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Reinforcement learning (RL) is an important eld of research in machine learning that is increasingly being

applied to complex optimization problems in physics. In parallel, concepts from physics have contributed to

important advances in RL with developments such as entropy-regularized RL. While these developments have

led to advances in both elds, obtaining analytical solutions for optimization in entropy-regularized RL is

currently an open problem. In this paper, we establish a mapping between entropy-regularized RL and research

in nonequilibrium statistical mechanics focusing on Markovian processes conditioned on rare events. In the

long-time limit, we apply approaches from large deviation theory to derive exact analytical results for the

optimal policy and optimal dynamics in Markov decision process (MDP) models of reinforcement learning.

The results obtained lead to an analytical and computational framework for entropy-regularized RL which is

validated by simulations. The mapping established in this work connects current research in reinforcement

learning and nonequilibrium statistical mechanics, thereby opening avenues for the application of analytical

and computational approaches from one eld to cutting-edge problems in the other.
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I. INTRODUCTION

The combination of machine learning approaches with

concepts and tools from physics has given rise to signicant

developments in current research [1]. Concepts derived from

statistical mechanics have led to important applications in

machine learning [2], and recent work has further highlighted

the importance of building bridges between the two disci-

plines [3–5]. Conversely, machine learning approaches such

as reinforcement learning (RL) are increasingly being used

to address complex optimization problems in diverse elds

of physics, ranging from quantum computing and quantum

control to adaptive optics [6–11]. While RL approaches are

now being widely applied in physics research, there has been

less emphasis on using insights and approaches from physics

to address open problems in RL. The development of such

approaches can lead to important discoveries in RL research

as well as provide avenues for the development of novel RL

algorithms to solve a diverse range of problems in physics

[7,12].

While the connections of machine learning to equilibrium

statistical mechanics are well established [2], the interface

with nonequilibrium statistical mechanics (NESM) is less ex-

plored. Recent work has addressed this gap by developing
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machine learning approaches with applications to NESM. For

example, graph neural network models for estimation of the

scaled cumulant generating function for observables in dy-

namical systems have been developed [13] and evolutionary

RL approaches have been used to calculate the likelihood

of dynamical large deviations [14]. While RL approaches

are thus starting to be applied to study systems of interest

in NESM, it is also of interest to explore if insights from

NESM can be used to obtain new insights into RL. An

example of the latter case arises when considering RL prob-

lems that involve optimization over system trajectories with

entropy-based regularization [15,16]. This framework, termed

maximum entropy RL, or more generally entropy-regularized

RL, allows the optimal control problem in RL to be recast as

a problem in Bayesian inference. This “control-as-inference”

approach involves the introduction of optimality variables

such that the posterior trajectory distribution, conditioned

on optimality, provides the solution to the optimal control

problem [15–18]. While this framework has led to several

advances, there are open questions relating to the derivation

of analytical results that characterize the optimal dynamics.

Recent research in NESM using large deviation theory has

developed a framework for analyzing Markovian processes

conditioned on rare events [19–23]. In this framework, a

generalization of the Doob h-transform [22,24,25] is used to

determine the driven process: a conditioning-free Markovian

process that has the same statistics as the original Markovian

process conditioned on a rare event. Similar derivations of the

driven or controlled processes have been obtained in previous

work using a maximum entropy approach for characterizing

nonequilibrium steady states [26–29]. The connection of this

framework to RL can be seen by noting that the goal in

entropy-regularized RL is to derive the posterior trajectory
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distribution conditioned on optimality and, in the long-time

limit, optimality of the trajectory is a rare event for the original

dynamics. This commonality of conditioning on rare events

suggests that approaches and results from NESM can be

used to characterize the optimal control policy for entropy-

regularized RL problems. Indeed, recent work has explored

connections between entropy-regularized RL and rare trajec-

tory sampling and applied it to a range of problems in physics

[12,30]; however an explicit characterization of the optimal

controlled processes for general entropy-regularized RL prob-

lems has not been derived to date.

In this paper, we develop a mapping between MDP-based

entropy-regularized RL and Markovian processes conditioned

on rare events in the long-time limit. Using approaches from

large deviation theory, we derive exact analytical expressions

characterizing trajectory distributions conditioned on optimal-

ity. Interestingly, our derivation of these results shows how the

generalized Doob h-transform arises naturally from Bayesian

inference applied to trajectory distributions. The results ob-

tained lead to analytical expressions for the optimal policy

and optimal dynamics in entropy-regularized RL which are

validated using simulations. The connections established in

this work also lead to an approach for model-free RL and

provide avenues for research focusing on the intersection of

RL and physics. Specically, the mapping developed in this

work connects RL-based optimization to the estimation of

dynamical free energy in NESM [19], thus paving the way for

the use of approaches such as deep RL to estimate dynamical

free energies in nonequilibrium physics.

II. MARKOV DECISION PROCESS FRAMEWORK

In the following, we provide an overview of the standard

Markov decision process (MDP) framework for reinforcement

learning. To introduce the formalism, we focus on the nite

horizon, undiscounted case with horizon N [15]. Consider a

Markov chain with states represented by tuples (s, a), where

s is an agent’s current state and a is an action taken while

in state s. The probability that the agent transitions to state

s after taking action a is denoted by p(s|s, a). The choice

of action a given the agent’s current state s is drawn from a

policy π (a|s), and the corresponding reward collected by the

agent is given by the reward function r(s, a).

With the above representation, we can now dene probabil-

ity distributions over trajectories τ := {(s1, a1), . . . , (sN , aN )}

that are generated by the policy π (a|s) and transition proba-

bilities p(s|s, a). Let p(s1), π (a|s) and p(s|s, a) denote prior

distributions for the initial state, policy, and transition dynam-

ics respectively. The corresponding probability distribution

for uncontrolled trajectories is given by

p(τ ) = p(s1)

N
∏

t=1

p(st+1|st , at )π (at |st ). (1)

The prior distribution for the transition dynamics corresponds

to the system’s uncontrolled transition dynamics. In the spe-

cial case of maximum entropy (MaxEnt) RL, the prior policy

is chosen as the uninformative prior, i.e., a uniform distribu-

tion over actions.

We now consider the probability distribution for controlled

trajectories that is generated by a specic policy πc(a|s) and

transition dynamics pc(s
|s, a) that may, in general, be differ-

ent from the uncontrolled prior distributions. The probability

distribution for controlled trajectories is given by

pc(τ ) = pc(s1)

N
∏

t=1

pc(st+1|st , at )πc(at |st ). (2)

The objective in standard RL is to nd the policy

π∗(a|s) that maximizes the total expected reward. Let Rτ =
N

t=1 r(st , at ) denote the total reward accumulated over a

trajectory τ . Correspondingly, the optimal policy π∗(a|s) is

given by

π∗(a|s) = argmax
πc

Epc (τ )[Rτ ]. (3)

In entropy-regularized RL, the goal is to determine the de-

composition (Eq. 2) for the optimally controlled trajectory

distribution pc(τ ) that maximizes the objective function

Epc (τ )[Rτ ]−
1

β
H(pc(τ )||p(τ )), (4)

where β is a regularization parameter corresponding to the

inverse temperature. We can see that, in entropy-regularized

RL, the standard RL objective function is augmented to in-

clude a regularization term −
1
β
H(pc(τ )||p(τ )). This term

corresponds to the relative entropy between the controlled tra-

jectory distribution pc(τ ) and the prior trajectory distribution

p(τ ), and is given by the Kullback-Leibler divergence

H(pc(τ )||p(τ )) =
∑

τ

pc(τ ) ln
pc(τ )

p(τ )
.

This regularization process naturally yields stochastic optimal

policies, a desirable feature providing robustness to changes in

the problem’s dynamics. The role of the β parameter is then

to regulate the tradeoff between obtaining a single “greedy”

optimal solution and obtaining a collection of solutions with

lower returns but improved robustness.

The preceding generalization of standard RL allows one to

recast the optimal control problem as an inference problem

[15]. This control-as-inference approach involves the intro-

duction of optimality variables Ot dened such that

p(Ot = 1|st , at ) = exp[βr(st , at )], (5)

The binary random variable Ot represents the probability that

the trajectory is optimal at time step t . The purpose of this

denition is that the posterior trajectory distribution, obtained

by conditioning onOt = 1 for all t , exactly corresponds to the

trajectory distribution generated by optimal control. The opti-

mal control problem in entropy-regularized RL thus becomes

equivalent to a problem in Bayesian inference.

Let O1:N dene the event for which all steps in a trajectory

τ are optimal, i.e., O1:N
.
=

⋂N
i=1(Oi = 1). To make connec-

tions to the “statistical mechanics of trajectories” formalism

in NESM [19], let us denote by Eτ = −Rτ the accumulated

energetic cost for a trajectory τ . From Bayes’s theorem, it fol-

lows that the posterior probability distribution for trajectories,
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conditioned on O1:N , is given by

p(τ |O1:N ) =
p(τ )e−βEτ



τ p(τ )e
−βEτ

. (6)

From the inference perspective, the central problem in

entropy-regularized RL is now to determine the posterior

distributions for the policy, dynamics, and initial state, con-

ditioned on optimality. As noted, these posterior distributions

correspond to the solution of the optimal control problem in

entropy-regularized RL.

In many practical RL problems, control of system dy-

namics and initial state distributions is unfeasible. In these

cases, the posterior dynamics and initial state distributions

must be constrained to exactly match the prior dynamics and

initial state distributions and the optimization is carried out

by varying the policy alone. We will refer to this approach as

the constrained optimization approach to entropy-regularized

RL. In the constrained optimization problem, the agent only

has control over the policy. The optimal trajectory distribution

for the constrained problem can therefore be decomposed as

p(τ |O1:N ) = p(s1)

N
∏

t=1

p(st+1|st , at )π (at |st ,O1:N ). (7)

The preceding (constrained) problem formulation is to

be contrasted with the unconstrained optimization problem,

where the agent also has control over the transition dynamics

and initial state distributions. In this case, the optimal trajec-

tory distribution can be decomposed as [15]

p(τ |O1:N ) = p(s1|O1:N )

N
∏

t=1

p(st+1|st , at ,O1:N )

× π (at |st ,O1:N ). (8)

In the remainder of the paper, unless otherwise stated, we

will focus on the solution of the unconstrained optimization

problem in entropy-regularized RL, where the transition dy-

namics and the initial state distribution are optimized along

with the policy. We note that the framework developed in this

work also leads to the solution of the constrained optimization

problem, which will be shown elsewhere.

III. SOLUTION USING LARGE DEVIATION THEORY

We now proceed to provide an analytical solution to the

central problem of entropy-regularized RL in the long-time

limit. Without loss of generality [15], we consider reward

functions such that the maximum reward is set to zero and we

have r(s, a) 6 0 for all s, a. In this case, Eq. (5) indicates that,

in the long-time limit, optimality of the entire trajectory is a

rare event and the problem of determining the posterior policy

and dynamics corresponds to conditioning on such a rare

event. Research in NESM [20,22] has developed a framework

for characterizing Markovian processes conditioned on rare

events. In the following, we show how this framework leads

to analytical expressions for quantities of interest in entropy-

regularized RL. We note that the core of the derivation runs

parallel to previous results deriving the Doob h-transform in

discrete-time Markov chains [31–34]. In the following, our

FIG. 1. System dynamics in the extended model with transition

matrix P. Transition i → O = 0 occurs with probability 1− eβri .

The introduction of an absorbing state provides an interpretation

for the binary random variable O. Conditioning on optimality (i.e.,

O = 1) is equivalent to conditioning on nonabsorption.

focus is on applying this framework to obtain new results for

entropy-regularized RL.

Let z = (s, a), z = (s, a) denote two consecutive state-

action tuples. We can combine the system dynamics p(s|s, a)

with the xed prior policy π (a|s) to compose the correspond-

ing transition matrix for the discrete time Markov chain

Pji = p(z = j|z = i) = p(s|s, a)π (a|s). (9)

Based on the connection to large deviation theory [35], let

us dene the tilted transition matrix

P̃ji = Pjie
βri , (10)

where ri = r(z = i) = r(s, a) denotes the reward associated

to the tuple (s, a). Note that the tilted matrix is not a stochastic

matrix and thus it cannot be interpreted as a transition matrix

for a Markov chain that conserves probability. To address this

issue, we introduce an additional absorbing state for the agent

such that the extended transition matrix P (as dened below)

is a stochastic matrix:

P ≡



P̃ 0

δ 1



, (11)

where δ is dened such that


j P ji = 1, i.e., δi = 1− eβri .

The extended model introduced above provides an inter-

pretation for the optimality variable introduced in Eq. (5) as

specifying the probability of nonabsorption (see Fig. 1). Let

us consider the system’s evolution for N time steps using the

transition matrix P. Imposing the conditionO1:N is equivalent

to conditioning on nonabsorption for all N time steps. Thus

the optimal trajectory distribution is generated by considering

the probability distribution over trajectories generated by P,

conditional on no transitions to the absorbing state for the

entire trajectory. This interpretation allows us to make con-

nections to the theory of quasistationary distributions [33,34]

which can be used to analyze Markovian processes condi-

tioned on nonabsorption.

For the dynamics generated by P, given an initial state-

action pair i, the probability of transitioning to state-action

pair j after taking N steps is given by [P̃N ] ji. In the following,

we assume that P̃ is a primitive matrix, meaning that the cor-

responding dynamics is irreducible and aperiodic. In this case,

the Perron-Frobenius theorem implies that P̃ has a unique

dominant eigenvalue ρ with a corresponding unique right

eigenvector v (with vi > 0) and a unique left eigenvector u

(with ui > 0). The normalization of the eigenvectors is chosen
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such that


i vi = 1 and


i uivi = 1 [33]. Furthermore since

P̃ is substochastic (column sums between 0 and 1), we must

have ρ < 1 and so we dene θ > 0 such that ρ = e−βθ .

We now consider the limit of large N , for which, using the

spectral decomposition of P̃, we have

[P̃N ] ji ≈ e−βθNuiv j (12)

Furthermore, let e−βξ denote the magnitude of the next dom-

inant eigenvalue. Then the convergence of the preceding

equation is exponential in N , i.e., the condition determining

the long-time limit corresponds to e−Nβ(ξ−θ )
 1.

Now the probability that a trajectory starting with state-

action pair z1 = (s1, a1) is optimal for N steps is given by

P(O1:N |z1 = i) =
∑

j

[P̃N ] ji ≈ e−βθNui. (13)

This result can be used to derive the posterior distribution

over trajectories conditioned on optimality. Typically, the dif-

culty in deriving expressions for the posterior distribution

stems from estimating the partition sum in the denominator

of Eq. (6). However, we note that the partition sum is given

by P(O1:N ) =


i p(z = i)P(O1:N |z = i) and thus can be esti-

mated using the results derived.

To derive expressions for the posterior dynamics and state

distributions conditioned on optimality, we dene, consistent

with the terminology in NESM, the driven transition matrix

[Pd ] ji = p(z = j|z = i,O1:N ). (14)

This denition implies that the driven transition matrix is the

generator of the Markov chain corresponding to the optimal

dynamics. In the long-time limit, we obtain that the driven

matrix is given by (see Appendix B 1)

[Pd ] ji =
P̃jiu j

e−βθui
, (15)

which recovers the expression for the driven model as a gener-

alized Doob h-transform in recent work in NESM [20,22,23].

It is interesting to note that our analysis recovers this result

based on Bayesian inference of the posterior trajectory distri-

bution.

The result for the driven matrix can be used to derive the

following expressions for the optimal dynamics, policy, and

initial state-action pair distributions (see Appendices B 2 and

B 3)

p(s|s, a,O1:N ) =
p(s|s, a)eβr(s,a)

e−βθu(s, a)

∑

a

u(s, a)π (a|s),

(16)

π (a|s,O1:N ) =
u(s, a)π (a|s)



a u(s, a
)π (a|s)

, (17)

p(s1, a1|O1:N ) =
p(s1, a1)u(s1, a1)



(s1,a


1 )
p(s1, a



1)u(s


1, a


e1)
. (18)

The preceding equations, which are among the main results

of this paper, show that in the long-time limit the optimal

dynamics can be completely characterized by the dominant

eigenvalue and the corresponding left eigenvector of the tilted

matrix P̃. While previous work has shown how a special class

of MDPs are linearly solvable [36,37], our results show that

linear solutions can be obtained for more general MDPmodels

in the long-time limit.

The signicance of this result is that it provides a closed-

form solution for the central problem of entropy-regularized

RL [stated in Eq. (8)]. For the case of deterministic dynamics,

the results show that the optimal dynamics is unchanged from

the original dynamics and the optimal policy is determined by

the left eigenvector u. For the case of stochastic dynamics, the

results allow us to determine how the original dynamics must

be controlled to obtain the optimal dynamics.

IV. VALUE FUNCTIONS AND STATISTICAL MECHANICS

The results derived for the optimal dynamics can be used

to derive analytical expressions for optimal value functions

in entropy-regularized RL [also called soft value functions

[15] and denoted by Q(s, a) and V (s)] and to make fur-

ther connections to statistical mechanics. The optimal value

function Q(s, a) represents the expected future return to be

collected, given that action a is taken from the initial state s,

and the optimal dynamics and policy are followed thereafter.

Note that this expected future return includes the penalization

given by the entropic cost term β−1H [see Eq. (4)]. Specif-

ically Q(s, a) is obtained by maximizing the average return

over the controlled trajectory distribution: Epc (τ |s,a)[Rτ ]−
1
β
H(pc(τ |s, a)||p(τ |s, a)). Note that, if we instead consider

the energetic costs over trajectories (i.e., Eτ = −Rτ ), the

problem of maximizing average returns is equivalent to

the problem of minimizing average costs: Epc (τ |s,a)[Eτ ]+
1
β
H(pc(τ |s, a)||p(τ |s, a)), in correspondence with Eq. (4). In

the following, we show how this optimization problem can

be solved by connecting to the free energy concept from

statistical mechanics.

To nd the optimal value function, we need to consider

the trajectory distribution corresponding to optimal control.

Conditioned on the rst step z1 = (s, a), the optimal trajectory

distribution is given by

p(τ |s, a,O1:N ) =
1

Zp(s, a)
p(τ |s, a)e−βEτ , (19)

where Zp(s, a) =


τ p(τ |s, a)e
−βEτ can be regarded as the

partition function corresponding to the nonequilibrium free

energy function

Fp(s, a) = −
1

β
ln Zp(s, a). (20)

We note that the free energy dened above corresponds

to the lower bound of the entropy-regularized RL objective,

representing the minimized expected total cost with both en-

ergetic and entropic contributions [38],

Fp(s, a) 6 Epc (τ |s,a)[Eτ ]+
1

β
H(pc(τ |s, a)||p(τ |s, a)),

and equality is attained when the controlled trajectory distri-

bution is given by Eq. (19). Thus the problem of minimizing

the expected costs, or equivalently maximizing the expected

return, is solved by the free energy, and correspondingly we

obtain Q(s, a) = −Fp(s, a). In other words, the function that

maximizes the expected total returns in entropy-regularized
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FIG. 2. Comparison of the optimal state-action pair distribution

and its approximation using the Perron eigenvectors of the tilted

matrix P̃, as a function of time step t , with N = 250. The Kullback-

Leibler divergence between the exact, time-dependent distribution

and the bulk/stationary distribution estimated using Eq. (23) is

shown. The plot shows that the ratio u(st ,at )v(st ,at )

p(st ,at |O1:T )
≈ 1 in the “bulk”

region of the trajectory.

RL [Q(s, a)] is given by eβQ(s,a) = Zp(s, a) = p(O1:N |s, a),

consistent with [15]. This result, in combination with Eq. (13)

and the denition of the state-dependent value function V (s),

eβV (s) =


a π (a|s)e
βQ(s,a), yields the relations

βQ(s, a) = −βθN + ln u(s, a), (21)

βV (s) = −βθN + ln
∑

a

π (a|s)u(s, a). (22)

Thus the value functions in entropy-regularized RL can be

obtained using the dominant eigenvalue and the left Perron

eigenvector of the tilted matrix P̃. These results have been

validated by comparing with the dynamic programming so-

lution for entropy-regularized RL (see Appendix D). The

signicance of the preceding equations is that they provide a

mapping between problems of interest in NESM and entropy-

regularized RL such that approaches from one eld can be

used to solve problems in the other. For example, using the

derived equations, function approximators, a popular tool in

deep reinforcement learning for estimating value functions

[39], can potentially be used as a method for calculating the

left and right dominant eigenvectors of the tilted generator in

NESM.

Besides the value functions, other quantities of interest in

RL can also be obtained using the Perron-Frobenius eigen-

value and the corresponding eigenvectors, as previously noted

in diverse systems of interest [20,33,40,41]. For example, in

the long-time limit the right eigenvector gives the probability

of observing a state-action pair conditioned on optimality:

p(st , at |O1:t−1) = v(st , at ). Using Eq. (18), for t such that

t → ∞ and (N − t ) → ∞ (i.e., the “bulk” region of the tra-

jectory), we also have (see Appendix B 4)

p(st , at |O1:N ) ≈ u(st , at )v(st , at ). (23)

We note that u(s, a)v(s, a) represents the components of the

dominant right eigenvector of the driven matrix Pd , i.e., the

components of the steady-state distribution over state-action

pairs generated by the driven dynamics.

As shown in Fig. 2, the exact optimal state-action pair

distribution is in excellent agreement with the approximation

obtained using the steady-state distribution of the driven dy-

namics, for time t in the “bulk” region of the trajectory (i.e.,

FIG. 3. Results for a 9 by 9 maze, trajectory length N = 104.

Panels (a)–(d) show how state occupation frequencies (derived from

the optimal trajectory distribution) change with temperature. Panels

(e) and (f) show the mean energetic costs, and relative entropy per

time step as functions of β.

far from the extremities at t = 0 and t = N). Given that the

steady-state distribution over state-action pairs is a quantity

of signicant interest in RL applications such as Inverse RL

[42], the result obtained in Eq. (23) can signicantly impact

the computations involved in such RL approaches.

To further validate the theory presented, we consider the

“grid-world” setting shown in Figs. 3(a)–3(d) in which an

agent can take actions a by deterministically moving up,

down, left, or right. The state s of the agent is simply the

grid cell in which it resides. The agent’s task is to navigate

to the only rewarding state: the goal, indicated by the yellow

circle. The initial state of the agent is in the top left part of

the maze. The shading of states represents the steady-state

distribution


a u(s, a)v(s, a) for various values of the con-

trol parameter, β. We note that, as β → ∞, the agent acts

greedily by not deviating from the shortest path, that is, the

most probable trajectories are those with higher rewards. This

observed behavior reveals the role of the β parameter, which

is to control the preference of the agent to purely minimize

energy (maximize rewards) in exchange for stochasticity.

In the limit of large N , we have F (s,a)

N
→ θ , which can

be interpreted as the “bulk” free energy per time step. Fur-

thermore, we can also obtain approximations for quantities

of interest such as the mean energetic cost per time step,

through the steady state distribution in Eq. (23), resulting in

the following expression:

1

N
E[Eτ ] = −

∑

s,a

u(s, a)v(s, a)r(s, a). (24)
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As shown in Fig. 3(e), the preceding equation is in excellent

agreement with results from simulations. We further note that

as the inverse temperature parameter β is varied, the optimal

trajectory distribution switches from primarily minimizing

entropic costs at high temperatures (low β) to primarily min-

imizing energetic costs at low temperatures (high β). The

approach developed therefore not only enables us to obtain

the value functions of interest in entropy-regularized RL, but

to also derive analytical expressions for the energetic and

entropic contributions, which were previously unavailable.

V. u-θ LEARNING

The framework developed shows how several quantities of

interest in entropy-regularized RL can be obtained using the

dominant eigenvalue and the corresponding left eigenvector of

the tilted matrix. In the following, we show how these quan-

tities can be obtained in a model-free setting (that is, without

explicit knowledge of the dynamics and rewards) by allowing

the agent to collect experience by randomly exploring using

the original transition dynamics.

By taking the sum over the columns of the driven matrix

in Eq. (15), we note that the left eigenvector elements can

be written as an expectation value over the original transition

dynamics. Correspondingly, the dominant eigenvalue and left

eigenvector can be obtained through a learning process based

on the following equation:

u(s, a)e−βθ = eβr(s,a)E∼p(s,a|s,a)[u(s
, a)]. (25)

The corresponding update equations for learning u(s, a)

and θ are

u(s, a) ← (1− α)u(s, a)+ α
eβr(s,a)

e−βθ
u(s, a), (26)

e−βθ
← (1− αθ )e

−βθ + αθe
βr(s,a) u(s

, a)

u(s, a)
, (27)

where α and αθ are their respective learning rates [43].

Further renements of the algorithm outlined above can be

developed following the connections to learning algorithms

for risk-sensitive control [44]. Note that the prior policy is

used for sampling actions during the training process [see

Eq. (25)]. Thus this model-free approach to RL, which we

term u-θ learning, is fundamentally an off-policy approach

[45] wherein the optimal policy is obtained via system

exploration using the prior policy. Our simulations (see Ap-

pendix D) indicate that optimal policies obtained using this

method are in excellent agreement with the corresponding

results obtained using dynamic programming [46] on the soft

Bellmann backup equation. Appendix C shows how the soft

Bellmann backup equation arises from the denition of the

tilted matrix P̃.

In conclusion, we have established a mapping between

entropy-regularized RL and recent research in NESM using

large deviation theory. The results derived include analytical

expressions for quantities of interest in RL and lead to a

learning algorithm for model-free RL. The results obtained

have thus established a framework for analyzing optimization

problems using entropy-regularized RL, and generalizations

of this approach hold promise for obtaining solutions to a

broader range of optimization problems in physics and ma-

chine learning.
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APPENDIX A: IMPLEMENTATION DETAILS

For the purposes of testing and validation we have de-

veloped an implementation of the method using Python, and

used the Gym environment framework developed by OpenAI

[47]. Since we focus on discrete state-action spaces, we shall

work with the FrozenLake Gym environment, which we have

modied to meet our needs regarding the transition dynamics

and reward structure.

The code’s implementation includes model-based and

model-free solutions, along with example scripts to use our

method. The code is made available as Supplemental Material

in this publication [48], and as a Github repository [49].

APPENDIX B: DRIVEN DYNAMICS

AND OPTIMAL DISTRIBUTIONS

1. Driven dynamics

The probability distribution for trajectories, τ1:T =

(z1, z2, . . . , zT ) with zt = (st , at ), conditioned on optimality

is given by [see Eq. (6)]

p(τ1:T |O1:T ) =
p(τ1:T ,O1:T )

p(O1:T )
=

p(τ )e−βEτ



τ p(τ )e
−βEτ

,

For notational convenience, let zt = (st , at ) = i and zt+1 =

(st+1, a


t+1) = j denote two consecutive state-action tuples in

the trajectory τ1:T , with 1 6 t < T . The corresponding ele-

ments of the driven and tilted matrices are, by denition,

[Pd ] ji = p(st+1, a


t+1|st , at ,O1:T ),

[P̃] ji = p(st+1, a


t+1|st , at )e
βr(st ,at ),

From the above equations, it can be seen that the tilted matrix

is time independent whereas the driven matrix will, in general,

depend on the time index t . In the following, we consider the

long-time limit (T − t ) → ∞. In this case, we will see that

the driven matrix is independent of the time index t .

Let us divide the trajectory τ1:T into two parts such

that τ1:t−1 = (z1, z2, . . . , zt−1) and τt :T = (zt , zt+1, . . . , zT ).

We will rst focus on τt :T in the limit (T − t ) = N → ∞.

Using the denition of the driven matrix, we have

p(τt+2:T , zt+1 = j|zt = i,Ot :T )

= p(τt+2:T |zt+1 = j,Ot+1:T )[Pd ] ji (B1)

Using Eq. (6), the left-hand side of Eq. (B1) can also be

expressed as

p(τt+2:T , zt+1 = j|zt = i,Ot :T )

=
p(τt+2:T ,Ot+1:T |zt+1 = j)

p(Ot :T |zt = i)
[P̃] ji. (B2)
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FIG. 4. (a) A four-state one-dimensional (1D) maze with two actions available to navigate. (b) The corresponding graphical model. Here

we model an irreducible Markov chain by making the agent return to the initial state after reaching the goal state. (c) Part of the Markov chain

at time step t . Right: representation of the stationary distribution resulting from the optimal dynamics, for a larger 10 by 10 2D maze and four

available actions: left, down, right, up.

In Eq. (B1) using the substitution

p(τt+2:T |zt+1 = j,Ot+1:T ) =
p(τt+2:T ,Ot+1:T |zt+1 = j)

p(Ot+1:T |zt+1 = j)
,

and comparing with Eq. (B2), we get

[Pd ] ji =
[P̃] ji p(Ot+1:T |zt+1 = j)

p(Ot :T |zt = i)
. (B3)

Taking the long-time limit and approximating the tilted

transition matrix using the dominant contribution,

P(Ot :T |zt = i) =
∑

j

[P̃N ] ji = e−βθNui,

P(Ot+1:T |zt+1 = j) =
∑

k

[P̃N−1]k j = e−βθ (N−1)u j . (B4)

Substituting in Eq. (B3) we nd that the driven matrix is given

by the Doob h-transform [see Eq. (15)]:

[Pd ] ji =
P̃jiu j

e−βθui
.

2. Optimal policy

To derive the optimal policy, we begin with the observation

p(st , at |Ot :T ) =
p(st , at )p(Ot :T |st , at )



(st ,at )
p(st , at )p(Ot :T |st , at )

. (B5)

Using the approximation in Eq. (B4), we can rewrite Eq. (B5)

as

p(st , at |Ot :T ) =
p(st , at )u(st , at )



st ,at
p(st , at )u(st , at )

. (B6)

Note that the preceding equation is valid for times t such that

(T − t )  1. In particular, it can be applied for the initial

time-step to obtain the optimal initial state-action pair dis-

tribution result derived in the main text. For general t , the

optimal state distribution can be obtained from Eq. (B6) as

p(st |Ot :T ) =



at
p(st , at )u(st , at )



st ,at
p(st , at )u(st , at )

.

From the preceding equations, we see that, in the long-time

limit (T − t ) → ∞, the optimal state-action pair distribution

is time independent. Therefore, using these equations and

suppressing the time index, we obtain that the optimal policy

is given by

p(a|s,O1:T ) =
p(a|s)u(s, a)



a p(a|s)u(s, a)
,

π∗(a|s) =
π (a|s)u(s, a)



a π (a|s)u(s, a)
, (B7)

where π∗(a|s) denotes the optimal policy and π (a|s) is the

prior policy.

3. Optimal transition dynamics

To derive the optimal transition dynamics, we rst write

Eq. (15) as

p(s, a|s, a,O1:T ) =
p(s, a|s, a)eβr(s,a)u(s, a)

e−βθu(s, a)
,

π∗(a|s)p∗(s|s, a) =
π (a|s)p(s|s, a)eβr(s,a)u(s, a)

e−βθu(s, a)
.

(B8)

By substituting the optimal policy in Eq. (B7) into Eq. (B8),

we nd that the optimal transition dynamics is given by

p∗(s|s, a) =
p(s|s, a)eβr(s,a)

e−βθu(s, a)

∑

a

π (a|s)u(s, a).
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FIG. 5. Comparison of the soft-Q values computed by the large deviation approach vs. the dynamic programming solution. Top left: The

10 by 10 empty maze used for the plots in this gure. Top right: Root mean squared deviations of Q values between the large deviation and

dynamic programming solutions, as a function of trajectory length. Bottom left: 20 step trajectories. Bottom right: 290 step trajectories. Here

we can see perfect correlation between both solutions, for long enough trajectories.

4. Optimal steady-state distribution

Now we consider the initial part of the trajectory τ1:t−1.

Consider

p(zt = j|z1 = i,O1:t−1) =
p(zt = j,O1:t−1|z1 = i)

p(O1:t−1|z1 = i)
.

In the limit t → ∞, using the Perron-Frobenius theorem and

Eq. (B4), we get

p(zt = j|z1 = i,O1:t−1) =
e−βθN uiv j

e−βθNui
= v j .

Thus, the optimal state-action pair distribution at time t is

time-independent and independent of the initial state-action

pair distribution. This distribution is given by the right

FIG. 6. Optimal policies for three different mazes, obtained from

the dominant eigenvalue’s corresponding left eigenvector of the tilted

transition matrix. In these examples, the size of an arrow is propor-

tional to the probability of taking a step in that direction. Blue squares

represent hard walls, i.e., the agent is not allowed to step on them.

Each step taken by the agent incurs a penalization (r = −1). When

on a red square, there is a higher penalization (r = −1.5) and the

agent is allowed to continue its trajectory. The goal state is depicted

by the yellow circle, for which there is no penalization (r = 0) and

the agent will be replaced at the initial state, regardless of the action

taken.

eigenvector of the tilted matrix, and is referred to as the

quasistationary distribution [33].

The preceding equations have shown the equality p(zt =

j|O1:t−1) = v j . To obtain the steady-state distribution of the

optimal dynamics, we need to derive an expression for p(zt =

j|O1:T ). To proceed, we split the trajectory in a similar way as

above:

p(zt = j|O1:t−1,Ot :T )

=
p(Ot :T |zt = j,O1:t−1)p(zt = j|O1:t−1)



k p(Ot :T |zt = k,O1:t−1)p(zt = k|O1:t−1)
.

Furthermore, using

p(Ot :T |zt = j,O1:t−1) = p(Ot :T |zt = j) = e−βθNui

in combination with p(zt = j|O1:t−1) = v j , we get

p(zt = j|O1:T ) =
e−βθNu jv j

e−βθN


k ukvk
= u jv j .

Thus the optimal state-action pair distribution in the “bulk”

region of the trajectory [i.e., the times t such that t → ∞

and (T − t ) → ∞] is time-independent and is given by the

Hadamard product of the left and right eigenvectors of the

tilted matrix. It is readily veried that this distribution also

corresponds to the steady-state distribution of the driven ma-

trix PD.

APPENDIX C: DERIVATION OF SOFT BELLMAN

BACKUP EQUATIONS

Recall that we write the indices i = (s, a) and j = (s, a)

for two consecutive steps, and the transition matrix is

Pji = p(s, a|s, a) = p(s|s, a)π (a|s).
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FIG. 7. Training evolution of u-θ learning agents for ve different temperatures as a function of the training progress. Lower temperature

agents take longer to converge. Note that the optimal greedy policy is recovered at the lowest temperatures.

From Markov chain theory, when given a transition matrix P,

we interpret [PN ] ji as the probability of arriving at j after N

steps, given that we start from i. Since the transition matrix P

is a stochastic matrix, we have that


j [P
N ] ji = 1. For large

N , PN leads to the stationary distribution for the correspond-

ing Markov process.

Let us now consider the tilted transition matrix

P̃ji = eβriPji,

which represents a substochastic transition matrix. As pointed

out in the main text, we can expand the graphical model with

an extra state in such a way that we obtain a proper stochastic

transition matrix. This extra state is an absorbing state, and

any trajectory that reaches it is regarded as suboptimal.

We can write the probability of remaining optimal after

taking N steps in the Markov chain as the probability of

nonabsorption,

p(O1:N |s, a) =
∑

j

[P̃N ] ji.

The preceding equation represents the so-called backward

messages [15]. Using this we can write a recursive relation

which then leads to the soft Bellman backup equation

p(O1:N |s, a) =
∑

j

∑

m

[P̃N−1] jme
βriPmi

= eβr(s,a)
∑

s,a

p(s, a|s, a)p(O2:N |s
, a).

Now, using the denitions of the soft value functions in

entropy-regularized RL [15],

βQ(s, a) = ln p(O1:N |s, a),

βV (s) = ln
∑

a

π (a|s) exp[βQ(s, a)],

we obtain, consistent with the result derived in [15], the fol-

lowing soft backup equation:

Q(s, a) = r(s, a)+
1

β
lnE{exp[βQ(s, a)]}

= r(s, a)+
1

β
ln

[
∑

s

p(s|s, a) exp[βV (s)]

]
,

where the expectation is taken with respect to the uncontrolled

dynamics: the prior policy and the original transition dynam-

ics.

APPENDIX D: EXPERIMENTAL VALIDATION

In order to validate the analytical framework proposed

in the main text and derived here, we dened a series of

grid-world mazes for which a complete dynamics model is

available, i.e., all available states, actions and transition dy-

namics are known beforehand. We modied the OpenAI Gym

environment “FrozenLakeEnv” [47], which has a discrete

state-action space. Our version of this environment provides

control over the reward function, stochastic behavior, and an

FIG. 8. Validation of solution by u-θ learning algorithm. The maze used is the same as in Fig. 7, with β = 10 and trajectory length

N = 1000 steps. Left: Convergence of the θ parameter learned by the agent towards the target value as computed by the model-based version.

The curve plots the mean values over 32 replicas, and the shaded area is the standard deviation. Right: Learning rate schedules used to learn

the θ parameter.
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option to dene a cyclic mode that results in irreducible MDPs

(see Fig. 4). With this setup, we are able to compute the opti-

mal solution for the objective function in entropy-regularized

RL. The resulting soft-Q value function has been compared

with the dynamic programming result, which is obtained by

directly computing the soft-Q and soft-V value functions at

every step (see Fig. 5). Figure 6 shows three examples of

mazes and corresponding optimal policies. In the gure we

see how the policy can successfully steer the agent toward the

goal state, while avoiding dangerous states.

Here we provide some details about the validation of

the model-free version of our method (u-θ learning). The

approach consists of a temporal difference method [see

Eqs. (26) and (27) in the main text]. Validation of the

algorithm has been performed by comparing to the exact

solution as computed by dynamic programming. In Fig. 7

we show solutions to the displayed maze for several temper-

atures, as a function of training progress. Fig. 8 examines

the learned parameters and their comparison with dynamic

programming.
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