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SymNet: A Simple Symmetric Positive Definite
Manifold Deep Learning Method for

Image Set Classification
Rui Wang , Xiao-Jun Wu , and Josef Kittler , Life Member, IEEE

Abstract— By representing each image set as a nonsingular
covariance matrix on the symmetric positive definite (SPD)
manifold, visual classification with image sets has attracted much
attention. Despite the success made so far, the issue of large
within-class variability of representations still remains a key
challenge. Recently, several SPD matrix learning methods have
been proposed to assuage this problem by directly constructing
an embedding mapping from the original SPD manifold to a
lower dimensional one. The advantage of this type of approach
is that it cannot only implement discriminative feature selection
but also preserve the Riemannian geometrical structure of the
original data manifold. Inspired by this fact, we propose a simple
SPD manifold deep learning network (SymNet) for image set
classification in this article. Specifically, we first design SPD
matrix mapping layers to map the input SPD matrices into
new ones with lower dimensionality. Then, rectifying layers
are devised to activate the input matrices for the purpose of
forming a valid SPD manifold, chiefly to inject nonlinearity for
SPD matrix learning with two nonlinear functions. Afterward,
we introduce pooling layers to further compress the input SPD
matrices, and the log-map layer is finally exploited to embed the
resulting SPD matrices into the tangent space via log-Euclidean
Riemannian computing, such that the Euclidean learning applies.
For SymNet, the (2-D)2principal component analysis (PCA)
technique is utilized to learn the multistage connection weights
without requiring complicated computations, thus making it be
built and trained easier. On the tail of SymNet, the kernel
discriminant analysis (KDA) algorithm is coupled with the output
vectorized feature representations to perform discriminative
subspace learning. Extensive experiments and comparisons with
state-of-the-art methods on six typical visual classification tasks
demonstrate the feasibility and validity of the proposed SymNet.
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I. INTRODUCTION

W ITH the rapid development of multimedia technolo-
gies, a huge number of videos have been recorded

in the community of computer vision and pattern recogni-
tion (CV&PR). As each video sequence can be treated as an
image set, image set classification has been attracting growing
attention [1]–[11]. Video-based face recognition [4], [5], [9],
[10], video-based face verification [7], [13], video-based facial
emotion recognition [12], dynamic scene classification [10],
[11], [14], and action recognition [12], [15] are some of its
practical applications. Different from the traditional visual
classification problem where the decision-making is based on a
single still image, for image set classification, both the gallery
and probe samples are image sets, each of which makes up
a number of images belonging to the same category. Another
distinguishing feature of image set is that it can provide more
data variability information for classification. However, video
data usually involve a wide range of within-class variations,
caused by illumination, pose, expression, and changes of other
conditions in the video capturing process. Therefore, how
to properly encode such variational information and learn
invariant representations is considered as a pivotal challenge.

Among the existing set models, covariance matrix has
gained remarkable success in image set characterization. Its
main advantage is the simplicity, flexibility, and sufficiency in
describing each video clip with a different number of frames
as a fixed-dimensional second-order representation [9], [16].
Therefore, we choose it as the feature descriptor for set data
in this article. As well studied in [4] and [17], the underlying
space of a family of nonsingular covariance matrices with the
same dimensionality is usually considered not to be a vector
space, but instead adhering to a type of nonlinear Riemannian
manifold, i.e., symmetric positive definite (SPD) manifold.
Accordingly, the conventional Euclidean computations cannot
be applied to the SPD manifold-valued data directly. To
address this issue, Arsigny et al. [18], Pennec et al. [17], and
Sra [19] advocated some Riemannian metrics for similarity
measurement between SPD matrices, such as affine-invariant
Riemannian metric (AIRM) [18] and log-Euclidean metric
(LEM) [17]. By utilizing these well-studied Riemannian
metrics, several SPD matrix learning methods [7], [21], [22]
are suggested to transform the SPD manifold-valued data
into tangent space representations such that the Euclidean
computations apply. Alternatively, Wang et al. [4] and
Harandi et al. [23] proposed to exploit the Riemannian
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kernel functions to embed the original SPD manifold into
a reproducing kernel Hilbert space (RKHS) for subsequent
Euclidean learning. However, the approaches mentioned
earlier typically convey the idea of approximate computation.
In consequence, the Riemannian geometrical structure of
the original data manifold cannot be fully exploited by the
feature transformation process.

To tackle this problem, several SPD manifold discriminant
analysis methods have been put forward to keep an eye
on geometry-aware feature embedding and selection [7], [9],
[12], [22]. The working mechanism of them is to jointly
perform embedding mapping learning and similarity metric
learning for the original SPD manifold-valued data. As a
result, a lower dimensional and more appropriate SPD man-
ifold can be yielded. Nevertheless, for some sophisticated
visual classification tasks, the aforementioned learning algo-
rithms still remain a research gap to mine more powerful
semantic representations [7] for visual data. To remedy this
research gap, some researchers attempt to model each image
set simultaneously with its first-, second-, and high-order
statistics, in view of their complementarity in encoding the
geometrical structure of set data [5], [24]–[26]. Considering
that different statistics lie in different topological spaces,
the Riemannian kernel functions are first applied to explicitly
embed these heterogeneous features into kernel Hilbert spaces.
Then, the metric learning framework is utilized to merge these
hybrid kernel features into a compact and efficient subspace
for classification.

In the past decade, deep learning technique [27], [28] has
gradually become a vital tool for learning desirable, reliable,
and powerful feature representations in the CV&PR commu-
nity. By extending the Euclidean network paradigm to the
SPD manifold, several SPD manifold deep learning networks
have been established to open up a new orientation for SPD
matrix nonlinear learning [12], [15]. These networks consist
of a stack of trainable blocks, followed by a normally used
fully connected layer and a supervised classifier. In each block,
the feature learning process is implemented by an SPD matrix
mapping layer (similar to 2-D convolutional layer) and a
nonlinear rectifying layer. Compared with the traditional SPD
manifold learning methods, this type of approach further lifts
the classification performance on some challenging visual sce-
narios. The reasons for its success arise from two innovations:
1) the end-to-end architecture generalizes the conventional
SPD matrix learning to deep and nonlinear functions and
2) Riemannian matrix backpropagation optimizer. To the best
of our knowledge, the study of deep learning in the context
of Riemannian manifolds is still in its infancy, how to design
a universal network for a variety of computer vision problems
and how to seek proper training strategies are considered as
two major challenges.

In this article, we plan to design a simple SPD matrix
learning network with the following two characteristics:
1) compared with some representative image set classification
methods, its classification performance is competitive and
2) its computational efficiency has a considerable improve-
ment. To cope with this objective, the SPD matrix mapping
layer is first designed to generate new representations from
the input SPD matrices by exploiting the (2-D)2principal
component analysis (PCA) technique to perform unsupervised
filter learning. Then, the rectifying layer is devised to
introduce a nonlinear learning scheme by regularizing the
input matrices with two nonlinear functions. To further
compress the extracted geometric features, we generalize the

conventional pooling operation (e.g., max or mean) to the
proposed SymNet in three steps: 1) utilizing the matrix loga-
rithm map to embed them into a tangent space; 2) conducting
pooling operation in this space; and 3) exploiting the matrix
exponential map to map these pooled data back into the SPD
manifold. Hence, we name it the tangent space pooling strat-
egy. In addition, in this article, we also study another two pool-
ing tactics for the proposed model: 1) directly performing the
conventional max-pooling operation on the SPD manifold and
2) the Fréchet mean-based SPD manifold mean pooling. With
the help of a stack of SPD matrix mapping, rectifying, and
pooling layers, the input SPD matrices could be transformed
into some lower dimensional and more efficient counterparts.
Due to the Euclidean classifiers that cannot be directly applied
to them for image set classification, the log-map layer is
finally exploited to convert these SPD manifold-valued data
learned by SymNet into Euclidean representations by utilizing
the log-Euclidean Riemannian computation. In what follows,
the kernel discriminant analysis (KDA) algorithm is utilized
to carry out discriminant subspace learning. Accordingly,
the main differences between the proposed model and most
existing deep learning methods (e.g., [29]–[31], [37]) are
twofold: 1) both the inputs and outputs of our network
are the structured SPD matrices, which means that this
network is strictly constructed in the scenario of SPD
manifold; 2) different from the sophisticated backpropagation
optimizer-based end-to-end training, the shallow learning
algorithm (i.e., (2-D)2PCA technique) is adopted to the newly
designed lightweight cascaded architecture for training. In this
article, our main contributions can be summarized as follows.

1) We develop a lightweight cascaded network for SPD
matrix nonlinear learning.

2) To make the proposed SymNet be built and trained
easier, we make use of the (2-D)2PCA algorithm to
perform unsupervised filter learning rather than the Rie-
mannian matrix backpropagation computing-based end-
to-end training.

3) We design the rectifying layer with two nonlinear acti-
vation functions to endow the proposed model with
nonlinear learning mechanism, chiefly to alleviate the
intrasubject ambiguity of representations.

4) We study three different pooling strategies and demon-
strate that the tangent space pooling method is more
suitable for our SymNet.

II. RELATED WORK

To the best of our knowledge, the existing SPD
manifold-based image set classification methods can be
grouped into four categories, i.e., the kernel-based methods,
SPD manifold dimensionality reduction (DR) methods, mul-
tiple statistics fusion-based methods, and SPD manifold deep
learning methods. They are reviewed as follows.

A. Kernel-Based Methods
For this kind of approach [1], [4], [10], [32]–[35], the orig-

inal SPD manifold is transformed into an explicit kernel
space via the well-studied Riemannian kernel functions. As a
result, the Euclidean computations can be applied to carry out
feature learning and classification. Therein, Wang et al. [4] and
Vemulapalli et al. [33] exploited the LEM derived Riemannian
kernel function to map the data from SPD manifold to RKHS,
followed by the Euclidean classifiers for image set classifica-
tion. Wang et al. [1] investigated to encode the SPD manifold
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of Gaussians in the mapped kernel space by deriving a series of
probabilistic kernels. To improve the description ability of the
existing Stein kernel-based methods, Zhang et al. [34] devised
a discriminative Stein kernel for SPD matrices representation
learning and similarity measurement. Harandi et al. [23], [35]
generalized the conventional sparse coding and dictionary
learning to the SPD manifold by using the Stein kernel to
embed the SPD manifold-valued data into RKHS.

B. SPD Manifold DR Methods

To overcome an obvious limitation of the kernel-based
methods (i.e., the Riemannian geometry of the original SPD
manifold is distorted by the process of Hilbert space embed-
ding), Harandi et al. [9] tried to produce a lower dimensional
and more powerful new SPD manifold via an orthogonal
mapping obtained by performing similarity metric learning in
the original feature space. Similarly, Huang et al. [7] designed
an LEM learning framework to directly transform the original
tangent space into a more compact one, where the SPD
manifold properties are preserved. Recently, Zhou et al. [22]
developed a new version of LEM learning (LEML) [7] named
α-covariance-like metric learning (CML), which aims to learn
a sample-specific transformation matrix rather than the fixed
one in LEML. Consequently, the SPD manifold-valued feature
representations learned by α-CML will exhibit more discrim-
inatory power.

C. Multiple Statistics Fusion-Based Methods

Different from the aforementioned learning approaches that
encode the image set data only using the second-order sta-
tistical descriptor, Lu et al. [24] performed set data model-
ing simultaneously with the first-, second-, and third-order
(tensor) statistics for the sake of extracting complementary
structural information. To make better use of these hetero-
geneous features, a multikernel metric learning framework is
proposed to fuse them into a discriminative unified subspace
for classification. However, this method applies the Euclid-
ean kernel function to perform RKHS embedding, which is
unable to veritably reflect the geometrical structure of the
original higher order statistics in the new feature space. Taking
this into account, Huang et al. [26], Wang et al. [25], and
Wang et al. [5] endowed different statistics of each image
set with different kernel functions for explicit kernel spaces
transformation. Afterward, the metric learning framework is
designed for hybrid features fusion and classification.

D. Riemannian Manifold Deep Learning Methods

Inspired by the proven effectiveness of ConvNets in learning
powerful feature representations, Sun et al. [14] aggregated
the local match kernels built upon arc-cosine similarity with a
deep neural architecture to form a global match kernel for
more discriminative similarity measurement. Lu et al. [36]
proposed to integrate manifold metric leaning into convo-
lutional neural network (CNN) for the purpose of extract-
ing fine-grained and class-specific information for improved
classification. More recently, some researchers extend the
ideology of deep learning to Riemannian manifolds for the
sake of mining more fine-grained geometric features of visual
data. In this scenario, a slice of Riemannian deep neural
networks have been devised, such as SPDNet [12], which
is made up of a stack of SPD matrix transformation and
nonlinear activation layers to learn hierarchical and structured
semantic representations. Inspired by Huang and Gool [12],
Nguyen et al. [15] designed a novel deep neural network

TABLE I

LIST OF SYMBOLS USED AND THEIR CORRESPONDING EXPLANATIONS

on the Gaussian embedded Riemannian manifold for 3-D
hand gesture recognition in the spatial and temporal domains.
The well documented Riemannian deep neural networks also
include DeepO2P [37], which is built to embed the global
structured computations into deep architecture for semantic
segmentation, GCNN [38], a generalized CNN framework
for hierarchically learning task-specific feature representations,
and GrNet [39], which performs deep learning in the context
of Grassmannian manifold.

III. PROPOSED ALGORITHM

Fig. 1 shows an overview of the proposed lightweight
cascaded network for SPD matrix learning. The differ-
ent components of our model are detailedly presented in
Sections III-A–III-E. In Section III-F, we give a brief intro-
duction to the KDA algorithm, which is used to train a
discriminative SymNet. Finally, Section III-G analyzes the
relationship between the proposed network and SPDNet [12].
The used symbols in this article and their corresponding
explanations are listed in Table I.

A. SPD Matrix Mapping Layer
The most important target of the proposed SymNet is to

produce more compact and efficient feature matrices. To pre-
serve the Riemannian geometrical structure of the input SPD
matrices in new feature space, each resulting matrix should
satisfy symmetric positive definiteness. With this objective,
we design this SPD matrix mapping layer to transform the
input SPD matrices that reside on Sym+

dk−1
into some new ones

that lie in Sym+
dk

via a bilinear mapping fm , formulated as

Xk = fm(Wk, Xk−1) = W T
k Xk−1Wk (1)

where Xk−1 ∈ �dk−1×dk−1 is the input SPD matrix of
kth layer, Xk ∈ �dk×dk is the resulting SPD matrix, and
Wk ∈ �dk−1×dk (dk ≤ dk−1) is the to-be-learned transformation
matrix (connection weights). In this article, we utilize a
(2-D)2PCA algorithm to perform unsupervised parameter
learning. Now, we first give the definition of the SPD manifold
and then introduce the (2-D)2PCA algorithm.

The Definition of SPD Manifold: A d × d symmetric real
matrix X is said to be positive definite if vT Xv > 0 for all
nonzero v in �d , and the SPD manifold represented by Sym+

d
is spanned by a set of d × d SPD matrices

Sym+
d = {X ∈ �d×d : vT Xv > 0 ∀v ∈ �̂d} (2)

where �̂d is �d space without the zero vector.
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Fig. 1. Schematic of the proposed SymNet framework. It is mainly made up of the SPD matrix mapping layers to generate lower dimensional and more
appropriate SPD matrices via learnable mapping Wk , rectifying layers to introduce nonlinear learning mechanism for SPD matrices, SPD matrix pooling layer
to further compress the learned SPD manifold-valued features, and log-map layer to perform Riemannian computing. The upper part of this figure indicates
that our model is strictly constructed on the SPD manifold Sym+

dk
, spanned by a set of dk -dimensional SPD matrices. The lower part of this figure demonstrates

that the weight space of each SPD matrix mapping layer is a compact Stiefel manifold St (dk , dk−1).

(2-D)2PCA Algorithm: Let T = [S1, S2, . . . , SN ] be the
gallery consists of N image sets and L = [l1, l2, . . . , lN ] ∈
�1×N be the corresponding label vector. With these notations,
the i th covariance matrix that corresponds to Si can be
computed as

Xi = 1

ni − 1

ni∑
j=1

(
s j

i − μi
)(

s j
i − μi

)T
. (3)

To make the (2-D)2PCA algorithm play a role, we first treat
each Xi as a basic sample. Then, the sample covariance matrix
computed from the row direction is expressed as

� = 1

N − 1

N∑
i=1

(Xi − X̄)T (Xi − X̄) (4)

where X̄ is the mean of all the basic samples computed by (3).
Similarly, it can also be described from the perspective of
column direction as

�c = 1

N − 1

N∑
i=1

(Xi − X̄)(Xi − X̄)T . (5)

It is easy to check that (4) equals (5). For simplicity, we take�
to perform subsequent computations. Next, (2-D)2PCA tries to
minimize the following reconstruction error to learn the target
transformation matrix:

min
M∈�dk−1×P

N∑
i=1

�Xi − MMT Xi�2
F, s.t. MTM = IP (6)

where IP is an identity matrix of size P×P . In fact, (6) is an
eigenvalue problem and its solution is composed of a family
of eigenvectors corresponding to the P largest eigenvalues of
�. Due to the produced SPD matrices of the kth layer that
should be of the same size, each connection weight W r

k can
be described as

W r
k = divdk−1,dk (V (�)) ∈ �dk−1×dk , r = 1, 2, . . . , mk (7)

where V (�) represents a matrix composed by P (P = dk ×
mk) leading eigenvectors of �, and divdk−1 ,dk (V ) is a function
that can successively divide V (�) into mk nonoverlapping
parts with each part making up of dk eigenvectors.

Having obtained these transformation matrices, the new
SPD matrix Xk with respect to the input one can be gen-
erated. According to Theorem 1, Wk is required to satisfy
the column full rank to ensure that Xk lies on a valid SPD
manifold.

Theorem 1: Given an SPD matrix X ∈ �
d1×d1 and an

projection matrix W ∈ �d1×d2 , d2 ≤ d1. Let X � = W T XW ,
we say that X � is an SPD matrix of size d2 × d2 if and only
if W is a column full rank matrix, i.e., rank(W ) = d2.

Proof: 1) Assume that X is an SPD matrix and W satisfies
column full rank. For any nonzero vector v ∈ �d2 , we can get
the following equation:

vT X �v = vT W T XWv = (Wv)T X (Wv). (8)

Because W is a column full rank matrix and v is a nonzero
vector, we can get Wv �= 0, which leads to vT X �v > 0.
According to the definition of the SPD manifold, X � is an
SPD matrix, which is proved.

2) Assume that X � is an SPD matrix. For any nonzero vector
v ∈ �d2 , we can easily have vT X �v > 0. Based on (8), it is
equivalent to (Wv)T X (Wv) > 0. Due to X that is an SPD
matrix, we can get Wv �= 0. Obviously, rank(W ) = d2, and
W is a column full rank matrix.

B. Rectifying Layer

Rectified linear unit (ReLU) is well known for its efficacy
in improving the discriminative performance of ConvNets
[27], [28] by rectifying the undesired results. Accordingly,
generalizing this paradigm to the domain of Riemannian deep
learning and devising similar operations for the Riemannian
manifold-valued data may also be indispensable. To achieve
this objective, we design the rectifying layer to regularize
the input SPD matrices for the sake of introducing nonlinear
feature learning mechanism using two nonlinear activation
functions. The first activation function � = fr1 (Xk−1,−η1)
is formulated as

�(i, j) =
{−η, if i �= j and Xk−1(i, j) ∈ (−η, 0]

Xk−1(i, j), otherwise
(9)
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Fig. 2. Illustration of the SPD matrix pooling process.

where 1 ∈ �dk−1×dk−1 is a matrix of all ones and η is an
activation threshold. From (9), we can find that some negative
correlation values of each input SPD matrix are amplified
toward the negative direction, which is able to mitigate the
intrasubject variations to a certain extent.

The second activation function is mainly designed to tune
up the small eigenvalues of each generated � such that its
positive definiteness can be ensured. The specific form of this
function, inspired by max(0, x), is presented as follows [12]:

Xk = fr2 (�) = Umax(� I,�)U T (10)

where U and � are, respectively, the eigenvector and eigen-
value matrices, obtained by applying the singular value decom-
position (SVD) to �, i.e., � = U�U T , � is a small
rectification threshold, and max(� I,�) is a diagonal matrix
defined as

max(� I,�)ii =
{
�ii , if �ii > �

�, otherwise.
(11)

The operations studied in this layer are the core nonlinear
embedding mechanisms of the proposed SymNet.

C. SPD Matrix Pooling Layer

In the field of ConvNets, pooling operations are often
used to induce robustness to registration errors and to reduce
the number of parameters [27], [28], [40]. In this sense,
introducing similar operations in the context of Riemannian
deep learning may also be interesting. As an exploration,
we propose to pool the input SPD matrices by first utilizing
the logarithm map to map them into an associated tangent
space such that the conventional pooling operation (e.g., max
or mean) applies. In what follows is the exponential map,
exploited for the retraction of these refined data back into
the SPD manifold. For more detailed treatment about the two
maps, please kindly refer to [17] and [41]. Fig. 2 shows an
intuitive illustration of the introduced tangent space pooling
strategy. Here, the patch size we set in this article is 2 × 2,
which means that the redundancy of the input SPD matrices
could be reduced up to a point after using this pooling method.

In addition to the tangent space pooling tactic mentioned
earlier, we note that directly performing max pooling on
the SPD manifold can also realize the purpose of DR and
Riemannian geometrical structure retention for the input SPD
matrices. Due to the working mechanism of conventional mean
pooling operation that is to compute the arithmetic mean of
the features within a target region, it cannot be applied to
the SPD manifold-valued data because of the destruction of

the Riemannian geometrical structure. Despite this, this issue
could be tackled in two stages from the perspective of DR.

To be specific, at the first stage, we need to compute
the mean of a set of input SPD matrices of the kth layer
{i Xr

k−1}N
i=1. Since these points reside on the SPD manifold,

we make use of the Fréchet formulation instead of the arith-
metic mean for computation. This can be described as

P∗ = arg min
P∈Sym+

dk−1

N∑
i=1

mk∑
r=1

D2
LEM

(i
Xr

k−1, P
)

(12)

where D2
LEM(i Xr

k−1, P) = ||log(i Xr
k−1) − log(P)||2F is the

widely used LEM [17] for SPD matrices comparing, P is the
mean of {i Xr

k−1}N
i=1, and log(·) represents the matrix principal

logarithm.
Theorem 2: The Fréchet mean of a set of SPD matrices

{i Xr
k−1}N

i=1 with respect to DLEM is

P∗ = exp

[
1

Nmk

N∑
i=1

mk∑
r=1

log
(i

Xr
k−1

)]
. (13)

Proof: According to (12), the Fréchet mean must satisfy

∂
∑N

i=1

∑mk
r=1 D2

LEM

(i
Xr

k−1, P
)

∂ P
= 0. (14)

Given that

∂D2
LEM

(i
Xr

k−1, P
)

∂ P
= −2P−1[log

(i
Xr

k−1

) − log(P)] (15)

the result presented in (13) can be obtained.
Inspired by Harandi et al. [9], the goal of mapping the

high-dimensional SPD manifold to a lower dimensional one
can be achieved by solving the following optimization problem
at the second stage:

M∗
k = arg max

Mk

N∑
i=1

mk∑
r=1

D2
LEM

(
MT

k

(i
Xr

k−1

)
Mk , MT

k P Mk
)

s.t. MT
k Mk = Idk (16)

where Mk ∈ �dk−1×dk is the to-be-learned embedding mapping
of the kth layer. As discussed in [9] and [41], (16) corre-
sponds to an optimization problem on the Grassmann manifold
G(dk, dk−1) and can be solved by exploiting the Grassmannian
conjugate gradient (CG) method. Accordingly, we need to first
compute the gradient of

∑N
i=1

∑mk
r=1 D2

LEM(·, ·) with respect to
Mk , which is given as

∇Mk

[
N∑

i=1

mk∑
r=1

D2
LEM

(
MT

k

(i
Xr

k−1

)
Mk, MT

k P Mk
)]

= DMk Tr

[
MT

k

(
N∑

i=1

mk∑
r=1

�Mk MT
k �

)
Mk

]

= 4
N∑

i=1

mk∑
r=1

�Mk MT
k �Mk (17)

where � = log(i Xr
k−1) − log(P). With this gradient, the sub-

sequent computations for learning Mk can be activated. Please
kindly refer to Section 3.3 of [41] and [9] for more detailed
introduction to CG on the Grassmann manifold.

D. Log-Map Layer

As well studied in [17], the LEM is capable of forming
a Lie group structure for the SPD matrices such that the
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SPD manifold can be embedded into a flat space under
the matrix logarithm operator logm(·). Due to the Euclidean
computations that are applicable to the domain of SPD matrix
logarithms, the log-Euclidean Riemannian computation [17] is
applied to the input SPD matrices in the �th layer, which is
expressed as

X� = flog(X�−1) = log(X�−1)

= U�−1diag(log(��−1))U
T
�−1 (18)

where X�−1 = U�−1diag(��−1)U T
�−1 is obtained by adopt-

ing eigenvalue decomposition to X�−1 and diag(log(��−1))
is a diagonal matrix making up of the eigenvalue logarithms.

E. Output Layer

In order to facilitate the subsequent computations, we first
vectorize the r th symmetric matrix i Xr

�
of the �th (log-map)

layer and then splice all the m� vectors into a complete vector
representation Vi ∈ �m�d2

�
×1 corresponding to the original

i th (i = 1 → N) image set Si . This means that the original
training samples have new geometric representations, with the
aid of SymNet

[S1, S2, . . . , SN ] SymNet−→ [V1, V2, . . . , VN ]. (19)

In the test phase, each query set also needs to be processed
by the same way.

F. Learning With KDA

KDA is well known for its effectiveness in learning an
appropriate subspace for classification. Its working mechanism
is to first transform each input sample Vi (i = 1 → N)
from vector space to RKHS via a feature map φ : �m�d2

� �→
H, Vi → φ(Vi ). Therefore, an inner product can be formu-
lated in the mapped space H as �φ(Vi ), φ(Vj )
 = k(Vi .Vj).
Then, a lower dimensional and more discriminative subspace
can be generated under an embedding mapping learned by
solving the following optimization problem [42]:

αopt = arg max
αT K U Kα

αT K Kα
(20)

where α is the target transformation matrix, K is the kernel
Gram matrix: Ki j = k(Vi , Vj), and U is the block diagonal
matrix expressed as

Ui j =
{

1/nk, if Vi and Vj come from the kth class
0, otherwise.

(21)

Here, nk indicates the number of samples used to train in
the kth class. Due to the optimization problem in (20) that
is equivalent to the following eigenvalue problem: K U Kα =
λK Kα, the optimal α is comprised of a set of eigenvectors
corresponding to (c − 1) largest eigenvalues. For the learned
subspace features, the nearest neighbor (NN) classifier is used
for image set classification.

G. Relation With the Previous Works

Our method is closely related to [12]. Here, we point out
some essential differences between the proposed SymNet and
those introduced in [12].

First, SymNet utilizes the simple but efficient (2-D)2

PCA [43] algorithm to conduct unsupervised filter learning,
whereas SPDNet [12] exploits the Riemannian matrix back-
propagation computing to perform end-to-end training, which
is more time consuming than ours. Second, on the tail of the
network, SPDNet makes use of the classical fully connected

layer to learn Euclidean feature representations. Instead, Sym-
Net utilizes KDA to perform discriminative subspace learning.
As a result, training SymNet is very easy. Third, SPDNet
introduces the nonlinear mapping scheme by tuning up some
small eigenvalues with a ReLU-like function in the designed
ReEig layer. However, the proposed SymNet additionally
considers the impact of some negative elements of the SPD
matrices on the discriminability of the learned features and
designs a nonlinear activation function in the rectifying layer to
adjust them to desired ones. Finally, the conventional pooling
operations are generalized to SymNet to further compress the
learned SPD matrices. However, SPDNet [12] does not take
this into consideration.

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed SymNet,1 we
apply it to five different visual classification tasks: video-based
face recognition, set-based object categorization, set-based cell
identification, dynamic scene classification, and video-based
facial emotion recognition. For the task of face recognition,
the widely used YouTube celebrities (YTC) [4], [9] data set
is our choice. As to the object categorization task, we utilize
the ETH-80 [2] data set. The Virus data set [44] is applied
to the task of cell identification. For the tasks of dynamic
scene classification and facial emotion recognition, we exploit
the Modeling Dynamic Scenes Dataset (MDSD) [45] and
AFEW [12], [46] data sets, respectively.

A. Comparative Methods and Settings

We compare the proposed SymNet with the following image
set classification methods: AIRM [18], Stein divergence [19],
LEM [17], covariance discriminant learning (CDL) [4],
Grassmann discriminant analysis (GDA) [2], Grassmannian
graph-embedding discriminant analysis(GEDA) [48], localized
multikernel metric learning (LMKML) [24], projection metric
learning (PML) [13], LEML [7], SPD Manifold Learning
based on Stein divergence (SPDML-Stein) and AIM (SPDML-
AIM) [9], and SPD Manifold Network (SPDNet) [12].

We should point out that the classification results of these
comparative methods on the five used data sets are obtained
by running the source codes provided by the original authors,
except for LMKML. Since its source code has not been
released, we carefully reimplement it by referring to [24]. For
a fair comparison, the parameters that we set in this article
are empirically tuned according to the original works. For
CDL, the perturbation is set to 10−3×trace(C). For GDA and
GEDA, the number of basis vectors used to form the subspace
is determined by cross validation. In PML, the dimensionality
of the target Grassmann manifold and the value of the tradeoff
coefficient α are set according to the original work [13]. For
LEML, the values of η and ζ are chosen in the scope of
[0.1, 1, 10] and [0.1 : 0.1 : 1], respectively. In SPDNet,
the sizes of the transformation matrices are configured as
400 × 200, 200 × 100, and 100 × 50. Other parameters,
such as the learning rate and the batch size, are searched by
cross validation. For SPDML-Stein and SPDML-AIM, the two
graph parameters vw and vb are determined according to the
original work [9]. Note that for the parameters determined by
cross validation, we report the best classification results for
such methods in this article.

1The source code has been released on: https://github.com/GitWR/SymNet
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TABLE II

SUITABLE VALUES FOR SymNet-V1 PARAMETERS

TABLE III

SUITABLE VALUES FOR SymNet-v2 PARAMETERS

B. Implementation Details

For the proposed SymNet, we construct its architecture with
two different versions. The first version consists of six com-
ponents: X0 → fm → fr → f p → flog → KDA → NN, and
we name it SymNet-v1. Its deep version is made up of seven
components: X0 → fm → fr → fm → fr → flog → KDA
→ NN, and we call it SymNet-v2. For SymNet-v1, we use
dv1

m and mv1 to, respectively, represent the dimensionality of
the learned new SPD matrices and the number of filters of the
fm layer. The thresholds of the rectifying layer are denoted
as ηv1

r and �v1
r . Since SymNet-v2 contains two SPD matrix

mapping layers and two rectifying layers, we first use dv2
m1

and dv2
m2 and mv2

1 and mv2
2 to denote the dimensionality of the

produced new SPD matrices and the number of filters of the
two fm layers, respectively. Then, the thresholds of the two
rectifying layers are represented by ηv2

r1 , �v2
r1 , ηv2

r2 , and �v2
r2 . The

suitable values for these key parameters involved in SymNet-
v1 and its deep version SymNet-v2 on the five used data sets
are tabulated in Tables II and III, respectively. For training the
proposed model, we just use i7-9700 (3.00 GHz) CPU with
16-GB RAM.

In Section III-A, (7) gives the definition of each con-
nection weight W r

k . Since it is closely related to the func-
tion divdk−1,dk (V ), the following steps provide the detailed
implementations for this function. First, as mentioned ear-
lier, the set covariance matrix Xi used to represent the i th
image set Si is of size 400 × 400. Hence, the size of the
computed sample covariance matrix � is also 400 × 400.
Then, the eigenvalue decomposition is applied to � for the
sake of obtaining its corresponding eigenvalue and eigenvector
matrices. Afterward, we record the eigenvector matrix in
accordance with the descending order of the magnitudes of
the eigenvalues. Next, with the given dk and mk , the matrix
V (�), which is comprised of dk × mk leading eigenvectors,
can be extracted. Finally, by successively dividing V (�)
into mk nonoverlapping parts with each part consisting of
dk eigenvectors, the connection weights of SymNet-v1 and
Symnet-v2 are defined. Taking SymNet-v1 and ETH-80 data
set as an example, due to the values of dv1

m and mv1 on this data
set which are, respectively, set to 20 and 8, the size and the

Fig. 3. Face frames of the YTC data set.

Fig. 4. Sample images of the ETH-80 data set.

Fig. 5. Sample virus images of the Virus data set.

number of transformation matrices of SymNet-v1 are 400×20
and 8, respectively.

C. Data Sets Description and Settings

1) YTC Data Set: This data set is made up of 1910 video
clips of 47 different subjects that were collected from the
website of YouTube. Each clip consists of hundreds of face
frames, most of which exhibit a wide range of within-class
variations in pose, resolution, illumination, and expression.
Some face instances of this data set are shown in Fig. 3.

2) ETH-80 Data Set: This data set is comprised of eight
categories, such as cows, cups, horses, dogs, tomatoes, cars,
pears, and apples. Each category is made up of ten subcate-
gories, each of which consists of 41 images of different views.
Fig. 4 shows some examples of this data set.

3) Virus Data Set: This data set was obtained via transmis-
sion electron microscopy (TEM) technique. It is composed
of 15 different virus types, each of which contains 100 TEM
image patches. Different virus types in this data set have
different sizes and shapes. Besides, the virus patches within a
given category exhibit some common characteristics, such as
constant diameter, low resolution, no sufficient apparent infor-
mation, and unclear contour information. Some virus images
of this data set are presented in Fig. 5. In our experiments,
we equally group each virus class into five subclasses for
image set classification.

4) MDSD Data Set: This data set is comprised of 13 differ-
ent categories of dynamic scenes, each of which contains ten
different scene sequences collected in unconstrained scenarios.
Since the MDSD data set exhibits a wide range of intrasubject
variations in physical morphology, background, and illumina-
tion, classification over it seems challenging. Fig. 6 shows
some scene images of this data set.

5) AFEW Data Set: The acted facial expression in the
wild (AFEW) data set involves 1345 video sequences of seven
different types of facial expressions, such as angry, disgust,
fear, happy, neutral, sad, and surprise. They are collected from
movies with close to real-world scenarios. Some instances
of this data set are shown in Fig. 7. For a fair comparison,
we follow the standard protocols of the Emotion Recognition
in the Wild Challenge (EmotiW2014) [46] and [12] to first
split these training video sequences into 1746 small clips
for data augmentation. Then, the recognition results of the
different performers are reported on the validation set as the
ground truth of the test set is not publicly available.
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Fig. 6. Sample images of the MDSD data set.

Fig. 7. Sample images of the AEFW data set.

TABLE IV

RECOGNITION SCORE (%) COMPARISON ON

THE YTC AND AFEW DATA SETS

For a fair comparison, we follow the previous works
[4]–[8] to prepare our experiments. The first step is to make
the training and test samples. Specifically, we randomly select
nine video sequences per class of the YTC data set with
three for training and six for testing. For the ETH-80 data
set, we randomly choose five image sets in each category for
gallery and the rest for probes. For the Virus data set, each
subject has three randomly selected image sets for training and
the rest for the query set. For the MDSD data set, we make
use of the seventy-thirty-ratio (STR) protocol, i.e., the gallery
and probes are built by randomly choosing seven video clips
for the training set and the rest three for the query set in
each category. Then, the aforementioned selection process
corresponding to each data set is repeated ten times such that
ten different pairs of training and test sets can be generated
for averaging classification results. Finally, each image of the
five used data sets is tailored into a 20 × 20 grayscale one,
and a 400 × 400 covariance matrix thus can be computed for
image set representation.

D. Results and Discussion

According to the experimental results reported
in Tables IV and V, we summarize some interesting
observations into the following four aspects. First, we want
to make a comparison between the three basic Riemannian
metrics. It is clear to see that LEM outperforms Stein and
AIM in terms of classification result and standard derivation
on the YTC and ETH-80 data sets. Besides, the classification
accuracies of LEM are also superior to those of Stein and
AIM on the AFEW, Virus, and MDSD data sets. These
findings demonstrate that LEM is more precise and effective
than AIM and Stein in measuring the geodesic distance
between any two SPD matrices.

Second, the comparison between CDL, SPDML-
AIM/SPDML-Stein, and LEML is what we are also

TABLE V

CLASSIFICATION SCORE (%) COMPARISON ON THE
ETH-80, VIRUS, AND MDSD DATA SETS

interested in. As can be clearly seen from Tables IV and V,
the classification scores of LEML and CDL are significantly
higher than that of SPDML-AIM/SPDML-Stein on the
YTC, ETH-80, and Virus data sets. This indicates that
the LEM-based metric learning approaches exhibit more
superiority than AIM- and Stein-based ones in similarity
measurement of SPD matrix. Besides, it is also interesting to
note that LEML outperforms CDL in terms of classification
accuracy on the YTC, ETH-80, and Virus data sets, which
experimentally proves that the way of directly performing
mapping learning and metric learning on the SPD manifold
is able to encode the Riemannian geometry of the original
data manifold more faithfully than the Euclidean treatment.

Third, we would like to make a discussion between
LMKML and Multiple Manifolds Metric Learning (MMML).
It is intuitive to see that the classification performance of
LMKML and MMML outperforms most of the competitors on
the YTC, ETH-80, Virus, and MDSD data sets, which suggests
that the complementarity of multiple statistics in set data mod-
eling can help to extract more desirable structural information
for visual classification. However, MMML exhibits a better
classification ability than LMKML on the ETH-80, Virus, and
MDSD data sets. The main reason is that LMKML applies
a Euclidean kernel function to the non-Euclidean high-order
statistics for kernel space embedding, which is unable to
preserve the Riemannian properties, and thus may lead to sub-
optimal learning results. In contrast, MMML treats different
data manifolds with different Riemannian kernel functions.

Finally, the comparison between SPDNet and the proposed
SymNet is what we especially care about. As aforemen-
tioned, both of them focus on learning a more compact
and efficient SPD manifold from the original one. However,
SPDNet achieves this goal by exploiting the end-to-end learn-
ing mechanism in the context of SPD manifold. For the
proposed SymNet, the (2-D)2PCA algorithm is integrated into
the designed lightweight cascaded architecture to introduce
unsupervised parameter learning. From Table IV, we can find
that the recognition ability of the proposed model is superior
to all the competitors except for SPDNet on the complicated
and relatively large-scale AFEW data set. However, on the
remaining four data sets, SPDNet shows a poor classification
performance. These experimental observations suggest that
SPDNet is not as effective as the proposed model in handling
visual classification tasks on the relatively small-scale data
sets. Furthermore, it is evident that the learning ability of
SymNet-v1 is inferior to that of SymNet-v2 on the YTC,
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TABLE VI

ABLATION STUDY FOR EACH DESIGNED COMPONENT OF SYMNET ON THE FIVE USED DATA SETS

AFEW, ETH-80, and Virus data sets, which could indicate that
deeper architecture is qualified to make further improvements
in filtering out redundant information and learning more
effective semantic representations.

E. Computational Complexity Analysis

According to Section III, we can find that the time con-
sumption of SymNet-v1 comes from five aspects: 1) paying
O(Nd3 + Nd2dv1

m + N(dv1
m )2d) for the unsupervised para-

meter learning via (2-D)2PCA in the SPD matrix mapping
layer; 2) performing nonlinear feature learning in the rec-
tifying layer needs to pay O(Nmv1(dv1

m )3); 3) conducting
pooling operation needs to pay O(Nmv1(dv1

m )3); 4) paying
O(Nmv1(dv1

m )3) to carry out Log-Euclidean Riemannian com-
puting; and 5) building kernel matrix in the KDA algo-
rithm needs to pay O(N(N − 1)mv1(dv1

m )2). Considering that
mv1 � N and N � d2, the computational complexity of
SymNet-v1 is O(N2(dv1

m )2 + (dv1
m )2d + (dv1

m )3 + d3). Simi-
larly, the computational complexity of SymNet-v2 is O(d3 +
(dv2

m1)
3 + N2(dv2

m2)
2 + (dv2

m2)
3). For SPDNet, its computation

time is mainly consumed in two aspects: 1) building the three
BiMap layers and the LogEig layer and 2) performing end-
to-end training with the Riemannian matrix backpropagation
computing. As a consequence, its computational complexity
is O(Eh3

1 + Eh3
3 + Eh3

5 + Ed2h1). Here, hi denotes the
dimensionality of the generated new features in the i th layer
and E is the number of training epochs. Given a typical setting
with d = 400, N = 141, dv1

m = 60, dv2
m1 = 120, and dv2

m2 = 38,
we can have N2(dv1

m )2 + (dv1
m )2d + (dv1

m )3 + d3 ≈ 108 and
d3 + (dv2

m1)
3 + N2(dv2

m2)
2 + (dv2

m2)
3 ≈ 108. As for SPDNet, given

d = 400, E = 500, h1 = 200, h3 = 100, and h5 = 50,
we can obtain Eh3

1 + Eh3
3 + Eh3

5 + Ed2h1 ≈ 1010. Therefore,
the computational complexity of the proposed SymNet is much
lower than that of SPDNet. Note that, the values of these
parameters are selected according to the experiments.

F. Visualization

In this section, we choose the Virus data set as an
example to perform the 2-D visualization experiments for
the sake of verifying the discriminatory power of the data
representations learned by SymNet-v1 and SymNet-v2, intu-
itively. As mentioned earlier, the Virus data set is made up
of 15 different virus categories, each of which has three
randomly selected image sets for training. The experimen-
tal results, obtained by utilizing the t-stochastic neighbor
embedding (SNE) technique [49] to embed the original
SPD manifold-valued features into a 2-D space, are shown
in Fig. 8. Compared with Fig. 8(a), what can be notably
found from Fig. 8(c1) is that the samples from the same
class have large within-class compactness and the sam-
ples from different categories exhibit small between-class
similarity. Furthermore, we also visualize the distributions
of the lower dimensional SPD matrices, generated by the

SPD matrix mapping layer of SymNet-v1 and SymNet-v2,
in Fig. 8(b1) and (b2), respectively, and it is evident that most
categories can be separated up to a point. This demonstrates
that the introduced unsupervised learning scheme for filter
banks is feasible and effective. According to Fig. 8(c2), we can
also observe that the discriminability of the features learned
by SymNet-v2 is superior to that of SymNet-v1 in terms
of larger interclass separability on the Virus data set. These
observations further confirm the effectiveness of the designed
lightweight cascaded network for SPD matrix nonlinear
learning.

G. Ablation Study for Each Designed Component of SymNet

To investigate the efficacy of each designed layer in
SymNet-v1 and its deep version SymNet-v2, we conduct
classification experiments on the five used data sets. The
experimental results obtained by different subnetworks of the
proposed SymNet-v1 and SymNet-v2 are listed in Table VI.
From this table, it is intuitive to see that SymNet-2-v1, which
makes up of the SPD matrix mapping layer and log-map
layer, yields a significant improvement in classification score
on all the used data sets compared with SymNet-1-v1 that
just contains the SPD matrix mapping layer. This demon-
strates the importance of Riemannian computing in preserving
the geometrical structure of the raw data in new feature
space. Based on SymNet-2-v1, the rectifying layer is added
between the SPD matrix mapping layer and the log-map
layer. As a consequence of this measure, the classification
performance of SymNet-3-v1 has been further promoted on
the YTC, Virus, AFEW, and MDSD data sets, which justifies
its effectiveness in enhancing the discriminatory power of
the learned representations. According to Table VI, we can
also note that SymNet-4-v1, which is constituted by coupling
the suggested SPD matrix pooling layer with SymNet-3-v1,
achieves competitive classification performance on the five
used data sets. This experimentally certifies its feasibility in
compressing the geometric features.

From the last four lines of Table VI, we can note that
after integrating the log-map layer onto the tail of the second
SPD matrix mapping layer of SymNet-1-v2, the classification
ability of SymNet-2-v2 has been greatly lifted on all the used
data sets. This again validates the significance of Riemannian
computing. Another interesting observation is that the clas-
sification performance of SymNet-3-v2, which is constructed
by appending a rectifying layer between the two SPD matrix
mapping layers of SymNet-2-v2, is superior to that of SymNet-
2-v2 on the ETH-80, AFEW, and MDSD data sets. Based
on SymNet-3-v2, another rectifying layer is added between
the second SPD matrix mapping layer and the log-map layer.
As a result of this manipulation, SymNet-4-v2 outperforms
SymNet-3-v2 in classification result on the YTC, Virus, and
MDSD data sets. Meanwhile, its classification performance is
the same as that of SymNet-3-v2 on the remaining two data
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Fig. 8. 2-D visualization of the learned feature representations of SymNet-v1 and SymNet-v2 on the Virus data set, where colors indicate categories.
(a) Original SPD manifold-valued data distribution. (b1) and (b2) Distributions of the generated lower dimensional SPD matrices of SymNet-v1 and SymNet-v2.
(c1) and (c2) Sample distributions after using SymNet-v1 and SymNet-v2.

TABLE VII

ABLATION STUDY FOR THE POOLING STRATEGY ON THE FIVE USED DATA SETS

sets because of the output symmetric matrices of its second
SPD matrix mapping layer which are highly nonsingular.
These findings further prove the validity of the designed
rectifying layer in SPD matrix nonlinear learning.

H. Ablation Study for the Pooling Strategy

As is well known, both the conventional max- and
mean-pooling operations are widely used in the field of Con-
vNets. In order to evaluate which one is more suitable for the
proposed tangent space pooling tactic, we make experiments
on the five used data sets to observe the classification perfor-
mance of SymNet-v1 and SymNet-v2 versus different pooling
tactics. The experimental results are listed in Table VII, where
“TMaP” and “TMeP” represent the tangent space max- and
mean-pooling operations, respectively. From this table, we can
see that the classification performance of SymNet-TMaP-
v1 is superior to that of SymNet-TMeP-v1 on the ETH-
80, Virus, and MDSD data sets, while it is reversed on the
YTC and AFEW data sets. The same observation can also
be found between SymNet-TMaP-v2 and SymNet-TMeP-v2.
Despite this, the classification ability of SymNet-TMaP-v2 and
SymNet-TMeP-v2 is surpassed by SymNet-NP-v2 on all the
used data sets. Here, “NP” means no pooling operation. This
may indicate that the proposed tangent space pooling method
is inappropriate for deeper Riemannian network because of the
distortion of the local geometrical structure of the features in
the mapping process. We need to emphasize that the pooling
layer of SymNet-TMaP-v2 and SymNet-TMeP-v2 is added
between the first rectifying layer and the second SPD matrix
mapping layer of SymNet-v2, mainly because the size of the
resulting SPD matrices of its second rectifying layer is too
small to perform pooling operation. Currently, this is also
considered to be the main bottleneck to keep the proposed
SymNet from going deeper.

In addition to the aforementioned experimental analyses,
in this section, we take the ETH-80, MDSD, and Virus data

TABLE VIII

AVERAGE CLASSIFICATION SCORES (%) OF THE PROPOSED

MODEL UNDER DIFFERENT POOLING STRATEGIES ON

THE ETH-80, MDSD, AND VIRUS DATA SETS

sets as three examples to further investigate the impact of
another two pooling strategies, studied in Section III-C, on the
classification performance of our approach. The experimental
results of SymNet-SMAP-v1, SymNet-SMAP-v2, SymNet-
SMeP-v1, and SymNet-SMeP-v2 on these three data sets
are tabulated in Table VIII, where “SMaP” and “SMeP,”
respectively, denote the max- and mean-pooling operations
that are directly imposed on the SPD manifold. As can be
apparently seen from Table VIII, the classification scores
of SymNet-SMAP-v1 are significantly lower than those of
SymNet-SMeP-v1 on the ETH-80, Virus, and MDSD data sets.
The reason may be that the sliding window of max-pooling
operation does not move along the geodesic, thus destroying
the Riemannian geometry of the SPD manifold to a certain
extent. From Table VIII, it is also worth noting that although
SymNet-SMeP-v2 outperforms SymNet-SMAP-v2 in classifi-
cation performance on the Virus and the MDSD data sets, its
classification ability is distinctly inferior to that of SymNet-
NP-v2 of Table VII. This again suggests that pooling operation
is currently inapplicable to SymNet-v2.

For the proposed model, despite that “SMeP” is a com-
petitive pooling method, it is more time-consuming than
the tangent space pooling tactic (i.e., “TMaP” and “TMeP”)
because of optimization. In consequence, the “TMeP” is
adopted to the proposed SymNet-v1 on the YTC and AFEW
data sets. On the remaining three data sets, the “TMaP” seems
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Fig. 9. ROC curves of the different methods on the MDSD data set.

to be a better choice for SymNet-v1. In contrast, we do
not embed any pooling operations into SymNet-v2. However,
the pooling strategies mentioned earlier are just an attempt and
exploration on how to generalize the paradigm of conventional
pooling operations to the SPD manifold for DR and feature
selection. More investigations and works should be done in the
future.

I. Ablation Study for Different Validation Metrics

According to the previous studies, we can see that
both SymNet-v1 and its deep version SymNet-v2 show
their effectiveness in video-based image set classification.
However, the overall accuracy and the standard derivation are
the only two validation metrics used in this article. To further
assess our model, we conduct experiments on the MDSD
data set to compare our approach with several representative
image set classification methods under other commonly
used validation metrics [50], [51], such as micro-based
average precision (Precisionmi), macro-based average
precision (Precisionma), micro-based average recall (Recallmi),
macro-based average recall (Recallma), micro-based average
specificity (Specificitymi), macro-based average specificity
(Specificityma), micro-based F1-Score (F1-Scoremi), and
macro-based F1-Score (F1-Scorema). The classification scores
of the different methods on this data set are tabulated
in Table IX. From Table IX, we can note that SymNet-v1 and
SymNet-v2 are the best two performers on the MDSD data set.

In addition, we also draw the ROC curves for the proposed
model and the competitors on this data set to intuitively
test their reliability in video-based image set classification.
The experimental results are shown in Fig. 9. From this
figure, it is evident to see that the AUCs of SymNet-v1 and
SymNet-v2 are, respectively, 74.95 and 73.61, larger than
that of all the comparative methods. This again shows that
the proposed lightweight cascaded network for SPD matrix
nonlinear leaning is valid.

J. Ablation Study for the Designed Nonlinear Activation
Function fr1 in (9)

To verify the effectiveness of the designed nonlinear acti-
vation function fr1 , we take the MDSD data set as an
example to study the impact of the activation threshold η
on the classification performance of SymNet-v1 and its deep
version SymNet-v2, respectively. The classification score of
SymNet-v1 versus different values of ηv1

r on this data set

Fig. 10. Average classification results of (a) SymNet-v1 and (b) SymNet-
v2 on the MDSD data set under different parameter settings.

Fig. 11. 2-D visualization of the features learned by SymNet-v1.
(a) ηv1

r = 0.00. (b) ηv1
r = 2.98.

is shown in Fig. 10(a). From this figure, it is evident that
the proposed SymNet-v1 obtains the best classification result
on the MDSD data set when ηv1

r is set to 2.98. Fig. 10(b)
shows the classification score of SymNet-v2 versus different
ηv2

r1 and ηv2
r2 on the MDSD data set. From Fig. 10(b), we can

observe that when ηv2
r1 and ηv2

r2 , respectively, vary in the
range of {6.5,6.7,6.9} and {1.0,3.0}, the proposed SymNet-
v2 exhibits the best classification performance. According to
the results presented in Fig. 10(a) and (b), it is also worth
noting that SymNet-v1 and SymNet-v2 tend to be less sensitive
to the activation threshold η. Here, we want to state that
when the proposed network does not include this activation
function, the classification results of SymNet-v1 and SymNet-
v2 obtained on this data set are 35.26% and 34.19%, lower
than that of the best cases discussed above. These experimental
observations suggest that fr1 could play a part in ameliorating
the discriminability of the learned feature representations. For
SymNet-v1 and SymNet-v2, ηv1

r , ηv2
r1 , and ηv2

r2 are configured
as 2.98, 6.5, and 3.0 on the MDSD data set, respectively.
Their corresponding values on the remaining four data sets
are tabulated in Tables II and III.

In order to evaluate the validity of fr1 more intuitively,
we further conduct the 2-D visualization experiments on
the MDSD data set to study the influence of using and
without using this activation function on the data distrib-
ution learned by SymNet-v1 and SymNet-v2. The experi-
mental results, obtained via the t-SNE technique, are drawn
in Figs. 11 and 12. Here, different colors and points indi-
cate different categories and image set samples, respectively.
As can be clearly seen, after integrating fr1 into the rectifying
layers of the proposed model, the problem of within-class
diversity reflected in Figs. 11(a) and 12(a) has been further
relieved, respectively, incarnated in Figs. 11(b) and 12(b).
The aforementioned experimental observations demonstrate
the significance of fr1 in improving the representation ability
of our model to a certain extent.

K. Parameter Discussion

As stated in Section III, the number of filters of the SPD
matrix mapping layer and the thresholds of the rectifying layer
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TABLE IX

AVERAGE CLASSIFICATION RESULTS (%) OF THE PROPOSED MODEL AND SOME REPRESENTATIVE IMAGE SET
CLASSIFICATION METHODS ON THE MDSD DATA SET UNDER DIFFERENT VALIDATION METRICS

Fig. 12. 2-D visualization of the features learned by SymNet-v2.
(a) ηv2

r1 = 0.00; ηv2
r2 = 0.00. (b) ηv2

r1 = 6.50; ηv2
r2 = 3.00.

TABLE X

AVERAGE CLUSTERING RESULTS OF THE DIFFERENT METHODS ON THE

ETH-80 DATA SET UNDER DIFFERENT VALIDATION METRICS, WHERE
“CA” REPRESENTS THE CLUSTERING ACCURACY

are some of the key factors of the proposed SymNet. In what
follows, we take the MDSD data set as an example to carry out
experiments to study the impact of them on the classification
performance of SymNet-v1 (due to space limitation, we do
not investigate them in the context of SymNet-v2). According
to the classification results presented in Fig. 13, we can see
that the values of mv1 and �v1

r should be configured as 4
and 1E−3 on this data set, respectively. As can be noted
from Fig. 13(a), when the value of mv1 is surpassed 4,
the classification ability of SymNet-v1 tends to be degraded
because of the gradually increased redundant information of
the learned features. From Fig. 13(b), we can also observe
that the smaller the value of �v1

r , the worse the exhibited
classification performance of SymNet-v1. This experimentally
certifies the availability of fr2 in introducing nonlinearity for
the mappings. Since the value of dv1

m is determined by the
(2-D)2PCA algorithm, we do not discuss it here. Please kindly
refer to Tables II and III for their corresponding values on other
data sets.

L. Unsupervised SPD Matrix Learning

As introduced in Section III-A, the proposed model makes
use of (2-D)2PCA to perform unsupervised filter learning.
Accordingly, in this section, we take the ETH-80 data set as
an example to further study its availability in the scenario
of without accessing to the labels of the training samples.
To tackle this unsupervised SPD matrix learning problem,
the following setups are made for the proposed approach. First,
the KDA algorithm is removed from the proposed model.

Fig. 13. Classification results of SymNet-v1 on the MDSD data set under
different parameter settings. (a) Classification score of SymNet-v1 versus mv1.
(b) Classification score of SymNet-v1 versus �v1

r .

Second, the unlabeled training SPD matrices are used to train
SymNet-v1 and SymNet-v2, respectively. After the training
process is completed, the lower dimensional data represen-
tations can be extracted for the test samples via the trained
networks. Finally, the classical sparse subspace clustering
(SSC) [52] algorithm is exploited to test the learning ability
of our approach in this context. The clustering results of SSC,
SymNet-v1-SSC, and SymNet-v2-SSC on this data set are
shown in Table X. From this table, it is obvious that the
clustering performance of SymNet-v1-SSC and SymNet-v2-
SSC is superior to that of SSC under all the validation metrics
on this data set. This again demonstrates the effectiveness of
the proposed approach in SPD matrix learning. To prepare data
for SSC, we first simplify the proposed model to just contain
an SPD matrix mapping layer, used to conduct DR with 99%
energy preservation of the training data, and a log-map layer
for Riemannian computation. Besides, the number of feature
maps of these two layers is set to 1. With this very simplified
architecture, the data applicable to SSC can be obtained.

M. Computational Time Comparison

To show the time efficiency of the proposed SymNet,
we finally make experiments on the YTC data set to compare
its average training and testing time with some representative
image set classification methods. The experiments were run
on 3.0 GHz PC with 16-GB RAM, and the computation time
of each method obtained with the MATLAB2019a software is
tabulated in Table XI. We need to emphasize that the running
time is reflected by the CPU time, and the testing time is
computed by classifying one query set with all the training
samples. According to Table XI, we have three interesting
observations listed as follows. First, the training time of the
proposed SymNet-v2 is higher than that of CDL and GDA.
The main reason is that SymNet-v2 needs to pay more time
to conduct the two-staged unsupervised parameter learning.
This reason can also be taken to explain the difference
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TABLE XI

AVERAGE RUNNING TIME (SECONDS) OF THE DIFFERENT METHODS
ON THE YTC DATA SET (CLASSIFICATION OF ONE VIDEO)

between SymNet-v1 and SymNet-v2 in running time. Besides,
the dimensionality of the features produced by the first SPD
matrix mapping layer of SymNet-v2 is higher than that of
SymNet-v1 on the YTC data sets, which can be treated
as another reason. Second, what can be clearly found from
Table XI is the training burden of SymNet-v1 and SymNet-
v2 has been significantly reduced compared to SPDNet,
SPDML, LEML, and PML. This again proves the utility
of exploiting (2-D)2PCA to train the designed lightweight
cascaded SPD matrix learning network. Finally, the testing
time of SymNet-v1 and SymNet-v2 is lower than almost all
the competitors, which further justifies the practicability of the
proposed approach.

V. APPLICATION TO 3-D HAND ACTION RECOGNITION

Recently, 3-D hand action recognition has made more mod-
est progress in first-person view due to its huge possibilities
for practical application and the recent availability of RGB-D
sensors. It concerns the task of automatically comprehending
an action sequence via the 3-D coordinates of hand joints
to recognize what first-person hand action interacting with
3-D object is being performed. As each video sequence can
be viewed as an image set, this problem can also be solved
from the perspective of image set classification. In this section,
we further evaluate the validity of the proposed approach on
this task using the FPHA data set [53].

The FPHA is a large and diverse first-person hand action
data set for 3-D hand pose estimation. It is comprised
of 1175 hand action videos belonging to 45 different cate-
gories, acted by six actors in three different scenarios. Some
hand gesture instances of this data set are presented in Fig. 14.
Due to a wide range of intrasubject variability of scale,
speed, style, and viewpoint covered in the hand action video
sequences, recognition on this data set seems challenging.
For evaluations, we follow the standard protocol of [53] to
first normalize each video clip to contain 50 frames. Then,
each hand gesture frame is characterized by a 63-D feature
vector converted from the 3-D coordinates of 21 hand joints
provided. As a consequence, a covariance matrix of the size
63 × 63 can be computed to represent each video sequence.
Finally, we follow the 1:1 setting, i.e., 600 action sequences
for training and the remaining 575 for testing, to carry out
experiments.

To better validate our model, we select some state-of-the-art
hand action recognition methods for comparison, such as
convolutional two-stream network (two stream) [54], novel
view [55], LSTM [53], hierarchical recurrent neural net-
work (HBRNN) [57], jointly learning heterogeneous features
(JOULE) [58], transition forests (TF) [59], temporal convolu-
tion network (TCN) [60], and unified hand and object model

Fig. 14. Some hand action instances of the FPHA data set.

TABLE XII

RECOGNITION SCORE (%) COMPARISON ON THE FPHA DATA SET

(H+O) [61]. Besides, we also compare it with three represen-
tative SPD manifold learning algorithms, including LEML [7],
SPDML-AIM [9], and SPDNet [12]. The recognition scores
of the different methods are tabulated in Table XII. Note that,
we run the methods of LEML, SPDML-AIM, SPDNet, and
TCN with their publicly available source codes and report
their best experimental results on this data set. As for H+O
and other performers, their recognition scores are from [61]
and [53], respectively.

From Table XII, it is clear to see that LEML and
SPDML-AIM show comparable recognition performance with
other competitors on the FPHA data set. This again demon-
strates the effectiveness of Riemannian geometry in character-
izing the nonlinear structure of the visual data. From this table,
we can also find that SPDNet obtains the highest recognition
score on this data set, which provides further confirmation
of the significance of nonlinear deep mapping learning for
SPD matrix in mining fine-grained geometric representations
for visual scenarios. Although the recognition ability of the
proposed SymNet-v1 and its deep version SymNet-v2 is
inferior to that of SPDNet, they still exhibit the competitive
classification performance on this data set, with the merit of
much lower computational burden. This can also prove the
availability of the suggested SPD matrix learning approach.

VI. CONCLUSION

In this article, we present a lightweight cascaded SPD
manifold network (SymNet) for developing a possibility of
SPD matrix learning. For the proposed SymNet, we discuss
how to build the SPD matrix mapping layer, rectifying layer,
SPD matrix pooling layer, and log-map layer for the purpose
of extracting more discriminative feature representations while
preserving the Riemannian geometry of the data manifold
simultaneously. Like the conventional deep learning models,
the proposed SymNet needs to learn the optimal values
for the key parameters, such as the target dimensionality of
the resulting SPD matrices, the number of filters, and the
activation thresholds. Once these parameters are fixed, training
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this lightweight cascaded SPD manifold network with the
(2-D)2PCA algorithm becomes very easy and efficient.

Compared with the end-to-end SPD matrix learning network
SPDNet, both the proposed SymNet-v1 and its deep version
SymNet-v2 surpass it in terms of classification accuracy on
the ETH-80, YTC, Virus, and MDSD data sets. This means
that our SymNet is able to eliminate the intraclass variations
to some extent, thus giving competitive classification perfor-
mance. However, on the relatively large-scale and challenging
AFEW data set, SymNet-v1 and SymNet-v2 do not seem
to be sufficient to address the data variability because of
the unsupervised filter learning mode and the lightweight
structure. Accordingly, integrating the label information into
the filter learning process or constructing a deeper SymNet
are considered to be two feasible ways to accommodate the
aforementioned issues in the future.

In addition, we can also note that the proposed approach
failed to make a substantial breakthrough in the classification
performance on the complicated AFEW and MDSD data
sets. The reason may be that the input SPD matrices of the
proposed model are directly computed from the original image
sets without containing any representation learning for the
images themselves. Consequently, some stubborn redundant
information and implicit data variability information cannot be
effectively eliminated in the process of SPD matrix learning.
As a prospective countermeasure, some preprocessings might
be needed before modeling, such as learning deep features
for the original images or jointly performing image feature
learning and SPD matrix learning within a designed network.

The evaluations on six typical video-based image set clas-
sification tasks confirm the feasibility and effectiveness of
our approach for SPD matrix nonlinear learning. Furthermore,
the proposed SymNet can be served as a valuable baseline
for appraising the advanced learning algorithms in the domain
of image set classification, especially for challenging visual
classification tasks.
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