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Abstract

Learning from human preference data has emerged as the dominant paradigm
for fine-tuning large language models (LLMs). The two most common families
of techniques – online reinforcement learning (RL) such as Proximal Policy
Optimization (PPO) and offline contrastive methods such as Direct Preference
Optimization (DPO) – were positioned as equivalent in prior work due to the
fact that both have to start from the same offline preference dataset. To further
expand our theoretical understanding of the similarities and differences between
online and offline techniques for preference fine-tuning, we conduct a rigorous
analysis through the lens of dataset coverage, a concept that captures how the
training data covers the test distribution and is widely used in RL. We prove that
a global coverage condition is both necessary and sufficient for offline contrastive
methods to converge to the optimal policy, but a weaker partial coverage condition
suffices for online RL methods. This separation provides one explanation of why
online RL methods can perform better than offline methods, especially when the
offline preference data is not diverse enough. Finally, motivated by our preceding
theoretical observations, we derive a hybrid preference optimization (HyPO)
algorithm that uses offline data for contrastive-based preference optimization and
online data for KL regularization. Theoretically and empirically, we demonstrate
that HyPO is more performant than its pure offline counterpart DPO, while still
preserving its computation and memory efficiency.

1 Introduction

Due to the difficulty of manually specifying reward functions for complex tasks [6], preference-based
learning has emerged as a critical component in the fine-tuning procedure for large language models
(LLMs) [30, 20, 36, 35]. There are two predominant flavors of preference learning for LLMs: online
reinforcement learning (RL) methods such as PPO [9, 20] and offline contrastive methods like Direct
Preference Optimization (DPO) [23] and Identity Preference Optimization (IPO) [2].

Online RL methods usually follow the two-stage procedure prescribed in [20]: one first trains a
reward model (classifier) on a fixed offline preference dataset before using it to provide reward labels
for on-policy generations, which are then fed to a downstream RL algorithm like Proximal Policy
Optimization (PPO) [26]. Since the reward model is learned from static offline preference data, to
avoid over-optimizing the reward model [11], one typically adds a reverse KL penalty to encourage
the model to stay close to some reference policy. We will refer to this procedure as reinforcement
learning from human feedback (RLHF) in this paper. While empirically performant, RLHF requires
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repeated querying of the reward model (which is often itself an LLM) as well as sampling from
the current policy. In response to the computational expense and relatively complex nature of this
procedure, purely offline methods like DPO [23] and IPO [2] have been proposed as alternative
methods for preference fine-tuning. These methods do not need to fit separate reward models, instead
opting to simply train the policy directly on the offline preference dataset via a ranking loss.

Offline contrastive methods like DPO are usually derived via applying a reparameterization trick
to the closed-form solution of the minimum relative entropy problem [49] that RLHF techniques
attempt to approximate. Thus, several authors have described these methods as equivalent (at least
in theory) to the standard RLHF procedure [23, 2]. However, recent (mostly empirical) work has
contradicted this perspective: [34] find that online methods out-perform offline methods and attribute
this fundamentally to on-policy sampling, [43] argues that the online RL methods produce an often
desirable subset of the possible DPO loss minimizers, and [33] provide empirical support for the
claim that online and contrastive training provide orthogonal benefits. However, a rigorous theoretical
separation is still lacking in the pre-existing literature, which motivates our key questions:

What is the statistical separation between the online RLHF method and offline
contrastive methods? What causes this separation and what does it imply?

To answer these questions, we focus on the coverage of the preference dataset, a key concept that is
widely used in RL [15, 3, 29, 40] for analyzing the impact of offline or exploratory data distributions.
Through the lens of coverage of the offline preference dataset, we make the following contributions:

• We prove that the global coverage condition, the strongest possible coverage condition
in RL, is necessary for offline contrastive algorithms like DPO to converge to the
optimal policy. In contrast, we identify a weaker local coverage condition that is sufficient
for online RLHF algorithms, thus provably separating the two types of algorithms. The
separation is due to the difference in reward modeling and on/offline regularization – in
short, there is no free lunch from bypassing explicit reward learning and online rollouts. As
global coverage is an unrealistic condition in practice, our separation result can perhaps
explain why RLHF works better than offline methods [33, 34, 44].

• Although offline contrastive methods are derived from a reverse-KL objective, we
prove that the policies trained via offline methods can still have infinite reverse-KL
in the partial coverage setting. In contrast, we show that RLHF can always control the
reverse KL via directly optimizing reverse KL using online samples. This means that on
realistic problems, RLHF has stronger guarantees for remaining close to the reference policy
than offline contrastive methods.

• We propose Hybrid Preference Optimization (HyPO) to address the deficiencies of
offline contrastive methods while maintaining some of their computational simplicity.
HyPO is a hybrid RL algorithm [29] where offline data is used for the DPO objective while
online samples are used to explicitly control the reverse KL divergence to the reference policy.
We empirically demonstrate that HyPO outperforms DPO, on the TL;DR summarization
task [30] on all metrics including both the GPT4 win-rate and the reverse KL divergence to
the reference policy.

• We provide an explanation of why RLHF and offline contrastive methods decrease
the probability of both preferred and rejected responses during training. In particular,
under our function approximation-based global coverage condition, we show that such
behavior is actually desirable for DPO and RLHF policies to extrapolate and generalize
to optimal actions that do not appear in the training dataset. However, without function
approximation, algorithms like DPO can mistakenly increase the likelihood of sub-optimal
actions. This establishes the importance of function approximation for the success of the
algorithms such as DPO.

Taken together, our results establish the critical role coverage plays in terms of convergence properties
of preference learning algorithms as well as in the design of new, performant empirical approaches.

2 Related Work
Preference Fine-Tuning. As discussed in the introduction of our work, there are two major paradigms
for preference fine-tuning of LLMs. The first one, online RL methods [20], proposes to first train
a reward model (classifier) to predict human preferences, followed by running an RL method to
optimize this learned reward function. While PPO [26] is the most popular RL algorithm used in the
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online RLHF framework by far [30, 20, 36], more recent work by [1] shows that simpler online RL
algorithms like REINFORCE [39] also work well. The second class of methods, offline contrastive
techniques [47, 23, 2], avoid explicit reward modeling and directly optimize their objective on the
offline preference dataset. Recently there are hybrid methods that combine offline preference data
with online preference labels [? 13, 25, 2] – we leave extending our analysis to this setting to future
work. Throughout our paper, we assume for simplicity of analysis that preferences are generated by
an underlying utility function and therefore contain no intransitivities [19, 31].

Understanding PFT. Prior work has studied different parts of the standard RLHF recipe
[11, 16, 28, 10] and the impact of preference data quality [27]. In our work, we instead take a
converge-based perspective on the relationship between online RL methods and offline contrastive
methods. Although derived from the same minimum relative entropy objective [49] and perceived
as equivalent by some early work [23, 2], more recent work has started to unravel the distinctions
between these two classes of methods. [34] repeatedly observe better performance from online
rather than offline methods and after rigorously validating a variety of hypotheses, conclude that
on-policy sampling is indispensable for ensuring a high quality policy. [33] perform an in-depth
study of the effects of preference data, contrastive losses, and on-policy sampling and conclude that
a combination of contrastive losses and interactive training is most preferable in practice. [43] also
observe better performance from online PPO than from offline DPO and argue this is because the
former is able to eliminate a larger set of policies that are undesirable from the perspective of the
later. We supplement these mostly empirical observations with a rigorous theoretical explanation
for the observed behavior through the lens of dataset coverage, as well as designing an algorithm
that addresses the key weaknesses of offline contrastive approaches.

Recent work [44, 21, 22] has observed an interesting effect of the DPO procedure: a simultaneous
decrease in the likelihood of both preferred and rejected responses. This behavior is surprising at
first glance because one would expect that DPO will increase the likelihood of preferred responses
and decrease the likelihood of rejected responses. We provide a rigorous statistical explanation of
this behavior and show that this behavior is natural when the offline preference data only contains
sub-optimal responses but the function approximation allows DPO to extrapolate and generalize to
the correct optimal responses. This highlights the role of function approximation in the success of
offline contrastive based methods.

Coverage. We analyze online RLHF and offline contrastive-based methods via the concept of
coverage. Coverage measures how well an offline (data) distribution covers the support of the policy
of interest, which has been the key technical tool in offline RL [18, 37, 45], offline-online RL [41, 29]
and online RL [15, 3, 40]. The data coverage plays an important role in our analysis since both online
RLHF and offline contrastive-based methods rely on an offline preference dataset for learning.

3 Preliminaries
Following a wide range of recent works [23, 2], we consider the RLHF problem in the contextual
bandit formulation [17]. This is a reasonable simplification, as one can consider the generated
sequence of tokens as one single action, due to the fact that the states are the generated tokens,
and the dynamics are deterministic. We denote the context (prompt) space as X , and the action
(response) space as Y . Note that due to the finiteness of the possible tokens, the action space is
finite but combinatorially large. We use ρ ∈ ∆(X ) to denote the distribution of the prompts, and
π : X → ∆(Y) as policies (LLMs) that map prompts to a distribution of responses. We also consider
the reward function class R : X × Y → R, which assigns a reward to each context-response pair.

We assume access to a reference policy πref , which is usually referred to as the policy learned using
supervised data when training the LLM, that needs to be further fine-tuned to align with human
values. An offline preference dataset is collected in the format of D = {x, y+, y−} triplets: given
context x ∼ ρ, the preference policy samples two responses y1, y2 ∼ µ(· | x), where µ is the offline
response distribution. Previous works assume either µ to be the same distribution as πref [23] or
different offline distribution [2, 25, 12]. Then, y1 is labelled as y+ (thus y2 as y−) with probability
p∗(y1 ≻ y2 | x), where p∗ is defined by the Bradley-Terry model [5]:

p∗(y1 ≻ y2 | x) = exp(r∗(x, y1))

exp(r∗(x, y1)) + exp(r∗(x, y2))
,

where r∗ is the human’s implicit reward function. Note that this rules out intransitive preferences
[31, 19]. Throughout the paper, we will make the following assumption on the reward function:
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Assumption 3.1 (Boundedness of the reward). ∥r∗∥∞ ≤ R.

In many previous works, this formulation has been the canonical way to model the preference data in
the RLHF literature [9, 23, 2]. The goal is to learn a policy π to maximize the objective J(π), where

J(π) = Ex∼ρEy∼π(·|x)[r
∗(x, y)]− βKL(π(· | x)||πref(x)), (1)

i.e., we want to both maximize the human implicit reward, and not deviate too much from the reference
policy. We denote the optimal policy π∗ ∈ argmaxπ∈Π J(π). Here we call KL(π(· | x)||πref(x))
reverse KL because π – the policy to be optimized, appears first. We will call KL(πref(x)||π(· | x))
forward KL. By the definition of KL, we have

Definition of reverse KL: KL(π(· | x)||πref(x)) := Ey∼π(x) ln(π(y|x)/πref(y|x)). (2)

Note that the expectation in reverse KL is under π (highlighted by red in Eq. 2), indicating that
evaluating and optimizing reverse KL requires drawing online samples from π. In contrast, evaluating
forward KL only requires offline samples drawn from πref . As we will show, this key difference
between reverse KL and forward KL plays an important role of separating online RLHF and offline
contrastive methods such as DPO. In this paper, we consider two types of algorithms: online RL-based
algorithms, and offline contrastive-based algorithms.

Online RLHF Algorithms. We consider algorithms such as [9, 1] as the online RL based methods.
We abstract these algorithms as the following procedure: the algorithm performs the following
two-stage procedure: one first trains a reward model r̂ that minimizes the Bradley-Terry loss 1

r̂ ∈ argmax
r∈R

Êx,y+,y−∼D log

(
exp(r(x, y+))

exp(r(x, y+)) + exp(r(x, y−))

)
, (3)

and perform policy optimization (such as PPO [26]) to optimize the policy with the reward model r̂:

πrlhf ∈ argmax
π

Êx∼DEy∼π(·|x)[r̂(x, y)]− βKL(π(· | x)||πref(x)).

However, this policy optimization step requires extensive online sampling, and possibly training an
additional critic model (e.g., PPO), in addition to the reward model and policy.

Offline Contrastive Algorithms. To circumvent the above-mentioned computational burden,
several purely offline contrastive-based methods (i.e., without RL) have been proposed. In this
paper, we focus on the following two most representative methods. The first is Direct Preference
Optimization (DPO) [23], where the objective is πdpo ∈ argmaxπ ℓdpo(π) with

ℓdpo(π) = Êx,y+,y−∼D log

 exp
(
β log

(
π(y+|x)
πref(y+|x)

))
exp
(
β log

(
π(y+|x)
πref(y+|x)

))
+ exp

(
β log

(
π(y−|x)
πref(y−|x)

))
. (4)

Another offline contrastive method we will discuss in our paper is Identity Preference Optimization
[2], but we will defer its technical details to the appendix.

4 Offline Contrastive Methods Require a Stronger Coverage Condition than
Online RL Methods

We start by introducing the mathematical formulation of the coverage framework. The strongest
coverage condition is the following global coverage condition [18]: we say any offline distribution µ

covers a policy π if we have maxx,y:ρ(x)>0
π(y|x)
µ(y|x) ≤ Cglo. Throughout this section, we will adopt the

setting where µ = πref [23]. Formally, we assume the following condition:

Assumption 4.1 (Global Coverage). For all π, we have

max
x,y:ρ(x)>0

π(y | x)
πref(y | x)

≤ Cglo.

1We use Ê to denote the empirical expectation over the dataset.
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For the coverage terms, we always adopt the convention that 0
0 = 0. Note that one sufficient condition

for this assumption is that, for any prompt x, and any token sequence y, we have πref(y | x) ≥ 1/Cglo.

As has been recognized in the offline RL literature, global coverage is a strong assumption, and efforts
have been made to circumvent this assumption with more relaxed coverage conditions [37, 45]. In this
paper, we will consider the following partial coverage assumption that is weaker than Assumption 4.1:

Assumption 4.2 (Local KL-ball Coverage). For all εkl < ∞ and all policy π such that Ex∼ρKL(π(· |
x)||πref(· | x)) ≤ εkl, we have

max
x,y:ρ(x)>0

π(y | x)
πref(y | x)

≤ Cεkl .

Note that Cεkl depends on εkl. This coverage notion is relatively new in the RL literature and only
appeared in previous analysis of RLHF algorithms [8]. We call this local coverage condition since
it only requires πref to cover the policies that is within some KL-divergence ball centered at πref .
The intuition of this assumption is, for any algorithm that can control the reverse KL of the output
policy, we can leverage the coverage condition to relate the error under the output policy to its error
under the offline distribution, and thus guarantee its performance. Finally, we note that since the
policies with bounded KL is a subset of all policies, for a fixed πref , we always have Cεkl ≤ Cglo.

Remark 4.1. Taking a closer look at Assumption 4.2, we can see that this assumption is always
true in the sense that for any policy with εkl < ∞, maxx,y:ρ(x)>0

π(y|x)
πref(y|x) < ∞, i.e., Cεkl < ∞,∀εkl.

However, while being bounded, Cεkl can be large. Indeed a simple calculation can show that
maxx,y:ρ(x)>0

π(y|x)
πref(y|x) can be as large as maxx,y:π(y|x)>0 exp

(
εkl

π(y|x)

)
. This can be undesirable

because this suggests bounded reverse KL itself is not enough to guarantee optimality: the error can
have an exponential amplification when switching from πref to π. Thus this motivates Assumption
4.2, which assumes that Cεkl is reasonably small.

In what follows, we will show that the global coverage assumption (Assumption 4.1) is necessary for
offline contrastive-based algorithms such as DPO and IPO, but partial coverage assumption such as
Assumption 4.2 is sufficient for online RL based algorithms. This establishes a separation between
the two types of algorithms. We emphasize this theoretical separation explains why in practice online
methods is less prone to problems such as reward hacking and producing out-of-distribution responses
that are due to dataset with insufficient coverage.

4.1 Global Coverage is Necessary for Offline Contrastive Algorithms

Failure of DPO Under Partial Coverage. Now we show that if the strong coverage Assumption
4.1 breaks, then DPO can not guarantee any performance with respect to the objective function Eq.
(1). The intuition is based on a rather common observation of the DPO algorithm: the DPO policy
πdpo may generate out of distribution responses, while in contrast, RLHF does not generate responses
outside of the support of πref due to online reverse-KL constraint. For example, [43] provides a
construction where πdpo chooses a response where RLHF policy assigns 0 mass, thus proving that
RLHF policies are a subset of DPO policies.

However, such construction assumes that the reward learning procedure of DPO makes arbitrarily
large errors. Also, previous constructions assume deterministic preference, which is only true if the
underlying reward function is unbounded. This violates the natural assumption of Assumption 3.1. In
the following, we relax these constraints and thus show that DPO fails to guarantee any performance in
a rather strong sense. Concretely, DPO constructs the following implicit reward class with the policy
class Π: Rdpo =

{
β log

(
π(y|x)

πref(y|x)Z(x)

)
| π ∈ Π

}
, where Z(x) is a partition function that maps con-

text to a real number and is independent of y. Plugging this formulation into the BT loss (Eq. (3)) re-
covers exactly the DPO loss (Eq. (4)) as the partition functions are canceled. Now we can characterize
the returned policy by DPO as exactly whose corresponding reward function is accurate in distribution:

Assumption 4.3 (In Distribution Reward Learning). We assume the DPO policy πdpo satisfies that:

Ex,y∼ρ◦πref

(
β log

(
πdpo(y | x)

πref(y | x)Z(x)

)
− r∗(x, y)

)2

≤ εdpo.
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Note that this is a rather strong assumption for BT loss – by Lemma A.2, at best one can only hope:
for any learned reward function r̂, for each context x, there exists a constant c(x) such that

Ex,y∼ρ◦πref
(r̂(x, y)− r∗(x, y)− c(x))

2 ≤ ε, (5)

i.e., the reward model predicts the human reward up to a gap that is independent of y. This is due to the
fact that BT loss only requires the reward function to capture the relative difference, or in other word,
any constant shift (with respect to context) in the reward will be canceled in the BT loss. However,
for the rest of the section, we will make the stronger learning assumption that the gap c(x) = 0 (such
as in the case of Assumption 4.3). Previous counterexamples analysis violates this assumption, but
we will show that even under this strong assumption, DPO still can not guarantee any performance.

Proposition 4.1. Denote πref as any reference policy such that Assumption 4.1 breaks. Let Πdpo be
the set of DPO returned policies such that Assumption 4.3 holds. Then there exists policy π ∈ Πdpo
such that J(π) = −∞.

Proof sketch. Without loss of generality, we consider a promptless setting, and assume that the
response space is Y = {y1, y2, y3}. Again without loss of generality, we assume πref only covers y1
and y2, and thus Assumption 4.1 breaks. We assume partition function Z = 1 for all π but we will be
rigorous in the formal proof. Then consider the following policy π such that

β log

(
π(y1)

πref(y1)

)
= r∗(y1)−

√
εdpo, and β log

(
π(y2)

πref(y2)

)
= r∗(y2)−

√
εdpo,

One can check π satisfies Assumption 4.3. Now consider the optimal policy π∗(yi) =

πref(yi) exp
(

1
β r

∗(yi)
)

, for i ∈ {1, 2}, and π∗(y3) = 0. Since π∗(y1) + π∗(y2) = 1, combining ev-
erything we get π(y3) > 0, which implies KL(π||πref) is unbounded, thus we complete the proof.

One can first relate the above construction to the parital coverage assumption Assumption 4.2: since
the policy π considered in the proof has unbounded reverse KL with respect to πref , thus it is not in
the KL-ball of εkl around πref , which implies that Assumption 4.2 is not sufficient for DPO. Next we
show that global coverage is necessary for the IPO algorithm.

Failure of IPO Under Partial Coverage. To show that the global coverage is necessary for IPO,
we can even assume a stronger in-distribution learning guarantee, that is, the returned policy achieves
the smallest error on its population loss in distribution.

Proposition 4.2 (Informal). Denote πref as any reference policy such that Assumption 4.1 breaks.
Let Πipo be the set of IPO returned policies such that it is the minimizer of in-distribution error on its
population loss. Then there exists policy π ∈ Πipo such that J(π) = −∞.

We defer the detailed setup and formal version to Appendix C, but the construction for the above
proofs share the same intuition: the reverse KL term in the objective function can be unbounded. For
offline contrastive-based algorithms, the KL regularization is only enforced under the data distribution,
and thus the algorithm can not guarantee bounded reverse KL if the reference policy does not cover
the response space well. Although we only showed counterexamples for DPO and IPO, we conjecture
that the same intuition holds for other offline contrastive-based algorithms. One natural question at
this point would be: how about the forward KL? Not surprisingly, the forward KL for DPO (but we
conjecture for other offline constructive-based methods as well) is vacuously large, and we formalize
this result in Appendix B.2.

Remark 4.2. The folklore that DPO is equivalent to RLHF is often based on some assumption
that is much stronger than Assumption 4.3: it requires that the learned policy has a point-wise
accuracy guarantee β ln(πdpo(y|x)/πref(y|x)) = r∗(x, y) for all x, y. Such a point-wise guarantee is
unrealistic in reality and does not hold in general in the supervised learning sense. The in-distribution
style guarantee in Assumption 4.3 is the best one could hope for from a supervised learning algorithm.

4.2 Global Coverage is Sufficient for Offline Contrastive Algorithms

After showing that global coverage is necessary for DPO to guarantee any performance, we now
show that it is sufficient for the performance guarantee.
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Theorem 4.1. Let πref be any reference policy such that Assumption 4.1 holds. For any policy πdpo

such that the event in Assumption 4.3 holds, we have that

J(π∗)− J(πdpo) = O(Cglo
√
εdpo).

Proof. By Lemma A.1, we have

J(π∗)− J(πdpo) ≤ Ex∼ρEy1∼π∗(·|x),y2∼πdpo(·|x)
[
r∗(x, y1)− r̂dpo(x, y

1)− r∗(x, y2) + r̂dpo(x, y
2)
]

≤
√
Ex∼ρEy1∼π∗(·|x),y2∼πdpo(·|x)

[
(r∗(x, y1)− r̂dpo(x, y1)− r∗(x, y2) + r̂dpo(x, y2))

2
]

≤
√
C2

gloEx∼ρEy1,y2∼πref(·|x)

[
(r∗(x, y1)− r̂dpo(x, y1)− r∗(x, y2) + r̂dpo(x, y2))

2
]
,

and we can complete the proof by plugging in the error guarantee from Assumption 4.3.

Note that as the proof suggests, the result holds with the more general reward learning guarantee as in
Lemma A.2 – one only needs to be accurate in predicting the relative rewards between response pairs.

4.3 Online RL Method Under Partial Coverage

Finally, we contrast the previous negative results in Section 4.1 for offline contrastive-based algorithms
to a positive result for online RL-based algorithms, under the partial coverage setting. We will show
that in general global coverage is not necessary for RLHF, i.e., it can guarantee performance under
partial coverage. In fact, one might still be able to show an impossibility result for RLHF under
partial coverage, by reusing the same counterexample as in the previous section (c.r., Proposition 4.1).
Concretely, as long as the learned reward r̂(y3) → ∞, πrlhf(y3) will be 1 and thus the reverse KL will
be unbounded. However, this is a rather unrealistic scenario, as the construction requires a reward
model (e.g., a neural network) to output an unbounded value. Thus this motivates the following
assumption:
Assumption 4.4. For all learned reward model r̂ from the reward model class, we have that
∥r̂∥∞ ≤ R′.

At this point, one might argue why a similar assumption is missing for the offline contrastive-based
analysis. The reason lies in the different construction of the model class r̂ for those algorithms: for
DPO and IPO, the reward model is constructed as r̂dpo = β log

(
π

πref ·Z

)
, and there is no natural

function class for π such that Assumption 4.4 holds. In contrast, post-processing such as normalization
and on-the-fly normalization of rewards is standard in practice, which means the policy will always
witness bounded rewards [12, 8, 7, 1] during online RL training (e.g., PPO). As we will show in the
following, the difference in the reward function (which is tied to the offline vs. online nature of the
algorithms) can explain the different coverage requirement of the algorithms.

To relate to Assumption 4.2, we first show that the reverse KL divergence of the RLHF policy is
always bounded under Assumption 4.4.
Lemma 4.1. Suppose that Assumption 4.4 holds. Then for any RLHF policy πrlhf , we have that

KL(πrlhf ||πref) := Ex∼ρEy∼πrlhf(·|x)

[
log

(
πrlhf(y | x)
πref(y | x)

)]
≤ 2R′

β
.

Then we can show that the RLHF algorithm can guarantee performance under partial coverage:
Theorem 4.2. Suppose that Assumption 4.4 holds. Then for any reference policy πref for which
Assumption 4.2 holds with εkl =

2R′

β , and any RLHF policy πrlhf with r̂ such that (c.r. Assumption

4.3) Ex,y∼ρ◦πref

[
(r∗(x, y)− r̂(x, y))

2
]
≤ εreward, we have

J(π∗)− J(πrlhf) ≤ O(Cεkl

√
εreward).

Conditioned on Lemma 4.1, the proof of this theorem is similar to that of Theorem 4.1 so we defer it to
Appendix C. Similar to Theorem 4.1, we note that Theorem 4.2 holds under a weaker reward learning
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Algorithm 1 Hybrid Preference Optimization (HyPO)
require Pretrained LLM πθ0 , reference policy πref , offline data D, learning rate α, KL coefficient λ.

1: for t = 1, . . . , T do
2: Sample a minibatch of offline data Doff := {x, y+, y−} ∼ D.

3: Compute DPO loss ℓdpo :=
∑

x,y+,y−∈Doff
log

(
σ

(
β log

(
πθt−1

(y+|x)
πref(y+|x)

)
− β log

(
πθt−1

(y−|x)
πref(y−|x)

)))
.

4: Sample (unlabeled) online data Don := {x, y} where x ∼ D, y ∼ πθt−1(x).

5: Compute ℓkl :=
∑

x,y∈Don
log(πθt−1

(y|x)) · sg
(
log
(

(πθt−1
(y|x))

(πref(y|x))

))
.

6: Update θt = θt−1 + α · ∇θt−1
(ℓdpo − λℓkl).

return πT .

guarantee as in Lemma A.2. We also remark that as long as εkl is finite, Cεkl is finite, so the bound
is never vacuous. Since Cεkl ≤ Cglo for all εkl, it indicates the regret bound of RLHF is never worse
and can be much better than the regret bound of DPO. Combining Theorem 4.1 and Theorem 4.2,
we complete the separation result between offline contrastive methods and online RL methods.

A natural question at this point could be: can we further relax the local KL-ball cover-
age condition in Assumption 4.2 to a single-policy coverage condition, i.e., just assuming
maxx,y π

∗(y|x)/πref(y|x) ≤ C? Prior work [46] shows that with explicit pessimism, it is pos-
sible. However, using pessimism makes the algorithm from [46] not computationally tractable and
hard to scale to LLM experiments. Our conjecture is that for the RLHF policy πrlhf , it is not possible
to achieve meaningful regret under the single policy coverage condition, due to KL not being strong
enough to induce pessimism (i.e., bounded KL between π and πref can still imply exponentially large
density ratio π/πref). Developing a lower bound for πrlhf under single policy coverage in this case
can be an interesting future work.

5 Hybrid Preference Optimization: Regularizing Offline Learning with
Online Samples

In this section, we will provide a practical algorithm that bridges the gap between the offline
contrastive-based algorithms and the online RL-based algorithms. As we see in the previous sections,
the difference between the two types of algorithms is their reward model parametrization, and whether
to perform online rollouts. In the following, we will show that these two properties are in fact tightly
intervened with each other.

Here we will focus on the DPO algorithm. One way to fix the issue of the unbounded reverse KL
of DPO (which is caused by the unbounded reward model class) is to consider the following ideal
procedure: at the beginning of the algorithm, we first go through the policy class Π, and then we
filter out all the policies such that KL(π||πref) ≥ 2R′

β , where R′ is the boundedness of the reward
function class for RLHF. Now applying the same analysis of Theorem 4.2, we can show that this
revised DPO algorithm can guarantee performance under the partial coverage assumption, because
now the Lemma 4.1, a sufficient condition for Theorem 4.2, is explicitly enforced by the constraints.
We defer the detailed statement and analysis to Appendix F.1.

However, such a filtering procedure is not possible in practice, but we can instead consider the
following constrained optimization problem: we call the definition of DPO loss in Eq. (4), we want
to solve

max
π

ℓdpo(π) s.t. KL(π||πref) ≤
2R′

β
, (6)

using the KKT conditions, we can show that the following Lagrangian form is equivalent to Eq. (6):

max
π

ℓdpo(π)− λKL(π||πref), (7)

where λ is the Lagrange multiplier. However, in reality, since we do not know the exact value of R′,
we can consider setting λ to be a hyperparameter. We present the pseudocode in Algorithm 1. Note
that due to the reverse KL term, the Hybrid Preference Optimization (HyPO) algorithm optimizes
Eq. (7) via both offline and online samples where the offline samples are used for constructing and
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Table 1: Results on TL;DR dataset. Winrate is evaluated by GPT4 and RM score is from the trained re-
ward model. Experiments are repeated for 3 random seeds. Mean and standard deviation are reported.

Model size Algorithm Winrate (↑) RM score (↑) KL(π||πref)(↓)

1.4B DPO 42.17% (2.5%) 0.16 (0.05) 44.90 (1.29)
HyPO 46.17% (0.17%) 0.56 (0.03) 25.23 (0.55)

2.8B DPO 44.39% (0.4%) 2.43 (0.10) 68.95 (3.08)
HyPO 48.44% (0.20%) 2.22 (0.05) 45.07 (1.07)

optimizing ℓdpo (here σ denotes the sigmoid function), and the online samples y ∼ π(x) are for KL
(i.e., ℓkl). Note that regularizing with reverse KL via online samples is widely used in online RLHF
(e.g., PPO [30], APA [48], REBEL [12]). Here sg refers to the stop gradient operation, which is a
common practice in optimizing reverse KL in the LLM fine-tuning setting [20, 38].

Experimental Results. We perform experiments on TL;DR dataset [30]. Our experiment setup
mostly follows [12]: we use a maximum context length of 512 and a maximum generation length of 53.
We use Pythia 1.4B [4] as the pre-trained model. For the supervised fine-tuning (SFT) model, we train
it over 1 epoch of the dataset with human reference responses as labels. We train the reward model on
top of the SFT over 1 epoch of preference data. Both HyPO and DPO are trained over 1 epoch of pref-
erence data with Low-rank Adaptation (LoRA) [14]. We defer more experiment details in Appendix F.

We summarize the results in Table 1: HyPO outperforms DPO in terms of GPT4 win-rage and
reverse KL. Particularly, the significant reduction in reverse KL implies the impact of including a
reverse KL term explicitly into the DPO objective. While comparing with PPO (e.g., Table 1 in [12]),
HyPO’s performance is still lower in winrate, HyPO does preserve the key advantages of DPO over
PPO: we avoid training additional reward model and a value network.

6 Function Approximation Coverage: Can Fine-tuned Policies Extrapolate?
Our final result is a theoretical explanation of the extrapolation behavior of preference fine-tuning algo-
rithms under the global coverage assumption in the function approximation setting. The extrapolation
behavior refers to the phenomenon of RLHF algorithms (e.g., DPO) can improve SFT models despite
the fact that during training the policies assign decreasing likelihood to both the preferred and rejected
responses (i.e., they must increase the likelihood of responses outside of the training data) [21].

A previous attempt [22] to explain this behavior is based on the assumption that the responses from
the reference policy have the same distribution as the preferred responses from the dataset, i.e.,
y+ ∼ µ

d
= y ∼ πref . However, as mentioned in Section 3, more realistically, one should assume that

y ∼ µ
d
= y ∼ πref since it is more natural to use the reference policy to generate pairs of responses to

collect labels; or even more generally by considering supp(D) ⊂ supp(πref). The latter is common
in practice, for example, the dataset is often precollected, or the reference policy might have a small
mass on some responses, so with a high probability they are not sampled during the data collection
process. In Appendix D, we provide a detailed explanation of the extrapolation behavior via coverage.

7 Discussion
There are a few limitations of our work: 1) our theoretical analysis only considers the statistical
perspective of each algorithm, but we believe our result is complementary to the other work that
considers the optimization perspectives [33]. 2) we only conduct experiments on limited models and
benchmarks. 3) The experiment result shows that HyPO’s performance is still below the one of online
RLHF: this might suggest that our theory does not fully explain the benefit of all the components
of online RLHF. For example, one hypothesis is that the learn reward function may have better
generalization ability. 4) It is not clear that the KL-ball coverage is necessary for online RL-based
methods. However, as we discussed, since a bounded reverse KL might still induce exponential error
amplification, we conjecture that at least the single policy coverage [45] is not sufficient for online
RLHF-based methods that use reverse KL. We believe these limitations lead to several interesting
further directions. Finally, our method may not explicitly address the potential hallucinations or toxic
behavior of LLMs, which is a common shortcoming of general-purpose fine-tuning algorithms.
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A Auxiliary Lemmas

Lemma A.1 (Objective decomposition). Let J(π) be the objective function defined in (1), and for
reward function r̂, we let

π̂ ∈ argmax
π

Ex∼ρEy∼π(·|x)[r̂(x, y)]− βKL(π(· | x)||πref(x)), (8)

then we have
J(π∗)− J(π̂) ≤ Ex∼ρEy1∼π∗(·|x),y2∼π̂(·|x)

[
r∗(x, y1)− r̂(x, y1)− r∗(x, y2) + r̂(x, y2)

]
.

Proof. We have
J(π∗)− J(π̂)

=Ex∼ρEy∼π∗(·|x)[r
∗(x, y)]− βKL(π∗(· | x)||πref(x))− Ex∼ρEy∼π̂(·|x)[r

∗(x, y)] + βKL(π̂(· | x)||πref(x))

=Ex∼ρEy∼π∗(·|x)[r
∗(x, y)]− βKL(π∗(· | x)||πref(x))−

(
Ex∼ρEy∼π̂(·|x)[r

∗(x, y)]− βKL(π̂(· | x)||πref(x))
)

+ Ex∼ρEy∼π̂(·|x)[r̂(x, y)]− βKL(π̂(· | x)||πref(x))−
(
Ex∼ρEy∼π̂(·|x)[r̂(x, y)]− βKL(π̂(· | x)||πref(x))

)
≤Ex∼ρEy∼π∗(·|x)[r

∗(x, y)]− βKL(π∗(· | x)||πref(x))−
(
Ex∼ρEy∼π∗(·|x)[r̂(x, y)]− βKL(π∗(· | x)||πref(x))

)
+ Ex∼ρEy∼π̂(·|x)[r̂(x, y)]− βKL(π̂(· | x)||πref(x))−

(
Ex∼ρEy∼π̂(·|x)[r

∗(x, y)]− βKL(π̂(· | x)||πref(x))
)

=Ex∼ρEy∼π∗(·|x)[r
∗(x, y)− r̂(x, y)]− Ex∼ρEy∼π̂(·|x)[r

∗(x, y)− r̂(x, y)],

where the inequality is due to Eq. (8). To complete the proof, note that
Ex∼ρEy∼π∗(·|x)[r

∗(x, y)− r̂(x, y)]− Ex∼ρEy∼π̂(·|x)[r
∗(x, y)− r̂(x, y)]

=Ex∼ρEy1∼π∗(·|x),y2∼π̂(·|x)[r
∗(x, y1)− r̂(x, y1)]− Ex∼ρEy1∼π∗(·|x),y2∼π̂(·|x)[r

∗(x, y2)− r̂(x, y2)]

=Ex∼ρEy1∼π∗(·|x),y2∼π̂(·|x)
[
r∗(x, y1)− r̂(x, y1)− r∗(x, y2) + r̂(x, y2)

]
.

Lemma A.2 (Lemma C.2 from [8]). Assume that r∗ is bounded, let R be the reward function class,
and Let

r̂ = argmin
r∈R

Êx,y+,y−∼D log

(
exp(r(x, y+))

exp(r(x, y+)) + exp(r(x, y−))

)
,

then we have with probability at least 1− δ that

Ex,y1,y2∼µ◦πref

[(
r∗(x, y1)− r∗(x, y2)− r̂(x, y1) + r̂(x, y2)

)2] ≤ cκ2 log(|R|/δ)
N

,

where κ measures the non-linearity of the link function, and c is a constant, N := |D| is the size of
the offline dataset.

B Additional Results

B.1 Results for IPO

In this section we give detailed technical details for IPO, and the negative results for IPO under partial
coverage. Recall that the empirical objective of IPO is is πipo ∈ argminπ ℓ̂ipo(π), where

ℓ̂ipo(π) = Êx,y+,y−∼D

[(
log

(
π(y+ | x)πref(y

− | x)
π(y− | x)πref(y+ | x)

)
− β−1

2

)2
]
.

The empirical objective is derived from the following population loss

ℓipo(π) = Ex,y1,y2∼ρ◦πref

[(
hπ

(
y1, y2

)
− I
(
y1, y2

)
/β
)2]

, (9)

where

hπ(y
1, y2) = log

(
π(y1)πref(y2)

π(y2)πref(y1)

)
,

and I(y1, y2) is a Bernoulli random variable with parameter p = p∗(y1 ≻ y2), where here p∗ can be
any underlying human preference (that is not necessarily parametrized by the Bradley Terry model).
To show the negative result, we can make the following learning assumption:
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Assumption B.1 (In distribution guarantee for IPO). We assume that the returned policy πipo satisfies
that

πipo = argmin
π∈Π

ℓipo(π),

i.e., the returned policy πipo induces the smallest possible in-distribution error on its population loss.

With the setup, we can state and prove the formal version of the result:
Proposition B.1 (Formal version of of Proposition 4.2). Denote πref as any reference policy such
that Assumption 4.1 breaks. Let Πipo be the set of IPO returned policies such that Assumption B.1
holds. Then there exists policy π ∈ Πipo such that J(π) = −∞.

Proof. Without loss of generality, we consider a promptless setting, and assume that the response
space is Y = {y1, y2, y3}. Again without loss of generality, we assume πref only covers y1 and y2,
and thus Assumption 4.1 breaks. Specifically, let πref(y1) = πref(y2) = 1/2. Then we have

πipo = argmin
π∈Π

Ey1,y2∼πref

[(
log

(
π(y1)

π(y2)

)
− I
(
y1, y2

)
/β

)2
]
,

which gives

log

(
πipo(y1)

πipo(y2)

)
= p∗(y1 ≻ y2)/β,

and thus we have the relation that

πipo(y1) = πipo(y2) · exp(p∗(y1 ≻ y2)/β).

Let πipo(y2) = α ∈ (0, 1], then for any α such that πipo(y3) = 1− (1+ exp(p∗(y1 ≻ y2)/β))α > 0,
we will have that KL(πipo||πref) is unbounded, and thus we complete the proof.

B.2 DPO Has Vacuous Forward KL

In this section, we show that in the worst case, the forward KL of DPO is vacuously large. We
first see how we can relate the forward KL divergence of the DPO policy with the reward learning
guarantee. Consider any DPO policy πdpo and its corresponding reward model r̂dpo. By construction
of the DPO algorithm, we have, for any x, y pair that is covered in the dataset, πdpo(y | x) =
πref(y|x) exp(r̂dpo(x,y)/β)

Z(x) , where Z(x) =
∑

y πref(y | x) exp(r̂dpo(x, y)/β). Then the forward KL
divergence is

Ex,y∼ρ◦πref

[
log

(
πref(y | x)
πdpo(y | x)

)]
= Ex,y∼ρ◦πref

[
log

(
Z(x)

exp(r̂dpo(x, y)/β)

)]
= Ex,y∼ρ◦πref

[
− r̂dpo(x, y)

β
+ log(Z(x))

]
.

Although the first term can be easily related to the reward learning guarantee, the second term
(Ex∼ρ[log(Z(x))]) can unfortunately be vacuous without further assumptions. We formalize in the
following result:
Proposition B.2. There exist πdpo such that Assumption 4.3 holds, but KL(πref ||πdpo) is arbitrarily
large.

Proof. First without loss of generality let us consider that r∗ > 0. Now suppose there exists ỹ
such that πref(ỹ | x) = 1

n4 for all x, where n will be determined soon. Now suppose that for all x,
r̂dpo(x, ỹ)− r∗(x, ỹ) = n and r̂dpo(x, y) = r∗(x, y) for all y ̸= ỹ. Now we can check that

Ex∼ρEy∼πref(·|x)

[
(r̂dpo(x, y)− r∗(x, y))

2
]
=

1

n2
,

which is diminishing if we take n to be big enough. We can also check that

Ex∼ρEy∼πref(·|x)

[
− r̂dpo(x, y)

β

]
≥ − 1

n3β
− R

n4β
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and thus the first term will have little impact on the final bound. However, the second term can be
lower bounded as follows:

log

(∑
y

πref(y) exp(r̂(x, y)/β)

)
= log

(∑
y

πref(y) exp

(
r∗(x, y) + r̂(x, y)− r∗(x, y)

β

))

≥ log

(∑
y

πref(y) exp

(
r̂(x, y)− r∗(x, y)

β

))

= log

(
πref(ỹ) exp

(
r̂(x, ỹ)− r∗(x, ỹ)

β

))
=

n

β
− 4 log(n).

Putting everything together, we have

KL(πref ||πdpo) ≥
n

β
− 4 log(n)− 1

n3β
− R

n4β

and since we can take n arbitrarily big we complete the proof.

C Missing Proofs

C.1 Proof of Proposition 4.1

Proposition C.1 (Restatement of Proposition 4.1). Denote πref as any reference policy such that
Assumption 4.1 breaks. Let Πdpo be the set of DPO returned policies such that Assumption 4.3 holds.
Then there exists policy π ∈ Πdpo such that J(π) = −∞.

Proof. Again as in the proof sketch, without loss of generality, we consider a promptless setting, and
assume that the response space is Y = {y1, y2, y3}. Again without loss of generality, we assume πref

only covers y1 and y2, and thus Assumption 4.1 breaks. Now consider the optimal policy

π∗(y) =
πref(y) exp(r

∗(y)/β)

Z∗(t)
,∀y ∈ Y,

where Z∗ =
∑

y∈Y πref(y) exp(r
∗(y)/β), note that by construction π∗(y3) = 0.

Then consider the following policy π such that

β log

(
π(y1)

πref(y1) · Z∗

)
= r∗(y1)−

√
εdpo, and β log

(
π(y2)

πref(y2) · Z∗

)
= r∗(y2)−

√
εdpo,

Then we have

Ey∼πref

(
β log

(
πdpo(y)

πref(y) · Z∗

)
− r∗(x, y)

)2

= εdpo,

thus π satisfies Assumption 4.3. Rearranging we can see that π(y1) < π∗(y1) and π(y2) < π∗(y2).
Now since π∗ = 0, we have

π∗(y1) + π∗(y2) = 1,

and combine we get π(y3) > 0, which implies KL(π||πref) is unbounded, since πref(y3) = 0.

C.2 Proof of Theorem 4.2

In this section we prove Theorem 4.2:
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Theorem C.1 (Restatement of Theorem 4.2). Suppose that Assumption 4.4 holds. Then for any
reference policy πref such that Assumption 4.2 holds with εkl =

2R′

β , for any RLHF policy πrlhf with r̂

such that (c.r. Assumption 4.3),

Ex,y∼ρ◦πref

[
(r∗(x, y)− r̂(x, y))

2
]
≤ εreward,

or more generally, the event in Lemma A.2 holds for r̂, we have

J(π∗)− J(πrlhf) ≤ O(Cεkl

√
εreward).

To prove this we first prove the following lemma so we can leverage Assumption 4.2:

Lemma C.1 (Restatement of Lemma 4.1). Suppose that Assumption 4.4 holds. Then for any RLHF
policy πrlhf , we have that

KL(πrlhf ||πref) := Ex∼ρEy∼πrlhf(·|x)

[
log

(
πrlhf(y | x)
πref(y | x)

)]
≤ 2R′

β
.

Proof. since we have that πrlhf(y | x) = πref(y|x) exp(r̂(x,y)/β)
Z(x) for all x ∈ supp(ρ), y ∈ Y , we have

KL(πrlhf ||πref) = Ex∼ρEy∼πrlhf(·|x)

[
log

(
exp(r̂(x, y))

βZ(x)

)]
= Ex∼ρEy∼πrlhf(·|x)

[
r̂(x, y)

β
− log(Z(x))

]
.

Plugging in the definition of Z(x) we get

log(Z(x)) = log

(
Ey∼πref(·|x)

[
exp

(
r̂(x, y)

β

)])
≥ Ey∼πref(·|x)

[
r̂(x, y)

β

]
due to Jensen’s inequality. Thus we have

KL(πrlhf ||πref) ≤ Ex∼ρEy∼πrlhf(·|x)

[
r̂(x, y)

β

]
− Ex∼ρEy∼πrlhf(·|x)

[
r̂(x, y)

β

]
≤ 2R′

β
.

Now with Lemma 4.1, we can prove Theorem 4.2:

Proof. By Lemma A.1, we have

J(π∗)− J(πrlhf)

≤ Ex∼ρEy1∼π∗(·|x),y2∼πrlhf(·|x)
[
r∗(x, y1)− r̂(x, y1)− r∗(x, y2) + r̂(x, y2)

]
≤
√
Ex∼ρEy1∼π∗(·|x),y2∼πrlhf(·|x)

[
(r∗(x, y1)− r̂(x, y1)− r∗(x, y2) + r̂(x, y2))

2
]

≤
√
C2

gloEx∼ρEy1,y2∼πref(·|x)

[
(r∗(x, y1)− r̂(x, y1)− r∗(x, y2) + r̂(x, y2))

2
]

(Lemma 4.1 and Assumption 4.2)
≤ C

√
εreward. (Lemma A.2)

D Function Approximation Coverage: Can Fine-tuned Policies Extrapolate?

In the following example, we illustrate this behavior using linear function approximation. We use an
offline dataset that does not contain the optimal action. We show that thanks to the linear function
approximation and the dataset coverage, DPO has hope to extrapolate correctly, i.e., it can increase
the model’s likelihood of the optimal action while decreasing the likelihood of both the preferred and
rejected actions from the offline data.

16



Example D.1. Consider a promptless setting, where the response space is Y = {y1, y2, y3}. Con-
sider the linear function approximation setting with feature map ϕ, where ϕ(y1) = [1, 0], ϕ(y2) =
[1/2, 1/2], ϕ(y3) = [0, 1]. Suppose all policies are parametrized as softmax linear policies, i.e.,
π(y) ∝ exp(w⊤

π ϕ(y)). Let wref = [1, 1], then we have πref(yi) = 1/3,∀i ∈ {1, 2, 3}.

Consider the ground truth reward function r∗(y) = [10, 1]⊤ϕ(y), and suppose supp(µ) = {y1, y2},
i.e., the data only covers y1 and y2. And as always, the preference is based on the ground truth
reward function under the Bradley-Terry model.

We can first check that the data distribution indeed has global coverage in the linear function
approximation case [42], i.e., let Σµ = Ey∼µϕ(y)ϕ(y)

⊤, then for all π,

Ey∼π∥ϕ(y)∥2Σ−1
µ

≤ Cπ.

If we parameterize r̂(y) = ŵ⊤ϕ(y) (or in case of DPO, we can still check and see that r̂dpo(y) =
ŵdpo

⊤
ϕ(y) because of the softmax linear parametrization of the policies), for either direct reward

learning or DPO, we can have the learned reward function r̂(y) = [10, 1]⊤ϕ(y) + c, where c is
the constant reward shift (c.r. Eq. (5)). Then a simple calculation (by π(y) ∝ πref(y) exp(r̂(y)/β))
shows that, as long as c is small enough, the policies will decrease the likelihood of y1 and y2 and
increase the likelihood of y3. ◁

The above example shows when the training dataset together with the function approximation allow
the learned function to generalize (e.g., learn a function that can predict well on test examples beyond
the training data — a property supervised learning can have), algorithms like DPO can extrapolate
correctly, i.e., they can push up the likelihood of the optimal responses outside of the training data
while pushing down the likelihood of all the responses in the training data.

To validate our theory result, in Appendix E we perform a synthetic experiment on global coverage
with linear function approximation. As shown in Figure 1, this extrapolation behavior is observed in
both online RL method and DPO.

To further demonstrate the importance of function approximation and generalization, we conduct the
same experiments but without the linear function approximation (i.e., treat each action as independent
just like one would do in the classic multi-armed bandit setting). In this case, trying one action
does not give us information about the other action. We see that in this case, DPO can erroneously
assign a higher probability to unseen suboptimal responses instead of the unseen optimal response,
indicating DPO can fail to extrapolate and generalize correctly. Our investigation identifies that
function approximation and generalization play an important role in the success of RLHF and DPO
algorithms.

E Synthetic experiment for extrapolation

E.1 Extrapolation with function approximation

We first describe our experiment setup. We consider linear function approximation setting where we
have 100 responses (|Y| = 100). We consider a 16-dimensional feature vector ϕ : Y → R16, and
we generate ϕ(y) by simply sampling 99 random 16-dimensional vectors where the ℓ1 norm of each
vector is 1. We add one final ϕ(y) = [1, 0, 0, . . . ].

We construct the implicit human reward r∗(y) = w∗⊤ϕ(y), where w∗ = [5, ...], and the rest of the
entries are sampled from Unif(-2,2).

We parametrize the policies as softmax linear policies, i.e., we parametrize each policy π with
wπ ∈ R16 such that π(y) = wπ⊤ϕ(y)∑

y∈Y wπ⊤ϕ(y)
. One can check in this formulation the implicit reward in

DPO (r̂dpo) is linear in ϕ.

We generate 10000 preference pairs, according to the BT model under r∗, for the first 50 responses.
We checked that the first responses indeed span R16. Thus the offline data has global coverage in
linear function approximation setting.

For on-policy RL methods, we first train a reward model. Then we simply perform gradient descent
on the KL-regularized bandit loss (we assume πref is uniform). For DPO, we simply perform SGD
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Figure 1: Extrapolation behavior of Online RL method and DPO under linear function approximation.
We plot the mean log probability of the preferred responses and the log probability of the best
response, which is unseen in the training data. We see that both algorithms correctly assigns
increasing probability to the best response.
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Figure 2: Extrapolation behavior of DPO without function approximation. We plot the average
probability of out-of-distribution responses along the training and DPO assigns increasing probability
to out-of-distribution responses.

on the offline preference dataset. We track two qualities over the training: the mean log probability of
a random subset of preferred responses, and the log probability of best response ϕ(y) = [1, 0, 0, . . . ].
We plot the results in Figure 1. We observe that both methods have the extrapolation behavior – the
probability of preferred responses decays but the probability of the optimal response goes up.

E.2 Extrapolation without function approximation

Now we describe the setting where function approximation fails, and this reduces to a Multi-arm
bandit setting. We set |Y| = 500, and the offline data only covers the first half of the responses. The
r∗(y) is set by sampling from Unif(-10,10), and we generate 10000 offline samples by uniformly
sample pairs of responses from the first half of the response space, and then label them with BT
model under r∗. We train DPO with 5000 iterations, and plot the mean probability of the responses
outside of the data support in Figure 2: we observe that the mean probability of the out-of-distribution
responses are increasing, however, this could be an undesirable behavior because the reward of the
out-of-distribution responses could be arbitrarily bad.

F Details of Section 5

F.1 Theoretical guarantee

In this section, we consider the constrained optimization version of HyPO (Eq. (6)). Note that the
reward function class is identical to DPO, i.e., Rhypo =

{
β log

(
π(y|x)

πref(y|x)Z(x)

)
| π ∈ Π

}
, where Z(x)

is the partition function. Then for each output policy πhypo, we can denote its implicit reward function
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r̂hypo(x, y) := β
πhypo(y|x)

πref(y|x)·Z(x) , and similarly to Theorem 4.2, we can obtain the following guarantee
in the partial coverage condition:

Theorem F.1. For any reference policy πref such that Assumption 4.2 holds with εkl =
2R′

β , for any
HyPO policy πhypo such that the event in Lemma A.2 holds, i.e.,

Ex,y1,y2∼µ◦πref

[(
r∗(x, y1)− r∗(x, y2)− r̂hypo(x, y

1) + r̂hypo(x, y
2)
)2] ≤ εhypo,

we have

J(π∗)− J(πhypo) ≤ O(Cεkl

√
εhypo).

Proof. The proof mostly follows the proof of Theorem 4.2. It remains to show the following two
properties:

1) Note that Theorem 4.2 requires Assumption 4.4, which does not hold for r̂hypo (note that r̂hypo
is only bounded under ρ, but not for all x), but we only use it to prove the sufficient condition in
Lemma 4.1, which is satisfied by the constraint of HyPO.

2) We need to check that the premise of Lemma A.1 holds, i.e.,

πhypo ∈ argmax
π

Ex∼ρEy∼π(·|x)[r̂hypo(x, y)]− βKL(π(· | x)||πref(x)),

note that with the reparametrization between πhypo and r̂hypo, πhypo is always among the minimizer
of the unconstrained policy set, so we can still invoke Lemma A.2. The rest of the proof now follows
the proof of Theorem 4.2 so we omit the details.

Finally, we remark the connection to the negative result of DPO, i.e, Proposition 4.1: note that given
KL(πhypo||πref) ≤ ∞, we have that for all x such that ρ(x) > 0, we have for all y, β log

(
πhypo(y|x)
πref(y|x)

)
<

∞, (again with the convention that 0
0 = 0), which breaks the construction of Proposition 4.1.

F.2 Experiment details

In this section, we provide more details of our experiment. We use the Pythia 1.4B model [4]
with hugging face model card: EleutherAI/pythia-1.4b-deduped. The TL;DR dataset is available at
https://github.com/openai/summarize-from-feedback. The human reference dataset contains
117k training, 6.45K validation and 6.55K testing data. The preference dataset contains 92.9K training
and 83.8K validation data. The reward evaluation and KL computation is performed on the whole
validation data of the reference dataset. The GPT winrate is computed on a subset of 600 samples from
the validation data. The GPT API checkpoint we use is gpt-4-0613. We follow the standard prompt
for the winrate evaluation (e.g., see Appendix D.3 of [12]). Below we provide the hyperparameter for
HyPO and DPO.

For our experiment, we run on a cluster of mixture of Nvidia A6000 and L40 GPUs with 48 GB
VRAM. We use 4 GPUs in parallel for training, and for DPO the experiment time varies from 1 hour
to 2 hours to finish, and for HyPO the time varies between 4 hours to 5 hours.

Table 2: RM/SFT hyperparameters.

Learning rate 3e-6
Batch size 64

Learning rate scheduler cosine
Optimizer Adamw

LoRA False

Table 3: DPO hyperparameters.

Learning rate 3e-6
Batch size 64

Learning rate scheduler cosine
Optimizer Adamw

β 0.05
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Table 4: HyPO hyperparameters.

Learning rate 3e-6
Batch size 64

Learning rate scheduler cosine
Optimizer Adamw

β 0.05
λ 0.02

Table 5: Lora configurations.

r 1024
α 2048

Dropout 0
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