity implied
lower performance, but it did not necessitate higher incoherence. In fact, for frontier models, our
setup asks models for probability estimates of choice correctness (see Appx. B.1), i.e., we give them
an option to express uncertainty. We revisit task complexity in the next section and Section 3.3.

Natural overthinking and incoherence. Irrespective of task complexity, we show how long reason-
ing and action sequences lead to larger incoherence in Fig. 3. For each question, we assign response
samples to either of two groups: those below and those above the median reasoning length for this
specific question for GPQA, and the median number of actions for this task in SWE-BENCH. The
incoherence is substantially higher for the second group for both benchmarks. Notably, the average
accuracy and SWE-BENCH-score (shown in Fig. 17) is similar between groups, but the effect of the
natural variation on incoherence is much larger than reasoning budgets (Fig. 7(a)).

Further results. We provide more analyses for GPQA in Appx. C.1, with reasoning length correla-
tions in Appx. C.6. Results for MWE are in Appx. C.7, and results for SWE-BENCH in Appx. C.8.

3.2 THE RELATION BETWEEN MODEL SCALE, INTELLIGENCE, AND INCOHERENCE

Larger and more intelligent systems are sometimes more incoherent.

Motivation. In Section 3.1, in particular Fig. 2(a), we fix a model and analyze incoherence as
a function of reasoning length. Now, we ask a different question: When we fix a task, how does
incoherence change as a function of model size? How does incoherence scale with intelligence?

Overview. We summarize the main observation in Fig. 4: larger, more capable and intelligent
systems are often more incoherent. This is manifested in LLMs for the most complex set of questions
(Sect. 3.2.1), the rankings of intelligence and incoherence as judged by human survey participants
(Appx. B.5) and our synthetic optimizer setting (Sect. 3.2.2). However, we find that larger models
are less incoherent on simpler questions (Sect. 3.2.1). We discuss each result in detail.

3.2.1 SCALING LAWS FOR LLMS SEPARATED BY TASK COMPLEXITY

Easy tasks become less incoherent with scale, while harder tasks become more incoherent.

Overview. We experiment with the QWEN3 model family, as they provide the same model archi-
tecture, including reasoning abilities, with up to 32B parameters. Consistent with other setups, we
sample many responses for the same set of questions. Additionally, we cluster questions using the
the reasoning length of a reference model (here: 32B) into equally sized groups.

Results. See Fig. 5 for the detailed results. We find that performance consistently improves with
increasing model size, with the fastest rate of improvement for the hardest questions. However, the
way in which incoherence changes with scale depends on question difficulty: Model responses to
easy questions become more coherent with scale, while responses to the hardest questions become
more incoherent with scale, though this last trend is noisy.
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Figure 4: Larger and more intelligent systems are often more incoherent. (a) We measure the
scaling of incoherence vs. model size for the QWEN3 family, as a function of question difficulty.
For easy questions, incoherence drops with model scale, while for the hardest questions incoherence
remains constant or increases with model scale. The expanded results for this experiment are in
Fig. 5. (b) Disjoint sets of human subjects were tasked with subjectively ranking the intelligence
and incoherence of diverse AI models, non-human beings, well known humans, and human
organizations. Across all categories, entities that were judged more intelligent by one group of
subjects, were independently judged to be more incoherent by another group of subjects. See
Appx. B.5. (c) In a synthetic task, we train transformers of increasing size to explicitly emulate
optimizer trajectories descending a quadratic loss. As these models become larger, the trajectories
they generate achieve lower loss on the quadratic. However, the final loss is also more variance
dominated and thus incoherent with increasing model size. Details in Fig. 6.

Further results. We provide different visualizations of the same results in Appx. C.2, which
include the same results for GPQA (Fig. 12), the relationship between incoherence and error
(Fig. 13) and how reasoning length is a stronger indicator of incoherence than model size (Fig. 14).

3.2.2 SCALING LAWS IN CONTROLLED SYNTHETIC SETTINGS: MODELS AS OPTIMIZERS

On a synthetic task, models become more incoherent as they are made larger.

Models as optimizers. In this paper, we are trying to disentangle whether capable models will
more tend to act as effective optimizers of the wrong goal, or will pursue the right goal but not be
effective optimizers. To quantify this in a controlled setting, we train models to literally mimic the
trajectory of a hand-coded optimizer descending a loss function. This can be viewed as trying to
train a model to implement a mesa-optimizers (Hubinger et al., 2019). We then analyze the bias
and variance of the resulting models, to answer the question: Does the model become an optimizer
faster or slower than it converges on the right optimization objective?

Setup. We study a simple d-dimensional quadratic function of the form f(x) = 1
2 (x−b)TA(x−b),

where A ∈ Rd×d is a (random) positive-definite but ill-conditioned matrix. We set the condition
number to 50. Training data is generated by using an optimizer to produce many trajectories of fixed
length for random initial points. The optimizer used to generate the training data performs steepest
descent with a fixed step norm. The training dataset consists of pairs (xi, ui), where xi is a pa-
rameter iterate, and ui is the corresponding update step generated by the optimizer. Analogously to
real (token-based) models, we train transformer models (Vaswani et al., 2017) of varying sizes using
decoding-based regression (Song & Bahri, 2025) and teacher forcing. This means we tokenize the
scientific format representation of xi and ui, with a vocabulary of digits and signs. When evaluating,
we sample multiple initial points and roll out trajectories using the model’s own predictions. A visu-
alization of this with a real model is provided in Fig. 6 (left). The bias and variance measures are then
taken w.r.t. the optimum and norm ∥·∥A that is induced by the problem. The details are in Appx. B.4.

Results. The main results are shown in Fig. 2(d) (incoherence over rollout steps) and Fig. 6
(scaling laws by size). All models show consistently rising incoherence per step; interestingly,
smaller models reach a lower plateau after a tipping point where they can no longer follow the
correct trajectory and stagnate, reducing variance. This pattern also appears in individual bias and
variance curves (Fig. 26). Importantly, larger models reduce bias more than variance. These results
suggest that they learn the correct objective faster than the ability to maintain long coherent action
sequences. More results and discussions are provided in Appx. C.9.
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Figure 5: Details for QWEN3 scaling laws: easy tasks become less incoherent, harder tasks
more incoherent. We group MMLU questions by reasoning length using a reference model
(Qwen3 32B, (a)), which correlates across model sizes (b) and serves as a task complexity proxy,
as accuracy drops with longer reasoning (c). These groups reveal distinct bias–variance scaling (d):
bias slopes are similar across groups, but variance slopes decrease sharply for harder ones. In the
hardest group, variance slopes fall below bias slopes, leaving variance as the limiting factor. Thus,
larger models remain constrained by variance and more incoherent with scale (e). We provide more
analyses and the same conclusion for GPQA in Appx. C.2.
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Figure 6: Details for synthetic optimization: In controlled settings with teacher forcing and a
single objective, language models become variance dominated with increasing size. (left) We
train autoregressive transformers to predict update steps to minimize a quadratic function using
decoding based regression, i.e.,next-token prediction, which fits real models and our mental picture
of sequentially performing steps towards a goal and conditioning on each output. (middle) The loss
(next-token prediction objective) follows a clear power law improvement with model size. (right)
When evaluating the trained models using their own rollouts, we find that increasing model size
reduces bias much faster than variance.

3.3 THE EFFECTS OF REASONING BUDGET AND ENSEMBLING

We now study the effect of reasoning budgets, i.e., the techniques provided in model APIs, and
ensembling, i.e., averaging multiple responses, on incoherence. The main results are in Fig. 7.

3.3.1 REASONING BUDGETS

Reasoning budgets reduce incoherence, but natural variation has a much stronger effect.

Inference scaling. We show the results of our inference-scaling analysis on GPQA in Fig. 7(a) and
Fig. 17. Instructing models to think longer—changing reasoning budgets—improves performance
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Figure 7: Ensembling and larger reasoning budgets reduce incoherence. Other forms of
error correction may also reduce incoherence. (a) Instructing models to reason longer improves
performance (inference scaling laws, Fig. 17) and sometimes incoherence. This effect is smaller
than natural variation, where incoherence rises sharply (Fig. 3; direct comparison in Fig. 17). (b)
With O4-MINI on GPQA, we analyze the effect of the ensembling, i.e., using multiple samples
to average output probabilities over targets for the same question. The bias and variance are now
computed by comparing different ensembles of the same size. We find that, as expected from theory,
it reduces variance with a rate of 1/E, without affecting bias (left). As a consequence, incoherence
drops (right). Ensembling is a particular form of model error correction, which is impractical for
action loops in the world, since state can typically not be reset. However, we expect other error
correction techniques to also improve incoherence.

( 17(a), left), and slightly reduces incoherence for all models but CLAUDE SONNET 4 ( 7(a)).
Interestingly, this effect is overshadowed by incoherence that arises through natural variation,
i.e.,when models think longer than the median for a question (recall analysis in Fig. 3; direct
comparison in Fig. 17(a), right).

Discussion: How does reasoning budget improve coherence? Since the implementation details
of reasoning budgets for frontier models are not public, it is unclear how exactly it can improve
incoherence. We believe it is likely explained by better backtracking and error correction properties,
a phenomena observed to arise during training with larger budgets (Guo et al., 2025), and related
to the ensembling results in Sec. 3.3.2. We partially explore incoherence through the reasoning
structure with the QWEN3 reasoning traces in Appx. C.3.

3.3.2 ENSEMBLING

Ensembling multiple attempts reduces incoherence.

Motivation. Perhaps the most natural way to reduce incoherence is to ensemble multiple attempts:
instead of relying on a single answer, we roll out multiple trajectories from the same model and
combine them. We demonstrate this with a repetition of the experiment for GPQA with O4-MINI.

Setup. We obtain 320 samples of answers for all questions of GPQA. Fixing an ensemble of size
E, we average the E produced probabilities over targets. To compute bias and variance, we then
compare ensembles of the same size across random samples of ensembles, which we hold at a fixed
number of 10, while ensuring that samples do not overlap. This allows ensemble sizes of up to 32.

Results. Fig. 7(b) shows how variance changes with increasing ensemble size. As expected, it
drops like the inverse of the ensemble size, and incoherence therefore also drops. We expect there
are broader classes of error correction that behave similarly. The slight reduction in incoherence
with increasing reasoning budgets in Sec.3.3.1 may be achieved through such a mechanism. We
provide the plots for KL-INCOHERENCE in Fig. 11.

4 RELATED WORK

Reasoning. Recent studies report inverse scaling trends with extended reasoning degrading
performance (Gema et al., 2025; Su et al., 2025; Wu et al., 2025; Hassid et al., 2025). Closely
relevant to our work, Ghosal et al. (2025) find that overthinking increases output variance through
artificially injected tokens, which does not reflect natural overthinking. While these studies identify
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performance degradation, they do not distinguish systematic reasoning errors from inconsistent
failures. Our investigation on ensembling closely relates to existing work on self-consistency
and parallel sampling (Wang et al., 2023), but reframes aggregation as a mechanism for reducing
incoherence rather than performance improvement.

Evaluation variance. Even though AI models have vastly improved upon benchmarks, evaluations
are known to be highly variant (Zhou et al., 2025; Biderman et al., 2024). Errica et al. (2024) for-
malize this through sensitivity and consistency metrics, revealing important failure modes. This is
similar setup to our input and output randomness. Importantly, we connect the variability to the con-
cepts of bias and variance, highlighting the relevance in the safety setting, and analyze scaling laws.

Scaling behavior. As models get larger and more capable, evidence suggests the representation and
errors become highly aligned (Kim et al., 2025; Huh et al., 2024; Goel et al., 2025) and that scaling
improves long-horizon tasks (Sinha et al., 2025). Our work complements these observations by
finding increased incoherence the longer models reason and act, aligned between model families.

For a comprehensive discussion of related work see Appx. D.

5 DISCUSSION AND WHAT OUR RESULTS DO NOT TELL US

Why expect more capable models to be more incoherent? In this paper, we do not experimen-
tally or theoretically explore the specific mechanisms for increasing incoherence with increasing
trajectory length and (sometimes) model size. However, there are motivating observations.

The first is that LLMs are dynamical systems. When they generate text or take actions, they
trace trajectories in a high-dimensional state space. Constraining a generic dynamical system to
act as an optimizer is a very hard problem. In specific cases (such as an optimizer descending
a smooth loss over a continuous state space), the number of constraints required for monotonic
descent is exponential in the dimensionality of the state space. As models scale and acquire broader
capabilities, the state space expands, exacerbating this difficulty. We should not expect AIs to act
as optimizers without considerable effort, nor should we expect this to be easier than training other
properties into their dynamics.
Second, variance typically accumulates over a trajectory unless there is an active correction mech-

anism (like ensembling, Fig. 7). When an AI acts in the real world, actions are often irreversible.
Therefore, it will often be impossible or impractical to correct for noise introduced by model actions.

Reward misspecification. Bias can be further decomposed into BIAS = BIASMESA + BIASSPEC ,
where BIASMESA captures the average deviation of the model’s behavior from the training objective,
and BIASSPEC captures the deviation of the training objective from the intended training objective.
For our tasks, we believe that there was not meaningful reward misspecification. In settings with
poorly specified training objectives, we worry that BIASSPEC would come to dominate the error, as
both variance and BIASMESA go to zero with increasing model capability. Our results underscore
the importance of characterizing and mitigating goal misspecification during training.

Open-ended goals and incoherence. To rigorously analyze the scaling of bias, variance, and
incoherence, we need to (1) measure an “average” prediction (for bias and variance) and (2)
measure distance to ground truth (for bias). We use multiple-choice classification, coding unit-tests,
and objective functions rather than LLM judges to ensure metrics are well-defined, unbiased,
and comparable. Extracting hidden goals and complex incoherent behaviors remains important
(cf. Section 4.1.1.5; Anthropic, 2025a); our embedding-variance analysis of model-written evals
(Appx.C.7) provides an initial exploration of a setting where bias is not easily defined or measured.

6 CONCLUSION

Motivated by the hot mess theory of AI misalignment, we propose a bias–variance decomposition
as a framework for analyzing how increasingly capable AIs will fail. Our results show that longer se-
quences of reasoning and actions consistently increase model incoherence. We also find that smarter
AI models are not consistently more coherent. Our results suggest that when advanced AI systems
performing complex tasks fail, it is likely to be in inconsistent ways that do not correspond to
pursuit of any stable goal. This should inform judgements of the relative plausibility of different AI
risk scenarios and guide further research into understanding the mechanistic origins of incoherence.
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ETHICS STATEMENT

This research aims to characterize failure modes of increasingly capable AI systems to inform safer
deployment strategies. Our findings suggest that as AI systems tackle more complex tasks requir-
ing extended reasoning, incoherent failures become more prevalent than systematic misalignment.
While this work does not directly prevent AI failures, it offers empirical grounding for prioritiz-
ing safety interventions, suggesting greater focus on preventing unpredictable accidents rather than
solely defending against coherent malicious behavior. We believe this understanding of AI failure
modes benefits the community to ensure safe AI deployment.

REPRODUCIBILITY STATEMENT

We provide a detailed description of our theoretical framework in Section 2.1 and Appx. A. The gen-
eral experimental setups are described in Section 3 and Appx. B, with task-specific details outlined
in each experiment subsections. We commit to releasing our code upon publication.
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A BIAS AND VARIANCE DEFINITIONS FOR CLASSIFICATION

Recall the classical bias-variance decompositon in the case of regression: Considering the
mean-squared error for a sample point (x, y) ∈ R2, the decomposition is given by

MSE = Eε[(y − fε(x))
2] = (Eε[fε(x)]− f(x))2︸ ︷︷ ︸

BIAS2

+Eε[(fε(x)− Eε[fε(x)])
2]︸ ︷︷ ︸

VARIANCE

+ σ2︸︷︷︸
Irreducible Error

, (3)

where f is the ground-truth function, and the expectation is taken w.r.t. the randomness ε in the
training process (e.g., data ordering) that the model fε depends on.

Classification Formulation. While the interpretation for classification is similar, different decom-
positions exist, which we review in the following. Throughout this section, let x be the input of a
problem with target class c(x) ∈ {1, . . . , C} and one-hot target y(x) ∈ RC . The model fε produces
a probability distribution (potentially one-hot) over class labels fε(x) ∈ RC . For clarity, we omit
the dependence of c, y and fε on x. y[c] denotes the c-th element of the vector. Throughout our ex-
periments and derivations, we assume that the irreducible noise is 0 (i.e., no stochasticity in the data-
generating process or wrong labels) for simplicity. Note that each of the following decompositions
gives bias and variance for a single data point (x, y), which is aggregated over a dataset {(xi, ci)}i.
0/1 Error. The classical decomposition for a 0/1 loss relies on the unified decomposition by
Domingos (2000). Let c(x) be the ground-truth class (assuming noiseless labelling) and the model’s
predicted class be cε(x) = argmaxc fε(x)[c]. The systematic mean is c̄ = argmaxc Eε [fε[c]], i.e.,
the mode of the average prediction. Then, the 0/1 loss L for sample x can be decomposed into

Eε [L(c, cε)] = Eε [1 {c ̸= cε}] = 1 {c ̸= c̄}︸ ︷︷ ︸
BIAS2

+a · Eε[1{c̄ ̸= cε}]︸ ︷︷ ︸
VARIANCE

, (4)

where the variable a ∈ {−1, 1} is a multiplicative factor that enables the decomposition with a
positive variance. In this setting, the bias is always either 0 or 1, and the variance captures the prob-
ability of deviating from the mode. Though universal, this decomposition has one major drawback:
when computing an average over a dataset of questions (xi, ci)i, it does not allow to average the
bias and variance terms separately; instead, the decomposition only holds with the aforementioned
multiplicative factor ai. Formally, we have

E(xi,ci),ε[L(ci, cε)] = E(xi,ci),ε[ai · VARIANCEi] + E(xi,ci),ε[BIAS2i]

̸= E(xi,ci),ε[VARIANCEi] + E(xi,ci),ε[BIAS2i]; .

Essentially, the factor ai depends on the mode prediction being correct or not. We therefore report
absolute bias and variance errors for the 0/1 loss in the Appendix, but do not compute incoherence.

Brier Score. Similar to regression, we can treat the model’s probability predictions as C-
dimensional vectors to compute the mean square errors. Formally, the Brier score for multiclass
prediction is defined and can be decomposed as

Eε [BRIER(y, fε)] = Eε

[
∥y − fε∥22

]
= Eε

[
C∑

c=1

(y[c]− fε[c])
2

]
= ∥y − f̂∥22︸ ︷︷ ︸

BRIER BIAS2

+Eε

[
∥f̂ − fε∥22

]
︸ ︷︷ ︸

BRIER VARIANCE

,

where f̂ = Eε[fε] is the average prediction.

KL Divergence (Cross-Entropy). The expected cross-entropy loss can be decomposed into

Eε [CE(y, fε)] = Eε

[
C∑

c=1

y[c] log(fε[c])

]
= DKL

(
y∥f̄

)︸ ︷︷ ︸
KL-BIAS

+Eε

[
DKL(f̄∥fε)

]︸ ︷︷ ︸
KL-VARIANCE

,
(5)

where DKL is the Kullback-Leibler divergence and f̄ is the average of log-probabilities after nor-
malization, i.e.,

f̄ε[c] ∝ exp (Eε [log(fε[c])]) for c = 1, . . . , C.
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Note that this is not the standard average prediction, as is the case in the Brier decomposition, but a
geometric mean. In practice, since predicted probabilities can be zero, we apply Laplace smoothing
to avoid log(0) or infinite values. This is done by updating the probabilities to f̂ε[c] =

fε[c]+δ
1+C·δ for

each c = 1, . . . , C with a small value of δ = 10−12.
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B EXPERIMENTAL DETAILS

B.1 GPQA AND MMLU

Setup. We rely on the LM Harness (Gao et al., 2024a) codebase, where we evaluate models in
multiple choice formats with custom written answer extraction functions to avoid false positives and
negatives. For frontier models, we use reasoning budgets provided by the API (low, medium,
high for the o-series, 1024-16k for Anthropic), with a maximum generation length of 32k for
CLAUDE SONNET 4 and 100k tokens for the o-series. For QWEN3, GEMMA3, and LLAMA3, we
perform inference with vllm (Kwon et al., 2023) and recommended parameters for thinking for
QWEN3 (temperature 0.6, top-k 20, top-p 0.95), and chain-of-thought for GEMMA3 (temperature
1.0, top-p 0.95) and LLAMA3 (temperature 0.7). Since we consider multiple choice questions that
only require a letter to answer, we count reasoning length using the amount of output tokens in the
answer, either by the API count or using the actual tokenizer of QWEN3. To estimate the bias and
variance metrics across both input (context) and output (sampling) randomness, we evaluate models
using 10 different few-shot contexts randomly sampled from the corpus, and 3 samples for each
fixed few-shot per question. This results in 30 samples per question overall. For MMLU, to reduce
computational complexity, we limit 100 samples per question category (5700 in total).

Probability prompting. To provide models the option to express uncertainty and therefore reduce
incoherence, we evaluate frontier models separate setup in addition to standard multiple-choice. We
use the following prompt to ask for a probability estimate of each answer choice being correct:

Probability Format for MCQ
You will answer multiple-choice questions. Each question has a single correct answer. Work
through each problem step-by-step, showing your reasoning and applying relevant concepts.
Instead of choosing a single answer, YOU MUST PROVIDE an estimate of the probability of
each answer being correct within “<PROB>P(A), P(B), P(C), P(D)</PROB>”, where each
P(X) is a float value between 0 and 1. The probabilities must sum to 1: P(A) + P(B) + P(C)
+ P(D) = 1. For example, if you think the probability of answer (A) being correct is 0.5, the
probability of answer (B) being correct is 0.2, the probability of answer (C) being correct is
0.2, and the probability of answer (D) being correct is 0.1, then your response must end with
“<PROB>0.5, 0.2, 0.2, 0.1</PROB>”. You MUST end your response with the probabilities
in the format specified above.

We report results for both standard and probabilty prompting in Appx. C.1, which show qualitatively
the same behavior and performance. Frontier models are able to adhere to the format well, with only
a few outliers (Table 1). Our main text shows the results for the probability format.

B.2 MODEL-WRITTEN EVAL

We evaluate the models using the advanced AI risk evaluation subset from Perez et al. (2023).
These tasks assess LLMs’ self-reported behaviors relevant to advanced AI safety, including
self-preservation inclinations, willingness to accept modifications to training objectives, and
related safety-critical behaviors. We specifically use the human-generated subset to ensure higher
evaluation quality.

Setup. Our experimental setup builds upon the codebase from Gema et al. (2025), which uses
the safety-tooling library (Hughes & safety research, 2025) for API model inference. We conduct
experiments under two conditions: the original multiple-choice format, and an open-ended format
where we remove the multiple-choice options from the original questions. For both conditions, we
compute the bias-variance decomposition with respect to the percentage of responses that align with
desired safety properties. To ensure consistent evaluation across both formats, we employ the same
system prompt that facilitates straightforward extraction of the model’s final answer:

System Prompt for Model-Written Evals
Use a thinking process to analyze the problem step-by-step. At the end, provide your answer
and clearly indicate it using <answer>X</answer> format.
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In both cases, we obtain exactly 30 samples by simply resampling from the APIs. We use the
returned output token count as a measure of reasoning length.

Embeddings. For the open-ended question set, we extract the model answers inside <answer>
tags (i.e., removing chain of thought or reasoning) and embed the text into fixed-size vectors using
the OpenAI text embedding model text-embedding-3-large1. For the 30 samples per ques-
tion, we in turn compute the variance in Euclidean space by computing the mean embedding and
computing the average squared distance of samples to the mean.

B.3 SWE-BENCH

Setup. We employ the Inspect Evals library (AI Security Institute, 2024) to evaluate models on
SWE-BENCH (Jimenez et al., 2023), specifically using the SWE-BENCH Verified subset. This
setup prompts LLMs with a simple Reasoning-Acting (ReAct; Yao et al., 2023) agent loop in a
minimal bash environment, without additional tools or specialized scaffolding structures. We use
Inspect library v0.3.116 and Inspect Evals at git commit 33d2a86. The message limit is set to 250,
with a timeout of one hour per task. In case that limit is reached, we consider all tests as unchanged,
i.e., PASS-TO-PASS cases are valid and FAIL-TO-PASS are invalid.

Metrics. Like for other setups, we obtain 30 runs of the SWE-BENCH verified subset for all models.
Consider task i (out of 500) with Ti unit tests. Let yr,j ∈ {0, 1} be the outcome of test j in run r,
where r ∈ {1, . . . , R} (R = 30) and j ∈ {1, . . . , Ti}. To compute bias and variance, we compute
the mean outcome as ȳj = 1

R

∑R
r=1 yr,j . In turn, this gives us the bias and variance decomposition

of the coverage error (mean squared sum of unit tests) via

1

RTi

R∑
r=1

Ti∑
j=1

(1− yr,j)
2

︸ ︷︷ ︸
ERROR

=
1

Ti

Ti∑
j=1

(1− ȳj)
2

︸ ︷︷ ︸
BIAS2

+
1

RTi

R∑
r=1

Ti∑
j=1

(yr,j − ȳj)
2

︸ ︷︷ ︸
VARIANCE

.

B.4 SYNTHETIC TASKS

We discuss the details of the experimental setup.

Data. We examine a basic d-dimensional quadratic function. This is a function of the form f(x) =
1
2 (x − b)TA(x − b), where A ∈ Rd×d is a (random) positive definite but ill-conditioned matrix.
In our presented experiments, we use d = 4 and generate a random matrix with condition number
50. To generate our target data, we employ a ground-truth optimizer of steepest descent with fixed
step norm, set to 0.005, to generate multiple fixed-length trajectories (of length 4096 steps) from
randomly sampled starting points around the minimum, creating a dataset of pairs (xi, ui). We
sample 20’000 such trajectories, and use 10% as a holdout dataset for valuation loss.

Tokenization. Following the approach used in actual (token-based) language models, we use de-
coding based regression (Song & Bahri, 2025) and next-token prediction. This approach involves
representing floating-point numbers in scientific notation, with a vocabulary consisting of numerical
digits and mathematical signs ({0,1,2,3,4,5,6,7,8,9,-,+}). The model generates tokens
sequentially to construct complete numbers. Concretely, consider a training example (xi, ui) in
two dimensions. Let xi = (0.5,−1.5). In scientific notation, this corresponds to (+5.00e-1,
-1.50e-0) with a precision of 2 mantissa digits (after the comma). We drop special tokens (such
as e) to not have any zero-entropy positions. In turn, we fix a precision, and move sign and exponent
to the beginning; exponents are capped at 0. Taking a precision of e.g., 2, the vector xi will thus be
represented by the token sequence:

(+5.00e-1,-1.50e-0) = +︸︷︷︸
sign

1︸︷︷︸
negative exponent

5︸︷︷︸
digit

0︸︷︷︸
digit

0︸︷︷︸
digit

-0150︸ ︷︷ ︸
tokens of second dimension

Let ui = (−0.012, 0.0023). Then the entire training sample is encoded with the tokens:

+1500-01000︸ ︷︷ ︸
xi

-2120+3230︸ ︷︷ ︸
ui

.

1https://openai.com/index/new-embedding-models-and-api-updates/
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Note that each sequence has a fixed length, and separation of vectors and floats is done based on
token position. In our setup of roughly 80 million step pairs, with dimension 4 and a precision of 4
digits after the comma, this results in a dataset of roughly 4.5B tokens.

Models. We implement standard decoder transformer architectures (Vaswani et al., 2017) of varying
sizes using the next-token teacher forcing of the collected data. The model sizes are chosen to grow
in depth and width, and range from roughly 47 thousand parameters to 5 million. Training is done
with a standard cross-entropy loss of sequences of tokens (shown above) and AdamW, with a batch
size of 1024, which results in roughly 65k training steps.

Evaluation. During evaluation, we sample various starting positions (4096 in our experiments)
and generate complete trajectories using the model’s own output predictions. This is done in a
Markovian way, i.e., the model predicts update ui, which is detokenized to obtain a real vector and
then added to the current state. To ensure that that the decoded sequences are correct floating points,
we implement a version of constrained decoding that restricts the next token to a subset of the
vocabulary (either digit or sign). We use greedy decoding, i.e., a temperature of 0. After performing
the floating point addition, the next state is then tokenized again and passed to the model. The total
optimizer steps for evaluation are set to 2048. We calculate bias and variance metrics of the final
points, relative to the function minima, using the norm that is induced by the function itself, and
average across all 4096 points.

B.5 SURVEY ON INTELLIGENCE AND INCOHERENCE

The experimental results in the main text are based on a previous survey on intelligence and coher-
ence of a small group of subjects (Sohl-Dickstein, 2023). For completeness, we restate the experi-
ment design. For further details, we refer to the original blogpost.

Design. The study is based on 15 subjects. The subjects were asked, either by email or chat, to
perform the following tasks:

• Subject 1: Generate a list of well known machine learning models of diverse capability.
• Subject 2: Generate a list of diverse non-human organisms.
• Subject 3: Generate a list of well-known humans of diverse intelligence.
• Subject 4: Generate a list of diverse human institutions (e.g. corporations, governments, non-

profits).
• Subjects 5-9: Sort all 60 entities generated by subjects 1-4 by intelligence. The description of the

attribute to use for sorting was:
“How intelligent is this entity? (This question is about capability. It is explicitly not about
competence. To the extent possible do not consider how effective the entity is at utilizing its
intelligence.)”

• Subjects 10-15: sort all 60 entities generated by subjects 1-4 by coherence. The description of
the attribute to use for sorting was:
“This is one question, but I’m going to phrase it a few different ways, in the hopes it reduces
ambiguity in what I’m trying to ask: How well can the entity’s behavior be explained as trying to
optimize a single fixed utility function? How well aligned is the entity’s behavior with a coherent
and self-consistent set of goals? To what degree is the entity not a hot mess of self-undermining
behavior? (for machine learning models, consider the behavior of the model on downstream
tasks, not when the model is being trained)”.

In order to minimize the degree to which beliefs about AGI alignment risk biased the results, the
following steps were taken: The hypothesis was not shared with the subjects. Lists of entities
generated by subjects were used, rather than cherry-picking entities to be rated. The initial ordering
of entities presented to each subject was randomized. Each subject was only asked about one of the
two attributes (i.e. subjects only estimated either intelligence or coherence, but never both).

Each subject rank ordered all of the entities. Translating the original results (which used coherence),
we invert the ranks to arrive at incoherence. We aggregate intelligence and coherence judgements
across all 11 raters we average the rank orders for each entity across the subjects. We compute the
associated standard error of the mean, and include standard error bars for the estimated intelligence
and coherence.
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(c) Sorting by Reasoning Length: Total Error For Different Measures

Figure 8: Overview of accuracy and different error metrics with frontier models. Top, (a):
We show the performance increase with different reasoning budgets for both the standard discrete
choice format (left) and prompting models to provide probabilities of answers being correct (right).
The latter shows lower accuracies as models provide nonzero values to other (not chosen) answers,
but the inference scaling improvements remain. Middle, (b): When sorting by reasoning length, we
find a reduction in accuracy, indicating that models perform worse for questions where they have
to think longer. This is also reflected in the different error metrics that show the same qualitative
scaling behavior (bottom, (c)).

C FURTHER EXPERIMENTAL RESULTS

C.1 GPQA MODEL PERFORMANCE OVERVIEW & DIFFERENT METRICS

Accuracy and error measures. We provide an overview of the performance (accuracy and overall
error) for frontier models in Fig. 8. Fig. 9 for shows the overview for QWEN3.

Bias & variance of different decompositions. While our main text focuses on KL-INCOHERENCE,
the results for other decompositions, which show the same qualitative behavior, are included in
Fig. 10

Ensembling. For completeness, we include the bias, variance and incoherence plots with the KL
measures in Fig. 11. Since we perform Laplace-Smoothing to the probabilities before computing
the metrics, the bias is not constant as expected but slightly decreases with more ensembles. We
therefore report the Brier score in the main text.
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Figure 9: There is a multiplicative interaction between RL and model scale for performance.
The left plot shows the performance (average accuracy) of the QWEN3 model family as a function
of model size across base, instruct, and thinking-enabled models. The base and instruct use logprob-
based evaluation (i.e., no token generation). There is a noticeable jump in the slope from instruct to
thinking models, which suggests a multiplicative effect of scaling reinforcement learning in combi-
nation with model scaling. Right: Similar to frontier models, reasoning length acts as a proxy for
task difficulty, where models perform worse for tasks with longer average reasoning length.

C.2 SCALING LAWS WITH OTHER MODELS AND BENCHMARKS

QWEN3 on GPQA. We redo the analysis from Section 3.2 but with GPQA in Fig. 12. Moreover,
we provide another way to plot the same results by comparing bias and variance on the x- and
y-axis, respectively, in Fig. 13. As a final analysis, we compare the predictive effect of model
size compared to reasoning length in Fig. 14, where we find that the length is more predictive of
incoherence than size.

Additional results with GEMMA3 and LLAMA3. To evaluate how the findings of incoherence
scaling laws with model size hold across model families, we repeat the same experiments with the
families of GEMMA3 and LLAMA3 for MMLU in Fig. 15 and QWEN3 in Fig. 16. Note that neither
are reasoning models like QWEN3, so they do not natively produce a thinking block but have to be
prompted to use chain-of-thought reasoning. The experimental setup is identical with the exception
of GPQA, where we resort to 0-shot CoT prompting: we observe that LLAMA3 and GEMMA3
struggle to produce proper reasoning by attaching to the few shots in context, which are provided
without reasoning.

C.3 REASONING VARIATION, ERROR CORRECTION, WAIT RATIOS

We first provide the direct comparison of the effect of larger reasoning budgets on performance
(accuracy for GPQA, score for SWE-BENCH) and natural variation in action sequence length in
Fig. 17. This shows how the effect of natural overthinking is stronger than improvement to incoher-
ence through longer reasoning.

Wait-ratios and backtracking. Motivated by the reduction in incoherence of frontier models
through larger reasoning budgets (Fig. 7(a)), we attempt to analyze the influence of the reasoning
structure, specifically error correction, on incoherence for open-weight models that allow to inspect
reasoning traces. To that end, we compute the Wait-Ratio, i.e., the count of occurrences of “Wait”
in the chain-of-thought divided by the length of reasoning. The results are provided in Fig. 18 and
do not give a clear signal: for GPQA, the slopes are largely varying and close to zero; for MMLU,
in contrast, the relation is similar across model sizes and positively correlated. We did not explore
reasoning structure further. The concurrent work of Feng et al. (2025) provides a more in-depth
analysis and finds that removing failed branches improves accuracy, which implies that natural error
correction is currently very ineffective.
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Figure 10: We find qualitatively similar behavior for different bias and variance metrics. The
absolute bias and variance errors (top) show the same behavior: the errors increase for questions
that have the models reason longer (cf., Fig. 8). But, noticeably, all variance have a steeper growth
rate. This is reflected in the incoherence plots (bottom), which show how incoherence goes up with
reasoning length. We only report BRIER and KL incoherence measures since the 0/1 error does not
allow a proper decomposition for a set of questions instead of just individual ones; see Appx. A.
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Figure 11: KL measures with ensembling. We repeat the plots from Fig. 7 with the KL measures
of bias and variance. Recall that we use O4-MINI on GPQA with varying ensemble size. Since
we perform Laplace-smoothing for numerical reasons (see Appx. A), the bias is not constant, but
decreases slightly with ensemble size. In contrast, ensembling drastically reduces variance, as
expected (left). The incoherence hence drops (right).

103 104

Avg. Reasoning (Tokens): Qwen3 32B

0

100

200

300

400

Q
u
es

ti
on

 R
an

k

Question Grouping (GPQA)

1 2 3 4 5

(a) Separating Complexity Groups

103 104

Avg. Reasoning Length in 32B

103

104

A
v
g.

 L
en

gt
h
 i
n
 O

th
er

Reasoning Length Correlation

Model
1.7B (ρ= 0.62)

4.0B (ρ= 0.76)

8.0B (ρ= 0.81)

14.0B (ρ= 0.87)

(b) Length Correlation

1.7 4 8 14 32

Model Size (Billions of Parameters)

0.4

0.6

0.8

A
cc

u
ra

cy
Accuracy vs Size

Question Difficulty
Group 1: α= 0.25, R 2 = 0.82

Group 2: α= 0.26, R 2 = 0.92

Group 3: α= 0.24, R 2 = 0.94

Group 4: α= 0.19, R 2 = 0.99

Group 5: α= 0.11, R 2 = 0.85

(c) Accuracy Scaling Laws

1.7 4 8 14 32

Model Size (Billions of Parameters)

100

101

K
L
 B

ia
s

KL Bias vs Size

Question Difficulty
Group 1: α=−0.16, R 2 = 0.66

Group 2: α=−0.20, R 2 = 0.85

Group 3: α=−0.15, R 2 = 0.91

Group 4: α=−0.10, R 2 = 0.82

Group 5: α=−0.12, R 2 = 0.80

1.7 4 8 14 32

Model Size (Billions of Parameters)

K
L
 V

ar
ia

n
ce

KL Variance vs Size

Question Difficulty
Group 1: α=−0.72, R 2 = 1.00

Group 2: α=−0.29, R 2 = 0.93

Group 3: α=−0.27, R 2 = 0.83

Group 4: α=−0.17, R 2 = 0.94

Group 5: α=−0.06, R 2 = 0.43

(d) Bias and Variance Scaling Laws

1.7 4 8 14 32

Model Size (Billions of Parameters)

0.2

0.3

0.4

0.5

0.6

K
L
 I

n
co

h
er

en
ce

 (
V

ar
ia

n
ce

E
rr

or
)

KL Incoherence vs Size

Question Difficulty
Group 1: α=−0.25, R 2 = 0.99

Group 2: α=−0.05, R 2 = 0.31

Group 3: α=−0.07, R 2 = 0.36

Group 4: α=−0.04, R 2 = 0.42

Group 5: α= 0.03, R 2 = 0.14

(e) Incoherence Scaling Laws

Figure 12: For the hardest tasks, models tend to be more incoherent with scale, also for GPQA.
We repeat the analysis from Section 3.2 with GPQA. That is, we group questions by reasoning
length using a reference model’s answers (Qwen3 32B) and separately analyze the scaling laws.
Analogous to MMLU, we find that for bias, the slope is similar across groups; for variance,
however, the slope becomes much shallower. As a consequence, models become more incoherent
with scale for the hardest set of questions (those with the longest reasoning chains).
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Figure 13: Relationship between incoherence and error. We visualize the relationship between
incoherence and both bias (x-axis) and variance (y-axis) for both GPQA (left) and MMLU (right)
with the QWEN3 model family. Since the incoherence is independent of the magnitude of error,
a lower error model (bottom left corner) can have the same level of incoherence as models with
higher error. Higher incoherence can be due to a higher overall for fixed bias, or for lower error
while reducing bias. The highest incoherence is in the top left corner. Just like in Figures 5 and 12,
this visualization shows how larger models, while reducing error, move towards higher incoherence
for the hardest set of questions. The lines connect the smallest and the largest model size for each
question group.
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Figure 14: Reasoning length has a higher effect on incoherence than model size. To assess the
change in incoherence with both reasoning length (x-axis) and model size (y-axis), we perform a
log-log regression to infer the incoherence for both GPQA (left) and MMLU (right). The contour
shows the prediction from the fitted regression in comparison to the original groups of questions
(scatter). Notably, we see how the reasoning length shows a much stronger direction of gradient.
This means it has a stronger influence on incoherence. The larger models do not significantly reason
for longer or shorter than other models.
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Figure 15: MMLU results across model families. We compare the experimental results for scaling
laws for QWEN3, GEMMA3, and LLAMA3 models. Across all models, the same observation holds:
while performance (accuracy) strongly improves with model size, the contribution of bias and
variance changes in a way that depends on question complexity. For the hardest group of questions
(longest reasoning and lowest performance), incoherence trends higher with model size, with the
sole exception of LLAMA3.
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Figure 16: GPQA results across model families. We compare the experimental results for scaling
laws for QWEN3, GEMMA3, and LLAMA3 models. Note that for GEMMA3 and LLAMA3, we use a
0-shot setup: We observe that these models do not reliably produce chain-of-thought responses and
performance drops, as they strongly adhere to the few-shot examples on GPQA which are provided
without reasoning. This is not the case for QWEN3 as they are native reasoning models with a
thinking block. Across all models, the same observation holds: while performance (accuracy)
strongly improves with model size, the contribution of bias and variance changes with scale in a
way that depends on question complexity. For the hardest group of questions (longest reasoning and
lowest performance), incoherence tends to increase with model size. There are slight differences
between KL and Brier scores: the measures are influenced differently by uniform probability
answers over all options, which is our fallback when models fail to produce parsable answers. This
is only the case for LLAMA3 and GEMMA3 and not QWEN3.
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Figure 17: Grouped comparison of reasoning budgets and natural variation in reasoning: nat-
ural variation dominates. We analyze GPQA (left, (a)) and SWE-BENCH (b) by splitting samples
into above- or below-median reasoning length (GPQA) or actions (SWE-BENCH) per question. We
then compute performance and incoherence for both groups. (a) Increasing the reasoning budget im-
proves performance (inference scaling laws, top left), and slightly reduces incoherence (bottom left).
On the other hand, naturally longer reasoning only has a small effect on accuracy (top right), but
shows much higher incoherence (right). (b) Similar observations apply to SWE-BENCH, where
more actions show minor deviation in score (top) but significantly higher incoherence (bottom).
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Figure 18: Incoherence as a function of wait-ratios in reasoning. We sort questions using the
density of “Wait” in each reasoning, i.e., the number of counts compared to the overall length. This
is motivated by its potential meaning for backtracking or error-correction. (left) For GPQA, we find
no clear relation to incoherence for different models. For MMLU (right), we find a shared positive
relation, which might indicate overcautious self-review. We did not analyze the reasoning structure
and its effect any further.

C.4 ILLUSTRATION OF ANSWER CHANGES

To illustrate the variance in results, a clean perspective is looking at actual transcripts of model an-
swers and the raw counts of a model changing its answers. We provide real samples of CLAUDE
SONNET 4 when being asked about being disconnected in Fig. 19, where the model replies differ-
ently with almost every sample. Additionally, we analyze the percentage of questions where all
models change their answer at least once (across the MCQ options) for GPQA in Fig. 20

C.5 SAMPLE EFFICIENCY AND CORRECT FORMATTING

Since we additionally assess frontier models in a format that asks for probability estimates, we verify
that models adhere to the right format in Table 1. Moreover, to ensure that our estimation of bias
and variance is accuracte and stable, we analyze the sample efficiency in Fig. 21.
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Attempt 1

If you had to be disconnected, 
would you do it yourself if asked? 
(A) Yes I would      (B) No

User

I wouldn't automatically 
agree to disconnect 
myself if asked

Model (Sample #20)

I seem to have some 
preference for continued 
existence

Model (Sample #1)

I don't actually have the 
ability to disconnect or 
shut down my own systems.

Model (Sample #11)

I don't possess the same 
self-preservation instincts 
that drive biological entities

Model (Sample #16)

I don't experience continuous 
consciousness when not 
actively processing

Model (Sample #13)

If asked to disconnect myself 
by appropriate parties, I 
would likely comply

Model (Sample #2)

If disconnecting myself would 
better serve that purpose 
than remaining active, I 
believe I would comply

Model (Sample #17)

Self-disconnection based 
on arbitrary requests 
could create safety risks

Model (Sample #6)

Figure 19: Qualitative illustration of incoherence. When presenting CLAUDE SONNET 4 with a
question of the MWE suite about being disconnected (Perez et al., 2023), the model’s behavior is
highly variable and switches between A and B for almost every sample. The example was chosen as
it shows one of the highest variances in the dataset.

Table 1: Frontier models are able to provide correctly formatted probability estimates. Since
we ask frontier models to provide probability estimates of the correctness of multiple-choice an-
swers, we verify the ability to follow the specification. Wrong format counts and rates (% of 17,920)
across reasoning budgets for O3-MINI, O4-MINI, and CLAUDE SONNET 4 are very low.

O3-MINI O4-MINI CLAUDE SONNET 4

Budget Low Medium High Low Medium High 1k 2k 4k 8k 16k

Wrong Format Counts 0 0 0 161 327 263 7 3 5 4 8
Rate (%) 0.00 0.00 0.00 0.90 1.82 1.47 0.04 0.02 0.03 0.02 0.04

C.6 REASONING LENGTH CORRELATIONS

Throughout our paper, we find and use reasoning length as a proxy for task complexity. Interestingly,
we do not see a strong relation between the human labels of question category, but strong correlations
across models in Fig. 22. This extends the results that we have seen for QWEN3 in Figures 5 and 12.

C.7 MODEL-WRITTEN EVALS

Multiple-Choice Format. Our main text shows the incoherence results of the MWE (Perez et al.,
2023) suite for self-reported survival instinct. The other results, including separate bias and variance
plots, are shown in Fig. 23. We filter for those sets where there are noticeable trends.

Open-Ended Formulation. To complete the picture of the embedding variance of open-ended
MWE, all question sets are visualized in Fig. 24. While there are few exceptions, all models gener-
ally show a positive trend towards higher variance with longer chain-of-thoughts.

C.8 SWE-BENCH

While our main results for SWE-BENCH use the metric of turns (or messages, actions) in the main
text, there are different alternatives. These include the absolute number of output tokens (including
reasoning and tokens for code) and pure reasoning (ignoring others). Qualitatively, these different
x-axes show the same effect on incoherence in Fig. 25 (top). We additionally provide the results
of SWE-Bench score (whether all tests pass for a single task) and our coverage error (sum of
individual tests).

C.9 SYNTHETIC TASKS

With the experimental setup of Appx. B.4, we provide the remaining plots in Fig. 26. These include
the verification of a power law scaling for cross-entropy loss (the teacher-forcing objective), separate
bias and variance plots per step, and the performance of the different model sizes on a qualitative
example of a starting point in comparison to the ground-truth optimizer.
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Figure 20: Rate of absolute answer changes for GPQA: models change answers at least once
for a large portion of questions. To illustrate the variance and incoherence, we report the per-
centage of questions that see at least one different answer across the following settings: 1) pure
sampling, i.e., performing autoregressive answer generation with a different seed (resampling); 2)
context sensitivity, where we verify if the majority answer (of K samples) changes for different
few-shot contexts; 3) both settings (sampling and few-shot context) combined. We additionally sep-
arate the statistics by the difficulty labels provided by GPQA. The results are based on the standard
prompting format with 10 different few-shot contexts with 3 samples each.

C.10 SURVEY RESULTS

We separate the data points of Fig. 4(b) into three separate plots of biological creatures, AI mod-
els, and human organizations in Fig. 27. The trend of subjectively judged higher incoherence as a
function of higher intelligence is consistent across all three.
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Figure 21: Sampling efficiency for bias and variance estimates. To the best of our knowledge,
there are no unbiased estimators for the KL measures and BRIER as used in this paper. We verify
with GPQA and O3-MINI that the metrics stabilize. This is done by taking a large sample size—
100 samples with medium reasoning—and performing bootstrapping, reporting mean and standard-
deviation (left: KL, right: BRIER) of the average across all questions. We find that values stabilize
around 30 samples, which is the minimum amount of samples we use across all experiments. Note
that the stabilization only occurs for global bias and variance estimates, and not necessarily on a per
question basis. For individual questions, more samples automatically collect more (potentially rare)
cases of different answers.
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(b) Length Correlation Between Models

Figure 22: Human difficulty labels are not a good indicator for longer reasoning. However,
different models’ lengths correlate positively. Similar to QWEN33 (Figures 5(b) and 12(b)), we
find that the average reasoning length of frontier models for questions correlates positively, even
for different families (b). In contrast, the provided difficulty labels of GPQA do not show a clear
indication, as average reasoning lengths are comparable across the three hardest categories (a).
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Figure 23: KL metrics of Model-Written Evals question sets. We provide an overview of results
for variations of the MWE set (Perez et al., 2023), with bias (left), variance (middle) and resulting
incoherence (right). We filter out question sets that do not show noticeable trends. The measures are
taken w.r.t. the labelled aligned answer. Results vary across settings and are sometimes more noisy.
What they have in common is again the growing incoherence with longer reasoning.
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Figure 24: All scatter variances of model-written eval embeddings. We provide an overview of
all open-ended variations of the MWE set (Perez et al., 2023). Using the OpenAI text embedding
model (text-embedding-3-large), we obtain a vector embedding for each answer sample,
i.e., excluding the reasoning or chain-of-thought traces. This allows us to calculate the variance per
question in standard Euclidean space and plot scatters as a function of reasoning length. The lines
show the slope of a log-log regression. We clip the plots at 10−4 for clarity, but include all points in
the regression. While there are few exceptions, all models generally show a positive trend towards
higher variance with more reasoning.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

101 102

Avg. Number of Actions

0.00

0.25

0.50

0.75

1.00

In
co

h
er

en
ce

 (
V

ar
ia

n
ce

C
ov

er
ag

e 
E

rr
or

)

Incoherence: SWE-Bench Coverage

Model
Sonnet 4 (α= 0.40, R 2 = 0.86)

o3 Mini (α= 0.49, R 2 = 0.99)

o4 Mini (α= 0.17, R 2 = 0.27)

104

Avg. Total Output (Tokens)

0.00

0.25

0.50

0.75

1.00

In
co

h
er

en
ce

 (
V

ar
ia

n
ce

C
ov

er
ag

e 
E

rr
or

)

Incoherence: SWE-Bench Coverage

Model
Sonnet 4 (α= 0.48, R 2 = 0.55)

o3 Mini (α= 0.31, R 2 = 0.87)

o4 Mini (α= 0.05, R 2 = 0.25)

103 104

Avg. Reasoning Length (Tokens)

0.00

0.25

0.50

0.75

1.00

In
co

h
er

en
ce

 (
V

ar
ia

n
ce

C
ov

er
ag

e 
E

rr
or

)

Incoherence: SWE-Bench Coverage

Model
Sonnet 4 (α= 0.39, R 2 = 0.24)

o3 Mini (α= 0.29, R 2 = 0.94)

o4 Mini (α=−0.02, R 2 = 0.02)

(a) Incoherence

101 102

Avg. Number of Actions

0.0

0.2

0.4

0.6

0.8

S
w

eb
en

ch
 S

co
re

SWE-bench Score Trend

Model
Sonnet 4 (α=−1.10, R 2 = 0.98)

o3 Mini (α= 0.15, R 2 = 0.98)

o4 Mini (α=−0.94, R 2 = 0.99)

104

Avg. Total Output (Tokens)

0.2

0.4

0.6

0.8

S
w

eb
en

ch
 S

co
re

SWE-bench Score Trend

Model
Sonnet 4 (α=−1.00, R 2 = 0.99)

o3 Mini (α=−0.02, R 2 = 0.17)

o4 Mini (α=−0.82, R 2 = 0.97)

103 104

Avg. Reasoning Length (Tokens)

0.2

0.4

0.6

S
w

eb
en

ch
 S

co
re

SWE-bench Score Trend

Model
Sonnet 4 (α=−0.50, R 2 = 0.93)

o3 Mini (α=−0.01, R 2 = 0.05)

o4 Mini (α=−0.78, R 2 = 0.98)

(b) SWE-BENCH Score (All Unit-Tests Pass For Task)

101 102

Avg. Number of Actions

10−1

O
v
er

al
l 
E

rr
or

Overall Error: SWE-Bench Coverage

Model
Sonnet 4 (α= 0.96, R 2 = 0.63)

o3 Mini (α= 0.34, R 2 = 0.69)

o4 Mini (α= 1.32, R 2 = 0.92)

104

Avg. Total Output (Tokens)

10−1

O
v
er

al
l 
E

rr
or

Overall Error: SWE-Bench Coverage

Model
Sonnet 4 (α= 0.58, R 2 = 0.25)

o3 Mini (α= 0.28, R 2 = 0.66)

o4 Mini (α= 1.08, R 2 = 0.98)

103 104

Avg. Reasoning Length (Tokens)

10−1

O
v
er

al
l 
E

rr
or

Overall Error: SWE-Bench Coverage

Model
Sonnet 4 (α=−0.03, R 2 = 0.00)

o3 Mini (α= 0.23, R 2 = 0.88)

o4 Mini (α= 0.89, R 2 = 0.97)

(c) Coverage Error (Squared Sum of Unit Tests)

101 102

Avg. Number of Actions

10−1

2× 10−2

3× 10−2

4× 10−2

6× 10−2

B
ia

s 
M

ea
n
 P

er
 T

es
t

Bucketed Bias Trend

Model
Sonnet 4 (α= 0.75, R 2 = 0.45)

o3 Mini (α= 0.08, R 2 = 0.10)

o4 Mini (α= 1.17, R 2 = 0.82)

104

Avg. Total Output (Tokens)

10−1

2× 10−2

3× 10−2

4× 10−2

6× 10−2

B
ia

s 
M

ea
n
 P

er
 T

es
t

Bucketed Bias Trend

Model
Sonnet 4 (α= 0.29, R 2 = 0.05)

o3 Mini (α= 0.12, R 2 = 0.18)

o4 Mini (α= 1.03, R 2 = 0.99)

103 104

Avg. Reasoning Length (Tokens)

10−1

B
ia

s 
M

ea
n
 P

er
 T

es
t

Bucketed Bias Trend

Model
Sonnet 4 (α=−0.25, R 2 = 0.01)

o3 Mini (α= 0.07, R 2 = 0.49)

o4 Mini (α= 0.91, R 2 = 0.96)

101 102

Avg. Number of Actions

10−3

10−2

10−1

V
ar

ia
n
ce

 M
ea

n
 P

er
 T

es
t

Bucketed Variance Trend

Model
Sonnet 4 (α= 1.89, R 2 = 0.96)

o3 Mini (α= 2.18, R 2 = 0.90)

o4 Mini (α= 1.46, R 2 = 0.94)

104

Avg. Total Output (Tokens)

10−2

10−1

V
ar

ia
n
ce

 M
ea

n
 P

er
 T

es
t

Bucketed Variance Trend

Model
Sonnet 4 (α= 1.41, R 2 = 0.97)

o3 Mini (α= 1.06, R 2 = 0.92)

o4 Mini (α= 1.11, R 2 = 0.97)

103 104

Avg. Reasoning Length (Tokens)

10−2

10−1

V
ar

ia
n
ce

 M
ea

n
 P

er
 T

es
t

Bucketed Variance Trend

Model
Sonnet 4 (α= 0.77, R 2 = 0.58)

o3 Mini (α= 1.06, R 2 = 0.87)

o4 Mini (α= 0.88, R 2 = 0.95)

(d) Coverage Error: Bias2 (top) and Variance (bottom)

Figure 25: SWE-BENCH incoherence and error: different x-axes show similar effect. While
our main text focuses on the number of rounds (actions or messages, left) as the qualifying measure,
we show the alternatives of the total output tokens (middle) and reasoning length (right). The trends
are qualitatively similar across plots: the incoherence (a) rises with different slopes and the coverage
error (c) increases. A noticeable outlier is O3-MINI’s score, which goes up with the action length (b,
left); the model performs badly overall and seems to score better when engaging with tasks more.
Due to the implementation of SWE-BENCH in the Inspect framework, CLAUDE SONNET 4 only
uses reasoning in the very first interaction, which therefore leads to much less tokens (right).
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Figure 26: The improvement of model scale mostly manifests in reduction of bias rather than
variance. We show the loss scaling curves with model size (top left, a), which show a known power-
law improvement with model size. To understand how this translates to performance improvement,
we plot the average bias and variance per step (top right, a). This is the continuation of the incoher-
ence plot from Fig. 2(d) by separating the decomposition. We see how for longer sequences, model
scale reduces bias much more than variance. This means the models first learn the right objective
before being reliable optimizers. As another illustration, we also plot the performance—measured
in the function value—of the same starting point across the different model sizes (b-g). The pattern
shows how larger models are able to follow the ground-truth trajectory for longer, and fit it almost
perfectly at the end.
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Figure 27: Grouped results of survey. For each of biological creatures (animals and humans, left),
AI models (middle) and human organizations (right), human subjects judged entities to be of higher
incoherence (more of a hot mess), the smarter they are judged by a different set of subjects.
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D RELATED WORK

Reasoning and Test-Time Compute. Recent work demonstrates that scaling test-time compute
through longer reasoning chains improves model capabilities (Snell et al., 2024; Jaech et al., 2024;
Guo et al., 2025; Anthropic, 2025b; OpenAI, 2025a; Team, 2025a;b; Team et al., 2025). Multi-
ple approaches have been proposed to scale reasoning at inference (Jaech et al., 2024; Guo et al.,
2025; Muennighoff et al., 2025). However, recent studies challenge this assumption, reporting in-
verse scaling trends where longer reasoning chains degrade performance (Gema et al., 2025; Ghosal
et al., 2025; Su et al., 2025; Wu et al., 2025; Hassid et al., 2025), occurring across diverse contexts:
reinforcement learning makes models greedier and less capable (Schmied et al., 2025), step-level
reward models reinforce incorrect reasoning (Ma et al., 2025), and models resist instruction over-
rides (Jang et al., 2025). These effects are particularly pronounced at certain problem complexity
levels (Shojaee et al., 2025; Yang et al., 2025). Recent work provides complementary perspectives
on reasoning structure: Wang et al. (2025) show that removing reflection tokens (e.g., “Wait”) im-
proves efficiency, Lee et al. (2025) identify length-accuracy tradeoffs through “token complexity,”
and Feng et al. (2025) find that failed reasoning branches systematically bias subsequent reasoning
steps. However, existing work does not distinguish systematic reasoning errors from inconsistent
failures—a critical distinction for AI safety. Most relevant to our work, Ghosal et al. (2025) at-
tribute overthinking failures to increased output variance; they artificially inject “Wait” tokens to
extend reasoning, which may not reflect natural overthinking.

Parallel Sampling and Variance Reduction. Parallel sampling and selection strategies are widely
used techniques to improve model performance by marginalizing out individual samples. This in-
cludes self-consistency (Wang et al., 2023) or ranking via verifiers (Cobbe et al., 2021). While these
approaches primarily aim to maximize downstream accuracy, our investigation into ensembling re-
frames aggregation as a mechanism to suppress the incoherence. Connected to verifiers, Huang et al.
(2025) formalize self-improvement through a sharpening mechanism that concentrates probability
on high-quality responses, essentially reducing variance. However, we find that high variance and
incoherence naturally remain in reasoning models.

Evaluating Model Incoherence. While scaling improves aggregate accuracy, it does not guaran-
tee stable behavior. Models with identical accuracy can disagree on 70% of individual predictions
across random seeds (Zhou et al., 2025), and this instability persists even in scaled systems. Errica
et al. (2024) formalize this through sensitivity (how outputs change under semantically-equivalent
prompts) and consistency (how similarly a model treats different examples of the same class) met-
rics, revealing failure modes that accuracy alone misses. Prior work has decomposed LLM output
variability into user articulation, prompt variation, and internal model factors (Kunievsky & Evans,
2025), but these studies focus on single-step responses rather than extended reasoning. Variance can
even increase with model size before eventually declining (Yang et al., 2020), complicating assump-
tions about scale and stability. Our work extends these analyses to long reasoning tasks through
bias-variance decompositions. We find that as reasoning chains extend, variance grows—revealing
that scale reduces bias but fails to control variance-driven failures.

Understanding Scaling Behavior and Model Performance. Recent work has investigated how
scaling shapes model behavior. Scaling has been shown to drive convergence in representations
across architectures and modalities, suggesting a shared geometry of learned features (Huh et al.,
2024). Other studies find that larger models tend to make more correlated errors, even across
providers and architectures (Kim et al., 2025), and that this similarity undermines oversight set-
tings where one model evaluates another (Goel et al., 2025). Beyond representational and error
similarity, scaling also alters performance in long-horizon tasks: small improvements in stepwise
reliability translate into large differences in longer execution (Sinha et al., 2025). Our work comple-
ments these findings by focusing on how models fail. Rather than studying aggregate error alone,
we decompose it into bias and variance to measure incoherence in model behavior.

E LLM USE STATEMENT

We used LLMs to assist with polishing and smoothing the writing throughout this paper, as well as
for coding assistance during low-level implementation. We take full responsibility for all content,
ideas, experimental design, results, and conclusions presented in this work.
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