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Abstract

Models trained on crowdsourced labels may not001
reflect broader population views when annota-002
tor pools are not representative. Since collect-003
ing representative labels is challenging, we pro-004
pose Population-Aligned Instance Replication005
(PAIR), a method to address this bias through006
statistical adjustment. Using a simulation study007
of hate speech and offensive language detec-008
tion, we create two types of annotators with dif-009
ferent labeling tendencies and generate datasets010
with varying proportions of the types. Models011
trained on unbalanced annotator pools show012
poor calibration compared to those trained on013
representative data. However, PAIR, which du-014
plicates labels from underrepresented annotator015
groups to match population proportions, sig-016
nificantly reduces bias without requiring new017
data collection. These results suggest statisti-018
cal techniques from survey research can help019
align model training with target populations020
even when representative annotator pools are021
unavailable. We conclude with three practical022
recommendations for improving training data023
quality.024

1 Introduction and Inspiration025

NLP models should align with the interests and026

judgments of the population they impact (Sorensen027

et al., 2024; Fleisig et al., 2024). However, the028

training and feedback data for these models often029

comes from crowdworkers or convenience sam-030

ples of annotators (e.g. student assistants). These031

populations differ from the general population on032

important characteristics like age, education, and033

cultural context (Smart et al., 2024; Berinsky et al.,034

2012; Ouyang et al., 2022), and these characteris-035

tics impact the labels they assign (Sap et al., 2022;036

Fleisig et al., 2023; Kirk et al., 2024).037

Fortunately, survey researchers have developed038

robust statistical techniques to estimate population-039

level parameters from non-representative samples040

(Eckman et al., 2024; Bethlehem et al., 2011a). The041
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Figure 1: Top: Adjusting survey data to match pop-
ulation produces high quality results. Bottom: Can
a similar adjustment in data annotations also improve
model performance?

top panel of Figure 1 shows a simple workflow of 042

collecting survey data and then creating statistical 043

weights to match the data to the population. We 044

propose that similar techniques could help align 045

machine learning models with target populations, 046

even when working with imperfect annotator pools 047

(bottom panel). 048

To test this approach, we use a simulation study, 049

a common approach in the statistics literature (Bur- 050

ton et al., 2006; Valliant, 2019; Morris et al., 2019). 051

We simulate seven populations, create several la- 052

beled datasets with varying mixes of annotators, 053

and train model on each dataset. We investigate 054

two research questions: RQ1: How does the com- 055

position of the annotator pool impact model cali- 056

bration and performance? RQ2: Can techniques 057

from survey methodology mitigate the effects of 058

non-representative annotator pools? 059

Our results demonstrate that models trained on 060

nonrepresentative annotator pools perform poorly. 061

However, simple adjustment methods can improve 062

performance without collecting additional data. 063
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These findings suggest that insights from survey064

methodology help make AI systems more represen-065

tative of the populations they serve.066

2 Annotation Simulation067

To address our research questions, we create popu-068

lations with two types of people: those more likely069

to perceive offensive language and hate speech and070

those less likely. We then simulate labels, varying071

the mix of the two types of people, to approximate072

when happens when the pool of annotators does073

not represent the characteristics of the population.074

Data. We use a dataset1 of 3,000 tweets sampled075

from Davidson et al. (2017). Each tweet has 15 an-076

notations of both offensive language (OL: yes/no)077

and hate speech (HS: yes/no) (Kern et al., 2023).078

We chose this dataset because the high number of079

annotations of each tweet gives us a diverse set of080

labels to work with.081

We randomly select (without replacement) 12082

labels (of both OL and HS) from the 15 labels of083

each tweet in the original dataset.2 Let pi,OL be the084

proportion of the 12 annotators who labeled tweet085

i as OL and pi,HS defined similarly. Table 1 shows086

the distribution of these proportions.087

Variable p25 Median Mean p75

pi,OL 0.167 0.667 0.564 0.917
pi,HS 0.083 0.167 0.301 0.50
p refers to percentile

Table 1: Distribution of pi,OL and pi,HS in Gold Dataset

Population Setup. We imagine populations088

made up of equal shares of two types of people.089

Type A people are less likely to say a tweet con-090

tains OL or HS. Type B people are more likely:091

pAi,OL = max(pi,OL − β, 0) (1)092

pBi,OL = min(pi,OL + β, 1) (2)093

The HS probabilities are defined similarly. Here094

β captures the magnitude of the bias. We095

vary β from [0.05, 0.3] by 0.05 to create seven096

populations and seven vectors of probabilities097

(pAi,OL, p
B
i,OL, p

A
i,HS , p

B
i,HS) for each tweet.098

1https://huggingface.co/datasets/soda-lmu/
tweet-annotation-sensitivity-2

2For reasons that will become clear, it is helpful for the
number of labels per tweet to be divisible by four.

Label Simulation. For each value of β, we create 099

four datasets, each with 3,000 tweets (Table 2). The 100

Balanced Dataset contains OL labels from six A 101

annotators (drawn from Bernoulli(pAi,OL)) and six 102

B annotators (drawn from Bernoulli(pBi,OL)). The 103

proportion of A and B annotators in this dataset 104

matches the population. The labels in this dataset 105

are our gold standard. 106

Dataset Labels per tweet A labels B labels

Balanced 12 6 6
Unbalanced 1 9 6 3
Unbalanced 2 12 9 3
Adjusted 12 6 3 + 3*

NA = Not Applicable; * 3 B labels duplicated

Table 2: Four Training Datasets for each label (OL, HS)
and each bias value (β)

We then create two unbalanced datasets. Unbal- 107

anced 1 randomly deletes three B labels for each 108

tweet from the Balanced Dataset. Unbalanced 109

2 adds three additional A labels, drawn from pAi , 110

to the Unbalanced 1 dataset. The Unbalanced 2 111

Dataset is more unbalanced than Unbalanced 1, but 112

contains the same number of annotations as the 113

Balanced dataset. 114

Finally, we create the Adjusted Dataset. It is 115

the same as the Unbalanced 1 dataset, but the B 116

annotations are duplicated. This duplication is an 117

easy way to adjust the unbalanced training dataset 118

to reflect the population; a generalized version of 119

this adjustment is provided in A.5. 120

Appendix Figure 5 shows the percentage of 121

tweets labeled OL and HS in the four datasets for 122

each value of β. 123

3 Model Training and Evaluation 124

Training and Test Setup. We train models on 125

each dataset. We divide each dataset, at the tweet 126

level, into training (2000 tweets), development 127

(500), and test (500) sets. 128

Model Selection and Training. We used 129

RoBERTa base (Liu et al., 2019) as our text clas- 130

sifier. The model trained for five epochs on each 131

dataset, with development set optimization. To en- 132

sure reliable results, we trained five versions with 133

different random seeds and averaged their perfor- 134

mance. Appendix §A.2 contains additional details. 135

Performance Metrics. We measure model per- 136

formance using two metrics. 137
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• Absolute Calibration Bias (ACB): This metric138

compares the observed proportion of OL/HS la-139

bels in the Balanced dataset to each the model’s140

predicted probabilities (predsi):141

ACBOL =
1

n

n∑
i=1

∣∣pi,OL − predsi,OL

∣∣ (3)142

ACB simplifies the ECE metric (Naeini et al.,143

2015; Guo et al., 2017) by removing bins, and144

makes the single difference more straightforward145

by incorporating true frequencies directly. A low146

ACB score means the model’s predicted proba-147

bilities match the true frequencies in the Gold148

dataset.149

• F1 Score: This standard classification metric150

balances precision and recall.151

The appendix also presents ECE (similar to152

ACB) and ROC-AUC (similar to F1) metrics (see153

§A.4). We report all metrics on the test set.154

4 Results155

Model Calibrations. Figure 2 compares the156

ACB in the test set for models trained on the simu-157

lated datasets. Lower ACB indicates better model158

calibrations with the test labels. The dark lines159

show average ACB across the five training runs160

and the shading shows the standard deviation. See161

Appendix Figure 7 for the ECE results, which are162

similar.163

In the OL graph, ACB for the models trained on164

the Balanced and Adjusted datasets do not increase165

with β and are close together. ACB for the models166

trained on the two unbalanced datasets is greater167

and grows with β. These results demonstrate the168

effectiveness of our adjustment method. Duplicat-169

ing the labels from the underrepresented annotator170

type to match population proportions improves cal-171

ibration.172

In the HS graph, the trends are less clear. Be-173

cause HS is rarer in the dataset (Table 1), the A174

annotations are often 0, which complicates inter-175

pretation of the HS panel of Figure 2. We address176

this issue with additional analyses below.177

Model Predictions. Figure 3 compares the mod-178

els’ F1 scores. In contrast to Figure 2, we do not179

see strong differences between the models trained180

on the different datasets. For all datasets, model181

performance declines with β: as the amount of182

noise in the labels increases, the models have a183
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Figure 2: Model ACB scores, by dataset and bias (β)

harder time predicting the labels. The ROC-AUC 184

graphs show the same pattern (Appendix Figure 8). 185

Because the F1 metric focuses on binary pre- 186

dictions, it is less sensitive to training biases com- 187

pared to calibration metrics, which more explicitly 188

capture biases through prediction scores. These 189

findings suggest that calibration metrics provide a 190

clearer view of the impact of annotators on models, 191

and binary classification performance alone can 192

obscure such effects. In decision-making, miscali- 193

brated predictions can have harmful consequences 194

when, e.g., hateful content remains undetected 195

(Van Calster et al., 2019). 196

Results with Difficult Tweets. Our simulations 197

assumed that all tweets are impacted the same way 198

(Eq. (2)), which is an oversimplification. More real- 199

istically, annotator characteristics likely have more 200

impact for ambiguous tweets. We repeat model 201

training and recompute metrics for those tweets 202

where 0.4 ≤ pi ≤ 0.6. This approach not only 203

focuses on those tweets where annotator character- 204

istics likely play a larger role, it also eliminates the 205

floor and ceiling effects in Eq. (2)). The filtered 206

datasets contain 267 (OL) and 360 (HS) tweets. 207

Figure 4 shows the ACB for models trained on 208

the filtered datasets. In the OL graph, the patterns 209

in the ACB scores are similar to Figure 2. The 210

Balanced and Adjusted models have similar ACB 211
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Figure 3: Model F1 scores, by dataset and bias (β)

and are lower than the Unbalanced models. The HS212

graph shows the same pattern, which is in contrast213

to Figure 2 where HS performed differently.214

The F1 results for this subset of tweets are in215

Appendix Figure 6. The OL graph shows higher F1216

scores for the Balanced and Adjusted models than217

for the two unbalanced models. There is no clear218

pattern in the F1 scores for the F1 model, though219

we do see an unexpected decrease in agreement in220

the Adjusted model when β = 0.3.221

5 Discussion & Recommendations222

Our results demonstrate two key findings about an-223

notator representation in training data. First, mod-224

els perform less well when trained on data from225

non-representative annotator pools. Second, simple226

statistical adjustments can help correct for these227

biases without collecting additional data. These228

findings have important implications for dataset229

creation and model training.230

Recommendations If these findings hold up in231

future work, we recommend the AI/ML field take232

three steps:233

1) Identify which annotator characteristics in-234

fluence labeling and feedback decisions for dif-235

ferent tasks. Research should integrate social sci-236

ence methods to understand how demographics,237

attitudes, and behaviors shape annotation patterns238
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Figure 4: Model ACB scores for filtered tweets (0.4 ≤
pi ≤ 0.6), by dataset and bias (β)

(Eckman et al., 2024). This knowledge would 239

help determine which characteristics need to be 240

balanced across annotator pools for specific tasks. 241

2) Begin collecting relevant characteristics from 242

annotators and gather corresponding population- 243

level data. National censuses and large-scale sur- 244

veys could provide useful population benchmarks.3 245

3) Implement data adjustment methods that ac- 246

count for differences between annotator and popu- 247

lation characteristics. While our simple duplication 248

approach showed promise, more sophisticated sta- 249

tistical techniques from survey research may yield 250

better results. 251

Limitations 252

Stylized Biases. Our simulation makes strong as- 253

sumptions about annotator behavior, particularly in 254

modeling consistent biases across annotator types. 255

Real-world annotator biases may be more nuanced 256

or context-dependent. Future work could incorpo- 257

rate more realistic biases and refine the proposed 258

3Collection and release of annotator characteristics or
weights derived from them may raise concerns about annotator
confidentiality. This topic is outside the scope of this paper,
however, the survey literature contains useful approaches (see
Karr, 2016, for a review). We also note that collecting anno-
tator characteristics may require involvement of Institutional
Review Boards or other participant protection organizations
(Kaushik et al., 2024).
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simulations and statistical techniques.259

Sampling Variability. We have created only one260

version the four datasets for each label type and261

value of β, each of which contains random draws262

from the Bernoulli distribution. A more traditional263

statistical approach would create multiple versions264

of the datasets and train models on each one, to265

average over the sampling variability. We have266

not done that in this preliminary study because of267

the high cost and time needed to fine tune many268

RoBERTa models. As discussed, we have used five269

seeds in model training.270

Generalization Beyond Task Types. The study271

focuses only on binary classification tasks. Many272

real-world annotation tasks involve multiple classes273

or labels, which may show different bias patterns.274

Additional research is needed to extend these meth-275

ods to more complex classification scenarios.276

Evaluation Metrics. While we measured calibra-277

tion and classification accuracy, we did not exam-278

ine other important metrics such as fairness across279

subgroups or robustness to adversarial examples.280

Future work should on training data adjustment281

should assess a broader range of performance mea-282

sures.283

Ethical Considerations284

In this simulation study, we experiment on a pub-285

licly available dataset (Kern et al., 2023), which286

contains offensive and hateful tweets. We do not287

support the views expressed in the tweets. The sim-288

ulation study itself does not collect any new data289

or raise any ethical considerations.290
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A Appendix 439

A.1 Data 440

Figure 5 shows the percentage of tweets labeled OL 441

and HS in the four datasets for each value of β. The 442

percentage in the Adjusted dataset is similar to that 443

in the Balanced dataset for all values of β. The two 444

unbalanced datasets have lower rates of OL and 445

HS, because they overrepresent the A annotators, 446

who are less likely to label OL and HS. 447

Because HS is rare in our dataset, as β increases, 448

a higher proportion of pAi,HS are 0 while the pBi,HS 449

values increase. This issue leads to a higher pro- 450

portion of “yes” HS labels in the Balanced and 451

Adjusted datasets, which have more B labels than 452

the unadjusted datasets.4 453

A.2 Model Training Details 454

Our implementation of RoBERTa models was 455

based on the libraries pytorch (Paszke et al., 2019) 456

and transformers (Wolf et al., 2020). During 457

training, we used the same hyperparameter settings 458

of the respective models for our five training con- 459

ditions to keep these variables consistent for com- 460

parison purposes. We report the hyperparameter 461

settings of the models in Table 3. To avoid random 462

effects on training, we trained each model variation 463

with five random seeds {10, 42, 512, 1010, 3344} 464

4If we had picked the B labels to overrepresent, we would
have seen a converse problem with the OL labels.
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Figure 5: Percentage of OL, HS “yes” labels, by dataset
and bias (β)

and took the average across the models. All experi-465

ments were conducted on an NVIDIA® A100 80466

GB RAM GPU.467

Hyperparameter Value

encoder roberta-base

epochs_trained 5

learning_rate 3e−5

batch_size 32

warmup_steps 500

optimizer AdamW

max_length 128

Table 3: Hyperparameter settings of RoBERTa models

A.3 Additional Results468

We present the results of F1 scores for filtered469

tweets (0.4 ≤ pi ≤ 0.6) in Figure 6.470

A.4 Additional Metrics471

We also use the Expected Calibration Error (ECE)472

metric to evaluate model calibration. This met-473

ric quantifies calibration quality by measuring the474

weighted average absolute difference between ac-475

curacy and predicted confidence across M bins:476

ECE =
M∑

m=1

|Bm|
n

· |acc(Bm)− conf(Bm)| (4)477
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Figure 6: Model F1 scores for filtered tweets (0.4 ≤
pi ≤ 0.6), by dataset and bias (β)

where Bm is the set of samples in the m-th bin, 478

|Bm| its size, n the total number of samples, 479

acc(Bm) the accuracy, and conf(Bm) the mean 480

predicted confidence in Bm. 481

Figure 7 shows the results. Consistent with our 482

main findings in §4, we observe that for OL la- 483

bels, the ECE values are relatively stable on the 484

Balanced and Adjusted datasets (t = −0.48, p = 485

0.64), with divergence with β = 0.15. This con- 486

trasts with the significant divergence in ECE values 487

for the Unbalanced subsets as the β value increases. 488

Additionally, for model performance, we use 489

another metric ROC-AUC in Figure 8. The results 490

are very similar to the F1 results in §4. 491

A.5 Adjustment Details 492

The adjustment we use to make the labeler pool 493

more representative of the target population is a 494

form of pseudo-population generation (Quatem- 495

ber, 2015). We create the pseudo-population by 496

first constructing post-stratification weights, per- 497

forming weight normalization to ensure the sum of 498

the weights equals the size of the target population, 499

and then duplicating each observation proportion- 500

ally to its weight via deterministic replication. 501

Post-stratification (Bethlehem et al., 2011b) is 502

a method of statistical adjustment that makes a se- 503

lected sample more closely resemble a target popu- 504

7
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Figure 7: Model ECE metrics, by dataset and bias (β)
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Figure 8: Model ROC-AUC metrics, by dataset and bias
(β)

lation. Post-stratification requires population level 505

totals or proportions and corresponding case-level 506

observations of the same characteristic. to be avail- 507

able for each sample stratum that will be used in 508

the weighting. The weight for unit i is determined 509

for each stratum by: 510

wi =
Ps

Ss
(5) 511

where Ps is the true population proportion (or 512

total) for stratum (or group) s and Ss is the sample 513

proportion (or total) for stratum s. In our case, 514

the strata of interest was a single variable (labeler 515

Types A & B). However, post-stratification can 516

involve multiple variables if their joint distribution 517

is known at the population level. 518

Although the post-stratified weights will pre- 519

serve the ratios of the strata in the target population, 520

the weighted totals themselves may not match those 521

in the target population. Weight normalization 522

can be used to address this by updating the survey 523

weights so that they sum to a desired total. The 524

normalized weight for unit i can be calculated by: 525

wnormalized
i = winitial

i · T∑n
i=1w

initial
i

(6) 526

where T is the target total. Since we want the Ad- 527

justed dataset to match the size of our gold standard 528

Balanced dataset, the target total for the simulation 529

was 12 labels per tweet. 530

Lastly, to construct a pseudo-population from 531

our weighted data, we perform deterministic repli- 532

cation by replicating each unit ni times. In this 533

initial work, we appreciated the simple interpreta- 534

tion and reproducibility of this approach. However, 535

researcher may prefer other approaches, such as 536

replication via resampling, if they are interested in 537

how the adjustment varies across samples. 538

In our case, after post-stratification and weight 539

normalization, each Type A label in the Unbal- 540

anced 1 dataset receives a weight of 1 and each 541

Type B label receives a weight of 2. This resulted 542

in an Adjusted dataset where each of the Type A 543

labels stays the same and each of the Type B labels 544

is duplicated once. 545
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