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ABSTRACT

We study the phase transition phenomenon inherent in the shuffled (permuted)
regression problem, which has found numerous applications in databases, privacy,
data analysis, etc. For the permuted regression task: Y = Π♮XB♮, the goal is to
recover the permutation matrix Π♮ as well as the coefficient matrix B♮. It has been
empirically observed in prior studies that when recovering Π♮, there exists a phase
transition phenomenon: the error rate drops to zero rapidly once the parameters
reach certain thresholds. In this study, we aim to precisely identify the locations of
the phase transition points by leveraging techniques from message passing (MP).

In our analysis, we first transform the permutation recovery problem into a prob-
abilistic graphical model. Then, we leverage the analytical tools rooted in the
message passing (MP) algorithm and derive an equation to track the convergence
of the MP algorithm. By linking this equation to the branching random walk
process, we are able to characterize the impact of the signal-to-noise-ratio (snr)
on the permutation recovery. Depending on whether the signal is given or not, we
separately investigate the oracle case and the non-oracle case. The bottleneck in
identifying the phase transition regimes lies in deriving closed-form formulas for
the corresponding critical points, but only in rare scenarios can one obtain such pre-
cise expressions. To tackle this challenge, we propose the Gaussian approximation
method, which allows us to obtain the closed-form formulas in almost all scenarios.
In the oracle case, our method can fairly accurately predict the phase transition snr.
In the non-oracle case, our proposed algorithm can predict the maximum allowed
number of permuted rows and uncover its dependency on the sample number.

Numerical experiments reveal that the observed phase transition points are well
aligned with our theoretical predictions. Our study will motivate exploiting MP al-
gorithms (and related techniques) as an effective tool for permuted regression prob-
lems, which have found applications in machine learning, privacy, and databases.

1 INTRODUCTION

In this paper, we consider the following permuted (shuffled) linear regression problem:

Y = Π♮XB♮ + σW, (1)

where Y ∈ Rn×m denotes the matrix of observations, Π♮ ∈ {0, 1}n×n is the permutation matrix,
X ∈ Rn×p is the design matrix, B♮ ∈ Rp×m is the matrix of signals (regressors), W ∈ Rn×m

denotes the additive noise matrix (with unit variance), and σ2 is the noise variance. The task
is to recover both the signal matrix B♮ and the permutation matrix Π♮. The research on this
challenging permuted regression problem dates back at least to 1970s under the name “broken sample
problem” (DeGroot et al., 1971; Goel, 1975; DeGroot & Goel, 1976; 1980; Bai & Hsing, 2005).
Recent years have witnessed a revival of this problem due to its broad spectrum of applications in
(e.g.,) privacy protection, data integration, etc. (Unnikrishnan et al., 2015; Pananjady et al., 2018;
Slawski & Ben-David, 2019; Pananjady et al., 2017; Slawski et al., 2020; Zhang & Li, 2020).

Specifically, this paper will focus on studying the “phase transition” phenomenon in recovering the
whole permutation matrix Π♮: the error rate for the permutation recovery sharply drops to zero once
the parameters reach certain thresholds. In particular, we leverage techniques in the message passing
(MP) algorithm literature to identify the precise positions of the phase transition thresholds. The
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bottleneck in identifying the phase transition regimes lies in deriving closed-form formulas for the
corresponding critical points. This is a highly challenging task because only in rare scenarios can
one obtain such precise expressions. To tackle the difficulty, we propose the Gaussian approximation
method which allows us to obtain the closed-form formula in almost all scenarios. We should mention
that, in previous studies (Slawski et al., 2020; Slawski & Ben-David, 2019; Pananjady et al., 2017;
Zhang et al., 2022; Zhang & Li, 2020), this phase transition phenomenon was empirically observed.

Related work. The problem we study in this paper simultaneously touches two distinct areas of
research: (A) permutation recovery, and (B) message passing (MP). In the literature of permuted
linear regression, essentially all existing works used the same setting (1). Pananjady et al. (2018);
Slawski & Ben-David (2019) consider the single observation model (i.e., m = 1) and prove that
the signal-to-noise-ratio (snr) for the correct permutation recovery is OP (n

c), where c > 0 is some
positive constant. Slawski et al. (2020); Zhang & Li (2020); Zhang et al. (2022) investigate the
multiple observations model (i.e., m > 1) and suggest that the snr requirement can be significantly
decreased, from OP (n

c) to OP
(
nc/m

)
. In particular, Zhang & Li (2020) develop an estimator which

we will leverage and analyze for studying the phase transition phenomenon. Our analysis leads to the
precise identification of the locations of the phase transition thresholds.

Another line of related research comes from the field of statistical physics. For example, using
the replica method, Mézard & Parisi (1985; 1986) study the linear assignment problem (LAP), i.e.,
minΠ

∑
i,j ΠijEij where Π denotes a permutation matrix and Eij is i.i.d random variable uniformly

distributed in [0, 1]. Martin et al. (2005) then generalize LAP to multi-index matching and presented
an investigation based on MP algorithm. Recently, Caracciolo et al. (2017); Malatesta et al. (2019)
extend the distribution of Eij to a broader class. However, all the above works exhibit no phase
transition. In Chertkov et al. (2010), this method is extended to the particle tracking problem, where
a phase transition phenomenon is observed. Later, Semerjian et al. (2020) modify it to fit the graph
matching problem, which paves way for our work in studying the permuted linear regression problem.

Our contributions. We propose the first framework to identify the precise locations of phase
transition thresholds associated with permuted linear regression. In the oracle case where B♮ is
known, our scheme is able to determine the phase transition snr. In the non-oracle case where B♮ is
not given, our method will also predict the maximum allowed number of permuted rows and uncover
its dependence on the ratio p/n. In our analysis, we identify the precise positions of the phase
transition points in the large-system limit, e.g., n, m, p all approach to infinity with m/n → τm,
p/n → τp. Interestingly, numerical results well match predictions even when n,m, p are not large.
There is one additional contribution. In the graphical model based on the linear assignment problem,
we can modify the graph and design a scheme for partial recovery, which is a separate contribution
and may be further analyzed for future study.

Here, we would also like to briefly mention the technical challenges. Compared with the previous
works (Mezard & Montanari, 2009; Talagrand, 2010; Linusson & Wästlund, 2004; Mézard & Parisi,
1987; 1986; Parisi & Ratiéville, 2002; Semerjian et al., 2020), where the edge weights are relatively
simple, our edge weights usually involve high-order interactions across Gaussian random variables
and are densely correlated. To tackle this issue, our proposed approximation method to compute
the phase transition thresholds consists of three parts: 1) performing Gaussian approximation; 2)
modifying the leave-one-out technique; and 3) performing size correction. A detailed explanation
can be found in Section D. Hopefully, our approximation method will serve independent technical
interests for researchers in the machine learning community.

Notations. In this paper, a a.s.−→ b denotes a converges almost surely to b. We denote f(n) ≃ g(n)
when limn→∞ f(n)/g(n) = 1, and f(n) = OP (g(n)) if the sequence f(n)/g(n) is bounded in
probability, and f(n) = oP (g(n)) if f(n)/g(n) converges to zero in probability. The inner product
between two vectors (resp. matrices) are denoted as ⟨·, ·⟩. For two distributions d1 and d2, we write
d1 ∼= d2 if they are equal up to normalization. Moreover, Pn denotes the set of all possible permu-
tation matrices: Pn ≜ {Π ∈ {0, 1}n×n,

∑
i Πij = 1,

∑
j Πij = 1}. The signal-to-noise-ratio is

snr =
|||B♮|||2F
m·σ2 , where |||·|||F is the Frobenius norm and σ2 is the variance of the sensing noise.
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2 PERMUTATION RECOVERY USING THE MESSAGE PASSING ALGORITHM

Inspired by Mezard & Montanari (2009); Chertkov et al. (2010); Semerjian et al. (2020), we leverage
tools from the statistical physics to identify the locations of the phase transition threshold. We start
this section with a brief review of the linear assignment problem (LAP), which reads as

Π̂ = argminΠ∈Pn
⟨Π,E⟩ , (2)

where E ∈ Rn×n is a fixed matrix and Pn denotes the set of all possible permutation matrices.
We follow the approach in Mezard & Montanari (2009); Semerjian et al. (2020) and introduce a
probability measure over the permutation matrix Π, which is written as

µ(Π) = (1/Z)
∏
i

1
(
1−

∑
j

Πij

)∏
j

1
(
1−

∑
i

Πij

)
× exp

(
− β

∑
i,j

ΠijEij

)
, (3)

where 1(·) is the indicator function, Z is the normalization constant of the probability measure µ(Π),
and β > 0 is an auxiliary parameter. It is easy to verify the following two properties:

• the ML estimator in (2) can be rewritten as Π̂ = argmaxΠµ(Π);

• the probability measure µ(Π) concentrates on Π̂ when letting β → ∞.

In the next three subsections, we study the impact of {Eij} on the reconstructed permutation Π̂
with the message passing (MP) algorithm. First, we associate a probabilistic graphical model with
the probability measure defined in (3). Then, we rewrite the solution in (2) in the language of the
MP algorithm. Finally, we derive an equation (7) to track the convergence of the MP algorithm.
By exploiting relation of (7) to the branching random walk (BRW) process, we identify the phase
transition points corresponding to the LAP in (2).

2.1 CONSTRUCTION OF THE GRAPHICAL MODEL

Firstly, we construct the factor graph associated with the probability measure in (3). Adopting the
same strategy as in Chapter 16 of Mezard & Montanari (2009), we conduct the following operations:

• associating each variable Πij a variable node vij ;

• connecting the variable node vij a function node representing the term e−βΠijEij ;

• linking each constraint
∑

i Πij = 1 to a function node and similarly for the constraint
∑

j Πij = 1.

A graphical representation is available in Figure 1.
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Figure 1: The constructed graphical model. The circle icons represent the variable nodes and the
square icons represent the function nodes: a blue square for the constraint on the rows of Π, a green
square for the constraint on the columns of Π, and a red square for the function e−βπEij .

Now we briefly review the MP algorithm. Informally speaking, MP is a local algorithm to compute
the marginal probabilities over the graphical model. In each iteration, the variable node v transmits
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the message to its incident function node f by multiplying all incoming messages except the message
along the edge (v, f). The function node f transmits the message to its incident variable node v
by computing the weighted summary of all incoming messages except the message along the edge
(f, v). For a detailed introduction to MP, we refer readers to Kschischang et al. (2001), Chapter 16
in MacKay et al. (2003), and Chapter 14 in Mezard & Montanari (2009).

It is known that MP can obtain the exact marginals (Mezard & Montanari, 2009) for singly connected
graphical models. For other types of graphs, however, whether MP can obtain the exact solution
still remains an open problem (Cantwell & Newman, 2019; Kirkley et al., 2021). At the same time,
numerical evidences have been witnessed to show that MP can yield meaningful results for graphs
with loops; particular examples include applications in the coding theory (Chung, 2000; Richardson
& Urbanke, 2001; 2008) and the LAP (which happens to be our case) (Mezard & Montanari, 2009;
Chertkov et al., 2010; Caracciolo et al., 2017; Malatesta et al., 2019; Semerjian et al., 2020).

2.2 THE MESSAGE PASSING (MP) ALGORITHM

Next, we perform permutation recovery via MP. The following derivation follows the standard
procedure, which can be found in the previous works (Mezard & Montanari, 2009; Semerjian et al.,
2020). We denote the message flow from the node iL to the variable node (iL, jR) as m̂iL→(iL,jR)(·)
and that from the edge (iL, jR) to node iL as m(iL,jR)→iL(·). Similarly, we define m̂jR→(iL,jR)(·) and
m(iL,jR)→jR(·) as the message flow transmitted between the functional node jR and the variable
node

(
iL, jR

)
. Here the superscripts L and R are used to indicate the positions of the node (left and

right, respectively). Roughly speaking, these transmitted messages can be viewed as (unnormalized)
conditional probability P(Πi,j = {0, 1}|(·)) with the joint PDF being defined in (3). The message
transmission process is to iteratively compute these conditional probabilities.

First, we consider the message flows transmitted between the functional node iL and the variable
node

(
iL, jR

)
, which are written as

m(iL,jR)→iL(π) ∼= m̂jR→(iL,jR)(π)e
−βπE

iL,jR ,

m̂iL→(iL,jR)(π) ∼=
∑
π
iL,kR

∏
kR ̸=jR

m̂kR→(iL,kR)(πiL,kR) · e−βπ
iL,kREiL,kR

1(π +
∑
k

πiL,kR = 1), (4)

where π ∈ {0, 1} is a binary value. Similarly, we can write the message flows between the functional
node jR and the variable node

(
iL, jR

)
, which are denoted as m(iL,jR)→jR(π) and m̂jR→(iL,jR)(π),

respectively. With the parametrization approach, we define

hiL→(iL,jR) ≜
1

β
log

m̂iL→(iL,jR)(1)

m̂iL→(iL,jR)(0)
, hjR→(iL,jR) ≜

1

β
log

m̂jR→(iL,jR)(1)

m̂jR→(iL,jR)(0)
.

Denote ζiL,jR as hiL→(iL,jR) + hjR→(iL,jR) − EiL,jR . We select the edge
(
iL, jR

)
according to the

probability m(iL,jR)(π) ≜
exp(π·βζ

iL,jR
)

1+exp(βζ
iL,jR

) , π ∈ {0, 1}. Provided m(iL,jR)(1) > m(iL,jR)(0), or
equivalently,

ζiL,jR > 0, (5)

we pick π̂(iL) = jR; otherwise, we have π̂(iL) ̸= jR. Due to the fact that µ(Π) concentrates on Π̂
when β is sufficiently large, we can thus rewrite the MP update equation as

hiL→(iL,jR) = min
kR ̸=jR

EiL,kR − hkR→(iL,kR), hjR→(iL,jR) = min
kL ̸=iL

EkL,jR − hkL→(kL,jR), (6)

which is attained by letting β → ∞.

2.3 IDENTIFICATION OF THE PHASE TRANSITION THRESHOLD

To identify the phase transition phenomenon inherent in the MP update equation (6), we follow the
strategy in Semerjian et al. (2020) and divide all edges

(
iL, jR

)
into two categories according to
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whether the edge
(
iL, jR

)
corresponds to the ground-truth permutation matrix Π♮ or not. Within each

category, we assume the edges’ weights and the message flows along them can be represented by
independently identically distributed random variables.

For the edge (iL, π♮(iL)) for the ground-truth correspondence, we represent the random variable
associated with the weight Eij as Ω. The random variable for the message flow along this edge
is denoted H (for both hiL→(iL,jR) and hjR→(iL,jR)). For the rest of edges (iL, jR) (jR ̸= π♮(iL)),
we define the corresponding random variables for the edge weight and message flow as Ω̂ and Ĥ ,
respectively. Then, we can rewrite (6) as

Ĥ(t+1) = min
(
Ω−H(t), H

′(t)
)
, H(t+1) = min

1≤i≤n−1
Ω̂i − Ĥ

(t)
i , (7)

where (·)(t) denotes the update in the t-th iteration, H
′

is an independent copy of H , {H(t)
i }1≤i≤n−1

and {Ω̂i}1≤i≤n−1 denote the i.i.d. copies of random variables H(t)
(·) and Ω̂(·). This equation (7) can

be viewed as the analogous version of the density evolution and state evolution, which are used
to analyze the convergence of the message passing and approximate message passing algorithm,
respectively (Chung, 2000; Richardson & Urbanke, 2001; 2008; Donoho et al., 2009; Maleki, 2010;
Bayati & Montanari, 2011; Rangan, 2011).
Remark 1. We conjecture that the distribution difference in the edges’ weights is a necessary
component in capturing the phase transition. On one hand, according to Mézard & Parisi (1986;
1987); Parisi & Ratiéville (2002); Linusson & Wästlund (2004); Mezard & Montanari (2009);
Talagrand (2010), there is no phase transition phenomenon in LAP if the edges’ weights, i.e., Eij , are
assumed to be i.i.d uniformly distributed in [0, 1]. On the other hand, Semerjian et al. (2020) show a
phase transition phenomenon when assuming the weights Eij follow different distributions among
the edges associated with the ground-truth correspondence

(
iL, π♮(iL)

)
and the rest edges.

Relation to branching random walk (BRW) process. Conditional on the event that the permutation
can be perfectly reconstructed, i.e., H +H

′
> Ω as in (5), we can simplify (7) as

H(t+1) = min
1≤i≤n−1

H
(t)
i + Ξi, (8)

where Ξ is defined as the difference between Ω̂ and Ω, which is written as Ξ ≜ Ω̂ − Ω, and
{H(t)

i }1≤i≤n−1 and {Ξi}1≤i≤n−1 denote the i.i.d. copies of random variables H(t)
(·) and Ξ(·).

Adopting the same viewpoint of Semerjian et al. (2020), we treat (8) as a branching random walk
(BRW) process, which enjoys the following property.
Theorem 1 (Hammersley (1974); Kingman (1975); Semerjian et al. (2020)). Consider the recursive
distributional equation K(t+1) = min1≤i≤n K

(t)
i +Ξi, where K(t)

i and Ξi are i.i.d copies of random
variables K

(t)
(·) and Ξ(·), we have K(t+1)

t

a.s.−→ − infθ>0
1
θ log

[∑n
i=1 Ee−θΞi

]
, conditional on the

event that limt→∞ K(t) ̸= ∞.

With Theorem 1, we can compute phase transition point for the correct (full) permutation recovery,
i.e., H + H

′
> Ω, by letting infθ>0

1
θ log

[∑n
i=1 Ee−θΞi

]
= 0, since otherwise the condition in

(5) will be violated (see a detailed explanation in Appendix). In practice, directly computing the
infimum of infθ>0

1
θ log

[∑n
i=1 Ee−θΞi

]
is only possible for limited scenarios. In the next section,

we propose an approximate computation method for the phase transition points, which is capable of
covering a broader class of scenarios.

3 ANALYSIS OF THE PHASE TRANSITION POINTS

Recall that, in this paper, we consider the following linear regression problem with permuted labels

Y = Π♮XB♮ + σW,

where Y ∈ Rn×m represents the matrix of observations, Π♮ ∈ Pn denotes the permutation matrix to
be reconstructed, X ∈ Rn×p is the sensing matrix with each entry Xij following the i.i.d standard
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normal distribution, B♮ ∈ Rp×m is the matrix of signals, and W ∈ Rn×m represents the additive
noise matrix and its entries Wij are i.i.d standard normal random variables. In addition, we denote h

as the number of permuted rows corresponding to the permutation matrix Π♮.

In this work, we focus on studying the “phase transition” phenomenon in recovering Π♮ from the
pair (Y,X). That is, the error rate for the permutation recovery sharply drops to zero once certain
parameters reach the thresholds. In particular, our analysis will identify the precise positions of the
phase transition points in the large-system limit, i.e., n, m, p, and h all approach to infinity with
m/n → τm, p/n → τp, h/n → τh. We will separately study the phase transition phenomenon in 1)
the oracle case where B♮ is given as a prior, and 2) the non-oracle case where B♮ is unknown.

In this section, we consider the oracle scenario, as a warm-up example. To reconstruct the permutation
matrix Π♮, we adopt the following maximum-likelihood (ML) estimator:

Π̂
oracle

= argminΠ

〈
Π,−YB♮⊤X⊤〉 , s.t.

∑
i

Πij = 1,
∑
j

Πij = 1,Π ∈ {0, 1}n×n
. (9)

Denoting the variable Eoracle
ij as −X⊤

π♮(i)B
♮B♮⊤Xj − σW⊤

i B
♮⊤Xj , (1 ≤ i, j ≤ n), we can

transform the objective function in (9) as the canonical form of LAP, i.e.,
∑

i,j ΠijE
oracle
ij .

3.1 THE PHASE TRANSITION THRESHOLD FOR THE ORACLE CASE

In the oracle case where B♮ is known, we define the following random variable Ξ:
Ξ = x⊤B♮B♮⊤ (x− y) + σwB♮⊤ (x− y) , (10)

where x and y follow the distribution N(0, Ip×p), and w follows the distribution N(0, Im×m).

Recalling Theorem 1, we predict the phase transition point by letting

inf
θ>0

1/θ · log

(
n∑

i=1

Ee−θΞi

)
= inf

θ>0
1/θ ·

(
log n+ logEe−θΞ

)
= 0. (11)

The computation procedure consists of two stages:

• Stage I. We compute the optimal θ∗, which is written as θ∗ = argminθ>0
1/θ·
(
log n+ logEe−θΞi

)
.

• Stage II. We plug the optimal θ∗ into (11) and obtain the phase transition snr accordingly.

The following context illustrates the computation details.

Stage I: Determine θ∗. The key in determining θ∗ lies in the computation of Ee−θΞ, which is
summarized in the following proposition.
Proposition 1. For the random variable Ξ defined in (10), we can write its expectation as

Ee−θΞ =

rank(B♮)∏
i=1

[
1 + 2θλ2

i − θ2λ2
i

(
λ2
i + 2σ2

)]− 1
2 , (12)

provided that
θ2σ2λ2

i < 1 and θ2λ2
i

(
λ2
i + 2σ2

)
≤ 1 + 2θλ2

i (13)

hold for all singular values λi of B♮, 1 ≤ i ≤ rank(B♮).
Remark 2. When the conditions in (13) is violated, we have the expectation Ee−θΞ diverge to
infinity, which suggests the optimal θ∗ for infθ>0

log(n·Ee−θΞ)/θ cannot be achieved.

With (12), we can compute the optimal θ∗ by setting the gradient
∂[log(n·Ee−θΞ)/θ]

∂θ = 0. However, a
closed-form of the exact solution for θ∗ is out of reach. As a mitigation, we resort to approximating
logEe−θΞ by its lower-bound, which reads as

logEe−θΞ ≥ θ2

2

[∣∣∣∣∣∣B♮⊤B♮
∣∣∣∣∣∣2

F + 2σ2
∣∣∣∣∣∣B♮

∣∣∣∣∣∣2
F

]
− θ
∣∣∣∣∣∣B♮

∣∣∣∣∣∣2
F.

The corresponding minimum value θ̃∗ is thus obtained by minimizing the lower-bound, which is
written as θ̃∗ = 2 log n/

(∣∣∣∣∣∣B♮⊤B♮
∣∣∣∣∣∣2

F + 2σ2
∣∣∣∣∣∣B♮

∣∣∣∣∣∣2
F

)
.
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Stage II: Compute the phase transition snr. We predict the phase transition point snroracle by
letting the lower bound being zero, which can be written as

log n

θ∗
−
∣∣∣∣∣∣B♮

∣∣∣∣∣∣2
F +

θ∗

2

(∣∣∣∣∣∣B♮⊤B♮
∣∣∣∣∣∣2

F + 2σ2
∣∣∣∣∣∣B♮

∣∣∣∣∣∣2
F

)
= 0.

With standard algebraic manipulations, we obtain the equation

2(log n)snroracle ·
∣∣∣∣∣∣B♮⊤

/|||B♮|||F · B
♮
/|||B♮|||F

∣∣∣∣∣∣2
F
+ 4 logn/m = snroracle. (14)

To evaluate the accuracy of our predicted phase transition threshold, we compare the predicted values
with the numerical values. The results are shown in Table 1, from which we can conclude the phase
transition threshold snr can be predicted to a good extent. In addition, we observe that the gap
between the theoretical values and the numerical values keeps shrinking as m increases.

Table 1: Comparison between the predicted value of the phase transition threshold snroracle and
its simulated value when n = 500. P denotes the predicted value while S denotes the simulated
value (i.e., mean ± std). S corresponds to the snr when the error rate drops below 0.05. A detailed
description of the numerical method can be found in the appendix (code also included).

m 20 30 40 50 60 70

P 3.283 1.415 0.902 0.662 0.523 0.432
S 2.529± 0.079 1.290± 0.054 0.872± 0.034 0.649± 0.012 0.515± 0.016 0.429± 0.015

m 100 110 120 130 140 150

P 0.284 0.255 0.231 0.211 0.195 0.181
S 0.282± 0.008 0.256± 0.006 0.232± 0.006 0.212± 0.004 0.196± 0.006 0.183± 0.005

3.2 GAUSSIAN APPROXIMATION OF THE PHASE TRANSITION THRESHOLD

From the above analysis, we can see that deriving a closed-form expression of the infimum value θ of
log(nEe−θΞ)/θ can be difficult. In fact, in certain scenarios, even obtaining a closed-form expression of
Ee−θΞ is difficult. To handle such challenge, we propose to approximate random variable Ξ by a
Gaussian N(EΞ,VarΞ), namely,

Ee−θΞ ≈ exp

(
−θEΞ +

θ2

2
VarΞ

)
. (15)

With this approximation, we can express θ∗ ≜ inf log(n·Ee
−θΞ)/θ in a closed form, which is√

2 logn/VarΞ. Thus, the critical point corresponding to the phase transition in (11) is written as

2(log n) · VarΞ = (EΞ)2 . (16)

Comparison with (14). To verify that this approximation can yield meaningful results, we revisit
the oracle case and have

EΞ =
∣∣∣∣∣∣B♮

∣∣∣∣∣∣2
F, VarΞ = 3

∣∣∣∣∣∣B♮B♮⊤∣∣∣∣∣∣2
F + 2σ2

∣∣∣∣∣∣B♮
∣∣∣∣∣∣2

F. (17)
Plugging (17) into (16) then yields the relation

6(log n)snroracle ·
∣∣∣∣∣∣B♮⊤

/|||B♮|||F · B
♮
/|||B♮|||F

∣∣∣∣∣∣2
F
+ 4 logn/m = snroracle, (18)

from which we can determine the critical point of snr.
Example 1 (Scaled identity matrix). We consider the scenario where B♮ = λIm×m. Then, we have
B♮
/|||B♮|||F = m−1/2I. The phase transition threshold snroracle in (14) is then 4 logn/(m−2 logn), and

the phase transition threshold s̃nroracle in (18) as 4 logn/(m−6 logn). This solution is almost identical
to (14) in the limit as snroracle ≈ s̃nroracle ≈ 4 logn/m ≃ n

4
m − 1.

Moreover, we should mention that 1) our approximation method applies to a general matrix B♮,
not limited to a scaled identity matrix; and 2) our approximation method can also predict the
phase transition thresholds to a good extent when the entries Xij are sub-Gaussian. The numerical
experiments are given in Table 2, from which we can conclude that the predicted values are well
aligned with the simulation results. The details of the numerical method can be found in the appendix.

7
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Table 2: Comparison between the predicted value of the phase transition threshold s̃nroracle and its
simulated value when n = 600. In (Case 1), half of singular values are with λ and the other half are
with λ/2; while in (Case 2), half of the singular values are with λ and the other half are with (3·λ)/4.
Gauss refers to Xij

i.i.d∼ N(0, 1) and Unif refers to Xij
i.i.d∼ Unif[−1, 1]. P denotes the predicted value

and S denotes the simulated value (i.e., mean ± std). S corresponds to the snr when the error rate
drops below 0.05. Averaged over 20 repetitions.

m 100 110 120 130 140 150

(Case 1) P 0.297 0.266 0.241 0.220 0.203 0.188
(Gauss) S 0.307± 0.009 0.275± 0.005 0.246± 0.006 0.227± 0.007 0.210± 0.005 0.194± 0.004
(Unif) S 0.294± 0.008 0.266± 0.005 0.239± 0.008 0.216± 0.004 0.201± 0.005 0.189± 0.006

(Case 2) P 0.310 0.276 0.249 0.227 0.209 0.193
(Gauss) S 0.294± 0.008 0.266± 0.006 0.241± 0.005 0.220± 0.004 0.204± 0.006 0.190± 0.003
(Unif) S 0.287± 0.007 0.255± .0043 0.234± 0.007 0.213± 0.005 0.197± 0.003 0.185± 0.005

4 EXTENSION TO NON-ORACLE CASE

Having analyzed the oracle case in the previous section, we now extend the analysis to the non-oracle
case, where the value of B♮ is not given. Different from the oracle case, the ML estimator reduces to
a quadratic assignment problem (QAP) as opposed to LAP. As a mitigation, we adopt the estimator
in Zhang & Li (2020), which reconstructs the permutation matrix within the LAP framework, i.e.,

Π̂
oracle

= argminΠ

〈
Π,−YY⊤XX⊤〉 , s.t.

∑
i

Πij = 1,
∑
j

Πij = 1,Π ∈ {0, 1}n×n
. (19)

We expect this estimator can yield good insights of the permuted linear regression since

• this estimator can reach the statistical optimality in a broad range of parameters;
• this estimator exhibits a phase transition phenomenon, which follows a similar pattern to that in the

oracle case.

Following the same procedure as in Section 3, we identify the phase transition threshold snr with
Theorem 1. To begin with, we write the random variable Ξ as

Ξ ∼= YiY
⊤X

(
Xπ♮(i) −Xj

)⊤
,

where i and j are uniformly distributed among the set {1, 2, · · · , n}. Afterwards, we adopt the
Gaussian approximation scheme illustrated in Subsection 3.2 and determine the phase transition
points by first computing EΞ and VarΞ, respectively.
Theorem 2. For the random variable Ξ defined in (21), its mean EΞ and variance VarΞ are

EΞ ≃ n (1− τh)
[
(1 + τp)

∣∣∣∣∣∣B♮
∣∣∣∣∣∣2

F +mτpσ
2
]
,

VarΞ ≃ n2τh (1− τh) τ
2
p

[∣∣∣∣∣∣B♮
∣∣∣∣∣∣2

F +mσ2
]2

+ n2
[
2τp + 3 (1− τh)

2
] ∣∣∣∣∣∣B♮⊤B♮

∣∣∣∣∣∣2
F

+ n2
[
6τp (1− τh)

2
+ (3− τh) τ

2
p

] ∣∣∣∣∣∣B♮⊤B♮
∣∣∣∣∣∣2

F,

respectively, where the definitions of τp and τh can be found in Section 3.

The proof of Theorem 2 is quite complicated, involving Wick’s theorem, Stein’s lemma, the condi-
tional technique, and the leave-one-out technique, etc. We defer the technical details to Appendix.

4.1 AN ILLUSTRATING EXAMPLE

Afterwards, we predict the phase transition points. Unlike the oracle case, we notice the edge weights
Eij are strongly correlated, especially when j = π♮(j), which corresponds to the non-permuted rows.
To factor out these dependencies, we only take the permuted rows into account and correct the sample

8
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size from n to τhn. The prediction snrnon-oracle is then computed by solving 2 log(nτh)VarΞ = (EΞ)2,
where EΞ and VarΞ are in Theorem 2.

To illustrate the prediction accuracy, we consider the case where B♮’s singular values are of the same
order, i.e., λi(B

♮)
λj(B♮)

= O(1), 1 ≤ i, j ≤ m, where λi(·) denotes the i-th singular value. Then, we
obtain the snrnon-oracle, which is written as

snrnon-oracle ≈ η1/η2. (20)

Here, η1 and η2 are defined as

η1 ≜ 2τhτ
2
p log (nτh)− τp(τp + 1) (1− τh) + τp

√
2(1− τh)τh · log (nτh),

η2 ≜ (1− τh) (τp + 1) 2 − 2τhτ
2
p log(nτh).
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Figure 2: Upper panel: Predicted phase transition points snrnon-oralce. Lower panel: Plot of the
recovery rate under the noiseless setting, i.e., snr = ∞. Gaussian: B♮

ij
i.i.d∼ N(0, 1); Identity:

B♮ = Ip×p; Block-diagonal: B♮ = diag {1, · · · , 1, 0.5, · · · , 0.5}. We observe that the correct
recovery rates drop sharply within the regions of our predicted value.

Notice that the predicted snrnon-oracle varies for different τh and τp. Viewing snrnon-oracle as a function
of τh, we observe a singularity point of τh, which corresponds to the case when η2 = 0. This suggests
a potential phase transition phenomenon w.r.t. τh. To validate the predicted phenomenon, we consider
the noiseless case, i.e., snr = ∞, and reconstruct the permutation matrix Π♮ with (2). Numerical
experiments in Figure 2 confirm our prediction.

Due to the space limit, this section only presents a glimpse of our results in the non-oracle case. The
technical details and additional numerical experiments can be found in the supplementary material.

5 CONCLUSION

This is the first work that can identify the precise location of phase transition thresholds of permuted
linear regressions. For the oracle case where the signal B♮ is given as a prior, our analysis can predict
the phase transition threshold snroracle to a good extent. For the non-oracle case where B♮ is not given,
we modified the leave-one-out technique to approximately compute the phase critical snrnon-oracle
value for the phase transition, as the precise computation becomes significantly complicated as the
high-order interaction between Gaussian random variables is involved. Moreover, we associated the
singularity point in snrnon-oracle with a phase transition point w.r.t the maximum allowed number of
permuted rows. Moreover, we present numerous numerical experiments to corroborate the accuracy
of our theoretical predictions.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Zhidong Bai and Tailen Hsing. The broken sample problem. Probability Theory and Related Fields,
131(4):528–552, 2005.

Zhidong Bai and Jack W Silverstein. Spectral analysis of large dimensional random matrices,
volume 20. Springer, 2010.

Mohsen Bayati and Andrea Montanari. The dynamics of message passing on dense graphs, with
applications to compressed sensing. IEEE Trans. Inf. Theory, 57(2):764–785, 2011.

George T. Cantwell and M. E. J. Newman. Message passing on networks with loops. Proceedings of
the National Academy of Sciences, 116(47):23398–23403, 2019.

Sergio Caracciolo, Matteo P D’Achille, Enrico M Malatesta, and Gabriele Sicuro. Finite-size
corrections in the random assignment problem. Physical Review E, 95(5):052129, 2017.

Michael Chertkov, Lukas Kroc, F Krzakala, M Vergassola, and L Zdeborová. Inference in particle
tracking experiments by passing messages between images. Proceedings of the National Academy
of Sciences, 107(17):7663–7668, 2010.

Sae-Young Chung. On the construction of some capacity-approaching coding schemes. PhD thesis,
Massachusetts Institute of Technology, 2000.

Morris H. DeGroot and Prem K. Goel. The matching problem for multivariate normal data. Sankhyā:
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A COMMENTS ON (7) AND (8)

This paper considers the phase transition phenomenon w.r.t. the full permutation recovery. Informally
speaking, this can be partly deduced from (7) and (8).

Here, we regard message flows hiL→(iL,jR) and hjR→(iL,jR) i.i.d. samples from certain distributions
(represented by the random variable H). When studying the evolution behavior of the random variable
H , we track the behaviors of all message flows. Hence, if we find an arbitrary sample H that will
yield the correct recovery, we can say that the correspondence between all pairs is correct. On the
other hand, we can say that there exist some pairs with wrong correspondence if H leads to incorrect
recovery. This can explain why the phase transition phenomenon exists.

B ANALYSIS OF ORACLE CASE: PROOF OF PROPOSITION 1

Proof. Denote the singular values of B♮ as {λi}rank(B♮)
i=1 . We exploit the rotation invariance property

of Gaussian random variables; and have Ξ be identically distributed as

Ξ =

rank(B♮)∑
i=1

λ2
ixi (xi − yi) + σ

rank(B♮)∑
i=1

λiwi (xi − yi) .

Due to the independence across w, x, and y, we have

Ee−θΞ =

rank(B♮)∏
i=1

Ex,y,w exp
[
−θλ2

ix (x− y)− θσλiw (x− y)
]

=

rank(B♮)∏
i=1

Ex,y exp

(
θλ2

i (x− y)
(
θσ2(x− y)− 2x

)
2

)

1⃝
=

rank(B♮)∏
i=1

Ex

exp

(
θλ2

ix
2(θ(λ2

i+σ2)−2)
2−2θ2λ2

iσ
2

)
√
1− θ2λ2

iσ
2

2⃝
=

rank(B♮)∏
i=1

(
1 + 2θλ2

i − θ2λ2
i

(
λ2
i + 2σ2

))− 1
2 ,

where in 1⃝ we use the fact θ2σ2λ2
i < 1 and in 2⃝ we use the fact θ2λ2

i

(
λ2
i + 2σ2

)
≤ 1+ 2θλ2

i .
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C NUMERICAL METHODS FOR THE PHASE TRANSITION POINTS

In this section, we present the numerical method to compute the phase transition points. Notice
that the correct recovery rate is in monotonic non-decreasing relation with the snr, we adopt a
binary-search-based method.

First, we fix the snr and run the experiments for 100 times. Then, we calculate the error rate of
permutation recovery (full permutation recovery). If the error rate is below 0.05, we regard the
corresponding snr as above the phase transition point and try a smaller value. Otherwise, we regard
the snr as below the phase transition point and try a larger value. The detailed description is given in
Algorithm 1.

In our numerical experiments, we run 20 times of Algorithm 1 for each parameter setting. Then, we
estimate its mean and the standard deviation from these estimated phase transition points.

Algorithm 1: Numerical method to compute the phase transition points.
1: Initialization. Set the initial search range for snr as [l, r]. Define the precision threshold ε.
2:
3: while |l − r| > ε do
4: Set snrmiddle =

l+r
2 .

5: Run experiments 100 times for this snrmiddle.
6: Compute the error rate of full permutation recovery.
7:
8: if the error rate is below 0.05 then
9: snrmiddle → r − ε, # we have snrmiddle be greater than the phase transition point

10: else
11: snrmiddle → l + ε. # we have snrmiddle be no greater than the phase transition point
12: end if
13:
14: end while
15:
16: Output. Return the phase transition point snrmiddle.

Complexity analysis. For a given precision threshold ε, each iteration (Line 3 to Line 14 in
Algorithm 1) takes O(log 1

ε ) rounds to converge and it runs the permutation recovery algorithm 100

times in each round. Hence, we run 20 × 100 × log2(10
4) permutation recovery experiments for

each parameter.

14
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D ANALYSIS OF THE NON-ORACLE CASE

This section presents the technical details in analyzing the non-oracle case.

D.1 ADDITIONAL NUMERICAL RESULTS

We consider the same settings as in Subsection 4.1. Here, we present additional numerical results to
evaluate the prediction accuracy of our method.

D.1.1 VERIFICATION OF PHASE TRANSITION POINTS

For the predicted phase transition snrnon-oracle, we notice an increasing gap between the predicted
value and the simulated value, unlike in the oracle case. This might be caused by the strong
correlation across the edge weights {Eij}1≤i,j≤n, or due to the error with the approximation relation
Ee−θΞ ≈ E exp

(
θEΞ− θ2VarΞ/2

)
.
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Figure 3: In the top row, Left panel: Predicted snrnon-oralce. Right panel: Plot of recovery rate
under the noiseless setting, i.e., snr = ∞. Gaussian: B♮

ij
i.i.d∼ N(0, 1); Identity: B♮ = Ip×p;

Block-diagonal: B♮ = diag {1, · · · , 1, 0.5, · · · , 0.5}.
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Table 3: Comparison between the predicted value of the phase transition threshold τh and its
simulated value when n = 500. P denotes the predicted value while S denotes the simulated value.
S corresponds to the τh when the error rate drops below 0.05.

p 75 100 125 150 175 200

P 0.82 0.73 0.68 0.62 0.56 0.52
S 0.77 0.75 0.7 0.66 0.61 0.57

Additional experiments are availabe in Table 3, from which we conclude the solution (20) can predict
the phase transition point w.r.t. τh to a good extent.

D.1.2 IMPACT OF n ON THE PHASE TRANSITION POINT

We study the impact of n on τh. The numerical experiment is shown in the top row of Figure 3,
from which we can see the predicted phase transition τh matches to a good extent to the numerical
experiments. Then, we fix the p and study the impact of n on τh. We observe that the phase transition
τh increases together with the sample number n, which is also captured by our formula in (20).

D.1.3 LIMITS OF τh

We consider the limiting behavior of τh when τp approaches 0, or equivalently, p = oP (n). We can
simplify EΞ and VarΞ in Theorem 2 as

EΞ ≃ n (1− τh)
∣∣∣∣∣∣B♮

∣∣∣∣∣∣2
F,

VarΞ ≃ 3n2 (1− τh)
2 ∣∣∣∣∣∣B♮⊤B♮

∣∣∣∣∣∣2
F.

We notice that the singularity point in (20) disappears. In other words, we can have the correct
permutation matrix Π♮ even when h ≈ n. This is (partly) verified by Figure 4, from which we
observe that the phase transition point w.r.t. τh approaches to one, or equivalently, h approaches n, as
τp decreases to zero.

D.2 ANALYSIS OF NON-ORACLE CASE: PROOF OF THEOREM 2

This subsection presents the computational details of Theorem 2. To begin with, we decompose the
random variable Ξ as

Ξ = Ξ1 + σ (Ξ2 + Ξ3) + σ2Ξ4, (21)

where Ξi (1 ≤ i ≤ 4) are respectively defined as

Ξ1 ≜ X⊤
π♮(i)B

♮B♮⊤X⊤Π♮⊤X(Xπ♮(i) −Xj),

Ξ2 ≜ X⊤
π♮(i)B

♮W⊤X(Xπ♮(i) −Xj),

Ξ3 ≜ W⊤
i B

♮⊤X⊤Π♮⊤X(Xπ♮(i) −Xj),

Ξ4 ≜ W⊤
i W

⊤X(Xπ♮(i) −Xj).

Unlike the oracle case, obtaining a closed-form expression of Ee−θΞ would be too difficult. Hence,
we adopt the Gaussian approximation method as presented in Section 3.2. The task then transforms
to computing the expectation and variance of Ξ. Before delving into the technical details, we give a
glimpse of our proof strategy.

Computation of the mean EΞ. For the computation of the mean EΞ, we can verify that EΞ2 and
EΞ3 are both zero, due to the independence between X and W. For EΞ1 and EΞ4, we adopt Wick’s
theorem to obtain

EΞ1 = n (1− τh) (1 + τp) [1 + oP (1)]
∣∣∣∣∣∣B♮

∣∣∣∣∣∣2
F,

EΞ4 = nmτp (1− τh) [1 + oP (1)].
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Figure 4: Plot of correct recovery rate w.r.t. τh. We consider the noiseless scenario (i.e., snr = ∞)
and pick n = {800, 1000, 1200, 1400}.

Computation of the variance VarΞ. Since VarΞ = EΞ2 − (EΞ)2, we just need to compute EΞ2,
which can be expanded into the following six terms

EΞ2 = EΞ2
1 + σ2EΞ2

2 + σ2EΞ2
3 + σ4EΞ2

4 + 2σ2EΞ1Ξ4 + 2σ2EΞ2Ξ3.

The computation of above terms turns out to be quite complex due to the high order Gaussian
random variables. For example, the term EΞ2

1 involves the eighth-order Gaussian moments, the
terms EΞ2

2,EΞ2
3,EΞ1Ξ4 and EΞ2Ξ3 all involve the sixth-order Gaussian variables, etc. To handle

the difficulties in computing EΞ2, we propose the following computation procedure, which can be
roughly divided into 3 phases.

• Phase I: Leave-one-out decomposition. The major technical difficulty comes from the correlation
between the product X⊤Π♮X and the difference Xπ♮(i) −Xj . We decouple this correlation by
first rewriting the matrix X⊤Π♮X as the sum

∑
ℓ XℓX

⊤
π♮(ℓ). Then we collect all terms XℓX

⊤
π♮(ℓ)

independent of Xπ♮(i) and Xj in the matrix Σ and leave the remaining terms to the matrix
∆, i.e., ∆ ≜ X⊤Π♮X − Σ. This decomposition shares the same spirit as the leave-one-out
technique (Karoui, 2013; Bai & Silverstein, 2010; Karoui, 2018; Sur et al., 2019). Then, we divide
all terms in EΞ2 into 3 categories: 1) terms only containing matrix Σ; 2) terms containing both Σ
and ∆; and 3) terms only containing ∆.

• Phase II: Conditional technique. Concerning the terms in the first two categories, which covers
the majority of terms, we can exploit the independence among the rows in the sensing matrix X.
With the conditional technique, we can reduce the order of Gaussian moments by separately taking
the expectation w.r.t Σ and w.r.t vectors Xπ♮(i) and Xj .

• Phase III: Direct computation. For the few terms in the third category (i.e., terms only con-
taining ∆), we compute the high-order Gaussian moments by exhausting all terms and iterative
applying of Wick’s Theorem and Stein’s Lemma, which can reduce the higher-order Gaussian
moments to lower-orders.

The computation details are attached as follows.
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D.2.1 NOTATIONS

Note that our analysis can involve the terms containing (Xπ♮(i)−Xj) and X⊤Π♮X simultaneously.
To decouple the dependence between (Xπ♮(i)−Xj) and X⊤Π♮X, we first rewrite the matrix
X⊤Π♮X as the sum

∑
ℓ XℓX

⊤
π♮(ℓ) and then collect all terms XℓX

⊤
π♮(ℓ) independent of Xπ♮(i) and

Xj in the matrix Σ, which is written as

Σ ≜
∑

ℓ,π♮(ℓ)̸=π♮(i),j

XℓX
⊤
π♮(ℓ). (22)

The rest terms are then put in the matrix ∆ such that X⊤Π♮X = Σ+∆. Note that the expression
of ∆ varies under different cases such that

• Case (s, s): i = π♮(i) and j = π♮(j). We have

∆ = ∆(s,s) = XiX
⊤
i +XjX

⊤
j . (23)

• Case (s, d): i = π♮(i) and j ̸= π♮(j). We have

∆ = ∆(s,d) = XiX
⊤
i +XjX

⊤
π♮(j) +Xπ♮−1(j)X

⊤
j . (24)

• Case (d, s): i ̸= π♮(i) and j = π♮(j). We have

∆ = ∆(d,s) = XiX
⊤
π♮(i) +Xπ♮(i)X

⊤
π♮2(i) +XjX

⊤
j . (25)

• Case (d, d): i ̸= π♮(i) and j ̸= π♮(j). We have

∆ = ∆(d,d) = XiX
⊤
π♮(i) +Xπ♮(i)X

⊤
π♮2(i) +XjX

⊤
π♮(j) +Xπ♮−1(j)X

⊤
j . (26)

In addition, we define the matrix M as B♮B♮⊤, and define the index sets S,D, and Dpair as

S ≜
{
ℓ | ℓ ̸= i or j, ℓ = π♮(ℓ)

}
, (27)

D ≜
{
ℓ | ℓ, π♮(ℓ) ̸= i or j, ℓ ̸= π♮(ℓ)

}
, (28)

Dpair ≜
{
(ℓ1, ℓ2) : ℓ1 = π♮(ℓ2), ℓ2 = π♮(ℓ1), ℓ1, ℓ2 ∈ D

}
, (29)

respectively.

D.2.2 MAIN COMPUTATION

In this case, we can write Ξ as

Ξ = X⊤
π♮(i)B

♮B♮⊤X⊤Π♮⊤X
[
Xπ♮(i) −Xj

]︸ ︷︷ ︸
≜Ξ1

+σX⊤
π♮(i)B

♮W⊤X
[
Xπ♮(i) −Xj

]︸ ︷︷ ︸
≜Ξ2

+ σW⊤
i B

♮⊤X⊤Π♮⊤X
[
Xπ♮(i) −Xj

]︸ ︷︷ ︸
≜Ξ3

+σ2 W⊤
i W

⊤X
[
Xπ♮(i) −Xj

]︸ ︷︷ ︸
≜Ξ4

.

The following context separately computes its expectation EΞ and its variance VarΞ.

Expectation. We can easily verify that both EΞ2 and EΞ3 are zero. Then our goal turns to
calculating the expectation of EΞ1 and EΞ4. First, we have

EΞ1 = E
∑

ℓ=π♮(ℓ)

X⊤
π♮(i)MXℓX

⊤
ℓ Xπ♮(i) − E

∑
ℓ

X⊤
π♮(i)MXπ♮(ℓ)X

⊤
ℓ Xj .

With Lemma 15 and Lemma 16, we conclude

EΞ1 = (n− h) Tr(M) + (p+ 1)E1i=π♮(i) Tr(M)−
(
pE1i=j + E1j=π♮2(i)

)
Tr(M)

= (n+ p− h− hp/n) [1 + o(1)] Tr(M). (30)
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Meanwhile, we have

EΞ4 = E
[
W⊤

i W1 · · · W⊤
i Wi · · ·W⊤

i Wn

]
X
(
Xπ♮(i) −Xj

)
= mEX⊤

i

(
Xπ♮(i) −Xj

)
= mp

(
E1i=π♮(i) − E1i=j

)
=

mp(n− h)σ2

n
[1 + o(1)] . (31)

Combining (30) and (31) and neglecting the o(1) terms yields

EΞ ≈ (n+ p) (1− h/n)
∣∣∣∣∣∣B♮

∣∣∣∣∣∣2
F +

mp(n− h)σ2

n
.

Variance. Then we study the variance of Ξ. With the relation Var(Ξ) = EΞ2 − (EΞ)2, our goal
reduces to computing EΞ2, which can be written as

EΞ2 = EΞ2
1 + σ2EΞ2

2 + σ2EΞ2
3 + σ4EΞ2

4 + 2σ2EΞ1Ξ4 + 2σ2EΞ2Ξ3.

The following context separately computes each terms

EΞ2
1 ≈ (n− h)

2

(
1 +

2p

n
+

p2

n(n− h)

)
[Tr(M)]

2

+ n2

[
2p

n
+ 3

(
1− h

n

)2

+
6(n− h)2p

n3
+

(3n− h)p2

n3

]
Tr(MM),

EΞ2
2 ≈ 2np (1 + p/n) Tr(M),

EΞ2
3 ≈ 2n2

(
p

n
+

(
1− h

n

)2

+
p2

n2
+

4p(n− h)2

n3

)
Tr(M),

EΞ2
4 ≈ (n− h)m2p2

n
,

EΞ1Ξ4 ≈ mp(n− h)(n+ p− h)

n
Tr(M),

EΞ2Ξ3 ≈ p(n− h)(n+ p− h)

n
Tr(M).

The detailed computation is attached as follows.
Lemma 1. We have

EΞ2
1 = (n− h)

2

(
1 +

2p

n
+

p2

n(n− h)
+ o(1)

)
[Tr(M)]

2

+ n2

[
2p

n
+ 3

(
1− h

n

)2

+
6(n− h)2p

n3
+

(3n− h)p2

n3
+ o(1)

]
Tr(MM),

where Ξ1 is defined in (21).

Proof. We begin the proof by decomposing Ξ2
1 as

EΞ2
1 = E

(
Xπ♮(i) −Xj

)⊤
ΣMXπ♮(i)X

⊤
π♮(i)MΣ⊤ (Xπ♮(i) −Xj

)︸ ︷︷ ︸
Λ1

+ 2E
(
Xπ♮(i) −Xj

)⊤
ΣMXπ♮(i)X

⊤
π♮(i)M∆⊤ (Xπ♮(i) −Xj

)︸ ︷︷ ︸
Λ2

+ E
(
Xπ♮(i) −Xj

)⊤
∆MXπ♮(i)X

⊤
π♮(i)M∆⊤ (Xπ♮(i) −Xj

)︸ ︷︷ ︸
Λ3

,

and separately bound each term as in Lemma 2, Lemma 3, and Lemma 4.
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Lemma 2. We have

E
(
Xπ♮(i) −Xj

)⊤
ΣMXπ♮(i)X

⊤
π♮(i)MΣ⊤ (Xπ♮(i) −Xj

)
= (n− h)

2
(1 + o(1)) [Tr(M)]

2
+ n2

[
2p

n
+ 3

(
1− h

n

)2

+ o(1)

]
Tr(MM).

Proof. Due to the independence among different rows of the sensing matrix X, we condition on Σ
and take expectation w.r.t. Xπ♮(i) and Xj , which leads to

EΛ1 = EX⊤
π♮(i)ΣMXπ♮(i)X

⊤
π♮(i)MΣ⊤Xπ♮(i)︸ ︷︷ ︸

Λ1,1

+EX⊤
j ΣMXπ♮(i)X

⊤
π♮(i)MΣ⊤Xj︸ ︷︷ ︸

Λ1,2

.

For EΛ1,1, we obtain

EΛ1,1
1⃝
= E [Tr (ΣM) Tr (ΣM)] + ETr

(
ΣMM⊤Σ⊤

)
+ ETr (ΣMΣM)

2⃝
= (n− h)

2
[1 + o(1)] [Tr(M)]

2
+ n2

[
p

n
+ 2

(
1− h

n

)2

+ o(1)

]
Tr(MM),

where 1⃝ is due to (65), and 2⃝ is due to Lemma 12, Lemma 13, and Lemma 14. As for EΛ1,2, we
have

EΛ1,2 = ETr
(
ΣMM⊤Σ⊤

)
= n2

[
p

n
+

(
1− h

n

)2

+ o(1)

]
Tr
(
M⊤M

)
,

and hence complete the proof.

Lemma 3. We have

E
(
Xπ♮(i) −Xj

)⊤
ΣMXπ♮(i)X

⊤
π♮(i)M∆⊤ (Xπ♮(i) −Xj

)
≈ (n− h)2p

n

[
(Tr(M))

2
+ 3Tr(MM)

]
.

Proof. Similar as above, we first expand Λ2 as

EΛ2 = (n− h)EX⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)M∆⊤Xπ♮(i)︸ ︷︷ ︸

Λ2,1

+(n− h)EX⊤
j MXπ♮(i)X

⊤
π♮(i)M∆⊤Xj︸ ︷︷ ︸

Λ2,2

− (n− h)EX⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)M∆⊤Xj︸ ︷︷ ︸

Λ2,3

−(n− h)EX⊤
j MXπ♮(i)X

⊤
π♮(i)M∆⊤Xπ♮(i)︸ ︷︷ ︸
Λ2,4

.

Case (s, s): i = π♮(i) and j = π♮(j). We first compute Λ2,1 as

EΛ2,1 = EX⊤
i MXiX

⊤
i MXiX

⊤
i Xi︸ ︷︷ ︸

E∥Xi∥2
2(X⊤

i MXi)
2

+EX⊤
i MXiX

⊤
i MXjX

⊤
j Xi︸ ︷︷ ︸

E(X⊤
i MXi)

2

= (p+ 5)
[
(Tr(M))

2
+Tr(MM) + Tr

(
M⊤M

)]
.

We consider Λ2,2 as

EΛ2,2 = E
(
X⊤

i MXiX
⊤
i MXi

)︸ ︷︷ ︸
E(X⊤

i MXi)
2

+E
(
X⊤

j MMXjX
⊤
j Xj

)︸ ︷︷ ︸
E∥Xj∥2

2X
⊤
j MMXj

= (Tr(M))
2
+Tr(MM) + Tr

(
M⊤M

)
+ (p+ 2)Tr (MM) .

As for Λ2,3 and Λ2,4, we can verify that they are both zero, which gives

EΛ2 = (n− h)p [1 + o(1)] [Tr(M)]
2
+ 3(n− h)p [1 + o(1)] Tr(MM). (32)
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Case (s, d): i = π♮(i) and j ̸= π♮(j). We can compute Λ2,1 as

EΛ2,1 = EX⊤
i MXiX

⊤
i MXiX

⊤
i Xi + EX⊤

π♮(i)MXπ♮(i)X
⊤
π♮(i)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

0

= (p+ 4)
[
(Tr(M))

2
+Tr(MM) + Tr

(
M⊤M

)]
.

We consider Λ2,2 as

EΛ2,2 = EX⊤
j MXiX

⊤
i MXiX

⊤
i Xj + EX⊤

j MXπ♮(i)X
⊤
π♮(i)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

0

+ EX⊤
j MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

0

= E
(
X⊤

i MXi

)2
= (Tr(M))

2
+Tr(MM) + Tr

(
M⊤M

)
.

Similarly, we can verify that both EΛ2,3 and EΛ2,4 are zero and hence have

EΛ2 = (n− h)p [1 + o(1)] [Tr(M)]
2
+ 2(n− h)p [1 + o(1)] Tr(MM). (33)

Case (d, s): i ̸= π♮(i) and j = π♮(j). We compute Λ2,1 as

EΛ2,1 = EX⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

0

+EX⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
j Xπ♮(i)︸ ︷︷ ︸

EX⊤
π♮(i)

MX
π♮(i)

X⊤
π♮(i)

MX
π♮(i)

= (Tr(M))
2
+Tr(MM) + Tr

(
M⊤M

)
.

We consider Λ2,2 as

EΛ2,2 = EX⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

0

+EX⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

0

+ EX⊤
j MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
j Xj︸ ︷︷ ︸

E∥Xj∥2
2X

⊤
j MMXj

= (p+ 2)Tr(MM).

As for EΛ2,3 and Λ2,4, we can follow the same strategy and prove they are both zero, which yields

EΛ2 = (n− h) [Tr(M)]
2
+ (n− h)p [1 + o(1)] Tr(MM). (34)

Case (d, d): i ̸= π♮(i) and j ̸= π♮(j). Contrary to the previous cases, we have EΛ2,1 and EΛ2,2 to
be zero in this case rather than EΛ2,3 and EΛ2,4.

Hence our focus turns to the calculation of EΛ2,3 and that of EΛ2,4. For Λ2,3, we have

EΛ2,3 = EX⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

p1i=jEX⊤
π♮(i)

MX
π♮(i)

X⊤
π♮(i)

MX
π♮(i)

+EX⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

1
j=π♮2(i)

EX⊤
π♮(i)

MX
π♮(i)

X⊤
π♮(i)

MX
π♮(i)

+ EX⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

p1i=jEX⊤
π♮(i)

MX
π♮(i)

X⊤
π♮(i)

MX
π♮(i)

+EX⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

1
j=π♮2(i)

EX⊤
π♮(i)

MX
π♮(i)

X⊤
π♮(i)

MX
π♮(i)

= 2
(
p1i=j + 1j=π♮2(i)

) [
(Tr(M))

2
+Tr(MM) + Tr

(
M⊤M

)]
.
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Then we turn to the calculation of EΛ2,4, which proceeds as

EΛ2,4 = EX⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

1(i=j)EX⊤
π♮(i)

MX
π♮(i)

X⊤
π♮(i)

MX
π♮(i)

+EX⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

1
j=π♮2(i)

E
∥∥∥Xπ♮(i)

∥∥∥2

2
X⊤

π♮(i)
MMX

π♮(i)

+ EX⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

1(i=j)EX⊤
π♮(i)

MX
π♮(i)

X⊤
π♮(i)

MX
π♮(i)

+EX⊤
j MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

1
j=π♮2(i)

E
∥∥∥Xπ♮(i)

∥∥∥2

2
X⊤

π♮(i)
MMX

π♮(i)

= 21j=π♮2(i)(p+ 2)Tr(MM) + 21(i = j)
[
(Tr(M))

2
+Tr(MM) + Tr

(
M⊤M

)]
.

Then we conclude

EΛ2 = − 2(n− h)
[
(p+ 1)1i=j + 1j=π♮2(i)

] [
(Tr(M))

2
+Tr(MM) + Tr

(
M⊤M

)]
− 2(n− h)(p+ 2)1j=π♮2(i) Tr(MM). (35)

The proof is thus completed by combining (32), (33), (34), and (35).

Lemma 4. We have

E
(
Xπ♮(i) −Xj

)⊤
∆MXπ♮(i)X

⊤
π♮(i)M∆⊤ (Xπ♮(i) −Xj

)
=

(
1− h

n
+ o(1)

)
p2 [Tr(M)]

2
+

(
3− h

n
+ o(1)

)
p2 Tr(MM).

Proof. We begin the proof by expanding Λ3 as

EΛ3 = EX⊤
π♮(i)∆MXπ♮(i)X

⊤
π♮(i)M∆⊤Xπ♮(i)︸ ︷︷ ︸

Λ3,1

+EX⊤
j ∆MXπ♮(i)X

⊤
π♮(i)M∆⊤Xj︸ ︷︷ ︸

Λ3,2

− EX⊤
π♮(i)∆MXπ♮(i)X

⊤
π♮(i)M∆⊤Xj︸ ︷︷ ︸

Λ3,3

−EX⊤
j ∆MXπ♮(i)X

⊤
π♮(i)M∆⊤Xπ♮(i)︸ ︷︷ ︸

Λ3,4

.

Case (s, s): i = π♮(i) and j = π♮(j). First we compute Λ3,1 as

EΛ3,1 = EX⊤
i XiX

⊤
i MXiX

⊤
i MXiX

⊤
i Xi︸ ︷︷ ︸

E∥Xi∥4
2(X⊤

i MXi)
2

+EX⊤
i XiX

⊤
i MXiX

⊤
i MXjX

⊤
j Xi︸ ︷︷ ︸

E∥Xi∥2
2(X⊤

i MXi)
2

+ EX⊤
i XjX

⊤
j MXiX

⊤
i MXiX

⊤
i Xi︸ ︷︷ ︸

E∥Xi∥2
2(X⊤

i MXi)
2

+EX⊤
i XjX

⊤
j MXiX

⊤
i MXjX

⊤
j Xi︸ ︷︷ ︸

E(X⊤
j Xi)

2
X⊤

j MXiX⊤
i MXj

= (p+ 4) (p+ 8)
[
(Tr(M))

2
+ 2Tr(MM)

]
+ 2 (Tr(M))

2
+ (p+ 6)Tr (MM) .

Then, we consider Λ3,2 as

EΛ3,2 = EX⊤
j XiX

⊤
i MXiX

⊤
i MXiX

⊤
i Xj︸ ︷︷ ︸

E∥Xi∥2
2(X⊤

i MXi)
2

+EX⊤
j XiX

⊤
i MXiX

⊤
i MXjX

⊤
j Xj︸ ︷︷ ︸

(p+2)E(X⊤
i MXi)

2

+ EX⊤
j XjX

⊤
j MXiX

⊤
i MXiX

⊤
i Xj︸ ︷︷ ︸

(p+2)E(X⊤
i MXi)

2

+EX⊤
j XjX

⊤
j MXiX

⊤
i MXjX

⊤
j Xj︸ ︷︷ ︸

E∥Xj∥4
2X

⊤
j MMXj

= (3p+ 8)
[
(Tr(M))

2
+Tr(MM) + Tr

(
M⊤M

)]
+ (p+ 2)(p+ 4)Tr(MM).

In addition, we can verify that EΛ3,3 and EΛ3,4 are both zero. Hence we conclude

EΛ3 =
(
p2 + 15p+ 42

)
[Tr(M)]

2
+
(
3p2 + 37p+ 94

)
Tr(MM). (36)
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Case (s, d): i = π♮(i) and j ̸= π♮(j). We can compute Λ3,1 as

EΛ3,1 = EX⊤
i XiX

⊤
i MXiX

⊤
i MXiX

⊤
i Xi︸ ︷︷ ︸

E∥Xi∥4
2(X⊤

i MXi)
2

+EX⊤
i XiX

⊤
i MXiX

⊤
i MXπ♮(j)X

⊤
j Xi︸ ︷︷ ︸

0

+ EX⊤
i XiX

⊤
i MXiX

⊤
i MXjX

⊤
π♮−1(j)Xi︸ ︷︷ ︸

0

+EX⊤
i XjX

⊤
π♮(j)MXiX

⊤
i MXiX

⊤
i Xi︸ ︷︷ ︸

0

+ EX⊤
i XjX

⊤
π♮(j)MXiX

⊤
i MXπ♮(j)X

⊤
j Xi︸ ︷︷ ︸

E∥Xi∥2
2X

⊤
i MMXi

+EX⊤
i XjX

⊤
π♮(j)MXiX

⊤
i MXjX

⊤
π♮−1(j)Xi︸ ︷︷ ︸

1
j=π♮2(j)

E(X⊤
i MXi)

2

+ EX⊤
i Xπ♮−1(j)X

⊤
j MXiX

⊤
i MXiX

⊤
i Xi︸ ︷︷ ︸

0

+EX⊤
i Xπ♮−1(j)X

⊤
j MXiX

⊤
i MXπ♮(j)X

⊤
j Xi︸ ︷︷ ︸

1
j=π♮2(j)

E(X⊤
i MXi)

2

+ EX⊤
i Xπ♮−1(j)X

⊤
j MXiX

⊤
i MXjX

⊤
π♮−1(j)Xi︸ ︷︷ ︸

E∥Xi∥2
2X

⊤
i MMXi

=
(
p2 + 10p+ 24 + 21j=π♮2(j)

) [
(Tr(M))

2
+ 2Tr(MM)

]
+ 2(p+ 2)Tr(MM).

We consider Λ3,2 as

EΛ3,2 = EX⊤
j XiX

⊤
i MXiX

⊤
i MXiX

⊤
i Xj︸ ︷︷ ︸

E∥Xi∥2
2(X⊤

i MXi)
2

+EX⊤
j XiX

⊤
i MXiX

⊤
i MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

0

+ EX⊤
j XiX

⊤
i MXiX

⊤
i MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

0

+ EX⊤
j XjX

⊤
π♮(j)MXiX

⊤
i MXiX

⊤
i Xj︸ ︷︷ ︸

0

+EX⊤
j XjX

⊤
π♮(j)MXiX

⊤
i MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

E∥Xi∥4
2 Tr(MM)

+ EX⊤
j XjX

⊤
π♮(j)MXiX

⊤
i MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

1
j=π♮2(j)

E∥Xj∥2
2X

⊤
j MMXj

+EX⊤
j Xπ♮−1(j)X

⊤
j MXiX

⊤
i MXiX

⊤
i Xj︸ ︷︷ ︸

0

+ EX⊤
j Xπ♮−1(j)X

⊤
j MXiX

⊤
i MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

1
j=π♮2(j)

E∥Xj∥2
2X

⊤
j MMXj

+EX⊤
j Xπ♮−1(j)X

⊤
j MXiX

⊤
i MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

E∥Xj∥2
2X

⊤
j MMXj

= (p+ 4)
[
(Tr(M))

2
+ 2Tr(MM)

]
+ (p+ 2)

(
p+ 1 + 21j=π♮2(j)

)
Tr(MM).

As for Λ3,3 and Λ3,4, we can prove that they are both zero in this case. Hence we conclude

EΛ3 =
(
p2 + 11p+ 28 + 21j=π♮2(j)

)
(Tr(M))

2

+
[
3p2 + 27p+ 62 + 2 (p+ 4)1j=π♮2(j)

]
Tr(MM). (37)

Case (d, s): i ̸= π♮(i) and j = π♮(j). We consider the term Λ3,1 as

EΛ3,1 = EX⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

1
i=π♮2(i)

E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
j Xπ♮(i)︸ ︷︷ ︸

0
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+ EX⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

1
i=π♮2(i)

E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

E∥Xi∥4
2X

⊤
i MMXi

+ EX⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
j Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
π♮(i)XjX

⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
π♮(i)XjX

⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
π♮(i)XjX

⊤
j MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
j Xπ♮(i)︸ ︷︷ ︸

E(X⊤
i Xj)

2
X⊤

j MXiX⊤
i MXj

= (p+ 6) (Tr(M))
2
+
(
p2 + 9p+ 22

)
Tr(MM) + 21i=π♮2(i) (p+ 4)

[
(Tr(M))

2
+ 2Tr(MM)

]
.

We consider the term Λ3,2 as

EΛ3,2 = EX⊤
j XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

p×E
(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
j XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

1
i=π♮2(i)

E(X⊤
i MXi)

2

+ EX⊤
j XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
j Xj︸ ︷︷ ︸

0

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

1
i=π♮2(i)

E(X⊤
i MXi)

2

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

E∥Xi∥2
2X

⊤
i MMXi

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
j Xj︸ ︷︷ ︸

0

+ EX⊤
j XjX

⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

0

+ EX⊤
j XjX

⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

0

+ EX⊤
j XjX

⊤
j MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
j Xj︸ ︷︷ ︸

E|||Xj |||4F×X⊤
j MMXj

= p (Tr(M))
2
+
(
p2 + 9p+ 10

)
Tr(MM) + 21i=π♮2(i)

[
(Tr(M))

2
+ 2Tr(MM)

]
.

As for Λ3,3 and Λ3,4, easily we can verify they are both zero and hence

EΛ3 = 2 (p+ 3) (Tr(M))
2
+ 2

(
p2 + 9p+ 16

)
Tr(MM)

+ 21i=π♮2(i) (p+ 5)
[
(Tr(M))

2
+ 2Tr(MM)

]
. (38)

24



Under review as a conference paper at ICLR 2024

Case (d, d): i ̸= π♮(i) and j ̸= π♮(j). First, We compute EΛ3,1 as

EΛ3,1 = EX⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

1
i=π♮2(i)

E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

1i=jE
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

1j=i1j=π♮2(i)
E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

1
i=π♮2(i)

E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣4
F

(
X⊤

π♮(i)
MMX

π♮(i)

)
+ EX⊤

π♮(i)Xπ♮(i)X
⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

1j=i1j=π♮2(i)
E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

1
j=π♮2(i)

E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣4
F

(
X⊤

π♮(i)
MMX

π♮(i)

)
+ EX⊤

π♮(i)XjX
⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

1i=jE
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
π♮(i)XjX

⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

1j=i1j=π♮2(i)
E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
π♮(i)XjX

⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

1i=jE
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MX

π♮(i)

)2
+1i̸=jE

∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F
X⊤

π♮(i)
MMX

π♮(i)

+ EX⊤
π♮(i)XjX

⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

1
j=π♮2(j)

[
1i=jE

∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MX

π♮(i)

)2
+1i̸=jE

(
X⊤

π♮(i)
MX

π♮(i)

)2
]

+ EX⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

1i=j1j=π♮2(i)
E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

1
j=π♮2(i)

E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣4
F

(
X⊤

π♮(i)
MMX

π♮(i)

)
+ EX⊤

π♮(i)Xπ♮−1(j)X
⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

1
j=π♮2(j)

[
1i=jE

∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MX

π♮(i)

)2
+1i̸=jE

(
X⊤

π♮(i)
MX

π♮(i)

)2
]
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+ EX⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

1
j=π♮2(i)

E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣4
F

(
X⊤

π♮(i)
MMX

π♮(i)

)
+1

j ̸=π♮2(i)
E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F

(
X⊤

π♮(i)
MMX

π♮(i)

)
=
(
1 + 21i=π♮2(i) + 31i=j + 61i=j1j=π♮2(i)

)
(p+ 4)

[
(Tr(M))

2
+ 2Tr(MM)

]
+
(
1 + 31j=π♮2(i)

)
(p+ 2)(p+ 4)Tr(MM)

+ 21j=π♮2(j)1i̸=j

[
(Tr(M))

2
+ 2Tr(MM)

]
+ 1j ̸=π♮2(i)(p+ 2)Tr(MM) + 1i̸=j(p+ 2)Tr(MM). (39)

Then we calculate EΛ3,2 as

EΛ3,2 = EX⊤
j XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

1i=jE|||Xi|||4F
(
X⊤

π♮(i)
MX

π♮(i)

)2
+p1i̸=jE

(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
j XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

1
i=π♮2(i)

[
1i=jEX⊤

i XiX⊤
π♮(i)

MX
π♮(i)

X⊤
π♮(i)

MXiX⊤
i X

π♮(i)
+1i̸=jE

(
X⊤

π♮(i)
MX

π♮(i)

)2
]

+ EX⊤
j XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

1i=jE|||Xi|||4F
(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
j XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

1i=j1i=π♮2(i)
EX⊤

i XiX⊤
π♮(i)

MX
π♮(i)

X⊤
π♮(i)

MXiX⊤
i X

π♮(i)

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

1
i=π♮2(i)

[
1i=jEX⊤

i XiX⊤
π♮(i)

MX
π♮(i)

X⊤
π♮(i)

MXiX⊤
i X

π♮(i)
+1i̸=jE

(
X⊤

π♮(i)
MX

π♮(i)

)2
]

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

1
j ̸=π♮2(i)

E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F
X⊤

π♮(i)
MMX

π♮(i)
+1

j=π♮2(i)
E
(
X⊤

j X
π♮(i)

)2(
X⊤

π♮(i)
MXj

)2

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

1i=j1i=π♮2(i)
EX⊤

i XiX⊤
π♮(i)

MX
π♮(i)

X⊤
π♮(i)

MXiX⊤
i X

π♮(i)

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

1
j=π♮2(i)

E
(
X⊤

j X
π♮(i)

)2(
X⊤

π♮(i)
MXj

)2

+ EX⊤
j XjX

⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

1i=jE|||Xi|||4F
(
X⊤

π♮(i)
MX

π♮(i)

)2

+ EX⊤
j XjX

⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

1i=j1i=π♮2(i)
EX⊤

i XiX⊤
π♮(i)

MX
π♮(i)

X⊤
π♮(i)

MXiX⊤
i X

π♮(i)

+ EX⊤
j XjX

⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

1i=jE|||Xi|||4F
(
X⊤

π♮(i)
MX

π♮(i)

)2
+1i̸=jE|||Xj |||4FX

⊤
π♮(i)

MMX
π♮(i)

+ EX⊤
j XjX

⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

1
j=π♮2(j)

[
1i=jEX⊤

i XiX⊤
π♮(i)

MX
π♮(i)

X⊤
π♮(i)

MXiX⊤
i X

π♮(i)
+1i̸=jE|||Xj |||2FX

⊤
j MMXj

]
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+ EX⊤
j Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

1i=j1i=π♮2(i)
EX⊤

i XiX⊤
π♮(i)

MX
π♮(i)

X⊤
π♮(i)

MXiX⊤
i X

π♮(i)

+ EX⊤
j Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

1
j=π♮2(i)

E
(
X⊤

j X
π♮(i)

)2(
X⊤

π♮(i)
MXj

)2

+ EX⊤
j Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

1
j=π♮2(j)

[
1i=jEX⊤

i XiX⊤
π♮(i)

MX
π♮(i)

X⊤
π♮(i)

MXiX⊤
i X

π♮(i)
+1i̸=jE|||Xj |||2FX

⊤
j MMXj

]
+ EX⊤

j

(
Xπ♮−1(j)X

⊤
j

)
MXπ♮(i)X

⊤
π♮(i)M

(
XjX

⊤
π♮−1(j)

)
Xj︸ ︷︷ ︸

1
j=π♮2(i)

E
(
X⊤

j X
π♮(i)

)2(
X⊤

π♮(i)
MXj

)2
+1

j ̸=π♮2(i)
E|||Xj |||2FX

⊤
j MMXj

= 41i=jp(p+ 2)
[
[Tr(M)]2 + 2Tr(MM)

]
+ 1i ̸=jp(p+ 2)Tr(MM)

+ 81i=j1i=π♮2(i)(p+ 2)
[
(Tr(M))

2
+ 2Tr(MM)

]
+ 41j=π♮2(i)

[
2 [Tr(M)]

2
+ (p+ 6)Tr(MM)

]
+ 21j ̸=π♮2(i)(p+ 2)Tr(MM) + 21i̸=j1j=π♮2(j)(p+ 2)Tr(MM)

+ 1i ̸=j

(
p+ 21i=π♮2(i)

) [
(Tr(M))

2
+ 2Tr(MM)

]
. (40)

The term Λ3,3 is computed as

EΛ3,3 = EX⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

0

+ EX⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

0

+ EX⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

1
i=π♮(j)

pE
[
X⊤

π♮(i)
MX

π♮(i)

]2
+ EX⊤

π♮(i)XiX
⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

0

+ EX⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

0

+ EX⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

0

+ EX⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

0

+ EX⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

1
j=π♮3(i)

E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F
X⊤

π♮(i)
MMX

π♮(i)

+ EX⊤
π♮(i)XjX

⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

1
i=π♮(j)

E
[
X⊤

π♮(i)
MX

π♮(i)

]2
+ EX⊤

π♮(i)XjX
⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

0

+ EX⊤
π♮(i)XjX

⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

0
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+ EX⊤
π♮(i)XjX

⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

0

+ EX⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

0

+ EX⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

1
j=π♮3(i)

E
[
X⊤

π♮(i)
MX

π♮(i)

]2
+ EX⊤

π♮(i)Xπ♮−1(j)X
⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

0

+ EX⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

0

=
[
(p+ 1)1i=π♮(j) + 1j=π♮3(i)

]
[Tr(M)]2

+
[
2(p+ 1)1i=π♮(j) + (p+ 4)1j=π♮3(i)

]
Tr(MM). (41)

Then, we consider the term EΛ3,4, which can be written as

EΛ3,4 = EX⊤
j XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
j XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
j XiX

⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

1
i=π♮(j)

E
[
X⊤

π♮(i)
MX

π♮(i)

]2
+ EX⊤

j XiX
⊤
π♮(i)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

1
j=π♮3(i)

E
[
X⊤

π♮(i)
MX

π♮(i)

]2
+ EX⊤

j XjX
⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

1
i=π♮(j)

pE
[
X⊤

π♮(i)
MX

π♮(i)

]2
+ EX⊤

j XjX
⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
j XjX

⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
j XjX

⊤
π♮(j)MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

0
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+ EX⊤
j Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
j Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

1
j=π♮3(i)

E
∣∣∣∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣∣∣∣2
F
X⊤

π♮(i)
MMX

π♮(i)

+ EX⊤
j Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
π♮(i)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
j Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

0

=
[
(p+ 1)1i=π♮(j) + 1j=π♮3(i)

]
[Tr(M)]2

+
[
2(p+ 1)1i=π♮(j) + (p+ 4)1j=π♮3(i)

]
Tr(MM). (42)

Combing (39), (40), (41), and (42) together then yields

EΛ3 =
4hp(p+ 2)

n2
[1 + o(1)] [Tr(M)]

2
+ 2p2 [1 + o(1)] Tr(MM). (43)

The proof is thus completed by summarizing the computations thereof.

.

Lemma 5. We have

EΞ2
2 = 2 [(p+ 2)(p+ 3) + (n− 2)(p+ 1)]

∣∣∣∣∣∣B♮
∣∣∣∣∣∣2

F = 2np (1 + p/n+ o(1))
∣∣∣∣∣∣B♮

∣∣∣∣∣∣2
F,

where Ξ2 is defined in (21).

Proof. We have

EΞ2
2 = E

[
X⊤

π♮(i)B
♮W⊤X

(
Xπ♮(i) −Xj

) (
Xπ♮(i) −Xj

)⊤
X⊤WB♮⊤Xπ♮(i)

]
= E

[
X⊤

π♮(i)B
♮ Tr

[
X
(
Xπ♮(i) −Xj

) (
Xπ♮(i) −Xj

)⊤
X⊤
]
B♮⊤Xπ♮(i)

]
= E

[∥∥X (Xπ♮(i) −Xj

)∥∥2
2
X⊤

π♮(i)B
♮B♮⊤Xπ♮(i)

]
= E

[∥∥X (Xπ♮(i) −Xj

)∥∥2
2
×
∥∥B♮⊤Xπ♮(i)

∥∥2
2

]
.

For the conciseness of notation, we assume π♮(i) = 1 and j = 2 w.l.o.g. Decomposing the term
∥X (X1 −X2)∥22 as

|||X (X1 −X2)|||2F =
[
X⊤

1 (X1 −X2)
]2︸ ︷︷ ︸

T1

+
[
X⊤

2 (X1 −X2)
]2︸ ︷︷ ︸

T2

+

n∑
i=3

[
X⊤

i (X1 −X2)
]2

︸ ︷︷ ︸
T3

,

we then separately bound the above three terms. For the first term ET1
∣∣∣∣∣∣B♮⊤X1

∣∣∣∣∣∣2
F, we have

ET1
∣∣∣∣∣∣B♮⊤X1

∣∣∣∣∣∣2
F = E

[(
∥X1∥42 +

(
X⊤

1 X2

)2) ∣∣∣∣∣∣B♮⊤X1

∣∣∣∣∣∣2
F

]
= E∥X1∥42

∣∣∣∣∣∣B♮⊤X1

∣∣∣∣∣∣2
F︸ ︷︷ ︸

(p+2)(p+4)|||B♮|||2F

+E
(
X⊤

1 X2

)2 ∣∣∣∣∣∣B♮⊤X1

∣∣∣∣∣∣2
F︸ ︷︷ ︸

(p+2)|||B♮|||2F

1⃝
= (p+ 2)(p+ 5)

∣∣∣∣∣∣B♮
∣∣∣∣∣∣2

F,

(44)

where 1⃝ is due to (66) and (67).
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Similarly, for term ET2
∣∣∣∣∣∣B♮⊤X1

∣∣∣∣∣∣2
F, we invoke (66) and (67), which gives

ET2
∣∣∣∣∣∣B♮⊤X1

∣∣∣∣∣∣2
F = E

[(
X⊤

1 X2

)2 ∣∣∣∣∣∣B♮⊤X1

∣∣∣∣∣∣2
F

]
︸ ︷︷ ︸

(p+2)|||B♮|||2F

+E∥X2∥42 × E
∣∣∣∣∣∣B♮⊤X1

∣∣∣∣∣∣2
F︸ ︷︷ ︸

p(p+2)|||B♮|||2F

(45)

2⃝
= (p+ 1)(p+ 2)

∣∣∣∣∣∣B♮
∣∣∣∣∣∣2

F, (46)

where 2⃝ is due to (66).

For the last term ET3
∣∣∣∣∣∣B♮⊤X1

∣∣∣∣∣∣2
F, we exploit the independence among the rows of matrix X and

have

ET3

∣∣∣∣∣∣B♮⊤X1

∣∣∣∣∣∣2
F =

∑
i≥3

E
[(
X⊤

i (X1 −X2)
)2 ∣∣∣∣∣∣B♮⊤X1

∣∣∣∣∣∣2
F

]
=
∑
i≥3

E
[
∥X1 −X2∥22 ·

∣∣∣∣∣∣B♮⊤X1

∣∣∣∣∣∣2
F

]
=
∑
i≥3

E
[(

∥X1∥22 + ∥X2∥22
)
·
∣∣∣∣∣∣B♮⊤X1

∣∣∣∣∣∣2
F

]
= 2

∑
i≥3

(p+ 1)
∣∣∣∣∣∣B♮

∣∣∣∣∣∣2
F = 2(n− 2)(p+ 1)

∣∣∣∣∣∣B♮
∣∣∣∣∣∣2

F. (47)

The proof is then completed by combining (44), (46), and (47).

Lemma 6. We have

EΞ2
3 = 2n2

[
p

n
+

(
1− h

n

)2

+
p2

n2
+

4p(n− h)2

n3
+ o(1)

]
Tr(M),

where Ξ3 is defined in (21).

Proof. To begin with, we decompose the term EΞ2
3 as

EΞ2
3 = E

[(
Xπ♮(i) −Xj

)⊤
ΣMΣ⊤ (Xπ♮(i) −Xj

)]
︸ ︷︷ ︸

≜Λ1

+2E
[(
Xπ♮(i) −Xj

)⊤
ΣM∆⊤ (Xπ♮(i) −Xj

)]
︸ ︷︷ ︸

≜Λ2

+ E
[(
Xπ♮(i) −Xj

)⊤
∆M∆⊤ (Xπ♮(i) −Xj

)]
︸ ︷︷ ︸

≜Λ3

. (48)

Step I. First we consider EΛ1, which can be written as

EΛ1 = 2ETr
(
ΣMΣ⊤

) 1⃝
= 2n2

[
p

n
+

(
1− h

n

)2

+ o(1)

]
Tr(M), (49)

where 1⃝ is due to Lemma 12.

Step II. Then we turn to EΛ2, which can be written as

EΛ2 = (n− h)E
[
X⊤

π♮(i) M∆⊤Xπ♮(i)

]
︸ ︷︷ ︸

Λ2,1

+ (n− h)E
[
X⊤

j M∆⊤Xj

]
︸ ︷︷ ︸

Λ2,2

− (n− h)E
[
Xπ♮(i)

⊤ M∆⊤Xj

]
︸ ︷︷ ︸

Λ2,3

−(n− h)E
[
Xj

⊤ M∆⊤Xπ♮(i)

]
︸ ︷︷ ︸

Λ2,4

.

Case (s, s): i = π♮(i) and j = π♮(j). We have
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EΛ2,1 = EX⊤
i M

(
XiX

⊤
i +XjX

⊤
j

)
Xi = (p+ 3)Tr(M),

EΛ2,2 = EX⊤
j M

(
XiX

⊤
i +XjX

⊤
j

)
Xj = (p+ 3)Tr(M).

In addition, we can verify that EΛ2,2 and Λ2,3 are both zero, which suggests that

EΛ2 = 2(n− h)(p+ 3)Tr(M). (50)

Case (s, d): i = π♮(i) and j ̸= π♮(j). We have

EΛ2,1 = EX⊤
i M

(
XiX

⊤
i +XjX

⊤
π♮(j) +Xπ♮−1(j)X

⊤
j

)
Xi = (p+ 2)Tr(M);

EΛ2,2 = EX⊤
j M

(
XiX

⊤
i +XjX

⊤
π♮(j) +Xπ♮−1(j)X

⊤
j

)
Xj = Tr(M).

Moreover, we have both EΛ2,3 and EΛ2,4 be zero, which suggests that

EΛ2 = (n− h)(p+ 3)Tr(M). (51)

Case (d, s): i ̸= π♮(i) and j = π♮(j). We have

EΛ2,1 = E
(
X⊤

π♮(i) MXjX
⊤
j Xπ♮(i)

)
= Tr(M),

EΛ2,2 = EX⊤
j MXjX

⊤
j Xj = (p+ 2)Tr(M).

Similar as above, we can verify both EΛ2,3 and EΛ2,4 are zero, which suggests that

EΛ2 = (n− h)(p+ 3)Tr(M). (52)

Case (d, d): i ̸= π♮(i) and j ̸= π♮(j). Different from the above three cases, we have EΛ2,1 and
EΛ2,2 be zero and focus on the calculation of EΛ2,3 and EΛ2,4, which proceeds as

EΛ2,3 = E
[
Xπ♮(i)

⊤ MXπ♮(i)X
⊤
i Xj

]
︸ ︷︷ ︸

p1i=j |||B♮|||2F

+E
[
Xπ♮(i)

⊤ MXπ♮2(i)X
⊤
π♮(i)Xj

]
︸ ︷︷ ︸

1
j=π♮2(i)

|||B♮|||2F

+ E
[
Xπ♮(i)

⊤ MXπ♮(j)X
⊤
j Xj

]
︸ ︷︷ ︸

p1i=j |||B♮|||2F

+E
[
Xπ♮(i)

⊤ MXjX
⊤
π♮−1(j)Xj

]
︸ ︷︷ ︸

1
π♮(i)=π♮−1(j)

|||B♮|||2F

= 2
[
p1i=j + 1j=π♮2(i)

]
Tr(M);

EΛ2,4 = E
[
X⊤

j MXπ♮(i)X
⊤
i Xπ♮(i)

]︸ ︷︷ ︸
1i=j |||B♮|||2F

+E
[
Xj

⊤ MXπ♮2(i)X
⊤
π♮(i)Xπ♮(i)

]
︸ ︷︷ ︸

p1
j=π♮2(i)

|||B♮|||2F

+ E
[
Xj

⊤ MXπ♮(j)X
⊤
j Xπ♮(i)

]
︸ ︷︷ ︸

1i=j |||B♮|||2F

+E
[
Xj

⊤ MXjX
⊤
π♮−1(j)Xπ♮(i)

]
︸ ︷︷ ︸

p1
j=π♮2(i)

|||B♮|||2F

= 2
[
p1j=π♮2(i) + 1i=j

]
Tr(M),

which suggests that

EΛ2 = −2(n− h)(p+ 1)
(
1j=π♮2(i) + 1i=j

)
Tr(M). (53)

Combing (50), (51), (52), and (53), we conclude

EΛ2 =
2p(n− h)2

n
Tr(M) [1 + o(1)] . (54)

Step III. Then we turn to the calculation of EΛ3. First we perform the following decomposition

Λ3 = X⊤
π♮(i) ∆M∆⊤Xπ♮(i)︸ ︷︷ ︸

Λ3,1

+X⊤
j ∆M∆⊤Xj︸ ︷︷ ︸

Λ3,2

−X⊤
π♮(i) ∆M∆⊤Xj︸ ︷︷ ︸

Λ3,3

−X⊤
j ∆M∆⊤Xπ♮(i)︸ ︷︷ ︸

Λ3,4

.
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Case (s, s): i = π♮(i) and j = π♮(j). We have

EΛ3,1 = E
(
X⊤

i XiX
⊤
i MXiX

⊤
i Xi

)︸ ︷︷ ︸
E∥Xi∥4

2X
⊤
i MXi

+E
(
X⊤

i XiX
⊤
i MXjX

⊤
j Xi

)︸ ︷︷ ︸
(p+2)|||B♮|||2F

+ E
(
X⊤

i XjX
⊤
j MXiX

⊤
i Xi

)︸ ︷︷ ︸
(p+2)|||B♮|||2F

+E
(
X⊤

i XjX
⊤
j MXjX

⊤
j Xi

)︸ ︷︷ ︸
(p+2)|||B♮|||2F

= (p+ 2)(p+ 7)Tr(M);

EΛ3,2 = EX⊤
j

(
XiX

⊤
i +XjX

⊤
j

)
M
(
XiX

⊤
i +XjX

⊤
j

)
Xj = (p+ 2)(p+ 7)Tr(M).

As for EΛ3,3 and EΛ3,4, easily we can verify that they are both zero and hence have

EΛ3 = 2(p+ 2)(p+ 7)Tr(M) = 2p2 Tr(M) [1 + o(1)] . (55)

Case (s, d): i = π♮(i) and j ̸= π♮(j). We can write Λ3,1 as

EΛ3,1 = E
(
X⊤

i XiX
⊤
i MXiX

⊤
i Xi

)︸ ︷︷ ︸
E∥Xi∥4

2X
⊤
i MXi

+E
(
X⊤

i XiX
⊤
i MXπ♮(j)X

⊤
j Xi

)︸ ︷︷ ︸
0

+ E
(
X⊤

i XiX
⊤
i MXjX

⊤
π♮−1(j)Xi

)
︸ ︷︷ ︸

0

+ E
(
X⊤

i XjX
⊤
π♮(j)MXiX

⊤
i Xi

)
︸ ︷︷ ︸

0

+E
(
X⊤

i XjX
⊤
π♮(j)MXπ♮(j)X

⊤
j Xi

)
︸ ︷︷ ︸

p|||B♮|||2F

+ E
(
X⊤

i XjX
⊤
π♮(j)MXjX

⊤
π♮−1(j)Xi

)
︸ ︷︷ ︸

1
j=π♮2(j)

Tr(M)

+ E
(
X⊤

i Xπ♮−1(j)X
⊤
j MXiX

⊤
i Xi

)︸ ︷︷ ︸
0

+E
(
X⊤

i Xπ♮−1(j)X
⊤
j MXπ♮(j)X

⊤
j Xi

)︸ ︷︷ ︸
1
j=π♮2(j)

Tr(M)

+ E
(
X⊤

i Xπ♮−1(j)X
⊤
j MXjX

⊤
π♮−1(j)Xi

)
︸ ︷︷ ︸

p|||B♮|||2F

=
(
p2 + 8p+ 8 + 21j=π♮2(j)

)
Tr(M).

Mean Λ3,2 can be written as

EΛ3,2 = E
(
X⊤

j XiX
⊤
i MXiX

⊤
i Xj

)︸ ︷︷ ︸
(p+2)|||B♮|||2F

+E
(
X⊤

j XiX
⊤
i MXπ♮(j)X

⊤
j Xj

)︸ ︷︷ ︸
0

+ E
(
X⊤

j XiX
⊤
i MXjX

⊤
π♮−1(j)Xj

)
︸ ︷︷ ︸

0

+ E
(
X⊤

j XjX
⊤
π♮(j)MXiX

⊤
i Xj

)
︸ ︷︷ ︸

0

+E
(
X⊤

j XjX
⊤
π♮(j)MXπ♮(j)X

⊤
j Xj

)
︸ ︷︷ ︸

E|||Xj |||4F Tr(M)

+ E
(
X⊤

j XjX
⊤
π♮(j)MXjX

⊤
π♮−1(j)Xj

)
︸ ︷︷ ︸

1
π♮−1(j)=π♮(j)

(p+2)|||B♮|||2F

+ E
(
X⊤

j Xπ♮−1(j)X
⊤
j MXiX

⊤
i Xj

)︸ ︷︷ ︸
0

+E
(
X⊤

j Xπ♮−1(j)X
⊤
j MXπ♮(j)X

⊤
j Xj

)︸ ︷︷ ︸
1
π♮−1(j)=π♮(j)

(p+2)|||B♮|||2F

+ E
(
X⊤

j Xπ♮−1(j)X
⊤
j MXjX

⊤
π♮−1(j)Xj

)
︸ ︷︷ ︸

(p+2)|||B♮|||2F
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= (p+ 2)
(
p+ 2 + 21j=π♮2(j)

)
Tr(M).

And for EΛ3,3 and EΛ3,4, easily we can verify that they are both zero. Then we conclude

EΛ3 = 2
(
p2 + 6p+ 6 + (p+ 3)1j=π♮2(j)

)
Tr(M) = 2p2 Tr(M) [1 + o(1)] . (56)

Case (d, s): i ̸= π♮(i) and j = π♮(j). In this case, we can write Λ3,1 as

EΛ3,1 = E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)

)
︸ ︷︷ ︸

E|||Xi|||2FX⊤
i MXi

+ E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)

)
︸ ︷︷ ︸

1
i=π♮2(i)

E|||Xi|||2FX⊤
i MXi

+ E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MXjX

⊤
j Xπ♮(i)

)
︸ ︷︷ ︸

0

+ E
(
X⊤

π♮(i)Xπ♮(i)X
⊤
π♮2(i)MXπ♮(i)X

⊤
i Xπ♮(i)

)
︸ ︷︷ ︸

1
i=π♮2(i)

E|||Xi|||2FX⊤
i MXi

+ E
(
X⊤

π♮(i)Xπ♮(i)X
⊤
π♮2(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)

)
︸ ︷︷ ︸

E|||Xi|||4F Tr(M)

+ E
(
X⊤

π♮(i)Xπ♮(i)X
⊤
π♮2(i)MXjX

⊤
j Xπ♮(i)

)
︸ ︷︷ ︸

0

+ E
(
X⊤

π♮(i)XjX
⊤
j MXπ♮(i)X

⊤
i Xπ♮(i)

)
︸ ︷︷ ︸

0

+ E
(
X⊤

π♮(i)XjX
⊤
j MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)

)
︸ ︷︷ ︸

0

+ E
(
X⊤

π♮(i)XjX
⊤
j MXjX

⊤
j Xπ♮(i)

)
︸ ︷︷ ︸

E|||Xi|||2FX⊤
i MXi

= (p+ 2)
(
p+ 2 + 21i=π♮2(i)

)
Tr(M).

We consider Λ3,2 as

EΛ3,2 = EX⊤
j XiX

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

pTr(M)

+EX⊤
j XiX

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

1
i=π♮2(i)

Tr(M)

+ EX⊤
j XiX

⊤
π♮(i)MXjX

⊤
j Xj︸ ︷︷ ︸

0

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

1
i=π♮2(i)

Tr(M)

+EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

pTr(M)

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXjX

⊤
j Xj︸ ︷︷ ︸

0

+ EX⊤
j XjX

⊤
j MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

0

+EX⊤
j XjX

⊤
j MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

0

+EX⊤
j XjX

⊤
j MXjX

⊤
j Xj︸ ︷︷ ︸

E|||Xi|||4FX⊤
i MXi

= (p2 + 8p+ 8 + 21i=π♮2(i)) Tr(M).
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Similarly, as above, we can verify that EΛ3,3 = 0 and EΛ3,4 = 0. Hence, we can conclude

EΛ3 = 2
(
p2 + 6p+ 6 + (p+ 3)1i=π♮2(i)

)
Tr(M) = 2p2 Tr(M) [1 + o(1)] . (57)

Case (d, d): i ̸= π♮(i) and j ̸= π♮(j). We write Λ3,1 as

EΛ3,1 = EX⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

E|||Xi|||2FX⊤
i MXi

+E X⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

1
i=π♮2(i)

E|||Xi|||2FX⊤
i MXi

+ E X⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

1i=jE|||Xi|||2FX⊤
i MXi

+E X⊤
π♮(i)XiX

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

1i=j1i=π♮2(i)
E|||Xi|||2FX⊤

i MXi

+ EX⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

1
i=π♮2(i)

E|||Xi|||2FX⊤
i MXi

+E X⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

E|||Xi|||4F Tr(M)

+ EX⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

1i=j1i=π♮2(i)
E|||Xi|||2FX⊤

i MXi

+E X⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

1
j=π♮2(i)

E|||Xi|||4F Tr(M)

+ E X⊤
π♮(i)XjX

⊤
π♮(j)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

1i=jE|||Xi|||2FX⊤
i MXi

+E X⊤
π♮(i)XjX

⊤
π♮(j)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

1i=j1i=π♮2(i)
E|||Xi|||2FX⊤

i MXi

+ E X⊤
π♮(i)XjX

⊤
π♮(j)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

1i=jE|||Xi|||2FX⊤
i MXi+1i̸=jpTr(M)

+EX⊤
π♮(i)XjX

⊤
π♮(j)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

1
j=π♮2(j)(1i=jE|||Xi|||2FX⊤

i MXi+ 1i̸=j Tr(M))

+ E X⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

1i=j1i=π♮2(i)
E|||Xi|||2FX⊤

i MXi

+EX⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

1
j=π♮2(i)

E|||Xi|||4F Tr(M)

+ E X⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

1
j=π♮2(j)[1i=jE|||Xi|||2FX⊤

i MXi+1i̸=j Tr(M)]

+EX⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

1
j=π♮2(i)

E|||Xi|||4F Tr(M)+1
j ̸=π♮2(i)

pTr(M)

=
(
p2 + 5p+ 2

)
Tr(M) + 1i=π♮2(i)2(p+ 2)Tr(M) + 1j=π♮2(i)(3p

2 + 5p) Tr(M)

+ 21j=π♮2(j) Tr(M) + 1i=j2(p+ 3)Tr(M) + 1i=j1i=π♮2(i)2(3p+ 5)Tr(M).

We consider Λ3,2 as

EΛ3,2 = EX⊤
j XiX

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

1i=jE|||Xi|||4F Tr(M)+1i̸=jpTr(M)

+ EX⊤
j XiX

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

1
i=π♮2(i)[1i=jE|||Xi|||2FX⊤

i MXi+1i̸=j Tr(M)]

+ EX⊤
j XiX

⊤
π♮(i)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

1i=jE|||Xi|||4F Tr(M)

+EX⊤
j XiX

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

1i=j1i=π♮2(i)
E|||Xi|||2FX⊤

i MXi

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

1
i=π♮2(i)[1i=jE|||Xi|||2FX⊤

i MXi+1i̸=j Tr(M)]

+EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

1
j=π♮2(i)

E|||Xi|||2FX⊤
i MXi+1j ̸=π♮2(i)

pTr(M)

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

1i=j1i=π♮2(i)
E|||Xi|||2FX⊤

i MXi

+EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

1
j=π♮2(i)

E|||Xi|||2FX⊤
i MXi

+ EX⊤
j XjX

⊤
π♮(j)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

1i=jE|||Xi|||4F Tr(M)

+EX⊤
j XjX

⊤
π♮(j)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

1i=j1i=π♮2(i)
E|||Xi|||2FX⊤

i MXi

+ EX⊤
j XjX

⊤
π♮(j)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

E|||Xi|||4F Tr(M)

+EX⊤
j XjX

⊤
π♮(j)MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

1
j=π♮2(j)

E|||Xi|||2FX⊤
i MXi
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+ EX⊤
j Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

1i=j1i=π♮2(i)
E|||Xi|||2FX⊤

i MXi

+EX⊤
j Xπ♮−1(j)X

⊤
j MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

1
j=π♮2(i)

E|||Xi|||2FX⊤
i MXi

+ EX⊤
j Xπ♮−1(j)X

⊤
j MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

1
j=π♮2(j)

E|||Xi|||2FX⊤
i MXi

+EX⊤
j Xπ♮−1(j)X

⊤
j MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

E|||Xi|||2FX⊤
i MXi

=
(
p2 + 5p+ 2

)
Tr(M) + 1j=π♮2(j)2(p+ 2)Tr(M) + 1i=j

(
3p2 + 5p

)
Tr(M)

+ 21i=π♮2(i) Tr(M) + 1j=π♮2(i)2(p+ 3)Tr(M) + 1i=j1i=π♮2(i)2 (3p+ 5)Tr(M).

We consider Λ3,3 as

EΛ3,3 = E X⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

0

+EX⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

0

+ E X⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

1
i=π♮(j)

pTr(M)

+EX⊤
π♮(i)XiX

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

0

+ E X⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

0

+EX⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

0

+ E X⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

0

+EX⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

1
j=π♮3(i)

pTr(M)

+ E X⊤
π♮(i)XjX

⊤
π♮(j)MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

1
i=π♮(j)

Tr(M)

+EX⊤
π♮(i)XjX

⊤
π♮(j)MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

0

+ E X⊤
π♮(i)XjX

⊤
π♮(j)MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

0

+EX⊤
π♮(i)XjX

⊤
π♮(j)MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

0

+ E X⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
i Xj︸ ︷︷ ︸

0

+E X⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXπ♮2(i)X

⊤
π♮(i)Xj︸ ︷︷ ︸

1
j=π♮3(i)

Tr(M)

+ EX⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXπ♮(j)X

⊤
j Xj︸ ︷︷ ︸

0

+E X⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXjX

⊤
π♮−1(j)Xj︸ ︷︷ ︸

0

= (p+ 1)
[
1i=π♮(j) + 1j=π♮3(i)

]
Tr(M).

Then we consider Λ3,4 as

EΛ3,4 = EX⊤
j XiX

⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

0

+EX⊤
j XiX

⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
j XiX

⊤
π♮(i)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

1
i=π♮(j)

Tr(M)

+EX⊤
j XiX

⊤
π♮(i)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

0

+EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

0

+EX⊤
j Xπ♮(i)X

⊤
π♮2(i)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

1
j=π♮3(i)

Tr(M)

+ EX⊤
j XjX

⊤
π♮(j)MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

p1
i=π♮(j)

Tr(M)

+EX⊤
j XjX

⊤
π♮(j)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
j XjX

⊤
π♮(j)MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

0

+EX⊤
j XjX

⊤
π♮(j)MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

0
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+ EX⊤
j Xπ♮−1(j)X

⊤
j MXπ♮(i)X

⊤
i Xπ♮(i)︸ ︷︷ ︸

0

+EX⊤
j Xπ♮−1(j)X

⊤
j MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)︸ ︷︷ ︸

p1
j=π♮3(i)

Tr(M)

+ EX⊤
j Xπ♮−1(j)X

⊤
j MXπ♮(j)X

⊤
j Xπ♮(i)︸ ︷︷ ︸

0

+EX⊤
j Xπ♮−1(j)X

⊤
j MXjX

⊤
π♮−1(j)Xπ♮(i)︸ ︷︷ ︸

0

= (p+ 1)
(
1i=π♮(j) + 1j=π♮3(i)

)
Tr(M).

In summary, we have

EΛ3 = 2
(
p2 + 5p+ 2

)
Tr(M) + 2(p+ 3)

[
1i=π♮2(i) + 1j=π♮2(j)

]
Tr(M)

+
(
3p2 + 7p+ 6

) (
1i=j + 1j=π♮2(i)

)
Tr(M) + 1i=j1i=π♮2(i)4 (3p+ 5)Tr(M)

− 2(p+ 1)
[
1i=π♮(j) + 1j=π♮3(i)

]
Tr(M) = 2p2 Tr(M) [1 + o(1)] . (58)

Combining (55), (56), (57), and (58) then yields

EΛ3 = 2p2 Tr(M) [1 + o(1)] . (59)

The proof is then completed by (48), (49), (54), and (59).

Lemma 7. We have

EΞ2
4 = m(m+ 1)

[
p (p+ 2)

(
1i=π♮(i) + 1i=j

)
+ p

(
1i ̸=π♮(i) + 1i ̸=j

)]
+ 2mp(n+ p+ 1)

=
(n− h)m2p2

n
[1 + o(1)] ,

where Ξ4 is defined in (21).

Proof. For the conciseness of notation, we define Γ as X
(
Xπ♮(i) −Xj

) (
Xπ♮(i) −Xj

)⊤
X⊤ and

hence have

EΞ2
4 = EW⊤

i W
⊤ΓWWi.

We begin the discussion by expanding WWi asW
⊤
1

W⊤
2

· · ·
W⊤

n

Wi =

W
⊤
1 Wi

W⊤
2 Wi

· · ·
W⊤

nWi

 .

Then we obtain

EΞ2
4 =

n∑
s=1

n∑
t=1

ΓijE
[(
W⊤

s Wi

) (
W⊤

t Wi

)]
= ΓiiE

(
W⊤

i Wi

)2
+
∑
s ̸=i

∑
t̸=i

ΓstE
(
W⊤

s WiW
⊤
t Wi

)
︸ ︷︷ ︸∑

s ̸=i ΓssE(W⊤
s Wi)

2

= ΓiiE

 m∑
j=1

W 2
ij

2

+
∑
s̸=i

Γss ·m = m(m+ 1)EΓii +mETr(Γ). (60)

We can thus complete the proof by separately computing ETr(M) and EΓii. First we compute EΓii,
which proceeds as

EΓii = E
(
X⊤

i Xπ♮(i)

)2
+ E

(
X⊤

i Xj

)2
= 1i=π♮(i)p(p+ 2) + 1i ̸=π♮(i)p+ 1i=jp(p+ 2) + 1i ̸=jp

= p (p+ 2)
[
1i=π♮(i) + 1i=j

]
+ p

[
1i ̸=π♮(i) + 1i ̸=j

]
. (61)

Then we turn to the computation of ETr(M), which proceeds as

ETr(Γ) =
∣∣∣∣∣∣X (Xπ♮(i) −Xj

)∣∣∣∣∣∣2
F
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= E
∥∥∥X⊤

π♮(i)

(
Xπ♮(i) −Xj

)∥∥∥2
2
+ E

∥∥X⊤
j

(
Xπ♮(i) −Xj

)∥∥2
2
+

∑
s̸=π♮(i),j

E
∥∥X⊤

s

(
Xπ♮(i) −Xj

)∥∥2
2

= 2E
∣∣∣∣∣∣Xπ♮(i)

∣∣∣∣∣∣4
2
+ 2E

(
X⊤

π♮(i)Xj

)2
+ 2

∑
s̸=π♮(i),j

E∥Xs∥22

= 2p(p+ 3) + 2(n− 2)p = 2p(n+ p+ 1). (62)

The proof is thus completed by combing (60), (62), and (61).

Lemma 8. We have

EΞ1Ξ4 =
mp(n− h)(n+ p− h)

n
[1 + o(1)] Tr(M),

where Ξ1 and Ξ4 are defined in (21).

Proof. We have

EΞ1Ξ4 = EX⊤
π♮(i)MX⊤Π♮⊤X

(
Xπ♮(i) −Xj

) (
Xπ♮(i) −Xj

)⊤
X⊤︸ ︷︷ ︸

≜v⊤

WWi.

First we conditional on X. Expanding the product WWi as

E


W⊤

1 Wi

W⊤
2 Wi

· · ·
W⊤

i Wi

· · ·
W⊤

nWi

 =


0
0
· · ·
m
· · ·
0

 ,

we can compute EΞ1Ξ2 w.r.t. W as

E (Ξ1Ξ2) = Ev⊤WWi = mEvi,

where vi denotes the i-th entry of v and can be written as

vi = X⊤
i

(
Xπ♮(i) −Xj

) (
Xπ♮(i) −Xj

)⊤
ΣMXπ♮(i)︸ ︷︷ ︸

Λ1

+X⊤
i

(
Xπ♮(i) −Xj

) (
Xπ♮(i) −Xj

)⊤
∆MXπ♮(i)︸ ︷︷ ︸

Λ2

.

For Λ1, we conclude

EΛ1 = EX⊤
i Xπ♮(i)X

⊤
π♮(i)ΣMXπ♮(i) + EX⊤

i XjX
⊤
j ΣMXπ♮(i)

− EX⊤
i Xπ♮(i)X

⊤
j ΣMXπ♮(i) − EX⊤

i XjX
⊤
π♮(i)ΣMXπ♮(i)

= 1i=π♮(i)(p+ 3)ETr(ΣM)− 1i=j(p+ 1)ETr(ΣM)

= (n− h)
(
1i=π♮(i)(p+ 3)− 1i=j(p+ 1)

)
Tr(M) =

p(n− h)2

n
[1 + o(1)] Tr(M).

Then we turn to EΛ2 and obtain

EΛ2 = EX⊤
i Xπ♮(i)X

⊤
π♮(i)∆MXπ♮(i)︸ ︷︷ ︸
Λ2,1

+EX⊤
i XjX

⊤
j ∆MXπ♮(i)︸ ︷︷ ︸
Λ2,2

− EX⊤
i Xπ♮(i)X

⊤
j ∆MXπ♮(i)︸ ︷︷ ︸

Λ2,3

−EX⊤
i XjX

⊤
π♮(i)∆MXπ♮(i)︸ ︷︷ ︸
Λ2,4

.

We compute the value of EΛ2 under the four different cases.

Case (s, s): i = π♮(i) and j = π♮(j). In this case, we have ∆ be
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∆ = ∆(s,s) = XiX
⊤
i +XjX

⊤
j .

We have

EΛ2,1 = EX⊤
i XiX

⊤
i

(
XiX

⊤
i +XjX

⊤
j

)
MXi = (p+ 2)(p+ 5)Tr(M),

EΛ2,2 = EX⊤
i XjX

⊤
j

(
XiX

⊤
i +XjX

⊤
j

)
MXi = 2(p+ 2)Tr(M),

EΛ2,3 = EX⊤
i XiX

⊤
j

(
XiX

⊤
i +XjX

⊤
j

)
MXi = 0,

EΛ2,4 = EX⊤
i XjX

⊤
i

(
XiX

⊤
i +XjX

⊤
j

)
MXi = 0,

which implies

EΛ2 = (p+ 2) (p+ 7)Tr(M).

Case (s, d): i = π♮(i) and j ̸= π♮(j). First we write ∆ as

∆(s,d) = XiX
⊤
i +XjX

⊤
π♮(j) +Xπ♮−1(j)X

⊤
j .

Then we conclude

EΛ2,1 = EX⊤
i XiX

⊤
i

(
XiX

⊤
i +XjX

⊤
π♮(j) +Xπ♮−1(j)X

⊤
j

)
MXi = (p+ 2)(p+ 4)Tr(M),

EΛ2,2 = EX⊤
i XjX

⊤
j

(
XiX

⊤
i +XjX

⊤
π♮(j) +Xπ♮−1(j)X

⊤
j

)
MXi = (p+ 2)Tr(M),

EΛ2,3 = EX⊤
i XiX

⊤
j

(
XiX

⊤
i +XjX

⊤
π♮(j) +Xπ♮−1(j)X

⊤
j

)
MXi = 0,

EΛ2,4 = EX⊤
i XjX

⊤
i

(
XiX

⊤
i +XjX

⊤
π♮(j) +Xπ♮−1(j)X

⊤
j

)
MXi = 0,

which suggests that

EΛ2 = (p+ 2)(p+ 5)Tr(M).

Case (d, s): i ̸= π♮(i) and j = π♮(j). In this case, ∆ reduces to

∆(d,s) = XiX
⊤
π♮(i) +Xπ♮(i)X

⊤
π♮2(i) +XjX

⊤
j .

We have

EΛ2,1 = EX⊤
i Xπ♮(i)X

⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(i)︸ ︷︷ ︸

E|||Xi|||22X⊤
i MXi

+EX⊤
i Xπ♮(i)X

⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)︸ ︷︷ ︸

1
i=π♮2(i)

E|||Xi|||22X⊤
i MXi

+ EX⊤
i Xπ♮(i)X

⊤
π♮(i)XjX

⊤
j MXπ♮(i)︸ ︷︷ ︸

0

= (p+ 2)
[
1 + 1i=π♮2(i)

]
Tr(M),

EΛ2,2 = EX⊤
i XjX

⊤
j XiX

⊤
π♮(i)MXπ♮(i)︸ ︷︷ ︸

pTr(M)

+EX⊤
i XjX

⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)︸ ︷︷ ︸

1
i=π♮2(i)

Tr(M)

+ EX⊤
i XjX

⊤
j XjX

⊤
j MXπ♮(i)︸ ︷︷ ︸

0

=
(
p+ 1i=π♮2(i)

)
Tr(M),

EΛ2,3 = 0,

EΛ2,4 = 0,

which suggests

EΛ2 = 2(p+ 1)Tr(M) + 1i=π♮2(i) (p+ 3)Tr(M).

Case (d, d): i ̸= π♮(i) and j ̸= π♮(j). In this case, ∆ is written as

∆(d,d) = XiX
⊤
π♮(i) +Xπ♮(i)X

⊤
π♮2(i) +XjX

⊤
π♮(j) +Xπ♮−1(j)X

⊤
j .
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We have

EΛ2,1 = EX⊤
i Xπ♮(i)X

⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(i)︸ ︷︷ ︸

E∥Xi∥2
2X

⊤
i MXi

+EX⊤
i Xπ♮(i)X

⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)︸ ︷︷ ︸

1
i=π♮2(i)

E∥Xi∥2
2X

⊤
i MXi

+ EX⊤
i Xπ♮(i)X

⊤
π♮(i)XjX

⊤
π♮(j)MXπ♮(i)︸ ︷︷ ︸

1i=jE∥Xi∥2
2X

⊤
i MXi

+EX⊤
i Xπ♮(i)X

⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXπ♮(i)︸ ︷︷ ︸

1i=j1i=π♮2(i)
E∥Xi∥2

2X
⊤
i MXi

;

EΛ2,2 = EX⊤
i XjX

⊤
j XiX

⊤
π♮(i)MXπ♮(i)︸ ︷︷ ︸

1i=jp(p+2)Tr(M)+1i̸=jpTr(M)

+ EX⊤
i XjX

⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)︸ ︷︷ ︸

1
i=π♮2(i)[1i=jE∥Xi∥2

2X
⊤
i MXi+1i̸=j Tr(M)]

+ EX⊤
i XjX

⊤
j XjX

⊤
π♮(j)MXπ♮(i)︸ ︷︷ ︸

1i=jp(p+2)Tr(M)

+EX⊤
i XjX

⊤
j Xπ♮−1(j)X

⊤
j MXπ♮(i)︸ ︷︷ ︸

1i=j1j=π♮2(i)
E∥X∥2

2X
⊤MX

;

EΛ2,3 = EX⊤
i Xπ♮(i)X

⊤
j XiX

⊤
π♮(i)MXπ♮(i)︸ ︷︷ ︸

0

+EX⊤
i Xπ♮(i)X

⊤
j Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
i Xπ♮(i)X

⊤
j XjX

⊤
π♮(j)MXπ♮(i)︸ ︷︷ ︸

1
i=π♮(j)

pTr(M)

+EX⊤
i Xπ♮(i)X

⊤
j Xπ♮−1(j)X

⊤
j MXπ♮(i)︸ ︷︷ ︸

0

;

EΛ2,4 = EX⊤
i XjX

⊤
π♮(i)XiX

⊤
π♮(i)MXπ♮(i)︸ ︷︷ ︸

0

+EX⊤
i XjX

⊤
π♮(i)Xπ♮(i)X

⊤
π♮2(i)MXπ♮(i)︸ ︷︷ ︸

0

+ EX⊤
i XjX

⊤
π♮(i)XjX

⊤
π♮(j)MXπ♮(i)︸ ︷︷ ︸

1
i=π♮(j)

Tr(M)

+EX⊤
i XjX

⊤
π♮(i)Xπ♮−1(j)X

⊤
j MXπ♮(i)︸ ︷︷ ︸

0

.

Hence we conclude

EΛ2 = 2(p+ 1)Tr(M) + 1i=j2 (p+ 1)
2
Tr(M) + 1i=π♮(j)(p+ 1)Tr(M)

+ 1i=π♮2(i)(p+ 3)Tr(M) + 1i=j1i=π♮2(i)(3p+ 5)Tr(M).

Lemma 9. We have

EΞ2Ξ3 =
p(n− h)(n+ p− h)

n
Tr(M) [1 + o(1)] ,

where Ξ2 and Ξ3 are defined in (21).

Proof. To start with, we write the expectation as EΞ2Ξ3

EΞ2Ξ3 = EX⊤
π♮(i)B

♮︸ ︷︷ ︸
u⊤

W⊤ X
(
Xπ♮(i) −Xj

)︸ ︷︷ ︸
p∈Rn×1

W⊤
i B♮⊤X⊤Π♮⊤X

(
Xπ♮(i) −Xj

)︸ ︷︷ ︸
v

= Eu⊤W⊤pW⊤
i v = E

〈
Wi,u

⊤W⊤pv
〉
.

Exploiting the independence among X and W, we condition on X and have

EW

〈
Wi,u

⊤W⊤pv
〉
= EW Tr

(
∇Wi

u⊤W⊤pv
)
.

Note that only the diagonal entries of the Hessian matrix ∇Wiu
⊤W⊤pv matters. For an arbitrary

index s, we can compute the gradient of the s-th entry of u⊤W⊤pv w.r.t. Wi,s as

d

dWi,s

(
u⊤W⊤pvs

)
= vs

d

dWi,s

(
u⊤W⊤p

)
= vs

n∑
t=1

d

dWi,s

(
ptW

⊤
t u
)
= vs

d

dWi,s
piW

⊤
i u = pivsus.

Invoking the definitions of p,v and u, we have
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EW,X

〈
Wi,u

⊤W⊤pv
〉
= EX

(
Xπ♮(i) −Xj

)⊤
Xi

m∑
s=1

[
X⊤

π♮(i)

(
B♮⊤)

s

(
B♮⊤)⊤

s
X⊤Π♮⊤X

(
Xπ♮(i) −Xj

)]
1⃝
= E

[(
Xπ♮(i) −Xj

)⊤
XiX

⊤
π♮(i)MΣ⊤ (Xπ♮(i) −Xj

)]
︸ ︷︷ ︸

Λ1

+ E
[(
Xπ♮(i) −Xj

)⊤
XiX

⊤
π♮(i)M∆⊤ (Xπ♮(i) −Xj

)]
︸ ︷︷ ︸

Λ2

,

where in 1⃝ we use the relation
∑m

s=1

(
B♮⊤)

s

(
B♮⊤)⊤

s
= B♮B♮⊤ = M.

For the first term Λ1, we obtain

EΛ1 = E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MΣ⊤Xπ♮(i)

)
︸ ︷︷ ︸

1
i=π♮(i)

E|||Xi|||2FX⊤
i MΣ⊤Xi

+E
(
X⊤

j XiX
⊤
π♮(i)MΣ⊤Xj

)
︸ ︷︷ ︸

1
i=π♮(i)

EX⊤
i MΣ⊤Xi

− E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MΣ⊤Xj

)
︸ ︷︷ ︸
1i=j1i̸=π♮(i)

EX⊤
π♮(i)

MΣ⊤X
π♮(i)

−E
(
X⊤

j XiX
⊤
π♮(i)MΣ⊤Xπ♮(i)

)
︸ ︷︷ ︸
p1i=j1i̸=π♮(i)

EX⊤
π♮(i)

MΣ⊤X
π♮(i)

= (n− h)
[
1i=π♮(i)(p+ 3)− (p+ 1)1i=j1i ̸=π♮(i)

]
Tr(M).

Then we consider the second term Λ2, which can be decomposed further into four sub-terms reading
as

EΛ2 = E
(
X⊤

π♮(i)XiX
⊤
π♮(i)M∆⊤Xπ♮(i)

)
︸ ︷︷ ︸

Λ2,1

+E
(
X⊤

j XiX
⊤
π♮(i)M∆⊤Xj

)
︸ ︷︷ ︸

Λ2,2

− E
(
X⊤

π♮(i)XiX
⊤
π♮(i)M∆⊤Xj

)
︸ ︷︷ ︸

Λ2,3

−E
(
X⊤

j XiX
⊤
π♮(i)M∆⊤Xπ♮(i)

)
︸ ︷︷ ︸

Λ2,4

.

Case (s, s): i = π♮(i) and j = π♮(j). In this case, we have ∆ be

∆(s,s) = XiX
⊤
i +XjX

⊤
j .

Hence we conclude

EΛ2,1 = E
[
X⊤

i XiX
⊤
i M

(
XiX

⊤
i +XjX

⊤
j

)
Xi

]
= E|||Xi|||4FX

⊤
i MXi + E|||Xi|||2FX

⊤
i MXi

= (p+ 2)(p+ 4)Tr(M) + (p+ 2)Tr(M),

EΛ2,2 = E
[
X⊤

j XiX
⊤
i M

(
XiX

⊤
i +XjX

⊤
j

)
Xj

]
= E|||Xi|||2FX

⊤
i MXi + E|||Xj |||2FX

⊤
j MXj

= 2E|||Xi|||2FX
⊤
i MXi = 2(p+ 2)Tr(M),

EΛ2,3 = E
[
X⊤

i XiX
⊤
i M

(
XiX

⊤
i +XjX

⊤
j

)
Xj

]
= 0,

EΛ2,4 = E
[
X⊤

j XiX
⊤
i M

(
XiX

⊤
i +XjX

⊤
j

)
Xi

]
= 0,

which suggests EΛ2 = (p+ 2) (p+ 7)Tr(M).

Case (s, d): i = π♮(i) and j ̸= π♮(j). First we write ∆ as

∆(s,d)⊤ = XiX
⊤
i +Xπ♮(j)X

⊤
j +XjX

⊤
π♮−1(j).

Then we conclude

EΛ2,1 = E
(
X⊤

i XiX
⊤
i MXiX

⊤
i Xi

)︸ ︷︷ ︸
E|||Xi|||4FX⊤

i MXi

+E
(
X⊤

i XiX
⊤
i MXπ♮(j)X

⊤
j Xi

)︸ ︷︷ ︸
0

+ E
(
X⊤

i XiX
⊤
i MXjX

⊤
π♮−1(j)Xi

)
︸ ︷︷ ︸

0

= E|||Xi|||4FX
⊤
i MXi = (p+ 2)(p+ 4)Tr(M);
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EΛ2,2 = E
(
X⊤

j XiX
⊤
i MXiX

⊤
i Xj

)︸ ︷︷ ︸
E|||Xi|||2FX⊤

i MXi

+E
(
X⊤

j XiX
⊤
i MXπ♮(j)X

⊤
j Xj

)︸ ︷︷ ︸
0

+ E
(
X⊤

j XiX
⊤
i MXjX

⊤
π♮−1(j)Xj

)
︸ ︷︷ ︸

0

= E|||Xi|||2FX
⊤
i MXi = (p+ 2)Tr(M),

EΛ2,3 = E
[
X⊤

i XiX
⊤
i M

(
XiX

⊤
i +Xπ♮(j)X

⊤
j +XjX

⊤
π♮−1(j)

)
Xj

]
= 0,

EΛ2,4 = E
[
X⊤

j XiX
⊤
i M

(
XiX

⊤
i +Xπ♮(j)X

⊤
j +XjX

⊤
π♮−1(j)

)
Xi

]
= 0,

which suggests EΛ2 = (p+ 2)(p+ 5)Tr(M).

Case (d, s): i ̸= π♮(i) and j = π♮(j). In this case, ∆ reduces to

∆(d,s)⊤ = Xπ♮(i)X
⊤
i +Xπ♮2(i)X

⊤
π♮(i) +XjX

⊤
j .

Then we obtain

EΛ2,1 = E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)

)
︸ ︷︷ ︸

E|||Xi|||2FX⊤
i MXi

+E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)

)
︸ ︷︷ ︸

1
i=π♮2(i)

E|||Xi|||2FX⊤
i MXi

+ E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MXjX

⊤
j Xπ♮(i)

)
︸ ︷︷ ︸

0

=
(
1 + 1i=π♮2(i)

)
(p+ 2)Tr(M),

EΛ2,2 = E
(
X⊤

j XiX
⊤
π♮(i)MXπ♮(i)X

⊤
i Xj

)
︸ ︷︷ ︸

1i=jE|||Xi|||4F Tr(M)+1i̸=jpTr(M)

+ E
(
X⊤

j XiX
⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj

)
︸ ︷︷ ︸
1
i=π♮2(i)[1i=jE|||Xi|||2FX⊤

i MXi+1i̸=j Tr(M)]

+ E
(
X⊤

j XiX
⊤
π♮(i)MXjX

⊤
j Xj

)
︸ ︷︷ ︸

0

=
(
p+ 1i=π♮2(i)

)
Tr(M),

EΛ2,3 = E
[
X⊤

π♮(i)XiX
⊤
π♮(i)M

(
Xπ♮(i)X

⊤
i +Xπ♮2(i)X

⊤
π♮(i) +XjX

⊤
j

)
Xj

]
= 0,

EΛ2,4 = E
[
X⊤

j XiX
⊤
π♮(i)M

(
Xπ♮(i)X

⊤
i +Xπ♮2(i)X

⊤
π♮(i) +XjX

⊤
j

)
Xπ♮(i)

]
= 0,

which suggests

EΛ2 = 2(p+ 1)Tr(M) + (p+ 3)1i=π♮2(i) Tr(M).

Case (d, d): i ̸= π♮(i) and j ̸= π♮(j). In this case, ∆ is written as

∆(d,d)⊤ = Xπ♮(i)X
⊤
i +Xπ♮2(i)X

⊤
π♮(i) +Xπ♮(j)X

⊤
j +XjX

⊤
π♮−1(j).

Then we have

EΛ2,1 = E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)

)
︸ ︷︷ ︸

E|||Xi|||2FX⊤
i MXi

+E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)

)
︸ ︷︷ ︸

1
i=π♮2(i)

E|||Xi|||2FX⊤
i MXi

+ E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MXπ♮(j)X

⊤
j Xπ♮(i)

)
︸ ︷︷ ︸

1i=jE|||Xi|||2FX⊤
i MXi

+E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MXjX

⊤
π♮−1(j)Xπ♮(i)

)
︸ ︷︷ ︸

1i=j1i=π♮2(i)
E|||Xi|||2FX⊤

i MXi

= (p+ 2)
[
1 + 1i=π♮2(i) + 1i=j + 1i=π♮2(i)1i=j

]
Tr(M),

EΛ2,2 = E
(
X⊤

j XiX
⊤
π♮(i)MXπ♮(i)X

⊤
i Xj

)
︸ ︷︷ ︸

1i=jE|||Xi|||4F Tr(M)+p1i̸=j Tr(M)

+E
(
X⊤

j XiX
⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj

)
︸ ︷︷ ︸
1
i=π♮2(i)

[1i=j(p+2)Tr(M)+1i̸=j Tr(M)]
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+ E
(
X⊤

j XiX
⊤
π♮(i)MXπ♮(j)X

⊤
j Xj

)
︸ ︷︷ ︸

1i=jE|||Xi|||4F Tr(M)

+E
(
X⊤

j XiX
⊤
π♮(i)MXjX

⊤
π♮−1(j)Xj

)
︸ ︷︷ ︸

1i=j1i=π♮2(i)
E|||Xi|||2FX⊤

i MXi

= 21i=jp(p+ 2)Tr(M) + p1i ̸=j Tr(M) + 1i=π♮2(i) [1i=j2(p+ 2)Tr(M) + 1i ̸=j Tr(M)] ,

EΛ2,3 = E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MXπ♮(i)X

⊤
i Xj

)
︸ ︷︷ ︸

0

+E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xj

)
︸ ︷︷ ︸

0

+ E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MXπ♮(j)X

⊤
j Xj

)
︸ ︷︷ ︸

p1
i=π♮(j)

Tr(M)

+E
(
X⊤

π♮(i)XiX
⊤
π♮(i)MXjX

⊤
π♮−1(j)Xj

)
︸ ︷︷ ︸

0

,

EΛ2,4 = E
(
X⊤

j XiX
⊤
π♮(i)MXπ♮(i)X

⊤
i Xπ♮(i)

)
︸ ︷︷ ︸

0

+E
(
X⊤

j XiX
⊤
π♮(i)MXπ♮2(i)X

⊤
π♮(i)Xπ♮(i)

)
︸ ︷︷ ︸

0

+ E
(
X⊤

j XiX
⊤
π♮(i)MXπ♮(j)X

⊤
j Xπ♮(i)

)
︸ ︷︷ ︸

1
i=π♮(j)

Tr(M)

+E
(
X⊤

j XiX
⊤
π♮(i)MXjX

⊤
π♮−1(j)Xπ♮(i)

)
︸ ︷︷ ︸

0

,

which gives

EΛ2 = (p+ 1)
[
2 + 2(p+ 1)1i=j + 1i=π♮(j)

]
Tr(M) + 1i=π♮2(i) [p+ 3 + (3p+ 5)1i=j ] Tr(M).

D.2.3 SUPPORTING LEMMAS

First, we study the higher order expectations of Gaussian random vectors’ inner product, which
hopefully will serve independent interests.

Lemma 10. Assume x ∈ Rp and y ∈ Rp are Gaussian distributed random vectors whose entries
follow the i.i.d. standard normal distribution, then we have

ETr
(
yy⊤xx⊤M

)
= Tr(M), (63)

ETr
(
yy⊤x⊤Mx

)
= E∥y∥22 Tr

(
x⊤Mx

)
= pTr(M), (64)

E
(
x⊤Mx

)2
= [Tr(M)]

2
+Tr(MM) + Tr

(
M⊤M

)
, (65)

E∥x∥22(x
⊤Mx) = (p+ 2)Tr(M), (66)

E∥x∥42(x
⊤Mx) = (p+ 2)(p+ 4)Tr(M), (67)

E∥x∥22
(
x⊤Mx

)2
= (p+ 4)

[
(Tr(M))

2
+Tr(MM) + Tr

(
M⊤M

)]
, (68)

E∥x∥42
(
x⊤Mx

)2
= (p+ 4) (p+ 6)

[
(Tr(M))

2
+Tr(MM) + Tr

(
M⊤M

)]
, (69)

E(x⊤y)2y⊤M1xx
⊤M2y = 2Tr(M1) Tr(M2) + (p+ 4)Tr(M1M2) + 2Tr(M1M

⊤
2 ), (70)

where M ∈ Rp×p is a fixed matrix.

Remark 3. If we assume M = Ip×p, we can get E∥x∥42 = p(p+2), E∥x∥62 = p(p+2)(p+4), and
E∥x∥82 = p(p+ 2)(p+ 4)(p+ 6).

Proof. This lemma is proved by iteratively applying the Wick’s theorem in Theorem 3, Stein’s lemma
in Lemma 19, and Lemma 18.

• Proof of (63) and (64). The proof can be conducted easily with the property such that Tr(uv⊤) =
u⊤v = Tr(vu⊤) holds for arbitrary vectors u and v.

• Proof of (65). This property is a direct consequence of Neudecker & Wansbeek (1987) (Equa-
tion (3.2)), which is attached in Lemma 18 for the sake of self-containing.
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• Proof of (66). Invoking the Stein’s lemma, we have

E∥x∥22(x
⊤Mx) = E

[
∇x(x

⊤Mx)x
]
.

Then our goal transforms to computing the trace of the Hessian matrix Tr
[
∇x Tr(x⊤Mx)x

]
. For

the i-th entry of the gradient, we have

d

dxi
x⊤Mx = ⟨Mi,x⟩+ ⟨(M⊤)i,x⟩,

where Mi is the i-th row (or column) of M. Then we obtain

d

dxi

[
xi Tr(x

⊤Mx)
]
= x⊤Mx+ xi

[
⟨Mi,x⟩+ ⟨(M⊤)i,x⟩

]
,

and hence

E∥x∥22(x
⊤Mx) =

p∑
i=1

E(x⊤Mx) +

p∑
i=1

E
[
xi

(
⟨Mi,x⟩+ ⟨(M⊤)i,x⟩

)]
= pTr(M) + 2

∑
i

Mii = (p+ 2)Tr(M).

• Proof of (67). Following the same strategy as in proving (66), we have

E|||x|||4F(x
⊤Mx) = E

[
∇x∥x∥22(x

⊤Mx)x
]
.

Then our goal transforms to computing the trace of the Hessian matrix Tr
[
∇x∥x∥22(x⊤Mx)x

]
.

For the i-th entry of the gradient, we obtain

d

dxi

[
xi∥x∥22(x

⊤Mx)
]
=∥x∥22 · (x

⊤Mx) + xi
d

dxi

[
∥x∥22(x

⊤Mx)
]

= ∥x∥22 · (x
⊤Mx) + 2x2

i (x
⊤Mx) + xi∥x∥22

[
⟨Mi,x⟩+ ⟨(M⊤)i,x⟩

]
,

whose expectation reads as

E∥x∥22 · (x
⊤Mx) + 2E

[
x2
i (x

⊤Mx)
]
+ Exi∥x∥22

[
⟨Mi,x⟩+ ⟨(M⊤)i,x⟩

]
= (p+ 2)Tr(M) + 2E

x2
iMiix

2
i + x2

i

∑
j ̸=i

Mjjx
2
j

+ 2MiiE
[
x2
i ∥x∥

2
2

]

= (p+ 2)Tr(M) + 2Mii

(
Ex4

i

)
+ 2

∑
j ̸=i

Mjj(Ex2
i )(Ex2

j ) + 2Mii

E(x4
i ) +

∑
j ̸=i

(Ex2
i )(Ex2

j )


= (p+ 2)Tr(M) + 6Mii + 2

∑
j ̸=i

Mjj + 2Mii (3 + p− 1)

= (p+ 4)Tr(M) + 2(p+ 4)Mii.

Then we conclude

ETr
[
∇x∥x∥22(x

⊤Mx)x
]
= p(p+ 2)Tr(M) + 2(p+ 4)

∑
i

Mii + 2pTr(M)

= (p+ 2)(p+ 4)Tr(M).

• Proof of (68). Invoking the Stein’s lemma, we have

E∥x∥22
(
x⊤Mx

)2
=
∑
i

d

dxi

[
xi

(
x⊤Mx

)2]
= p

(
x⊤Mx

)2
+ 4

∑
i

xi

(
x⊤Mx

) 〈
M

(sym)
i ,x

〉
.

The proof is then completed by invoking Lemma 11.
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• Proof of (69). Following the same strategy as in proving (68), we consider the i-th gradient w.r.t
xi, which can be written as

E∥x∥42
(
x⊤Mx

)2
=
∑
i

d

dxi

[
xi∥x∥22

(
x⊤Mx

)2]
=
∑
i

∥x∥22
(
x⊤Mx

)2
+ 2

∑
i

x2
i

(
x⊤Mx

)2
+ 4

∑
i

xi∥x∥22(x
⊤Mx)

〈
M(sym),x

〉
=
∑
i

∥x∥22
(
x⊤Mx

)2
+ 2

∑
i

E
d

dxi

[
xi

(
x⊤Mx

)2]
+ 4

∑
i

E
d

dxi

[
∥x∥22(x

⊤Mx)
〈
M

(sym)
i ,x

〉]
.

(71)

Noticing the following relations

d

dxi

[
xi

(
x⊤Mx

)2]
=
(
x⊤Mx

)2
+ 4xi

(
x⊤Mx

) 〈
M

(sym)
i ,x

〉
, (72)

d

dxi

[
∥x∥22 Tr(x

⊤Mx)
〈
M

(sym)
i ,x

〉]
= 2xi

(
x⊤Mx

) 〈
M

(sym)
i ,x

〉
+ 2∥x∥22

〈
M

(sym)
i ,x

〉2
+Mii∥x∥22

(
x⊤Mx

)
, (73)

we can conclude the proof by combining (68), (71), (72), (73), and Lemma 11.

• Proof of (70). Due to the independence between x and y, we first condition on x and have

E(x⊤y)2y⊤M1xx
⊤M2y = ExEyy

⊤xx⊤yy⊤M1xx
⊤M2y

1⃝
= Ex Tr

(
xx⊤)Tr (M1xx

⊤M2

)
+ Ex Tr

(
xx⊤M1xx

⊤M2

)
+ Ex Tr

(
xx⊤M⊤

2 xxM
⊤
1

)
= Ex∥x∥22x

⊤M2M1x+ Exx
⊤M1xx

⊤M2x+ Exx
⊤M⊤

1 xx
⊤M⊤

2 x

2⃝
= 2Tr(M1) Tr(M2) + (p+ 4)Tr(M1M2) + 2Tr(M1M

⊤
2 ),

where in 1⃝ and 2⃝ we both use Lemma 18.

Lemma 11. For a fixed matrix M ∈ Rp×p, we associate it with a symmetric matrix M(sym) defined
as (M+M⊤)/2. Consider the Gaussian distributed random vector x ∼ N(0, I), we have

E
∑
i

xi(x
⊤Mx)

〈
M

(sym)
i ,x

〉
= (Tr(M))

2
+ |||M|||2F +Tr(MM).

Proof. This lemma is a direct application of Wick’s theorem, which is completed by showing

Exi

(
x⊤Mx

) 〈
M

(sym)
i ,x

〉
= E

∑
j

∑
ℓ1,ℓ2

M
(sym)
i,j Mℓ1,ℓ2xixjxℓ1xℓ2

= E
∑
j

∑
ℓ1,ℓ2

1ℓ1=i1ℓ2=jM
(sym)
i,j Mℓ1,ℓ2xixjxℓ1xℓ2︸ ︷︷ ︸∑

j M
(sym)
i,j Mi,j

+E
∑
j

∑
ℓ1,ℓ2

1ℓ2=i1ℓ1=jM
(sym)
i,j Mℓ1,ℓ2xixjxℓ1xℓ2︸ ︷︷ ︸∑

j M
(sym)
i,j Mj,i

+ E
∑
j

∑
ℓ1,ℓ2

1i=j1ℓ1=ℓ2M
(sym)
i,j Mℓ1,ℓ2xixjxℓ1xℓ2︸ ︷︷ ︸∑

ℓ M
(sym)
i,i Mℓ,ℓ

=
∑
j

2
[
M

(sym)
i,j

]2
+Mi,i Tr(M),

where M(sym) is defined as
(
M+M⊤) /2.

Then we study the properties of Σ, which is defined as X⊤Π♮X−∆.
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Lemma 12. For a fixed matrix M, we have

ETr
(
ΣMΣ⊤

)
= n2

[
p

n
+

(
1− h

n

)2

+ o(1)

]
Tr(M),

where matrix Σ is defined in (22).

Proof. We conclude the proof by showing

ETr
(
ΣMΣ⊤

) 1⃝
=

∑
ℓ1,ℓ2∈S

ETr
[
Xℓ1X

⊤
ℓ1MXℓ2X

⊤
ℓ2

]
+

∑
ℓ1,ℓ2∈D

ETr
[
Xℓ1X

⊤
π♮(ℓ1)

MXπ♮(ℓ2)X
⊤
ℓ2

]
=
∑
ℓ∈S

ETr
(
XℓX

⊤
ℓ MXℓX

⊤
ℓ

)
+

∑
ℓ1,ℓ2∈S,ℓ1 ̸=ℓ2

ETr
[
Xℓ1X

⊤
ℓ1MXℓ2X

⊤
ℓ2

]
+
∑
ℓ∈D

ETr
[
XℓX

⊤
π♮(ℓ)MXπ♮(ℓ)X

⊤
ℓ

]
︸ ︷︷ ︸

pTr(M)

+
∑

(ℓ1,ℓ2)∈Dpair

ETr
[
Xℓ1X

⊤
ℓ2MXℓ1X

⊤
ℓ2

]︸ ︷︷ ︸
Tr(M)

= (n− h)(p+ 2)Tr(M) + (n− h)(n− h− 1)Tr(M) + hpTr(M) + |Dpair|Tr(M)

2⃝
= n2

[
p

n
+

(
1− h

n

)2

+ o(1)

]
Tr(M),

where 1⃝ is due to the definitions of index sets S and D (Equation (27) and in Equation (28)), and 2⃝
is because |Dpair| ≤ h.

Lemma 13. For a fixed matrix M, we have

ETr(ΣMΣM) = (n− h+ |Dpair|) [Tr (M)]
2
+ (n− h)2 Tr (MM) + nTr

(
MM⊤)

Proof. Following the same strategy as in proving Lemma 12, we complete the proof by showing

ETr(ΣMΣM) =
∑

ℓ=π♮(ℓ)

ETr
(
X⊤

ℓ MXℓX
⊤
ℓ MXℓ

)
+

∑
ℓ1,ℓ2∈S,ℓ1 ̸=ℓ2

ETr
(
Xℓ1X

⊤
ℓ1MXℓ2X

⊤
ℓ2M

)
+
∑
ℓ∈D

ETr
(
XℓX

⊤
π♮(ℓ)MXℓX

⊤
π♮(ℓ)M

)
+
∑

ℓ∈Dpair

ETr
(
XℓX

⊤
π♮(ℓ)MXπ♮(ℓ)X

⊤
ℓ M

)
= (n− h+ |Dpair|) [Tr (M)]

2
+ (n− h)2 Tr (MM) + nTr

(
MM⊤) .

Lemma 14. For a fixed matrix M, we have

E [Tr(ΣM)]
2
= (n− h)2 [Tr(M)]

2
+ nTr

(
M⊤M

)
+ (n− h+ |Dpair|) Tr(MM).

Proof. We complete the proof by showing

E (Tr(ΣM))
2
=
∑
ℓ∈S

E
(
X⊤

ℓ MXℓ

)2
+

∑
ℓ1,ℓ2∈S,ℓ1 ̸=ℓ2

(Tr(M))
2
+
∑
ℓ∈D

EX⊤
π♮(ℓ)MXℓX

⊤
ℓ M

⊤Xπ♮(ℓ)︸ ︷︷ ︸
Tr(M⊤M)

+
∑

ℓ∈Dpair

EX⊤
π♮(ℓ)MXℓX

⊤
ℓ MXπ♮(ℓ)︸ ︷︷ ︸

Tr(MM)

= (n− h)2 [Tr(M)]
2
+ nTr

(
M⊤M

)
+ (n− h+ |Dpair|) Tr(MM).

Lemma 15. For a fixed matrix M, we have

E
∑

ℓ=π♮(ℓ)

X⊤
π♮(i)MXℓX

⊤
ℓ Xπ♮(i) = (n− h) Tr(M) + (p+ 1)1i=π♮(i) Tr(M).
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Proof. Provided that i = π♮(i), we have

EΞ1,1 = EX⊤
i MXiX

⊤
i Xi +

∑
ℓ ̸=i, ℓ=π♮(ℓ)

EX⊤
i MXℓX

⊤
ℓ Xi

= (p+ 2)Tr(M) +
∑

ℓ̸=i, ℓ=π♮(ℓ)

Tr(M) = (n− h+ p+ 1)Tr(M)1i=π♮(i). (74)

Provided that i ̸= π♮(i), we have

EΞ1,1 =
∑

ℓ=π♮(ℓ)

EX⊤
π♮(i)MXℓX

⊤
ℓ Xπ♮(i) = (n− h) Tr(M)1i ̸=π♮(i). (75)

Combining (74) and (75) then completes the proof.

Lemma 16. For a fixed M, we have

E
∑
ℓ

X⊤
π♮(i)MXπ♮(ℓ)X

⊤
ℓ Xj =

(
p1i=j1i ̸=π♮(i) + 1j=π♮2(i)

)
Tr(M).

We omit its proof as it is a direct application of Wick’s theorem (Theorem 3).
Lemma 17. We have

E1(i = π♮(i)) =
n− h

n
(1 + oP (1)),

E1i=j =
h

n2
(1 + oP (1)),

E1j=π♮2(i) =
h

n2
(1 + oP (1)),

E1i=j1i=π♮2(i) =
|Dpair|
n2

(1 + oP (1)).

This lemma can be easily proved by assuming the indices i, j, π♮(i), and π♮(j) are uniformly sampled
from the set {1, 2, · · · , n}

E USEFUL FACTS

This section collects some useful facts for the sake of self-containing.
Theorem 3 (Wick’s theorem (Theorem 1.28 in Janson (1997))). Considering the centered jointly
normal variables g1, g2, · · · , gn, we conclude

E (g1g2 · · · gn) =
∑

all possible disjoint
pairs (ik,jk)∈{1,2,··· ,n}

∏
k

E (gikgjk) .

With Wick’s theorem, we can reduce the computation of high-order Gaussian moments to calculating
the expectations of a series of low-order Gaussian moments.
Lemma 18 (Equation (3.2) in Neudecker & Wansbeek (1987)). For a normally distributed random
matrix G ∈ Rn×p which satisfies EG = 0 and Evec(G)vec(G)⊤ = U⊗V, we have

E
(
G⊤AGCG⊤BG

)
= Tr (AU) Tr (BU)VCV +Tr

(
AUB⊤U

)
VC⊤V

+ Tr (AUBU) Tr (CV)V,

where vec(·) is the vector operation; ⊗ is the Kronecker product (Horn & Johnson, 1990); and A,B
and C are arbitrary fixed matrices.
Lemma 19 (Stein’s Lemma (cf. Section 1.3 in Talagrand (2010))). Let g ∼ N(0, 1). Then for any
differentiable function f : R 7→ R we have

E[gf(g)] = Ef
′
(g),

where lim∥g∥→∞ f(g)e−a∥g∥2
2 = 0 for any a > 0.
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