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ABSTRACT

With the growing importance of trustworthy Al, algorithmic fairness has emerged
as a critical concern. Among various fairness notions, group fairness - which mea-
sures the model bias between sensitive groups - has received significant attention.
While many group-fair models have focused on satisfying group fairness con-
straints, model uncertainty has received relatively little attention, despite its im-
portance for robust and trustworthy decision-making. To address this, we adopt
a Bayesian framework to capture model uncertainty in fair model training. We
first define group-fair posterior distributions and then introduce a fair variational
Bayesian inference. Then we propose a novel distribution termed matched Gibbs
posterior, as a proxy distribution for the fair variational Bayesian inference by
employing a new group fairness measure, the matched deviation. A notable fea-
ture of matched Gibbs posterior is that it approximates the posterior distribution
well under the fairness constraint without requiring heavy computation. Theoret-
ically, we show that the matched deviation has a strong relation to existing group
fairness measures, highlighting desirable fairness guarantees. Computationally, by
treating the matching function in the matched deviation as a learnable parameter,
we develop an efficient MCMC algorithm. Experiments on real-world datasets
demonstrates that matched Gibbs posterior outperforms other methods in balanc-
ing uncertainty—fairness and utility—fairness trade-offs, while also offering addi-
tional desirable properties.

1 INTRODUCTION

Artificial intelligence (AI) technologies have been incredibly successful and are now widely used
as essential decision-making tools in a variety of fields, such as college admissions, criminal risk
assessment, and credit scoring. However, when observed data contain unfair biases, the resulting
trained models may have biases favoring specific groups, such as white individuals or males (Angwin
et al.l 2016} [Ingold & Soper, 2016} IDua & Graft] 2017), which leads us to consider algorithmic
fairness in Al-based decisions as a crucial mission (Corbett-Davies et al.l [2017; [Starke et al.| [2022).

Among various notions of algorithmic fairness, group fairness is the most widely studied, which re-
quires that certain statistics across protected groups remain similar. For example, the ratio of positive
predictions should be similar across each protected group (Calders et al., | 2009; [Barocas & Selbst,
2016} |Zafar et al., 2017; |Donini et al.l 2018} |Agarwal et al., 2018b)). In turn, a large amount of re-
search have been conducted to develop algorithms for ensuring group fairness in various supervised
learning tasks (Zafar et al.,2017; Donini et al., 2018;|Agarwal et al.,[2018b; Quadrianto et al.,[2019;
Jiang et al.,|2020b).

Existing algorithms for group fairness focus on finding an accurate prediction model under fairness
constraints. However, learning deep neural networks (DNNs) which are highly over-parameterized
and so susceptible to overfitting to lead over-confident predictions. Proper quantification of uncer-
tainties in prediction of DNNs becomes a crucial mission to make Al algorithms more reliable and
trustworthy (Gal et al., 2016} [Malinin & Gales, [2018}; |[Mariet et al.,|[2021).

Bayesian inference turns out to be a useful approach for this purpose due to its ability to quantify
uncertainties in prediction models (Neal, 2012} |Gal & Ghahramanil 2016; Kendall & Gall, 2017;
Abdar et al} 2021} |Gawlikowski et al., 2023). For example, McAllister et al.| (2017); Michelmore
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et al.| (2020); Ding et al.|(2021) highlight the importance of uncertainty quantification (UQ) in au-
tonomous vehicles, and suggest Bayesian deep learning to handle it. Bayesian inference is also well
utilized in medical image segmentation, where UQ is considered important (Sedai et al., 2019; Yu
et al.| 2019; Wang et al., |2020; 2021} Shi et al.| 2021} Wang & Lukasiewiczl 2022)).

Nonetheless, Bayesian inference under group fairness has received little attention, which is the main
theme of this paper. Modifying the single accurate fair prediction model for Bayesian inference
would not be easy, since Bayesian inference needs a (posterior) distribution of prediction models.
For fair Bayesian inference, we first propose the definition of group fairness of a posterior distri-
butio Then, we develop a variational inference (VI) method for searching a group-fair posterior
distribution approximating the full Bayesian posterior distribution well without heavy computation.
Note that a simple modification of the standard VI, such as mean-field Gaussian model (Graves)
2011} Blundell et al.l 2015)) for group fairness, would not be practically feasible due to the compu-
tational burden of calculating the group-fair constraint at each gradient update.

We resolve this problem by employing the idea of Gibbs posterior, which is a useful tool to quantify
uncertainties in a prediction model learned by minimizing an objective function (e.g., the empirical
risk) (Zhang, [2006}; Jiang & Tanner, 2008} Bissiri et al., 2016} |Griinwald & Mehtal 2020; [Miller,
2021; Martin & Syring} [2022; |Syring & Martinl [2023). It provides a posterior distribution by treating
the objective function as the log-likelihood. Gibbs posterior is popularly used when specifying the
likelihood is difficult, with applications of clustering (Rigon et al.,2023), PCA (Winter et al., [2023)),
and medical image registration (Wang et al.,|2022). The main contribution of this paper is to propose
a specially designed penalized log-likelihood for group fairness and develop an efficient MCMC
algorithm for the corresponding Gibbs posterior. By numerical experiment, we illustrate that the
proposed Gibbs posterior outperforms the mean-field Gaussian VI in terms of prediction accuracy
and uncertainty quantification.

‘We can summarize our contributions as follows:

* To enable uncertainty quantification of group-fair models, we consider variational Bayesian
approaches. We define the level of group fairness of a given posterior, and propose varia-
tional Bayesian inference methods under the group fairness.

* We propose matched Gibbs posterior, a novel distribution based on the penalized log-
likelihood with the matched deviation as a penalty for group fairness, to successfully per-
form the fair variational inference. In addition, we provide a novel theoretical relationship
between the matched deviation and other group fairness measures, which explains the ben-
efit of employing the matched deviation in controlling group fairness.

* We empirically demonstrate that the proposed matched Gibbs posterior outperforms base-
line methods by analyzing multiple real-world datasets, in terms of trade-off between utility
and group fairness as well as trade-off between uncertainty and group fairness. We show
that matched Gibbs posterior also has a desirable property of improved individual fairness
as a by-product.

2 PRELIMINARIES

Let Z = (X,Y,S) be a random vector, where X € X is the input, Y € ) is the output and
S € {0,1} is the sensitive attribute. Let z; = (x4, ¥;,8;),¢ = 1,...,n be given data, which are
independent copies of Z, and we write D,, = {z;}\_,. Let F be the set of prediction models f(z, s)
where the domain is X x {0,1} with the codomain being R for regression problems and {p €
[0,1]¢ : ||p||]s = 1} for c-class classification problems (i.e., ) are R and {1,..., ¢}, respectively).
For given f, let £( f) be the log-likelihood of f given D,,.

2.1 NOTION OF GROUP FAIRNESS

Three representative criteria for group fairness are independence, separation and sufficiency (Castel-
novo et al.| 2022} Barocas et al.| [2023)). In this paper, we focus on independence, so-called Demo-

"'We mean by ‘a posterior distribution’ any distribution on the parameter space. For the posterior distribution
proportional to the product of the likelihood and the prior, we call it ‘the full Bayesian posterior’.
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graphic Parity. The formal definition of demographic parity, often called as a statistical parity, is as
follows (Agarwal et al., [2018al).

Definition 2.1 (Demographic Parity, DP). A prediction model f satisfies demographic parity under
the distribution of Z = (X, Y, S), if f(X,S) L S holds. In other words, Py o = Py 1, where Py ; is
the conditional distribution of f(X, s) given S = s.

From the above definition, we can naturally define the demographic parity gap as follows. Let (-, -)
be a given deviation measure of two probability measures.

Definition 2.2 (DP gap). The ()-)demographic parity (DP) gap of a prediction model f is defined

as
Ay(f) =Py o,Py1). (1)

The empirical ¢-DP gap of f is defined as A, (f) = 1/)(1?’?’0, P}L’l), where P} _ is the empirical
distribution of { f(z;, s)}i:s,=s. We say that f is ¢-group-fair with level 6 if A,, ,,(f) < ¢, and we
call A, ,,(f) < ¢ the (-)DPs constraint. For notational simplicity, in the followings we drop the
subscript n in A,, 4 (f) and denote A, (f) as the empirical 1-DP gap unless there is any confusion.

Note that the original measure for the violation of DP (Agarwal et al., 2018a; 2019) is App(f) :=
[Pr(I(f(X,0) > 7)|S =0) — Pr(I(f(X,1) > 7)|S = 1)| for a prespecified threshold 7. However,
dependency on the specific value of 7 limits the reliability of this measure (Silvia et al.l [2020). To
resolve the limitation, the 1-DP gap has been studied through line of research (Jiang et al.| |2020a;
Chzhen et al., 20205 Silvia et al.l 2020; |Barata et al., 2021)). Corresponding examples of 1)-DP gaps
are: (i) Aw(f) == W5(Ps0,Pr1), (i) Arv(f) := TV(Py0,Pp1), (iii) Aks(f) := KS(Py0, Py 1)
Here, W, TV and KS is the Wasserstein distance, the total variation distance, and the Kolmogorov-
Smirnov distance, respectively. See Section[A.T|for the definitions of each. From now on, we slightly
abuse notation and use A, (f) and Ay (6) interchangeably, when f is parameterized by 6.

2.2  VARIATIONAL BAYESIAN INFERENCE

For a given prior m on F, the full Bayesian posterior distribution is given as w(f|D,)
exp(£(f))m(f). When it is difficult to calculate (or generate samples from) 7(f|D,,), a well known
remedy is to search a distribution v on F that approximates 7 ( f|D,,) well and is easy to be handled
(e.g., easy to generate samples), which is often called as variational inference (VI) (Graves} 2011}
Blei et al., 2017). For VI, we first choose a variational class V of distributions, called variational
distributions, which are easy to be handled. Then, we find the optimal variational distribution v*
that minimizes the KL divergence between v and 7 (-|D,,) as stated formally:

v*(f) := argminDky, (v()[|7(|Dn)). (2)
vey

Finally, all of downstream Bayesian inference tasks such as uncertainty quantification and estima-
tion of the predictive distribution are done with v* instead of 7 (-|D,,). For example, the predictive
distribution of Y given X = x is obtained by p(Y = y|X = z) = [p(Y = y|X = =, f)v*(df).

3  VARIATIONAL BAYESIAN INFERENCE UNDER GROUP FAIRNESS

3.1 CHALLENGES IN THE FULL BAYESIAN INFERENCE

The posterior distribution under the DPs constraint could be defined as the full Bayesian posterior
7(f|D,,) truncated on the set of ¢ group-fair prediction models with level ¢, i.e., {f : Ay (f) < d}.
However, this constrained full Bayesian posterior is hard to compute, because we cannot formulate
the constrained space analytically, especially when using complex prediction models such as deep
neural networks. Also, since 7{f : Ay(f) < 6|D,} is usually very small, acceptance-rejection
sampling is not practically feasible. See Section[C.2)and Section [C.3|for further explanations.

3.2 DEFINITION OF GROUP-FAIR POSTERIOR DISTRIBUTIONS

We say that a given posterior v is strongly 1-fair with level 0 if v{f : Ay(f) < §} = 1. Our
aim is to find a strongly -fair posterior » which approximates the full Bayesian posterior well.
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The definition of strongly -fair posterior distributions, however, is very restrictive and hard to be
satisfied. Even for linear models, variational inference with the mean-field Gaussian models could
not be applied to find a strongly «-fair posterior since none of variational distributions are strongly
-fair. See Section [C.3|for details.

A remedy is to relax the definition of fairness. We say that v is w-fair with level § when
EfuAy(f) < 6. Here, we call E;., Ay (f) the average DP gap. Our strategy is to find a good
fair posterior () whose average DP gap is upper bounded, and make it to strongly 1/-fair by the
rejection sampling. That is, for a given fair posterior »(**) with level 7 < J, we obtain a strongly
fair posterior v(*) by letting v(*)(-) oc v()(-)I(Ay(-) < §). The Markov inequality implies that
v {f + Ay(f) < 6} > 1 —n/d and thus the rejection sampling is expected to work well. See
Section |C.5|for empirical evidences.

3.3 FAIR VARIATIONAL INFERENCE

We explain how to modify the standard VI for group-fairness. Suppose that F is parameterized by
© C R Thatis, F = {fp : 0 € ©} for § := (61,...,0,) . For a proxy distribution on © in the
variational inference, let {v(-|y),y € T'} be a given class of proxy distribution parameterized by
7 € T'. Then, we search v which maximizes the ELBO under the constraint Eg..,(.|,) Ay (fs) < 0.
As usual, we maximize the penalized ELBO formularized as: ELBO(7y) + AnEg.,(.|v)A4(fo),
where ) is the Lagrangian multiplier. Specifically, the ELBO term is defined as:

ELBO(7) := Egry (1) [€(0)] — Dxr(v()ll7(-)). 3)

3.4 CHALLENGES IN FAIR VARIATIONAL INFERENCE

When v(:|7) is a tractable distribution such as a mean-field Gaussian model which assumes that
v(-|7y) is a product of Gaussian distributions, the ELBO can be calculated easily: the first term can
be calculated through samples generated from v(-|y), while the second term is analytically tractable
when the prior is also a product of Gaussian distribution.

A critical problem is to calculate the average DP since computation of A (fs) is computationally
demanding. In particular, when v is the KL divergence or integral probability metrics (IPMs), com-
putation of the average DP gap requires adversarial learning which is computationally demanding
and numerically unstable. To be more specific, consider the IPM with a discriminator class G as
defined as:

Prpmg (f) :=sup . €]

9eg

/ 9(f (2))Bao(de) — / 9(F ()P (d)

To calculate 1pm, (f) for each f, we have to find the discriminator gy that maximizes
|[ 9(f(2))Pno(dx) — [ g(f(x))Pn,1(dz)|, which is computationally demanding. In particular,
when calculating the average DP gap, we have to find gy, for all § ~ v(:|y), which would be
practically infeasible. One may argue that certain deviation measures such as MMD (Gretton et al.,
2012) do not require an adversarial learning, but the computation of MMD is still demanding when
n is large since the computational complexity is O(n?).

In the following section, we propose a specially designed Gibbs posterior approach to resolve the
problem in fair VI. We first develop a novel deviation measure called matched deviation and then
use the Gibbs posterior based on the log-likelihood penalized by the matched deviation as a proxy
distributions of fair VI, which we call matched Gibbs posterior. Its computation is practically feasible
since adversarial learning is not required and an efficient MCMC algorithm can be implemented
whose computational complexity of each update is O(n), instead of O(n?).

4  MATCHED GIBBS POSTERIOR FOR FAIR VARIATIONAL INFERENCE

A Gibbs posterior is a tool to obtain a posterior without specifying the full likelihood (Zhang} 2006;
Jiang & Tanner, 2008} Bissiri et al., 2016). Suppose that we estimate § by minimizing a certain
objective function R,,(6). Then, the Gibbs posterior with respect to R,, and prior 7 is defined as
Un(+) < exp(—R,(0))7(6).
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Our aim is to develop a class of objective functions {R,,(6; A) : A € A} to use the corresponding
Gibbs posteriors vy, (+; A) as the class of proxy distributions and estimate A by maximizing the ELBO
under the fairness constraint.

In general, we estimate # by minimizing the negative log-likelihood —£(6) subject to A() < 6 or
equivalently by minimizing the penalized negative log-likelihood —¢(0) + AnA(6) for A > 0. We
use this penalized negative log-likelihood to define the fair Gibbs posterior. That is, we use

Un (05 X) o< exp (£(0) — AnA(8))m(6) ®)

as variational distributions and find A that maximizes the ELBO subject to the average DP;s con-
straint. Since ) is a scalar, a grid search could be used to estimate it. See Section[A.2]for the detailed
calculation of ELBO.

4.1 MATCHED DEVIATION

In this section, we propose a deviation so-called matched deviation. A key advantage of the matched
deviation is that the corresponding Gibbs posterior does not require adversarial learning.

A function T : X} — Aj is called a matching function if TxP; = Py, where TP, is the push-
forward measure of P; induced by T'. For a given matching function T, the matched deviation of f
is defined as

Am(0,T) :=Ex,~p, (| fo(X1,5 = 1) — fo(T(X1),s = 0)|]?), (©)

||? is the Euclidean norm.

where || -
A notable property of the matched deviation is that it is an upper bound of the Wasserstein norm
regardless of the choice of matching function T, and there exists a matching function T making
the matched deviation upper bounded when the total variation norm is bounded. These are formally
stated in the following Theorems {.T]and[4.2] whose proofs are deferred to Section

Theorem 4.1 (Ay = Aw). If Ay (0, T) < 0 for some matching function T : X; — Xy and § > 0,
then we have Aw(0) < 4.

Theorem 4.2 (Aty = Ay). If Arv(0) < § for some § € [0,1], then there exists a matching
Sunction T : Xy — X satisfying Am(0, T) < 2¢d for ¢ > 0 not depending on T

4.2 MATCHED GIBBS POSTERIOR

Motivated by the above theorems, we consider the following penalized log-likelihood ¢(f) —
AnAm(f, T). In particular, Theorem implies that we can control the group fairness of the min-
imizer of the above penalized log-likelihood by controlling A accordingly. On the other hand, The-
orem implies that any group-fair prediction model f in terms of the total variation norm has a
matching function T with small Ay (f, T). These interesting results suggest the following Gibbs
posterior:

which we call matched Gibbs posterior. A notable feature is that, we treat T as well f as the pa-
rameter to be inferred. By doing so, we can avoid an adversarial learning even though additional
computation is required for treating T. For generating samples from vy ( f, T|A), it is natural to use
the Gibbs sampler algorithm where f ~ vy (f|T, ) and T ~ wy(T|f, \) are repeated until con-
vergence. Note that generating samples using a Metropolis-Hastings algorithm is computationally
much easier than the optimization for the adversarial learning.

An additional advantage of matched Gibbs posterior is that v ( f|T, A) can have a simple form for
certain problems. For example, consider a regression problem Y; = f(X;)+¢;, where ¢; ~ N(0,0?)
are independent noises. When f is a Gaussian process a priori and o2 is known, then vy (f|T, \)
also becomes a Gaussian process and hence a sample can be generated easily (see Section for
the detailed derivation). When either the likelihood is not Gaussian or f is not Gaussian a priori,
a sample from vy (f|T, \) can be generated by use of well known techniques such as Hamilto-
nian Monte-Carlo (HMC) (Neal et al.l [2011)). Generating T from its conditional posterior needs a
specially designed algorithm, which is the topic for the next subsection.

Remark 4.3. Instead of learning T together with f, we may fix it at a certain matching function
to save computation needed to generate T. An example is the optimal transport between {X; :
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S; = 0} and {X; : S; = 1} if there is a reasonable metric on X.Kim et al.| (2025a) showed that
the minimizer of the penalized log-likelihood with the optimal transport for T' has many desirable
properties such as improvement on individual fairness metrics without hampering group fairness.
Our numerical studies in Section|[C.6|implies that such desirable properties are still valid for matched
Gibbs posterior. Note, however, that this approach is not applicable when X is not a metric space
(e.g., categorical data, text data) and yields suboptimal results.

4.3 MCMC ALGORITHM

For the posterior inference, we consider an MCMC (Markov Chain Monte-Carlo) algorithm. Simply,
we can utilize some well-known sampling methods as HMC, to yield samples 6 from v/(6; \). How-
ever, for matched Gibbs posterior, we need an additional step to generate T from its conditional pos-
terior. Here, we adopt a Gibbs sampler to iteratively sample 6 ~ p(0|T,D,,) and T ~ p(T|0, D,,).

Sampling 6 ~ p(6|T, D,,) is equivalent with () ~ v,,(#; \) for the given T. We utilize HMC for
this step. For sampling of T, we consider a Metropolis-Hastings (MH) algorithm with regard T.

To infer T, we have to specify the prior. Motivated by [Volkovs & Zemel (2012), we consider e(T),
the energy of T which is defined as:

e(T) = e(T;7) := exp ( - Z d(x!, T(Xi(l)))/nor> (8)
i=1

with a pre-specified distance measure d and temperature 7 > 0. We let 7(T) o e(T).

For the proposal T — T’ in the MH algorithm, we randomly select k indices i1, . . ., iy from [n4],

and define as: _ _ . '
T(j) = {T(J) for j ¢ [na] \ {ir, ... ir}s

. T 9
T (i, ) forj =i,

where II}, is a random permutation of [k]. Here, k is pre-specified hyperparameter. The acceptance
probability can be easily calculated by the posterior ratio, since the proposals are totally random.
See Section for a visualization of the proposal T" in Fig. |4} and the acceptance probability.

4.4 SELECTION OF \

Since A is a real-valued constant, we find the optimal A by a grid-search. As usual, we first choose
the set Acang Of finitely many candidates for A. Then, for each A € Acyg, We generate posterior
samples of § and 7" and calculate the ELBO and average DP. Finally, we choose A which maximizes
the ELBO among those whose average DP is less than §. See Section for A values that we use
to provide the results in our numerical experiments.

5 EXPERIMENTS

We conduct numerical experiments on various benchmark datasets. For the prediction models, we
use DNNs since DNNs are vulnerable to overfitting and thus uncertainty quantification is necessary.
See Section for more details of the experimental setting. See Sections [C] and [D] for omitted
results and ablation studies, respectively.

5.1 SETTINGS

Datasets We analyze the following five benchmark datasets that are commonly used for group-fair
classification: ADULT, DUTCH, CRIME, CELEBA, and CIVIL. Brief explanations for each dataset
are given below, with details in Section [B.T]

Tabular datasets:

(i) ADULT: Adult dataset (Becker & Kohavil [1996) has a label whether income from an in-
dividual is larger than $50K/yr based on census data. We consider ‘gender’ as a sensitive
variable.



Under review as a conference paper at ICLR 2026

(ii) DuTcCH: Dutch census dataset (Van der Laan, 2000; |Quy et al., [2022) has a label whether
a person’s occupation can be categorized as high-level or low-level. We consider ‘gender’
as a sensitive variable.

(iii)) CRIME: Communities & Crime dataset (Redmond & Bavejal 2002) includes a label of
the number of violent crimes per 100,000 population, based on socio-economic, law en-
forcement, and crime data from communities. We binarize ‘number of violent crimes’ with
its median and consider it as a label. We also binarize ‘percentage of population that is
African-Ameraicn’ with its median and consider it as a sensitive variable.

Image dataset:

(iv) CELEBA: CelebAMask-HQ dataset (Lee et al.,|2020) is a face image dataset, where facial
attributes are annotated with binary labels. We consider ‘Male’ as a sensitive variable, and
predict ‘Attractive’ as a target variable.

Text dataset:

(v) CrviL: CivilComments-Wilds dataset (Borkan et al.|[2019;|Koh et al.,[2021]) is a text classi-
fication data to identify whether the comment is toxic or not. We consider two race groups:
‘black’ and ‘asian’, since those groups show the largest gap in the proportion of toxic com-
ments.

Learning algorithms We consider 3 fair-Bayesian methods: mean-field Gaussian with MMD,
Gibbs posterior with MMD, and matched Gibbs posterior. We also consider 3 most popular state-
of-the-art algorithms for demographic parity mitigation, GapReg (Donini et al., [2018; (Chuang &
Mroueh| 2021), Reduction (Agarwal et al.l 2018a) and Adv (Zhang et al., [2018)), as deterministic
baseline methods. These 6 methods are annotated in the figures and tables as: variational_mmd,
gibbs_mmd, gibbs_matched, gapreg, reduction and adv. Note that the computation of MMD can-
not be done by mini-batches, hence we consider full-batch for the 2 MMD based methods. Due
to computational burden in calculating MMD which requires O(n?) operations, variational_mmd
and gibbs_mmd are only applicable when the dataset size is moderate, hence we use them only
for CRIME. Also, we performed adv only for tabular datasets, due to its numerical instability. See
Section [B.2] for more details about these 6 learning algorithms.

Evaluation metrics We measure the prediction performance of the posteriors or estimators of each
learning algorithm on test data in terms of prediction utility as well as uncertainty quantification. For
prediction utility, we consider the classification accuracy of the Bayes estimator (Acc). For uncer-
tainty quantification, we consider the negative log-likelihood (N11), Brier score (brier) (Brier,
1950), and expected calibration error (Ece) (Guo et al.,|[2017) of the predictive distribution. Higher
values of Acc mean better prediction performances while lower values of N11, brier and Ece

mean better uncertainty quantification. For group fairness measure, we use A\l)\{ =W, (Pso,Pra).
We take a square root to Aw, to preserve the original scale of Wasserstein distance Ws. See Sec-
tion B.2]for the definitions of the performance measures.

5.2 RESULTS

We plot the Pareto-front lines between the level of group fairness measured by Aé{ % and the evalu-
ation metrics for predictive performance. We use the averages of the fairness levels and metrics for
predictive performance on 5 repeated experiments, along with their error bars. We can compare the
efficiency of each trade-off using them.

Fig. |l| provides the results on CRIME. Results for other tabular datasets (ADULT and DUTCH) are
provided in Section [C.4] We can clearly observe that the trade-off of both utility (Acc) and uncer-
tainty (N11, brier) is superior to that of other algorithms, in all 3 datasets. An interesting point is
that we can observe that gibbs_mmd and variational_mmd does not perform well in terms of Acc,
N11 and brier. Hence, we conclude that even in the sole practical case of moderate-size dataset,
both methods are not feasible competitors to gibbs_matched. For Ece, the results of gibbs_matched
on ADULT show the best trade-offs. Results on CRIME and DUTCH, show the best performance
when the group fairness level is not too strict, and becomes less favorable when the group fairness
level becomes strict. In this regard, we argue that a low Ece alone does not guarantee a good model.
For example, a model that assigns a constant confidence of 0.5 to every test sample would yield
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Figure 1: Tabular classification. Pareto-front lines between level of A\l,,/ 2 (on the x-axis) and the
predictive performance (on the y-axis), on CRIME.

an Ece close to zero, yet its accuracy would be poor. This can be supported by the result of adv
on DUTCH in Fig.[7] placed in Section|[C.4] where its performance on (Acc, N11, brier) are not
favorable than others, while maintaining relatively good trade-off in Ece.
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Figure 2: Image classification. Pareto-front lines between level of A\l){ 2 (on the x-axis) and the pre-
dictive performance (on the y-axis). The trade-off of proposed matched Gibbs posterior is superior
to that of other competitors.

Fig. 2] provides the result on CELEBA. We can observe that gibbs_matched shows the best perfor-
mance in terms of Acc with large margins. A similar behavior is observed in the results on CIVIL
in Fig. [3] Also, for both datasets, the uncertainty measures of gibbs_matched consistently achieve
the lowest (best) compared to deterministic baselines, while maintaining high Acc trade-off. This is
because Bayesian inference generally enhances uncertainty measures compared to deterministic al-
gorithms (Gal et al., | 2016; |Lakshminarayanan et al., 2017). Note that the increase in N11 of gapreg
and reduction as the fairness level increases, is due to their overfitting, even with the best validation
selection.

Another benefit of the use of matched Gibbs posterior is that, it also improves individual fairness
metrics, similar to the result from Kim et al.| (2025a). This is because the matched deviation di-
rectly minimizes the gap between the output from different individuals. We empirically validate
that matched Gibbs posterior shows superior performance on Con (consistency score (Zemel et al.,
2013} [Yurochkin et al.l 2020; [Yurochkin & Sunl [2021))) that is a metric for individual fairness, than
that of other baselines. See Section for detailed results. We also investigate the convergence of



Under review as a conference paper at ICLR 2026

the proposed MCMC algorithm for matched Gibbs posterior in Section through the traceplots
related to 6 and acceptance probability of T. The results amply suggest that the proposed MCMC
algorithm converges well.

In summary, from the experiments on various real-world datasets, we can conclude that matched
Gibbs posterior does improve the utility-fairness trade-off and uncertainty-fairness trade-offs.
Specifically, matched Gibbs posterior shows (i) substantially better trade-offs in (Acc, N11 and
brier), and (ii) superior trade-offs in Ece, on ADULT, CELEBA and CIVIL. Also, matched Gibbs
posterior (iii) exhibits some an additional benefit of improved individual fairness, and (iv) does con-
verge well. Therefore, we conclude that matched Gibbs posterior is a favorable proxy distribution
for the fair variational Bayesian inference.

0.84 0.17 gapreg
0.8
reduction
gibbs_matched v

0.7

(@) 4 gapreg [ gapreg
Q o081 —106 reduction g S reduction
< = gibbs_matched v QO w gibbs_matched v
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Figure 3: Text classification. Pareto-front lines between level of Ay~ (on the z-axis) and the pre-
dictive performance (on the y-axis). The trade-off of proposed matched Gibbs posterior is superior
to that of other competitors.

5.3 ABLATION STUDIES

We perform several ablations studies, including effects of 7, pretrain epochs, and change of the
direction of T by flipping the label of sensitive attributes. See Section [D] for details and results.
In each study, we still observe that matched Gibbs posterior maintains its superior trade-offs under
varying conditions.

6 CONCLUDING REMARKS

We introduced a variational Bayesian inference framework for learning group-fair posteriors. Then,
we proposed a novel proxy distribution named matched Gibbs posterior, based on the matched de-
viation that can effectively control the group fairness of the posteriors. We show that the matched
deviation possesses several theoretical advantages and that matched Gibbs posterior achieves supe-
rior performance over other baseline methods along with some additional benefits such as individual
fairness.

We only pursue binary sensitive attributes in this work. Extension of matched Gibbs posterior to
multinary sensitive attributes could be done similarly to what (Kim et al.,|2025b) has done in Section
A.3. We will report related algorithms and results in a near future.

Study of theoretical properties of matched Gibbs posterior such as posterior consistency would be
worth pursuing. In addition, Bayesian analysis for other group fairness aware tasks such as repre-
sentation learning (Zemel et al., [2013; |Madras et al., 2018} |Kim et al., [2022)) would be a promising
future work.
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Ethics statement This paper studies group fairness in classification using only public datasets;
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widely used in recent works. We believe the framework helps prevent discrimination in classification
supported by theoretical guarantees, and would not raise new critical societal concerns.

Reproducibility Statement We have made significant efforts to ensure the reproducibility of our
findings in this study. For the theoretical results, we present complete proofs in Appendix. The source
codes for implementing our proposed model and running conducted experiments are provided in the
supplementary material. Detailed information for the hyperparameters, datasets, experimental setup
are given in Section [B.2] of Appendix.
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APPENDIX

A THEORETICAL DETAILS

A.1 DEFINITIONS OF DEVIANCES

Consider two random variables z and y, which follows the probability distribution P and Q, respec-
tively. The formerly mentioned deviances of P and Q can be defined as follows.

The (2-)Wasserstein distance is defined as:

W (P, = inf E )~ — . 10
>(P, Q) el o By Hz = yll2 (10

Here, T'(P, Q) is the set of joint probability distributions, whose marginals are P and Q.

The total variation distance is defined as:

TV(P,Q) := 223|P(A) — Q(4)]. (11)

Here, A is the set of all measurable subsets.

The Kolmogorov-Smirnov distance is defined as:

KS(P, Q) i= suplp(t) ~ Fo(®). (12)
te
Here, Fp(t) := P(x < t) is the cumulative distribution of P.

A.2 CALCULATION OF ELBO

The evidence lower-bound (ELBO) is defined as:
ELBO(v) := Efu[log £(Dy; f)] — Dxw (v()l|7(f)). (13)

In this section, we provide the calculation of ELBO when considering v, (6; A). This calculation can
be used to the selection of A, under certain level of averaged DP. Note that the first term can be easily
calculated using samples yielded from v, by Monte-Carlo approximation.

We can also calculate the ELBO in general cases. We have:
7()e~Fin(032)
Z
where R, (0; ) := —£(0) + AnA(6). Hence, we can simplify the KL term as follows:

Dxp(vn (5 M)[I7(+) = Egw, (-33) [log v (0; X) — log m(0)] = Egey,, (0) [ R (0; A)] — log Z).
. (15)
Now, using samples (#))Z_; ~ v,(-;A) and (6®))5_, ~ 7(-), we can calculate the KL term by
Monte-Carlo approximation as follows:

va(0;A) = . Oy = / 7(0)e T ONdf = Byonle” MM (14)

1 & 1S _
D1 (va (s V)Im() & > R (0M;)) —log (s > exp{— R, (6 A)}). (16)

For the numerical stability, one could calculate the last term by utilizing log-sum-exp.

A.3 PROOFS OF THE BOUNDS RELATED TO THE MATCHED DEVIANCE

Proof of Theorem Recall the definitions of the deviances that

Aw(6) = W3(Pr,. Pr,.), 6, T) = E[[fo(X, 1) ~ fo(0(x),0)

a7

for a given matching T : X} — A satisfying T 4Py = Py.
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For a simplicity, let s = Law(FP, ) for s € {0,1}. Hence, by the Kantorovich formulation of the
Wasserstein distance W5,

W3 (Ppo1s Pro) < Elfo(X,1) = fo(T(X),0)]3 (18)
for any T. Taking the infimum over T on the right-hand side yields:
. 2
W3 (1, o) < inf B[ fo(X, 1) = fo(T(X), 0[5 (19)
Therefore,
Aw(0) < i%f Am(0,T). (20)

In particular, if there exists T with Ay (6, T) < §, then Aw(6) < 0.
O

Proof of Theorem{.2] Fix 1 > 0 and partition the cube [0, 1]° into a finite family of disjoint cubes
{By} 7, of length 7 for each side. Then, we have diam(Bj,) = /cn and diam([0, 1]¢) = /c.

Let Ay := f, "(Br) N {S =1} C Xy and Ao == f, (Br) N {S = 0} C Xp. Write pj, :=
Py1(A1x) = Py, ,(Bx) and qi, := Po(Aox) = Py, (Bs). Define 74 := (pr. — qr)+, sk := (qr —
Pr)+, and myg = min{pg,qx} = pr — rx = qr — Sk. Let R = ZL:1 r = Z;nzl s <
I pk—ak| < TV(Py, ., Pj,,) <6 Here notethatd 1, = s since > pr = > g = 1.
Note also that ;" me =Y 1 (pr —rK) =1—> e =1—R.

Then, for each k there exist measurable subsets A’l‘“}; C Ay and A‘&"}C‘ C Ap with ]P’l(Arl"f};) =
Po(A%) = my, and a bijection T : AT — AP satisfying Po(B) = Py ((T{")~(B)) for all
B C A

Let AF"™ := X1 \ U, AT and AF™ := Xp \ U, A% be the residual domains. By construction,
Py (A%™) = Po(AF™) = R < 6. Then, there exists a bijection T(3) ; Atem —, Arem

Define T : X7 — A|y piecewise by

(1) mat

T , € AM for k € [m)],

T(x) = ;&)(x) T rle’fl or [m] (21)
TG (), = e AF™.

T is well-defined as a countable union of maps on disjoint domains. Moreover, for any B C X that

is a finite union of pieces from { Af} }1 and AF™, we have Po(B) = P, (T~ "(B)) and T#P, = P,.

If € APy, then fp(z,1) and fo(T(z),0) both lie in the same cube By, so | fo(x,1) —

fo(T(x),0)|2 < (\/En)2 = cn?. If x € AF™, we use a trivial bound that || - |3 < diam([0, 1]¢)? =
¢, so that we have Ay (0, T) = Ex, ||fo(X1,1) — fo(T(X1),0)]3 < (1 — R)en? + Re <
c((1 = 6)n*+6), since R < 6.

Taking 1) := V/§ € [0,1], we have Ay(0,T) < c¢((1 —68)5+03) = (26 — %) < 2¢d, which

concludes the proof. (Note that the proof also holds for regression problems, when the output y is
scaled into [0, 1].) O

A.4 MATCHED GIBBS POSTERIOR FOR GAUSSIAN REGRESSION PROBLEMS

In Section[d.2] we noted that matched Gibbs posterior can be computed easily for a certain problems.
In this section, we provide the explicit calculation for Gaussian regression problems.

Consider a simple regression problem of:

Yi = f(Xi,5i) + €, € ~ N(0,07). (22)
Assume that f ~ GP(0, k(-,-)), where GP denotes a Gaussian process. Let y = (y1,...,%,) ' and
K be a matrix with K;; = k((z;, 8:), (24, 55)).
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Then the log-likelihood is given as:
1 n
U(f) =log L(f; Dn) = =55y = FIIz — 5 log(270?), (23)

where f = (f(x1),..., f(zn))".
The constraint is calculated as:
nAw(f, T) = ||(I = Pr) Sif[3
=f'Crf,

Here, S1 € R™*™ selects the coordinates with .S; = 1 and Pr is the permutation matrix induced by
the matching map T on those coordinates. Cp is defined as S| (I — Pr) ' (I — Pr)S;.

(24)

Hence, the matched Gibbs posterior is simplified as:
(£, T3 A) o exp(£(f) — AnAy(f, T))w(f)m(T)
o exp (—%fT (K_1 +07%L, +2\Ct) f + U_Qny) m(T) (25)
X exp (—% TATSf + JiQny) 7w(T).

Here, At := K—' + 021, + 2)\C. That is, the conditional posterior of f given T and o2 is again
a Gaussian process.
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B EXPERIMENTAL DETAILS

B.1 DATASETS

We first explain about benchmark datasets that we used in experiments.

(i) ADULT: Adult dataset (Becker & Kohavi, [1996)) has a label whether income from an individual
is larger than $50K/yr based on census data. We consider sensitive variable as gender. Preprocessing
procedure follows from (Yurochkin et al.,[2020), removing some features in the dataset, and one-hot
encode the discrete and quantized continuous variables.

(i) DuTcH: Dutch census dataset (Van der Laan, 2000; Quy et al., 2022) has a label whether
a person’s occupation can be categorized as high-level or low-level. We consider sensitive
variable as gender. We choose categorical features (‘age’, ‘household.-position’,
‘household_size’, ‘citizenship’, ‘countrybirth’, ‘edu.level’,
‘economic_status’, ‘cur_eco.activity’, ‘marital_status’), and expanded
them by one-hot encoding.

(iii)) CRIME: Communities & Crime dataset (Redmond & Bavejal |2002) has a label of the number of
violent crimes per 100,000 population, based on socio-economic, law enforcement, and crime data
about communities. The label - number of violent crimes - is divided into binary label by its median,
and the sensitive variable - percentage of population that is african american - is also divided into bi-
nary sensitive groups by its median. We dropped (‘state’, ‘country’, ‘community’,

‘fold’, ‘communityname’).

(iv) CELEBA: CelebAMask-HQ is a face image dataset with 30,000 images, annotated with 19
binary facial attributes (e.g., eyeglasses, smiling, wavy hair,..). We consider the attribute
attractive as atarget label and male as a sensitive variable (Female = 1, Male = 0). We utilize
the pretrained ResNet18 to yield the image embeddings of dimension 512.

(v) C1vIL: CivilComments-Wilds (Koh et al.l[2021) is a processed version of the original CivilCom-
ments dataset (Borkan et al., [2019). We consider two sensitive variables from race - ‘black’ and
‘asian’, since the proportion of toxic comments exhibits the largest gap between them. We utilize
the pretrained Roberta (Liu et al.|[2019) to yield a sentence embedding of dimension 768.

We split datasets into two partitions with a proportion 8 : 2, corresponding to train and test datasets,
respectively, except CRIME. For CRIME, we randomly pick one from predefined train / test split
candidates. We use a ReLU network with 2 hidden layers of width 200 for tabular datasets. For
image and text datasets, we use a ReLU network with 2 hidden layers of width 512. Table[T] provides
the basic descriptions of the 5 datasets.

Table 1: Summary statistics for each dataset.

Dataset | Features (d) | Size | Y =1 | S=1 | trainsamples | test samples

ADULT 120 45,222 | 11,208 | 30,527 36,177 9,045
DuTcH 58 60,420 | 28,763 | 30,147 48,336 12,084
CRIME 121 1,994 1,042 1,038 1,794 200
CELEBA 512 30,000 | 17,218 | 18,943 24,000 6,000
CiviL 768 33,613 | 7,714 | 12,059 26,890 6,723

B.2 TRAINING DETAILS

Learning algorithms For deterministic baselines (gapreg, reduction and adv), we randomly di-
vided the train set in to two, with proportions 0.8 and 0.2 for train set and validation set, respectively.
Then we save the model with via the performance on the validation set.

Evaluation metrics As mentioned, we provide 1 utility measure - Acc and 3 uncertainty quan-
tification measures - N11, Ece, and Brier. As mentioned in the main body, Acc is an accuracy
of the Bayes estimator. For uncertainty quantification measure, we measure the performance of the
predictive distribution. Specifically for binary classification, we can calculate the predictive proba-

bility of a test data (z;,y;, s;) as p; = p(y; = 1|x;, s;,Dp) = % Ethl fow (x4, 8;). Considering
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binary classification tasks, N11 can be calculated by the binary cross-entropy with {p;}?_,. Ece is
a measure for calibration scores (Guo et al., 2017), where higher score implies better calibration.
The formal definition is as follows:

M
ECE = E % lacc(B;y,) — conf(B,,)] . (26)
n
m=1

Here, B,,’s are M bins of predictions, with sizes |B,,|. The accuracy and the confidence of the
bins are defined as follows: ace(Brm) = 57 Yiep,, [(#i = ¥i), conf(Bi) == 57 X cp,, Pi-
Brier isastrictly proper scoring rule for measuring the accuracy of probabilistic predictions (Brier,
1950), commonly used in binary classification tasks. The formal definition on a function is as fol-

lows:
n

1
B ier- = - Ai — Y; 2. 27
rier-score n E (p Y. ) ( )

i=1

Other details We use a python package hamilto rchE] (Cobb et al.,|2019) to perform HMC. The
followings are the detailed values for several experimental settings.

For gapreg, reduction, adv and variational_mmd, we trained them with batch size of 1,024 for 100
epochs, with learning rate 0.001 and Adam optimizer. For variational_mmd, we used 5 samples for
train and evaluation, where the prediction probabilities from the samples are averaged and used in the
performance calculation. For Gibbs posteriors, we also used 5 samples where the prior of parameters
are set to the standard Gaussian distributions. Following hyperparameters are organized in the order
of (CRIME, ADULT, DUTCH, CELEBA and CIVIL). For MCMC chains, we utilized (5,10,10,10,500)
burn-in epochs with 10 thinning intervals, respectively, and used HMC with step size of 0.001. To
give an efficient initial value, we utilized pretrained DNN models as initial parameter values, with
pretrain epochs of (50, 30, 10, 20, 70), respectively. For the permutation size of IIj, (larger k implies
faster mixing), we use (10, 5, 10, 10, 10) for k, respectively. For faster convergence, we initialized
T with based on the optimal transport theory (Villani, 2008)), along with the former insights of
Kim et al.| (2025a)). Specifically, we utilized the joint OT map from Kim et al| (2025a) where the

computation of a cost matrix is as follows: C7 := [¢] ;] € R™ X" where ¢ ; = HXi(l) - XJ(O) | +

v\Yi(O) — Yj(l)| with some constant y > 0. Here, (Xi(s), Y;(S)) are observations from X, and n,
are the number of observations for each. Sufficiently large v suppress to match individuals that are
differently labeled. We utilized POIE] package to solve an optimal transport. The values of A\ for
matched Gibbs posterior that we used are provided in Table 2]

All our experiments are conducted on an Intel(R) Xeon(R) Silver 4410Y CPU with 128GB RAM
and NVIDIA GeForce RTX 4090 GPUs.

Table 2: A values that are used in the main experiments.

Dataset ‘ A

CRIME [0.0,1.0, 2.0, 3.0,9.0, 10.0]
ADULT [0.0,0.5,2.0, 3.0, 3.5, 5.0, 6.0]
DuTcH [0.0,1.0,2.0,5.0,8.0,9.0,10.0]

CELEBA [0.0,0.5,1.0,1.5,2.5,4.5,5.5,10.0]
CIviL [0.0,1.0,2.5,5.0,5.5,7.0,9.5,10.0]

Hamiltorch: https://github.com/AdamCobb/hamiltorch
3POT: https://pythonot.github.io/
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C OMITTED RESULTS AND DETAILS

In this section, we provide additional details and results omitted due to the shortage of space, to
support the results in the main manuscript.

C.1 DETAILS OF MATCHED GIBBS POSTERIOR

/'

“T(5) iy — | - T(5)
L L~
/-T(G) iy- |+ T(6)

S 1 s W

NI,

TT(2) 4 > T(in,2)
——-T(4) |:> 5 7 - T(4)
6 / . T(1)

|_—>T(8) i3 T(in,@3))

7 o—]

Figure 4: A visualization of the proposal construction of T — T".

The acceptance probability of a proposal T' can be calculated as:
a(T') = min{1, o/ (T")}. (28)

Denote L as the likelihood function. Here, o is defined as:

wry - P10 Da)a((T = T))
p(T16,D,)a(T — T)

_ p(T)L(Dy; 0, T")q(T' — T)
B p(T)ﬁ(DM 0, T)Q(T - T/)
_ e(T)L(D,;0, T")

~ e(T)L(Dy;6,7T)

(29)

The last equality holds since:
(TN - T)=¢q(T - T). (30)

C.2 ABOUT GROUP-FAIR CONSTRAINED POSTERIOR

In this subsection, we provide the table to show 1 versus 7 ({6 : App(0) < n}|D,,), which was men-
tioned in Section@ Here, App is defined with the threshold 7 = 0. Since the posterior distribution
m(0|D,,) is intractable, we use Monte Carlo approximation to report those values. Specifically,

7({6: oe(®) < )iD) = [ 7(0)£(Dy; 0)(d6)

6:App(0)<n
| 3D

> I(Ape(61) <),

~
~

N

where (V)T are sampled from 7(6)L(D,,;6) using HMC with a learning rate 0.001. We used
train dataset of ADULT as observations, and used a MLP with two hidden layers of width 200, as
the model. We sampled 1,200 times, where first 200 samples are burn-in, and we thin the remaining
samples at intervals of 10, resulting in 100 final samples. Here, original App in the train dataset is
0.1991, i.e. difference on the proportion of positive labeled individuals from each groups.

The results are given in Table[3]showing that: when 7 drops below 0.10, the probability decreases to
0.03, making acceptance-rejection sampling practically infeasible.
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Table 3: 7({6 : App(0) < n}|D,,) values for varying 7.

n 0.08 | 0.09 | 0.10 | 0.11 | 0.12 | 0.13 | 0.14
Prob. || 0.00 | 0.02 | 0.03 | 0.05 | 0.07 | 0.08 | 0.10
n 0.15 | 0.16 | 0.17 | 0.18 | 0.19 | 0.20 | 0.21
Prob. || 0.12 | 0.14 | 0.16 | 0.20 | 0.53 | 0.85 | 1.00

C.3 RANDOM-WALK METROPOLIS-HASTINGS

In Section 3.1} we explained why existing posterior sampling methods are challenging to imple-
ment with complex constraints such as group-fairness constraints. To provide empirical evidence for
this statement, we conduct a simple experiment using the random-walk Metropolis-Hastings with
constraints, which accepts only samples that satisfy a given group-fairness constraint, on ADULT.
Using the train dataset, we propose a random walk proposals with Gaussian noise of learning rate
0.001. Then, we accepted proposals if random uniform variable u ~ Uniform(0, 1) is lower than the
acceptance ratio « and the constraint is satisfied.

In Table El we can observe that as the constraint becomes stricter, the acceptance ratio decreases.
Due to this low acceptance ratio, the efficiency of MCMC samples is significantly reduced. Fig. [3]
is a corresponding illustration. Random proposals (yellow arrows) wander through regions of high
posterior density, which could not satisfy the constraint level.

Table 4: Acceptance ratio of random-walk Metropolis-Hastings, only accepting samples that satisfies
given constraint threshold.

Constraint threshold H 0.18 ‘ 0.175 ‘ 0.17 ‘ 0.165 ‘ 0.16 ‘ 0.155

Acceptance ratio 0.58 | 040 | 0.30 | 0.26 | 0.02 | 0.02
Constraint High
density

Low .
density Posterior

w\o constraint

Figure 5: An illustration of a naive posterior sampling on a constrained parameter space. Yellow ar-
rows indicate steps from a naive Metropolis-Hastings with random proposals, which wander through
regions of high posterior density.
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C.4 OMITTED RESULTS

In this section, we provide all omitted Pareto-front lines of the main result from Section El From
Figs.[6]and[7] we can observe that gibbs_matched shows better performance than other competitors
in terms of performance-fairness trade-offs. For example, gibbs_matched achieves the best trade-off
on all measures in ADULT with large margin. As mentioned in the main body, better Ece does not
guarantee a good model. This is clearly observed with the result of adv, where its performance is
clearly not favorable than others in terms of (Acc, N11, brier), while maintaining good trade-
off in Ece. To mitigate the increase of Ece under strict fairness levels, one can apply calibration
techniques such as temperature scaling (Guo et al., 2017 without degrading Acc. We leave this to
the future work.
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reduction
0.500
adv
0.84 gibbs_matched v
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O —10.425
Qoo 2
0.400
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0.79
gapreg 0.350
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i 0.325
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Figure 6: ADULT. Pareto-front lines between level of A;{ 2 (on the z-axis) and the predictive per-
formance (on the y-axis). The trade-off of proposed matched Gibbs posterior is superior to that of
other competitors.
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Figure 7: DUTCH. Pareto-front lines between level of A%{ 2 (on the z-axis) and the predictive per-
formance (on the y-axis). The trade-off of proposed matched Gibbs posterior is superior to that of
other competitors.
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C.5 ABOUT STRONGLY %-FAIRNESS

Strongly fair VI Here, we empirically validate that the strongly fair variational inference with
mean-field Gaussian does not work well, even for linear models. The experimental setup is similar
to that of Section [C.3] We simply optimize ELBO with a mean-field Gaussian distribution without
any group-fairness aware constraints, on CRIME. For the model, we use a (linear) logistic regression
model, with 100 epochs of training. We report the proportion of samples f that are fair with level 9,
i.e. App(f) < 4. Note that the original App difference in the train dataset is 0.2642. Tableshows
that when § becomes slightly smaller, the proportion of samples f that satisfies the group fairness
constraint vanishes. For the level of 0.24 the proportion is only 1% of the samples, and it totally
vanishes to zero for the level under 0.22. Hence, as mentioned in Section [3.2] variational inference
with the mean-field Gaussian models cannot be directly applied to find a strongly fair distributions.

Table 5: Proportion of samples from mean-field Gaussian distribution optimized with standard
ELBO, under varying level of ¢.

0 0.27 0.26 0.25 024 | 0.23 0.22
Prop. || 0.014 | 0.007 | 0.003 | 0.001 | 0.001 | 0.000

Rejection sampling To show that the aforementioned rejection sampling in Section [3.2] works
well, we conduct an experiment on ADULT. Note that the rejection sampling of »(*) through »(*)
can be performed simply by accepting the samples from () that satisfies Ay(-) < 4. We take
1000 samples from matched Gibbs posterior with the same settings of the main result on ADULT,
and perform a rejection sampling.

Assume that we want samples that satisfies Aév/ % <0.10, which is a quite strict condition as shown
in Fig. [6] By sampling 1,000 samples from matched Gibbs posterior with A = 4.0, we can accept
897 samples that satisfies the condition, yielding 0.897 of acceptance ratio in the rejection sampling.
Hence, we can effectively utilize matched Gibbs posterior to directly obtain strongly fair models.

C.6 ADVANTAGE OF MATCHED GIBBS POSTERIOR: IMPROVED INDIVIDUAL FAIRNESS

As previously noted, the matched deviation resembles the concept of individual fairness, since mini-
mizing it is equal to making outputs from two (matched) individuals. In this section, we empirically
demonstrate how matched Gibbs posterior achieves better individual fairness metrics than other al-
gorithms, when the Aé{ 2 Jevel is similar. We use the consistency score (Con) (Zemel et al.,|[2013;
Yurochkin et al., 2020; |Yurochkin & Sun, 2021), which measures the similarity on the labels for
similar individuals. For the computation, we utilized ai £360 packageﬂ

From Tables [6] and [7, we can observe that the corresponding Con of matched Gibbs posterior
achieves the best along with the best Acc, supporting the advantage of using matched Gibbs poste-

rior. (In CRIME, we report Con of adv with its lowest A\l,,/ 2, due to its instability.)

Table 6: CRIME. With a fixed level of A\lv/z ~ 0.09, the level of Con and corresponding Acc are
reported. The bold faced values implies the best values.

Con (Acc)
gapreg | reduction | ady | variational_mmd | gibbs_mmd | gibbs_matched

0.767 (0.718) ‘ 0.768 (0.724) ‘ 0.834 (0.684) ‘ 0.790 (0.729) ‘ 0.785 (0.696) ‘ 0.837 (0.736)

C.7 MCMC DIAGNOSIS

We show that the MCMC from matched Gibbs posterior well-behaves in practice, which also con-
siders T as a random variable. Following |Betancourt| (2017, we provide several plots of the en-

4https ://aif360.readthedocs.io/en/stable/modules/generated/aif360.
sklearn.metrics.consistency_score.html
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Table 7: ADULT and DUTCH. With a fixed level of A% 2 (approximately 0.09 for ADULT and 0.07
for DUTCH, the level of Con and corresponding Acc are reported. The bold faced values implies
the best Con.

Dataset Con (Acc)

gapreg | reduction | adv | gibbs_matched
ADULT | 0.927 (0.824) | 0.931 (0.824) | 0.954 (0.813) | 0.955 (0.826)
DuTtcH || 0.939 (0.785) | 0.939 (0.788) | 0.960 (0.786) | 0.965 (0.809)

ergy from each MCMC samples, that are commonly used to diagnose whether the MCMC is well-
behaved. We also provide the energy Bayesian fraction of missing information (E-BFMI), a value
that is larger than 0.3 indicates that the MCMC is not problematic (Betancourt, |2017). The definition
of E-BFMI is as follows:

> net (Bn = Bno1)?

(En - E)
Here, E,, is an energy (U + K in HMC) values of the n-th sample. For the diagnosis, we provide 3

energy related plots - traceplot of F,,, histogram of AE,,, and lag plot (E,,_1, E,,) - in Fig. [8 with
results on ADULT. To validate the convergence, we provide the plots when the fairness level of the

predictive distribution (Ey A\l;\,/ 2) is strict (= 0.09). We can observe that the F,, trace reduces first and
then become stationary. Also, AF,, is well-distributed (not too sharp or wide, symmetry with center
0) and the lag plot is well-distributed as a point cloud of circle, indicating low autocorrelation, even

when the group-fairness constraint is strict. In this case, E-BEMI ~ 1.646 > 0.3 holds, indicating
that the MCMC well-behaves.

E-BFMI :=

(32)

Energy trace AE histogram Lag plot of energy
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Figure 8: Energy related plots of MCMC samples of matched Gibbs posterior on ADULT, when
1/2
EgAy ™ ~ 0.09.

We also measure the acceptance probability of T with different levels of A. For A =
(0.0,0.5,2.0,3.0,3.5,4.0), corresponding acceptance ratio is (0.38,0.32,0.3,0.36,0.38,0.36),
where the range of [0.2,0.5] is generally recommended in practice (Gelman et al. [1997; Roberts
& Rosenthal, 2001). Hence, we conclude that our proposal of T for the Metropolis-Hastings is
reasonable.
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D ABLATION STUDIES

D.1 EFFECT OF 7

In this section, we study the effect of 7 to performances defined in the prior of T, in Eq. (§). We
report the performance of matched Gibbs posterior when 7 is varying, on ADULT. Fig. [9represents
the trade-offs when the fairness level is strict, using 7 € {0.01,0.1,1.0}. Table [§]is the detailed
values of prediction performances. Note that smaller 7 implies more powerful prior. We can observe
that the values results in minimal variation. In other words, we can conclude that the choice of
7 = 1.0 does not significantly impact the main result. Hence, we can say that the belief from the
observation is strong enough to overcome the effect of the prior, in the practical use of matched
Gibbs posterior on ADULT.

tau=0.000001 tau=0.000001 0128 tau=0.000001 tau=0.000001
0.835 tau=0.001 0390 tau=0.001 tau=0.001 0.070 tau=0.001
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Figure 9: Pareto-front lines between level of group fairness A\lv/ % and prediction performance of
matched Gibbs posterior, with different values of 7, on ADULT.

Table 8: Detailed values of the prediction performance with varying 7, when Ay = 0.09 on ADULT.

-
Measures 001 | 01 | 1.0

Acc (x10%) 82.892 | 82.888 | 82.888
N11(x10%) 36.462 | 36.463 | 36.463
brier (x10%) | 11.860 | 11.860 | 11.860
Ece (x10%) 4392 | 4395 | 4.395

D.2 EFFECT OF PRETRAIN EPOCHS

To induce the faster convergence, we utilized pretrained DNN parameters as initialization of the
model parameters. We conduct an additional experiment by varying pretrain epochs on ADULT,
to observe the effect on the performances. With the same setting from the main result, we report
the Pareto-front lines with varying pretrain epochs as [10, 20, 30, 40], and use the same values for
remaining hyperparameters such as burn-in epochs. Note that we utilized 30-epoch case for the
initialization in the main result.

Fig.[10]is the corresponding Pareto-front lines. Although quality of MCMC samples largely depends
on the chain configuration, we can observe that the number of pretrain epochs does not significantly
affect the predictive performance of matched Gibbs posterior when the chain is sufficiently iterated,
which is not for the case for 10 epochs. The 10-epoch case shows large performance gaps, primarily
because the MCMC was not run long enough. We can also observe that more pretrain epochs results
better performance, primarily because the MCMC converges more quickly.

D.3 EFFECT OF FLIPPED SENSITIVE ATTRIBUTES

Matched Gibbs posterior utilizes the matched deviation defined in Eq. (6). When the number of
individuals from each sensitive group are different, the matched deviation changes when the labels
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Figure 10: Pareto-front lines between level of group fairness A\l,v/ % and prediction performance of
matched Gibbs posterior, with varying pretrain epochs, on ADULT.

of sensitive attributes are flipped. Practically, we construct the matching function T from the smaller
sensitive group to the larger sensitive group. To observe the effect of the flipping, we conduct an
experiment on ADULT with the same settings from the main result.

In Fig.[T1] we can observe that flipping the sensitive attribute (orange line) does not lead to a sig-
nificant change in performance. The slight decrease in performance can likely be explained by the
fact that matching from the larger group naturally permits many-to-one matching, which may overly
reduce the distance between individuals from S = 0 and S = 1. In contrast, matching from the

smaller group does not exhibit this issue.
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Figure 11: Pareto-front lines between level of group fairness A\IV/ % and prediction performance of
matched Gibbs posterior, with flipped sensitive attributes, on ADULT.
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