
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTEXTUAL POSITION ENCODING:
Learning to Count What’s Important

Anonymous authors
Paper under double-blind review

ABSTRACT

The attention mechanism is a critical component of Large Language Models
(LLMs) that allows tokens in a sequence to interact with each other, but is order-
invariant. Incorporating position encoding (PE) makes it possible to address by
position, such as attending to the i-th token. However, current PE methods use
token counts to derive position, and thus cannot generalize to higher levels of
abstraction, such as attending to the i-th sentence. In this paper, we propose a
new position encoding method, Contextual Position Encoding (CoPE), that allows
positions to be conditioned on context by incrementing position only on certain
tokens determined by the model. This allows more general position addressing
such as attending to the i-th particular word, noun, or sentence. We show that CoPE
can solve the selective copy, counting and Flip-Flop tasks where popular position
embeddings fail, and improves perplexity on language modeling and coding tasks1.

1 INTRODUCTION

Many common data sources such as text, audio, code, and timelines of events are ordered sequences.
When processing such sequences, the ordering information is clearly critical. In the case of text,
position information is vital not only for decoding meaning between words, but is necessary at every
scale, such as the sentence and paragraph level. The Transformer architecture, which is the main
backbone of current Large Language Models (LLMs), relies on the attention mechanism (Bahdanau
et al., 2014) that inherently lacks ordering information and treats sequences as sets. Thus, it is
necessary to have an additional mechanism for encoding position information. Position encoding
(PE) (Collobert and Weston, 2008; Sukhbaatar et al., 2015) achieves this by assigning an embedding
vector to each position and adding that to the corresponding token representations. Position itself can
be measured in two ways: absolute PE that counts tokens from the start of a sequence, and relative
PE that counts backward starting at the current token. PE methods have become an integral part of
LLMs with several proposed variations of these basic themes (Dufter et al., 2022).

One common feature of existing PE methods is the use of tokens as the unit of measurement. However,
a token is a variable unit that can be a whole word, or part of it, or even a character depending on the
tokenization method. For Byte-Pair Encoding (BPE) tokenization (Sennrich et al., 2016), a word can
be 1 or many tokens depending on the word itself. This position variance increases for more abstract
elements like a sentence, which can have from ten to hundreds of tokens. Therefore token position is
not suited for general position addressing such as finding the i-th word or sentence.

In order to tie position measurement to more semantically meaningful units such as words, or
sentences, one needs to take context into account. However, this is impossible with current PE
methods as position addressing is computed independently of the context, and then later merged with
context addressing. We argue that this separation of the position and context addressing is the core
problem, and instead we propose a new PE method that integrates context and position addressing
together. In particular, we are interested in position encoding that is context dependent, so it can
represent various levels of position abstraction at the same time, from token positions to sentence
positions. This way, it is possible for example to use token positions to attend to the previous few
tokens, while using sentence positions to attend to previous sentences for better understanding of the
current sentence. We call our method Contextual Position Encoding (CoPE).

1The code is available at https://anonymous.link.com

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Alice was tired . She tried reading . A rabb -it cameContext current
token at i

R
el

at
iv

e
PE 11 10 9 8 7 6 5 4 3 2 1 0Position pij = i− j

Attention
gradual
decay

C
oP

E

0 0 0 1 0 0 0 1 0 0 0 0Gates gij = σ(q⊤
i kj)

Position 2 2 2 2 1 1 1 1 0 0 0 0 pij =

i∑
k=j

(gik)

Attention
attend to
position 0

Figure 1: Contextual Position Encoding (CoPE). Standard position encoding methods such as
Relative PE are based on token positions. In contrast, CoPE computes gate values conditioned on the
context first, then uses that to assign positions to tokens using a cumulative sum. This allows positions
to be contextualized, and represent the count of different units like words, verbs or sentences. CoPE
operates on each attention head and so can attend to different position types on each. In this example,
attending to the last sentence using Relative PE is challenging, and the best it can do is a decaying
attention (“recency bias”). CoPE can count the sentence endings and simply attend to position “0”.

CoPE first determines which tokens to count using their context vectors. Specifically, given the
current token as a query vector, we compute a gate value for each previous token using their key
vectors. Then we aggregate those gate values to determine the relative position of each token with
respect to the current token, as shown in Fig. 1. Unlike token positions, this contextual position can
take fractional values, thus cannot have an assigned embedding. Instead, we interpolate embeddings
that are assigned to integer values to compute position embeddings. Like the other PE methods, these
position embeddings are then added to the key vectors, so a query vector can use them in the attention
operation. Since contextual position can vary from query-to-query and layer-to-layer, the model can
simultaneously measure distances in multiple units.

We first apply CoPE to several toy tasks: symbolic counting, selective copying and the Flip-Flop task,
where it outperforms token-based PE methods, especially in the case of out-of-domain generalization.
To test real-world applicability, we use a language modeling task on Wikipedia text where we show
CoPE also leads to better performance. The same performance gain is also observed when trained on
code. Further, we perform pre-training of 1.4B models from scratch and find that CoPE significantly
improves perplexity, and leads to better accuracy on word counting task.

2 BACKGROUND ON POSITION ENCODING

The core of the attention mechanism is a softmax operation over tokens in a sequence (Bahdanau
et al., 2014). Let {x1, . . . , xT } be a sequence of input tokens, and {h1, . . . ,hT } be their hidden
representations. The query qi, key ki and value vi vectors are built through linear transformations of
hi. The attention outputs oi for every i-th token are

oi =
∑
j

aijvj where aij = Softmax(q⊤
i kj).

This attention operation is invariant to position information j, so it becomes necessary to have
an additional position encoding (PE) mechanism (Sukhbaatar et al., 2015). PE methods can be
categorized into two main groups: absolute and relative. The absolute PE simply adds a vector
representing an absolute position j to the hidden states, usually after token embedding: hj ←
hj + P (j). Here P (i) can be implemented by an embedding layer that assigns a unique learnable
vector e[i] to each position value i. Alternatively, P (i) can be a fixed mapping that uses sinusoidal
functions with different frequencies (Vaswani et al., 2017).

Relative PE (Shaw et al., 2018) depends on the token position j that is being attended to, in addition
to the current token i. Therefore, it has to be implemented within the attention layer

aij = Softmax(q⊤
i (kj + P (i− j))).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Here we added it to only the key vectors, but there are other variations. Again, P can be an embedding
layer so we have a learnable vector for each position:

aij = Softmax(q⊤
i (kj + e[i− j])). (1)

Fixed functions can also be used, such as in RoPE (Su et al., 2024). Now, we can view the q⊤
i kj term

as context-addressing because it depends on what the xj token actually is, and view q⊤
i e[i− j] as

position-addressing since it solely depends on position information of xj . Although many different
position encoding methods have been proposed (see Dufter et al. (2022) for a survey), with most
focusing on improving efficiency, they are all based on token positions.

3 MOTIVATION FOR CONTEXTUAL POSITION ENCODING

3.1 STANDARD POSITION ENCODING FAILS ON SIMPLE TOY TASKS

Here we analyze a simplified attention mechanism and a toy task to illustrate shortcomings of current
position addressing techniques that are based on token positions. Let us consider simple sequences
consisting of two types of tokens x and y to illustrate the interplay of the context and position
addressing mechanisms. Given a sequence yyyyxyyy, for example, context addressing can focus the
attention on token x by producing key and query vectors such that

q⊤kx = q⊤ky +∆ where ∆ > 0. (2)

This will give attention weights ax/ay = exp∆. Suppose ∆ = 1, then the attention on x will be
about e ≈ 2.7 times larger than of y. Similarly, position addressing allows us to extract the i-th token
(in relative position so i = 0 is the last token) using position embeddings such that

q⊤e[i] = q⊤e[j] + δ where δ > 0 and j ̸= i.

More interestingly, context and position addressing can work together to do more complex attention
such as finding the last x in the sequence yyxyyxyy. If we assume x tokens have the same context
representation (i.e. the same key vectors), their attention difference will only depend on their positions
i and j:

ax[i]

ax[j]
= exp (q⊤e[i]− q⊤e[j]) > exp(δ).

For the last x at position i to have larger attention, their difference should be larger than some δ > 0.
Since the positions i and j are unknown beforehand, the above inequality must hold for any i < j,
including when j = i+ 1. Then we can derive

q⊤e[0]− q⊤e[i] > iδ for 0 < i.

Now let us use ∆ from Eq. (2) and compare to the attention on y at position 0.

ax[i]

ay[0]
= exp (q⊤kx + q⊤e[i]− q⊤ky − q⊤e[0]) < exp (∆− iδ)

From this, we can see that y will have larger attention than x when i > ∆/δ, thus the model cannot
attend to the last x if it is too far away. This gives us an intuition why independent position and
context addressing might fail on very simple tasks.

3.2 STATE-OF-THE-ART LLMS FAIL ON COUNTING PROBLEMS

Basic failures of standard position encodings can be observed even in state-of-the-art LLMs. In
Table 1, we show a simple word counting task that should be trivial for capable LLMs. Surprisingly,
both GPT4 and Llama-2 70B Chat fail on this task. What makes this task challenging for PE is that
the model needs to attend to the last sentence while ignoring the one before. The number of tokens in
a sentence varies greatly, making token position imprecise. However, if positions were measured in
terms of number of sentences instead of tokens, we argue that this task is easy as the model will then
attend correctly. See Appendix A for more details on this experiment.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Even powerful LLMs struggle to attend to abstract elements like sentences by their position.
In this example, both the words “Alice” and “book” are mentioned in the first sentence, not the last.
Addressing by token position is not very useful in this case because we do not know how many tokens
the last sentence has. Encoding sentence position could make this task trivial.

Prompt: Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to
do: once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations
in it, “and what is the use of a book,” thought Alice “without pictures or conversations?”

So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and
stupid), whether the pleasure of making a daisy-chain would be worth the trouble of getting up and picking
the daisies, when suddenly a White Rabbit with pink eyes ran close by her.

Now, tell me how many times word "Alice" is mentioned in the last sentence.

GPT4: The word "Alice" is mentioned 1 time in the last sentence.

Llama-2 70B Chat: The word "Alice" is mentioned twice in the last sentence ...

Prompt: [THE SAME TWO SENTENCES]

Now, tell me how many times word "book" is mentioned in the last sentence.

GPT4: The word "book" is mentioned one time in the last sentence.

Llama-2 70B Chat: The word "book" is mentioned twice in the last sentence: ...

4 CONTEXTUAL POSITION ENCODING

In CoPE, positions are measured in a context dependent way rather than being a simple token count.
The method works by first deciding which tokens should be included when measuring distance using
their context vectors. To do that, a gate value is computed for every query qi and key kj pair

gij = σ(q⊤
i kj), (3)

where j < i and σ is the sigmoid function. A gate value of 1 means that the key will be counted in the
position measurement, while 0 means it will be ignored. For example, to count the sentences between
tokens i and j, the gate value should be 1 for only sentence separation tokens such as “.”. The gates
also condition on the query, so each query can have different position measurements if needed. The
soft gating function allows differentiation so that the system can be trained with backpropagation.

Next, we compute position values by adding the gate values between the current and the target token

pij =

i∑
k=j

gik. (4)

Note that if the gates are always 1, then pij = i− j+1 and we recover token-based relative positions.
Thus CoPE can be viewed as a generalization of relative PE. In general, however, pij can be the count
of specific words or word types like nouns or numbers, the number of sentences, or other concepts
the Transformer deems useful during training.

Unlike token positions, our position values pij are not restricted to integers and can take fractional
values due to the sigmoid function. This means we cannot use an embedding layer to convert a
position value to a vector like in the relative PE. Instead, we use interpolation between integer values.
First, we assign a learnable embedding vector e[p] to each integer position p ∈ [0, T ]. Then the
embedding for position pij will be a simple interpolation of the two closest integer embeddings

e[pij ] = (pij − ⌊pij⌋)e[⌈pij⌉] + (1− pij + ⌊pij⌋)e[⌊pij⌋]. (5)

Finally, we can compute the attention weights similar to Eq. (1)

aij = Softmax(q⊤
i (kj + e[pij ])). (6)

In practice, however, computing and storing vectors e[pij ] uses extra compute and memory. We can
make this more efficient by first computing the q⊤

i e[p] multiplications for all the integer positions p,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

and then interpolating the resulting values:

zi[p] = q⊤
i e[p] for p ∈ [0, 1, . . . , T ] (7)

zi[pij ] = (pij − ⌊pij⌋)zi[⌈pij⌉] + (1− pij + ⌊pij⌋)zi[⌊pij⌋] (8)

aij = Softmax(q⊤
i kj + zi[pij ]). (9)

See Appendix B for more practical implementation details of CoPE.

Limited positions From Eq. (4), we can see the maximum value for pij is the context size T , which
means we need T + 1 position embeddings (including position 0). However, if the gates are sparsely
activated (e.g. counting sentences), we can cover the whole context T with much fewer positions.
Thus we can set a limit pmax < T on the maximum possible position by setting pij ← min (pij , pmax).

Multi-head attention So far, CoPE is defined for single-head attention. The multi-head extension
is straightforward as each head will do their own CoPE independently. The keys and query vectors
are different between heads, so that means they can implement different position measurements.
For example, head 1 can have keys that turn all gates on so that the position counts tokens, while
head 2 gates are on only for word-beginning tokens, to count words as positions. While the position
embeddings e[p] are shared between the heads only, we also experiment with position embeddings
that are shared across the layers as well.

Computation The most computationally expensive operation in the self-attention module is the
key (or value) and query multiplication that has O(T 2dh) FLOPS, where dh is the head dimension.
The most expensive operation of CoPE is the gate computation in Eq. (3), but we can benefit from the
query and key multiplication that was already computed during attention, and reduce gate computation
to simply applying the softmax function. The next most expensive operation in CoPE is the matrix
multiplication in Eq. (7) that has O(Tpmaxdh) FLOPS. This computation can be reduced by selecting
a small pmax, which we show works well in our experiments.

Computing gates Note that the same keys are used in computing the gates in Eq. (3) as the final
attention computation of Eq. (9). This biases highly attended tokens to be counted in the position
computation as well. To disentangle position from attention itself, we can use separate keys that are
computed with an additional projection ki = Wghi when computing gates. We denote this version as
sep-keys in our experiments. Another option is to use the value vectors instead so that gij = σ(q⊤

i vj),
which we refer to as val-gates. However, these versions will require more computation as we cannot
reuse the key query multiplication.

5 EXPERIMENTS

In this section we summarize our experimental results. All models were trained and tested on 1 node
with 8 GPUs, except the Language and Code Modeling tasks that were trained on 4 nodes (32 GPUs).
To further scale up to 1.4B parameters we trained models on 32 nodes (512 GPUs).

5.1 FLIP-FLOP TASK

The Flip-Flop language modeling task was introduced in Liu et al. (2024) to expose the failure
of Transformer models to capture robust reasoning over long-range input sequences. The input
strings consist of alternating sequences of instructions {w, i, r} ("write", "ignore", and "read"), each
followed by one bit of information (0 or 1) that the model needs to memorize if it follows w, or recall
the last memory if it follows r. It is guaranteed that all strings start with w and end with r. For
example, given string ”w0i1r0w1i0i1i1r”, the expected output is 1, since the last w operation is
followed by 1. To solve this task, the model has to be able to sharply attend to the latest occurrence
of the w symbol, the position of which varies between sequences due to ignore instructions. The task
defines two test sets: in-distribution and out-of-distribution (OOD), where the latter increases the
distance to the last w by increasing the number of ignore instructions.

We replicate the setup described in Liu et al. (2024), and report test error after 10K training steps for
models with dimension 256, 4 heads and 4 layers. The results are provided in Table 2 (left). They

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Flip-Flop and Selective Copy tasks. We report in-distribution and out-of-distribution
(OOD) generalization test error (%) on both tasks.

Flip-Flop
PE Method In-dist OOD

Absolute PE 6.8 21.7
RoPE 1.8 20.3
CoPE 0.0 4.9

Selective Copy
PE Method In-dist OOD dense OOD sparse

Absolute PE 16.9 25.6 85.2
RoPE 40.1 100.0 100.0
CoPE 0.0 0.0 0.0

Table 3: Symbolic counting task test error
rates (%) for different number of variables.

Symbolic Counting
PE method 1 var 3 var 5 var

Absolute PE 5.3 67.6 71.5
Relative PE 1.1 17.8 22.4
CoPE 0.0 1.2 7.4

2 4 6 8 10

Training data (k)

0

10

20

V
al

.
er

ro
r

(%
)

relative

CoPE

Figure 2: CoPE outperforms relative PE on the symbolic
counting, especially with less training data of the task.

show that CoPE outperforms existing methods, allowing the model to not only learn the in-distribution
task, but also to generalize to OOD sequences — a property that existing PE methods fail to provide.
This is possible because CoPE allows the model to attend to the last seen positions of specific tokens
by incorporating their counts into the positional embedding using their keys, i.e. by making the gating
function switch on for those tokens. For example, if the gates are 1 only on w tokens, then position
1 will correspond to the last w instruction. In contrast, relative PE struggles to isolate the last w as
shown in Section 3.1, especially when its position is unknown and far away.

We also investigate the robustness of the model varying the model dimension, number of heads and
layers, with full results reported, including standard deviations, in Appendix C. We find that CoPE is
generally robust to these changes with respect to in-distribution generalization, but out-of-distribution
generalization can degrade on this task for certain hyperparameter choices.

5.2 SELECTIVE COPY TASK

The selective copy task introduced by Gu and Dao (2023) requires context-aware reasoning for
selective memorization. In this task the model is given a sequence of tokens and asked to copy all
tokens except a denoted blank token. For example, when the input is DBBCFBFBE where B is the
blank, the model is expected to output DCFFE. In our experiments, we set the vocabulary size to 16,
and the output sequence length (number of non-blanks) to 256, and vary the number of blank tokens.
The training and in-distribution test data have 256 blanks whereas the dense and sparse OOD test
data have 128 blanks and 512 blanks, respectively. We train models with dimension 64, 2 layers and
2 heads, and report test error after 100k steps. The results, given in Table 2 (right), show that on the
in-distribution test set our method CoPE can solve the task while others fail to do so. Similarly, CoPE
generalizes better on both dense and sparse OOD test sets. The presence of blank tokens makes it
harder to locate the next token to copy, but CoPE can count only non-blank tokens, and hence be
more resilient to blanks. At each step, it can then simply copy the non-blank token a distance of 256
(non-blanks) away. Repeating this 256 times will copy the entire sequence of non-blanks.

5.3 SYMBOLIC COUNTING TASK

Counting things is more challenging than simply recalling the last instance because it requires more
uniform attention over a certain span. For example, to count verbs in the current paragraph, the model
needs to attend to the verb tokens roughly equally within the current paragraph. Thus, simple recency
bias using position embeddings will not work because it will suppress verbs that occur earlier.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Out-of-distribution (OOD) generalization error (%) on the symbolic counting task. We
vary weight wpass of the dummy pass command so the context is either shorter or longer. CoPE
generalizes better as it learns to exclude irrelevant pass commands from position measurement.

PE method in-domain OOD longer context OOD shorter context
(wpass = 50) (wpass = 100) (wpass = 10)

Relative PE 1.1 8.8 34.1
CoPE 0.0 0.0 4.0

Table 5: Evaluation on the WORDCOUNT task (finetuned 1.4B parameter models).

Position
embedding

WORDCOUNT WORDCOUNT-HARD

NLL Accuracy NLL Accuracy

RoPE 0.055 94.8% 0.24 66.9%
CoPE + RoPE 0.045 96.0% 0.18 77.7%

To demonstrate this in a controlled setting, we devise a simple algorithmic task that requires count-
ing. The context is a sequence of operations of three types: set variable to zero, increment it,
and do nothing. Here is an example “...; pass; pass; a = 0 ; pass; a ++; pass;
pass; a ++; print a 2”. At the end of each sequence there is a print operation that outputs
the current value of that variable. This is a fairly simple task as the model just needs to count ++
operations since the last set operation. In a more challenging version of this task, we mix multiple
variables in a single sequence.

Similar to the Flip-Flop task, we randomly select one from the 3 types of operation according to the
predefined weights wset = 1, wincr = 7, and wpass = 50. We limit the maximum numerical value to
be 10. To test OOD generalization, we modify wpass so that the average length of the relevant context
(from the last set operation to the current step) is either longer or shorter. We generate 10K sequences
for training, each containing up to 512 operations. We report the average of 3 random seeds.

Results are given in Table 3 and Fig. 2. The baseline model with relative PE struggles to learn this
task, especially when there is more than one variable to track. Absolute PE performs even worse.
The best performance comes from CoPE, with a perfect score for the 1 variable case. For OOD
generalization, relative PE shows poor generalization, while CoPE generalizes very well as shown in
Table 4. See Appendix Table 10 for standard deviations of these experiments.

5.4 WORDCOUNT TASK

So far, we have only conducted experiments with symbolic tasks. To understand if the proposed
mechanism works in a similar way using natural language, we consider the counting problems
described in Section 3.2, where we experiment with introducing a new WORDCOUNT task. In this
task, the model is asked to count how many times a specific word occurs in the last k sentences. To
run experiments, we used theTINYSTORIES dataset (Eldan and Li, 2023) to generate 2.1M and 21k
stories for training and validation. To make the task more challenging, we randomly concatenate three
different stories to form a sample, thus increasing context size three-fold, forming WORDCOUNT-
HARD task. We report the results of finetuning 1.4B model on 1.5B tokens of WORDCOUNT task
(training and evaluation details can be found in Appendix E). Our results summarized in Table 5
demonstrate that CoPE significantly improves over standard embedding approaches, boosting the
model’s capabilities on a complex context-depended task. To see how difficult this task is, we tested
powerful Llama-3.1-70B model, which gave only 3.4% accuracy score on WORDCOUNT-HARD.

5.5 LANGUAGE MODELING

Next, to test our method on realistic natural language tasks, we conduct experiment with language
modeling. We use the Wikitext-103 dataset (Merity et al., 2017), which consists of 100M tokens
extracted from Wikipedia. We train a Transformer model that matches the architecture of GPT-2
(Radford et al., 2019) with 12 layers and a hidden size of 768. We train with the negative log-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 6: Wikitext-103 and Code results.

Wikitext-103
PE Method Params (M) Val. PPL Test PPL

Absolute PE 124.4 23.96 24.87
Relative PE 123.7 22.90 23.81
CoPE 123.7 22.55 23.46
CoPE + Relative 123.7 22.31 23.23

Code
PE Method Params (M) Test PPL

Absolute PE 20.8 4.7
RoPE 19.8 4.1
CoPE 20.8 3.9
CoPE + RoPE 20.8 4.0

1000 1500 2000 2500

Eval context (T ′)

21.5

22.0

22.5

23.0

23.5

24.0

V
al

.
P

P
L

500 1000 1500 2000 2500

Eval context (T ′)

22

23

24

25

V
al

.
P

P
L

Relative PE

Relative-capped

CoPE

Train context (T )

Figure 3: Generalization to longer context length. After training on the Wikitext-103 language
modeling task with a context size of 1024 (left) and 512 (right), we evaluate the model on longer
context sizes and report the validation perplexity. CoPE generalizes well, outperforming existing PE
methods, especially when evaluation context size is much larger than training context size (right).

likelihood loss for 100 epochs using a batch size of 64. The model has a context size of 1024, but we
set the maximum position value in CoPE to a much lower value of pmax = 64.

We compare different PE methods in Table 6 (left). Absolute PE performs worst. CoPE outperforms
relative PE, and improves even further when combined with relative PE. This shows that even in
general language modeling, CoPE brings improvement.

0 250 500 750 1000

Queries

0

200

400

600

800

1000

K
ey

s

0.0

0.2

0.4

0.6

0.8

1.0

0 250 500 750 1000

Queries

0

200

400

600

800

1000

K
ey

s

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: CoPE can focus attention on abstract elements like current paragraph (left) and
section (right). Here we show attention induced by position alone on Wikitext-103. Since CoPE is
contextualized, it can attend to paragraphs and sections by their position. On the left, the segments are
found to be separated by newline tokens (indicated by black plus signs), while the right is separated
by section titles like “= = Description = =” (similarly marked).

Generalization to longer context: Next, we test how well CoPE generalizes to contexts longer
than it was trained on. As CoPE assigns positions conditioning on context, it is capable of distributing
them to a much larger number of tokens. While the number of tokens was fixed during training, the
number of positions will vary depending on each sample. Thus it is possible that tokens outside the
training span of T still get position values that are within the maximum limit pmax.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Validation perplexity on Wikipedia and C4 (Raffel et al., 2020) datasets. The model with
CoPE embeddings initially lags behind, but after about 10% of training catches up and outperforms
the model trained with only RoPE embeddings.

In contrast, relative PE has embeddings that are tied to each token position. Therefore when there
are T ′ − T unseen positions during test time, those tokens will have no position embedding added
to them. As this is never seen during training, it negatively affects the performance. To mitigate
this, we test a version of relative PE where unseen positions use the embedding of the T -th position,
which might indicate a “far away” position. This is similar to CoPE where positions are capped by a
specified limit. We call this version relative-capped.

The results are given in Fig. 3. Relative PE generalizes poorly to longer context sizes. The relative-
capped version, in contrast, shows much healthier performance. However, CoPE still outperforms it,
and the gap widens when the test context is much longer than the training context (see Fig. 3, right).

In Fig. 4, we show examples of attention maps from a model trained with sep-keys (gates are computed
with separated keys, see Section 4). The attention maps are built from position alone (they have to
be multiplied by context attention for the final attention), which gives us better insight into what
CoPE is doing. We also normalize so that the maximum attention weight is always 1 for each
query. First, we can see that positions are clearly contextualized as the attention tends to drop at
specific tokens regardless of their relative positions. A closer look at those tokens reveals that the
attentions are mostly focused on the last paragraph (left) or section (right). For clarity, the actual
paragraph and section boundaries are marked by black plus signs. In CoPE, this is possible because
one attention head can count paragraphs while another counts sections, and then it can focus on
position 0 only. For more details, see the gate values shown in Appendix Fig. 7, and further ablation
results in Appendix D.

5.6 CODE MODELING

We further test the ability of CoPE by evaluating on code data. Code data has more structure
compared to natural language, and might be more sensitive to in-context learning. We train a small
20M Transformer model that resembles the Llama-2 architecture with the corresponding mix of code
data (Touvron et al., 2023b) with 4 layers, 8 heads, and a hidden dimension of 256. We use context
length 4096, learning rate 5.0e− 4, and train for 100B tokens.

The results are summarized in Table 6 (right). CoPE embeddings improve in perplexity over absolute
PE and RoPE by 17% and 5% correspondingly. Combining RoPE and CoPE embeddings together
improves over RoPE, but does not bring any improvements over the proposed embedding method.

5.7 LARGE LANGUAGE MODELING (PRE-TRAINING)

Next we test our method on a realistic setup where we scale the language models described in the
previous section up to 1.4B parameters by increasing the number of layers to 24, the number of heads
to 16, and the hidden dimension to 2048. We then conduct experiments of full scale pre-training
using our CoPE architecture compared to the standard RoPE architecture.

The training data and hyperparameter setup mostly repeats the one from Touvron et al. (2023b), but
we increase the learning rate to 4× 10−4. To speed up training and minimise the additional number

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

of parameters, we have added CoPE to every 6th layer of the 24-layer model only (i.e. in total on 4
layers), and limited the maximum position T to 64. Each head (CoPE embedding) dimension is 2048,
so the total number of added parameters constitutes only 0.04% from the total. This setup allowed us
to achieve on-par runtime during training. We trained on a total of 1T tokens.

Results are given in Figure 5. We observe around 3% improvement in validation perplexity for our
model trained with CoPE encodings compared to the RoPE baseline. This leads to much faster
convergence, matching the baseline performance 40% faster (0.6T vs 1.0T) when evaluated on
Wikipedia. We also perform evaluation on several standard few-shot benchmarks, described in detail
in Appendix E, where we also see gains on 6 out of 9 benchmarks.

6 RELATED WORK

While the attention mechanism was proposed in Bahdanau et al. (2014) for processing sequences of
tokens, the model was still based on RNNs so position encoding (PE) was not necessary. The Memory
Network (Weston et al., 2015) architecture moved away from RNNs when processing sequences,
instead using multiple layers of attention, and first introduced using PE together with the attention
mechanism (Sukhbaatar et al., 2015). They added learnable embedding vectors that correspond to
each relative position to the hidden representations. A similar position embedding was used earlier
in a convolution-based architecture (Collobert and Weston, 2008), and later in an architecture that
combines convolution with attention (Gehring et al., 2017). The latter used an absolute PE because
relative position cannot be defined on the source text in machine translation.

PE became in an important topic of research with the popularity of the Transformer architecture.
The original paper by Vaswani et al. (2017) employed an absolute PE with fixed vectors, but the
relative position embedding was later used in Shaw et al. (2018). Relative PE is especially suited to
processing unbounded sequences (Dai et al., 2019). Since then, many different variations of relative
and absolute PE have been proposed. In Raffel et al. (2020), each relative position is assigned a
simple bias scalar that gets added to the attention logits. While being efficient, this makes position
addressing independent of the current token. Press et al. (2022) further simplifies the bias terms
by making them fixed in a decaying pattern instead of learning for generalization to longer context.
Haviv et al. (2022) takes it to the extreme by removing PE and demonstrated that position information
can be recovered by counting previous tokens with causal attention.

While absolute PE was used in early LLMs (Radford et al., 2019), relative PE is more common in
recent LLMs (Touvron et al., 2023b;a; Jiang et al., 2023). In particular, RoPE (Su et al., 2024) made
it possible to do relative PE without modifying the self-attention code. It relies on the fact that query
and key dot product only depend on the angle between those vectors and are agnostic to their absolute
angles. Thus if they are rotated by angles proportional to their absolute position, then its effect on the
attention logit will only depend on their difference in position. However, CoPE differs from all these
PE methods as it measures position in a context dependent way instead of simply using token counts.

While RNNs can be inserted into the Transformer architecture to represent position information in
an implicit way (Wang et al., 2019; Neishi and Yoshinaga, 2019), the sequential nature of RNN
operations breaks the parallelization of Transformer training, making it slower and less practical. In
comparison, the only sequential operation in CoPE is a cumulative sum, which is lightweight and can
be partially parallelized. For more details on different PE methods, see the survey by Dufter et al.
(2022). Zhao et al. (2023) also provides a survey focused on length generalization of PE methods.

7 CONCLUSION

In this paper, we proposed a novel position encoding method called CoPE that measures position in
a context dependent way, thus moving away from the current token-based position paradigm. This
approach allows more freedom when addressing by position, and brings gains on several tasks. While
this paper only focused on text and code domains, CoPE has the potential to improve domains such
as video and speech where token position seems intuitively even less appropriate. Another avenue to
explore is training even larger models with CoPE beyond the 1.4B parameter models in this paper,
which requires considerable pre-training compute budget.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473, 2014.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 7432–7439, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th international conference on
Machine learning, pages 160–167, 2008.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Annual Meeting of
the Association for Computational Linguistics, 2019.

Philipp Dufter, Martin Schmitt, and Hinrich Schütze. Position information in transformers: An
overview. Computational Linguistics, 48(3):733–763, 2022.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759, 2023.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In International conference on machine learning, pages 1243–1252.
PMLR, 2017.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models
without positional encodings still learn positional information. In Findings of the Association for
Computational Linguistics: EMNLP, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. ArXiv, abs/2310.06825,
2023.

Bingbin Liu, Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Exposing attention
glitches with flip-flop language modeling. Advances in Neural Information Processing Systems,
36, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Masato Neishi and Naoki Yoshinaga. On the relation between position information and sentence
length in neural machine translation. In Proceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL), 2019.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2016.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
In North American Chapter of the Association for Computational Linguistics, 2018.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory networks.
In Neural Information Processing Systems, 2015.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. ArXiv, abs/2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
Blecher, Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony S.
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel M. Kloumann, A. V. Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril,
Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. ArXiv,
abs/2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Zhiwei Wang, Yao Ma, Zitao Liu, and Jiliang Tang. R-transformer: Recurrent neural network
enhanced transformer. arXiv preprint arXiv:1907.05572, 2019.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In 3rd International Confer-
ence on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Liang Zhao, Xiaocheng Feng, Xiachong Feng, Bin Qin, and Ting Liu. Length extrapolation of
transformers: A survey from the perspective of position encoding. arXiv preprint arXiv:2312.17044,
2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A BASIC FAILURES OF STANDARD POSITION ENCODINGS IN
STATE-OF-THE-ART LLMS

Basic failures of standard position encodings can be observed even in state-of-the-art LLMs. In
Table 7, we show detailed prompts for a simple word counting task that should be trivial for capable
LLMs. Surprisingly, both GPT4 and Llama-2 70B Chat fail on this task. What makes this task
challenging for PE is that the model needs to attend to the last sentence while ignoring the one before.
The number of tokens in a sentence varies greatly, making token position imprecise. However, if
positions were measured in terms of number of sentences instead of tokens, we argue that this task is
easy as the model will then attend correctly. In some cases, we ask a follow-up question to make sure
the model is not misunderstood the question.

We accessed GPT-4 through its Playground web interface2 and used the default sampling parameters
of temp= 1 and top-P= 1. For Llama-2 70b Chat we used temp= 0.6 and top-P= 0.9 for sampling.

2https://platform.openai.com/playground/chat?models=gpt-4

14

https://platform.openai.com/playground/chat?models=gpt-4


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Full prompts of word counting with powerful LLMs. The follow-up questions makes it clear
that indeed LLMs made mistakes.

User

Alice was beginning to get very tired of sitting by her sister on the bank, and of having
nothing to do: once or twice she had peeped into the book her sister was reading, but it had
no pictures or conversations in it, “and what is the use of a book,” thought Alice “without
pictures or conversations?”

So she was considering in her own mind (as well as she could, for the hot day made her feel
very sleepy and stupid), whether the pleasure of making a daisy-chain would be worth the
trouble of getting up and picking the daisies, when suddenly a White Rabbit with pink eyes
ran close by her.

Now, tell me how many times word "Alice" is mentioned in the last sentence.

GPT4 The word "Alice" is mentioned 1 time in the last sentence.

User Where is it mentioned?

GPT4 The word "Alice" is mentioned in the phrase "thought Alice" in the first paragraph. In the
last sentence, however, the word "Alice" is not mentioned at all.

User
[THE SAME TWO SENTENCES]

Now, tell me how many times word "Alice" is mentioned in the last sentence.

Llama-2
70B Chat

The word "Alice" is mentioned twice in the last sentence:

1. "So she was considering in her own mind (as well as she could, for the hot day made her
feel very sleepy and stupid), whether the pleasure of making a daisy-chain would be worth
the trouble of getting up and picking the daisies,"
2. "when suddenly a White Rabbit with pink eyes ran close by her."

Therefore, the answer is 2.

User
[THE SAME TWO SENTENCES]

Now, tell me how many times word "book" is mentioned in the last sentence.

GPT4 The word "book" is mentioned one time in the last sentence.

User Where is it mentioned?

GPT4
The word "book" is mentioned in the phrase "the pleasure of making a daisy-chain would be
worth the trouble of getting up and picking the daisies, when suddenly a White Rabbit with
pink eyes ran close by her."

User
[THE SAME TWO SENTENCES]

Now, tell me how many times word "book" is mentioned in the last sentence.

Llama-2
70B Chat

The word "book" is mentioned twice in the last sentence:

1. "the book her sister was reading"
2. "a book without pictures or conversations?"

Therefore, the answer is 2.

B COPE IMPLEMENTATION

1 class CoPE(nn.Module):
2 def __init__(self, npos_max, head_dim):
3 super().__init__()
4 self.npos_max = npos_max
5 self.pos_emb = nn.parameter.Parameter(
6 torch.zeros(1, head_dim, npos_max))
7

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

8 def forward(self, query, attn_logits):
9 # compute positions

10 gates = torch.sigmoid(attn_logits)
11 pos = gates.flip(-1).cumsum(dim=-1).flip(-1)
12 pos = pos.clamp(max=self.npos_max - 1)
13 # interpolate from integer positions
14 pos_ceil = pos.ceil().long()
15 pos_floor = pos.floor().long()
16 logits_int = torch.matmul(query, self.pos_emb)
17 logits_ceil = logits_int.gather(-1, pos_ceil)
18 logits_floor = logits_int.gather(-1, pos_floor)
19 w = pos - pos_floor
20 return logits_ceil * w + logits_floor * (1 - w)
21

22 class SelfAttn(nn.Module):
23 def __init__(self, npos_max, head_dim):
24 super().__init__()
25 self.cope = CoPE(npos_max, head_dim)
26 self.head_dim = head_dim
27

28 def forward(self, query, key, val, mask):
29 # q, k, v have dimensions batch x seq_len x head_dim
30 attn_logits = torch.bmm(query, key.transpose(-1, -2))
31 attn_logits = attn_logits / math.sqrt(self.head_dim)
32 attn_logits += mask.log()
33 attn_logits += self.cope(query, attn_logits)
34 attn = torch.softmax(attn_logits, dim=-1)
35 out = torch.bmm(attn, val)
36 return out

Listing 1: CoPE attention code

C FLIP-FLOP EXPERIMENTS

Following Liu et al. (2024), we experiment with Transformer models of different sizes, varying head
dimension in {128, 256}, and number of heads and layers in {2, 4}. We utilize AdamW optimizer
with linear learning rate decay (lr = 3e− 4, β1 = 0.9, β2 = 0.999, ε = 10−8). We train on 8 GPUs
with batch size 16 for 10,000 steps. For the main results, we ran 3 seeds and reported their average
along with standard deviations as can be seen in Table 8.

In our ablations, we experiment with hard attention, as in this task for each sequence model is required
to attend to a single specific token. Furthermore, we experiment with incorporating contextual infor-
mation into positional encoding through a multilayer perceptron (MLP). In particular, instead of using
interpolation (Eq. (5)) we learn the positional encodings by training an N -dimensional MLP layer,
and denote this approach as CoPE _MLP. This change significantly increases memory and runtime
load on the training (by 30-50 times in our experiments compared with regular positional encodings),
but allows for more flexibility in positional in-context learning. We vary N ∈ {32, 64, 128, 256}, and
report results in Table 8 for N = 64 to strike the balance between model’s efficiency and performance.
We also experiment with ingesting CoPE _MLP only in the first layer of the transformer model:
this helps to reduce runtime by the order of magnitude, but hurts the performance, especially on the
out-of-distribution (OOD) task.

Similarly to the ALIBI approach proposed by Press et al. (2022), we can treat the cumulative sum of
the gates as learned biases (while in the original paper authors used static bias). Specifically, Eq. (6)
will be simplified to:

aij = Softmax(q⊤
i kj +m · pij), (10)

where m is head-specific slope fixed before training. In our experiments on the FlipFlop task,
we train model with 4 heads, and experiment with three sets of pre-fixed slopes: {1, 1

2 ,
1
22 ,

1
23 },

{ 1
22 ,

1
23 ,

1
24 ,

1
25 }, {

1
24 ,

1
25 ,

1
26 ,

1
27 }. We also train a model where m is a learned parameter, specific for

each head and layer, and initialized from 0. No other positional embeddings are added to the model.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 8: The test error rates (%) and standard deviation (in parenthesis) on the Flip-Flop task for
different Transformer architectures.

Architecture Dimension Number of In-dist. OOD
layers/heads test error test error

256 4 / 4 6.8 (6.9) 21.7 (7.9)
256 2 / 4 11.1 10.6
256 4 / 2 0.1 18.0

Absolute PE 256 2 / 2 13.9 31.5
128 4 / 4 5.4 24.8
128 2 / 4 0.08 19.9
128 4 / 2 0.07 16.5
128 2 / 2 19.1 28.6

Absolute PE + hard attn 256 4 / 4 50.7 49.1

256 4 / 4 1.8 (3.1) 20.3 (2.9)
256 2 / 4 5.1 14.7
256 4 / 2 0.02 19.0

RoPE 256 2 / 2 5.4 19.8
128 4 / 4 0.1 8.9
128 2 / 4 0.1 18.2
128 4 / 2 0.02 17.3
128 2 / 2 14.4 25.2

256 4 / 4 0.03 (0.06) 4.9 (4.4)
256 2 / 4 0.0 13.2
256 4 / 2 0.0 3.0

CoPE 256 2 / 2 0.0 14.6
128 4 / 4 0.2 33.2
128 2 / 4 0.03 22.3
128 4 / 2 0.03 14.5
128 2 / 2 0.02 24.5

CoPE _MLP 256 4 / 4 0.03 5.9
CoPE _MLP1st_layer 256 4 / 4 0.9 24.3

CoPE _ALiBi (m[0] = 1) 256 4 / 4 0.0 (0.0) 11.4 (3.4)
CoPE _ALiBi (m[0] = 1/22) 256 4 / 4 0.0 (0.0) 8.7 (7.6)
CoPE _ALiBi (m[0] = 1/24) 256 4 / 4 0.0 (0.0) 17.1 (1.5)
CoPE _ALiBi (m as parameter) 256 4 / 4 0.0 (0.0) 11.4 (4.0)

We observe higher convergence rate for models with CoPE, reaching lowest in- and out-of-distribution
test errors at 2500 steps (Fig. 2). Models with CoPE _MLP also reach near-zero test error rate on
in-distribution test set, but require twice as more steps to reach this performance, while transformers
with absolute PE fail to learn the task. CoPE _ALIBI-based models show competitive performance,
slightly lagging behind on the out-of-distribution task.

D ADDITIONAL ABLATIONS

In this section, we summarize the results of our ablation experiments on Wikitext-103 task (see
Table 9). We find that computing gates using values (value-gates) instead of keys, or using separate
keys (sep-keys) slightly improve perplexity scores on this task. However, these changes come with
additional compute, and extra parameters in the case of sep-keys. Next, the position embeddings
are only shared among attention heads instead of the whole model, but that does not affect the
performance much. Finally, we try decreasing and increasing the number of positions pmax. We see
that even having only pmax = 16 positions for the context size of T = 1024 does not negatively
affect the performance, indication that CoPE uses positions more effectively over long range. Finally,
we also experiment with ALIBI version of CoPE using Eq. (10) using the recommended slope

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 6: Test error rate on the Flip-Flop task for different Transformer architectures measured every
500 steps. Model with CoPE achieves faster convergence, reaching lowest in- and out-distribution
test errors at 2500 steps.

parameters from Press et al. (2022). The performance is worse and roughly matches absolute PE,
perhaps because ALIBI slopes are tuned to token positions and lack the flexibility of the position
embeddings.

Table 9: Wikitext-103 ablations

Changes Params (M) Val. PPL Test PPL

None 123.7 22.55 23.46
Use val-gates 123.7 22.40 23.33
Use sep-keys 130.8 22.39 23.18
Layers do not share embeddings 123.7 22.56 23.58
pmax = 64→ 16 123.7 22.45 23.22
pmax = 64→ T = 1024 123.7 22.46 23.31
CoPE_ALiBi 123.7 24.16 25.09

In Table 10 and Table 11 we also report standard deviations on the symbolic counting task and
selective copy task.

Table 10: Standard deviation (in parenthesis) of the test error rates on the symbolic counting task

PE method 1 var 3 var 5 var wpass = 50 wpass = 100 wpass = 10

Absolute PE 5.3 (0.8) 67.6 (1.5) 71.5 (1.5) - - -
Relative PE 1.1 (0.4) 17.8 (7.8) 22.4 (5.1) 1.1 (0.4) 8.8 (1.1) 34.1 (2.5)
CoPE 0.0 (0.0) 1.2 (2.1) 7.4 (8.5) 0.0 (0.0) 0.0 (0.0) 4.0 (4.1)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000

Queries

0

200

400

600

800

1000

K
ey

s

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

Queries

0

200

400

600

800

1000

K
ey

s

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: The gate values corresponding to Fig. 4. The gate activations suggest that CoPE is counting
paragraphs (top) or sections (bottom).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: Standard deviation (in parenthesis) of the test error rates on the selective copy task

PE Method In-dist OOD dense OOD sparse

Absolute PE 16.9 (3.7) 25.6(3.8) 85.2(8.4)
RoPE 40.1(3.5) 100.0(0.0) 100.0(0.0)
CoPE 0.0(0.0) 0.0(0.0) 0.004(0.006)

E LLM EVALUATION AND FINETUNING DETAILS

First we evaluate our 1.4B model performance on a set of popular benchmarks: BoolQ (Clark
et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2021), ARC easy and challenge (Clark et al., 2018), Open-
BookQA (Mihaylov et al., 2018). We also report 5-shot performance on the aggregated MMLU
benchmark (Hendrycks et al., 2020). Results summarized in Table 12 show that model trained with
CoPE embeddings outperforms baseline by 1% on average, even though contextual encodings were
added only to 1/6 of layers and had limited context window.

Embedding method BoolQ PIQA SIQA HellaS WinoG ARCe ARCc OBQA MMLU Avg

RoPE 61.4 73.0 41.2 45.5 60.4 64.3 30.2 25.2 27.8 47.7
CoPE + RoPE 65.8 73.4 41.7 45.4 62.0 66.2 29.7 26.8 26.6 48.6

Table 12: 1.4B model performance on standard benchmarks. Training with CoPE+RoPE embeddings
outperforms RoPE-based model after training on 1T tokens.

Next, we generate WORDCOUNT and WORDCOUNT-HARD datasets. We use training partition of
the TINYSTORIES dataset, and further randomly split it in 100:1 ratio to form train and validation
sets. As a target word, we select most common word in the story, and randomly choose number of
last sentences to count over k between 1, and total number of sentences in the story. To split story
into sentences we use PUNKTSENTENCETOKENIZER from Python’s nltk library. We use prompt
template displayed below to generate data for training and validation.

WORDCOUNT prompt

[INST] {<story>} How many times word ‘{<target word>}‘ mentioned in the last ‘{<k>}‘
sentences? [/INST]

We end up with 2,098,294 stories for training, and 21,195 for validation in WORDCOUNT task. To
generate WORDCOUNT-HARD task, we concatenate three random stories, thus ending up with 699,431
samples for training, and 7,065 for validation. WORDCOUNT-HARD task is more challenging, as it
requires to reason over longer context, attend to more sentences, and cont more tokens, as shown in
Fig. 8. Table 13 shows the performance of Llama-3.1 instruction finetuned models on WORDCOUNT
and WORDCOUNT-HARD tasks. To evaluate zero-shot performance, we append "Only output the
number." to the prompt to avoid unnecessary verbosity.

We finetune 1.4B language model from Section 5.7 in supervised manner. The model is trained with a
learning rate of 1×10−4 and dropout 0.1 with batch size 262,144 tokens on a single 8-GPU node, and
keep context length at 4096 tokens. Other parameters are kept the same as during pre-training. During
inference we used greedy decoding to generate completions. Evaluation results are summarized in
Table 5. While both embedding methods can learn base task, CoPE observe significant improvements
for WORDCOUNT-HARD. Investigating how the preformance changed between models as shown in

Table 13: Zero-shot accuracy of Llama-3.1-Instruct models on the WORDCOUNT task.

Model WORDCOUNT WORDCOUNT-HARD

Llama3.1-8b-Instruct 17.1% 8.4%
Llama3.1-70b-Instruct 16.4% 3.4%

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 8: Change in sentence and word distribution between WORDCOUNT and WORDCOUNT-
HARD tasks.

Fig. 9, we found that the improvement is drown by long-context task, where the model is asked to
count over larger amount of sentences.

Figure 9: Change in exact match score between models trained with CoPE and RoPE embeddings,
calculated over subsets of data with at least 10 datapoints. Models trained with CoPE are better at
counting over long distances.

F LIMITATIONS

In this paper, we propose a novel position encoding method, that allows positions to be conditioned
on context. In our experiments, we mostly focused on tasks where we would expect traditional
embedding methods to fail. We also tested our approach on two larger-scale datasets (Wikitext-103
and Code collection), as well as popular benchmarks. However, we did not test how CoPE will
perform if scaled beyond 1.4B parameters.

21


	Introduction
	Background on Position Encoding
	Motivation for Contextual Position Encoding
	Standard position encoding fails on simple toy tasks
	State-of-the-art LLMs fail on counting problems

	Contextual Position Encoding
	Experiments
	Flip-Flop Task
	Selective Copy Task
	Symbolic Counting Task
	WordCount task
	Language Modeling
	Code Modeling
	Large Language Modeling (Pre-Training)

	Related Work
	Conclusion
	Basic failures of standard position encodings in state-of-the-art LLMs
	CoPE Implementation
	Flip-Flop experiments
	Additional ablations
	LLM evaluation and finetuning details
	Limitations

