
Published as a Tiny Paper at ICLR 2024

DENSITY-PRESERVING HETEROGENEOUS GRAPH
SPARSIFICATION FOR REPRESENTATION LEARNING

Srilekha Geda & Chunjiang Zhu
Department of Computer Science, UNC Greensboro, Greensboro, NC 27412, USA

ABSTRACT

Graph sparsification is the task of compressing a graph with fewer edges or nodes
while preserving its essential structural characteristics. It has been used in ma-
chine learning to significantly improve the computational efficiency over homo-
geneous graphs. In heterogeneous graphs with diverse types of nodes and edges,
however, sparsification has not been extensively explored. This work develops
sparsification methods that can preserve edge density across different edge types
and/or edge importance in terms of eigenvector centrality, improving over existing
methods. The methods have been tested on real-world networks, and the results
indicate great improvements in the computational efficiency and memory cost.

1 INTRODUCTION

In recent years, the analysis of complex networks has become increasingly pivotal across various
domains, ranging from social systems and biological structures to recommendation platforms. It
has become evident that many interconnected systems exhibit inherent heterogeneity, involving di-
verse types of nodes and edges that encode multifaceted relationships. A crucial processing of
heterogeneous graphs is to learn a high-quality representation/embedding for downstream learning
tasks. There have been various representation learning algorithms developed over years such as
(1; 2; 3; 4; 5; 6; 7). However, modern heterogeneous graphs are often of very large size (millions
of nodes to billions of edges) and complex (diverse node/edge types), thus imposing high computa-
tional and storage demands. One can often use sparsification techniques to compress a graph with
fewer edges or nodes while preserving its essential structural property.

In this paper, we study the under-explored sparsification problem in heterogeneous information net-
works and develop two novel algorithms. Unlike existing methods, our approaches can preserve
edge density and/or centrality importance in the original graph. We perform extensive experiments
in multiple datasets, diverse representation learning algorithms, and two graph learning tasks, link
prediction and node classification, to demonstrate the improvement in the training time and memory
consumption without significant loss in the quality of the learned representation.

Related Work. Several notions of graph sparsification have been proposed such as spectral spar-
sifiers (8) which approximate the graph spectrum and cut sparsifier that approximately preserve all
graph cut values where both are not primarily focused on heterogeneous graphs and machine learn-
ing tasks. (9) developed a random sampling method where a fixed number of edges are uniformly
randomly sampled for each edge type, thereby losing critical edge density and edge centrality infor-
mation. Jiang et al. (10) developed edge sparsification for efficient node and schema pre-training.

2 DENSITY-PRESERVING SPARSIFICATION METHODS

The prior method Random (9) samples, for each node, a pre-determined number k edges out of edges
of each type uniformly at random. In the sparsified graph, (most) nodes have exactly k edges from
each type, completely losing the number of edges across different types, called edge density in the
full graph. Edge density information represents the connectivity distribution of diverse edge types
and should be encoded in a powerful learned representation. To this end, we first propose a density-
preserving (DP) sparsification method called DP-Random that can preserve edge density by keeping
a fixed percentage K of edges of each type for a node. Specifically, it performs sparsification on
incoming and outgoing edges (out-edges) of a node independently. Consider out-edges. For a node
u and its out-edges Et

Out(u) of edge type t, it first computes the number m = K ∗ |Et
Out(u)| of

out-edges of type t that should be in the sparsifier H , and the number x of out-edges that are already

1



Published as a Tiny Paper at ICLR 2024

included in H . Then m− x edges out of Et
Out(u) \H are sampled uniformly at random and added

to H . Keep in mind that we process nodes one at a time, and so processing a node before the one
we’re processing right now could have added a few edges in Et

Out(u) to H .

Although DP-Random can preserve edge density, it randomly samples edges to be included into the
sparsifier, thus limited in overlooking the importance of different edges of the same type. To remedy
for this, we propose the DP-Eigen method that employs edge centrality, exactly eigenvector cen-
trality, to measure edge importance and only includes more important edges with higher centrality.
Unlike DP-Random, DP-Eigen is designed to preserve both edge density and importance. Eigen-
vector centrality serves as a metric for the importance of nodes in a graph. We define the centrality
of an edge (u, v) as the mean of the eigenvector centrality of its two endpoints u and v. DP-Eigen is
similar to DP-Random except that when selecting edges from Et

Out(u) \H , m − x edges with the
highest eigenvector centralities are added to H . See the formal pseudocode in Appendix.

Remark that for a large heterogeneous graph, the prior method (9)’s parameter k may be hard to
determine in advance, while our methods’ parameter, the desirable percentage K of compression,
is much easier to set. The computational time of Random, DP-Random, and DP-Eigen are O(nkt),
O(mK), and O(mK+n2.38), where m and t are the number of edges and edge types, respectively.

3 EXPERIMENTAL EVALUATIONS

We used the NetworkX library (11) to compute node eigenvector centrality with an error tolerance
of 1e−6 and performed all experiments in a computer with 8 cores, 2.3GHz Intel processors, and
64GB RAM. We chose the PubMed chemical dataset and Yelp review dataset from the benchmark
(12) and used four diverse representation learning models AspEm (1), HAN (2), HGT (3), and
ComplEx (4). The experimental setup of link prediction and node classification completely follow
the baseline method (Random) (9), where the embedding size is set to 50, the AUC and MRR (mean
reciprocal rank) are measures of link prediction and macro-F1 and micro-F1 are measures of node
classification, and the training time and memory consumption measure the efficiency.

(a) AUC in PubMed (b) Training Time in PubMed
Figure 1: Performance Comparison of DP-Eigen and the baseline Random

We set K = 25%, 50%, and 75% to generate graphs of sparsification ratio (the ratio of the number
of edges in the sparsifier and the original graph) similar to Random with k = 1, 2, 10 in PubMed
and k = 50, 200, 500 in Yelp. Fig. 1(a) shows the dominating AUC improvement of DP-Eigen
over Random, with an increase ranging from 2% to 14% for the 45% graph. The performance gap
becomes smaller for the 86% graph and the 100% graph is exactly the original graph. Notably the
performance boost is more obvious for a more aggressive sparsification: DP-Eigen’s AUCs in the
21% sparsifier are even higher than Random’s in the 45% sparsifier and close to the AUCs in the
full graph. This verifies DP-Eigen can preserve crucial structural information in the original graph.
As shown in Fig. 1(b), the graph compression translates to faster training time, especially for the
performant ComplEx and HGT, which only require 28% and 38% of training time compared to the
full graph for the 21% sparsifier. Similar observations can be made in Yelp where the reduction
of the memory consumption is larger than in PubMed, possibly due to the larger size. Consistent
with previous work (9), the impact of sparsification in the node classification is not as clear as link
prediction (e.g., sparsifiers often have higher F1 values than the full graph). We also evaluate the
performance of our DP-Random and DP-Eigen to show that in general DP-Eigen outperforms DP-
Random especially in the realm of very small sparsifiers. See all supporting figures in Appendix.

2



Published as a Tiny Paper at ICLR 2024

URM STATEMENT

The authors acknowledge that the first author of this work is female and meets the URM criteria of
ICLR 2024 Tiny Papers Track.

REFERENCES

[1] Y. Shi, H. Gui, Q. Zhu, L. Kaplan, and J. Han. Aspem: Embedding learning by aspects in het-
erogeneous information networks. In Proceedings of the 2018 SIAM International Conference
on Data Mining, pages 144–152. SIAM, 2018.

[2] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu. Heterogeneous graph attention
network. In The World Wide Web Conference, pages 2022–2032, 2019.

[3] Z. Hu, Y. Dong, K. Wang, and Y. Sun. Heterogeneous graph transformer. In Proceedings of
The Web Conference 2020, pages 2704–2710, 2020.

[4] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, and G. Bouchard. Complex embeddings for
simple link prediction. In International conference on machine learning, pages 2071–2080.
PMLR, 2016.

[5] Y. Dong, N. V. Chawla, and A. Swami. metapath2vec: Scalable representation learning for
heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining, pages 135–144, 2017.

[6] T.-Y. Fu, W.-C. Lee, and Z. Lei. Hin2vec: Explore meta-paths in heterogeneous information
networks for representation learning. In Proceedings of the 2017 ACM on Conference on In-
formation and Knowledge Management, pages 1797–1806, 2017.

[7] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating embed-
dings for modeling multi-relational data. Advances in neural information processing systems,
26, 2013.

[8] D. A. Spielman, and S. H. Teng. Spectral sparsification of graphs. SIAM Journal on Comput-
ing, 40(4), 981-1025, 2011.

[9] C. Chunduru, C. Zhu, B. Gains and J. Bi, ”Heterogeneous Graph Sparsification for
Efficient Representation Learning,” in 2022 IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM), Las Vegas, NV, USA, 2022 pp. 1891-1896. doi:
10.1109/BIBM55620.2022.9995124

[10] X. Jiang, T. Jia, Y. Fang, C. Shi, Z. Lin, and H. Wang. Pre-training on large-scale heterogeneous
graph. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pages 756–766, 2021.

[11] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart. Exploring network structure, dynam-
ics, and function using NetworkX, in Proceedings of the 7th Python in Science Conference
(SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA),
pp. 11–15, Aug 2008.

[12] C. Yang, Y. Xiao, Y. Zhang, Y. Sun, and J. Han. Heterogeneous network representation learn-
ing: A unified framework with survey and benchmark. IEEE Transactions on Knowledge and
Data Engineering, 2020.

A FORMAL PSEUDOCODE

We start by introducing the definitions and notations we will use. A heterogeneous graph can be
defined as G(V,E, ϕ, π,X,R) where V is the node set, E is the edge set, ϕ specifies the type
for each node, π assigns the type of each edge, and X and R include the node and edge features
respectively. ϕ, π , X , and R can be omitted from the presentation if they are clear from the context.
Let Et

Out(u) be the set of u’s out-edges of type t and Et
In(u) be the set of u’s in-edges of type t.

3



Published as a Tiny Paper at ICLR 2024

Algorithm 1: DP-Random Sparsify-Graph
Data: A graph G and a parameter K
Result: A sparsified graph
1: H = ∅;
2: Sort nodes in ascending order of degree;
3: for each node u in the sorted order do

Sparsify-Node-Out(u,G,H,K);
Sparsify-Node-In(u,G,H,K);

end
4: return (V,H)

Algorithm 2: DP-Random Sparsify-Node-Out(-In)
Data: A node u in a graph G, an edge set H , and a percent K
Result: Updated H
1: for each edge type t do

m = K ∗ |Et
Out(u)|;

Compute x = |Et
Out(u) ∩H|;

Sample m− x edges from Et
Out(u)−H uniformly at random; let the sampled edges be S;

Include S into H
end
2: return (V,H)

Algorithm 3: DP-Eigen Sparsify-Graph
Data: A graph G and a parameter K
Result: A sparsified graph
1: H = ∅;
2: Compute Eigenvector centrality;
3: Sort nodes in ascending order of degree;
4: for each node u in the sorted order do

Sparsify-Node-Out(u,G,H, k);
Sparsify-Node-In(u,G,H, k);

end
5: return (V,H)

Algorithm 4: DP-Eigen Sparsify-Node-Out(-In)
Data: A node u in a graph G, an edge set H , and a percent K
Result: Updated H
1: for each edge type t do

m = K ∗ (Et
Out(u));

Compute x = |Et
Out(u) ∩H|;

Sort m− x edges from Et
Out(u)−H based on its importance by eigenvector centrality; let

the sorted edges be S;
Include S into H

end
2: return (V,H)

4



Published as a Tiny Paper at ICLR 2024

B MORE EXPERIMENTAL RESULTS

Table 1: Statistics of Tested Real-world Networks

Dataset n m Node Types Edge Types
PubMed 63,109 236,458 4 10

Yelp 82, 465 16, 274, 179 4 4

(a) Training Time in Yelp (b) Memory Consumption in Yelp

(c) Memory Consumption in PubMed

Figure 2: Comparison of Training Time and Memory Consumption

5



Published as a Tiny Paper at ICLR 2024

(a) MRR in PubMed (b) Macro-F1 in PubMed

(c) Micro-F1 in PubMed (d) AUC in Yelp

(e) MRR in Yelp (f) Macro-F1 in Yelp

(g) Micro-F1 in Yelp

Figure 3: Performance Comparison of DP-Eigen and Random

6



Published as a Tiny Paper at ICLR 2024

(a) AUC in PubMed (b) MRR in PubMed

(c) Macro-F1 in PubMed (d) Micro-F1 in PubMed

(e) AUC in Yelp (f) MRR in Yelp

(g) Macro-F1 in Yelp (h) Micro-F1 in Yelp

Figure 4: Performance Comparison of DP-Eigen and DP-Random

7


	Introduction
	Density-Preserving Sparsification Methods
	Experimental Evaluations
	Formal Pseudocode
	More Experimental Results

