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ABSTRACT
The co-administration of drugs may lead to adverse drug interac-
tions, posing risks to the organism. Therefore, predicting potential
drug interactions is crucial. Compared to in vitro experiments and
clinical trials for DDI prediction, computational methods are widely
used due to their efficiency and other advantages. We propose a
deep learning technique, namely the PGCN-DDI model, which en-
hances the traditional GCN’s message passing function through
a neighborhood overlap similarity algorithm and improves the
aggregator using the Pearson correlation coefficient, ultimately
enhancing the model’s capability to represent drug node features.
We utilize multidimensional features of drugs, including chemical
substructure, metabolic pathways, targets, drug ingredients, and
drug categories, as model inputs for DDI prediction. We conduct
experiments on different feature sets to assess the amount of infor-
mation contained in different features, leveraging PGCN-DDI to
learn drug node features. The results indicate that the combination
of drug features (i.e., chemical substructure, targets, and metabolic
pathways) outperforms other features in DDI prediction. The ex-
perimental results demonstrate that the PGCN-DDI model achieves
an accuracy of 0.8921, an AUC of 0.9458, and an AUPR of 0.9208,
all of which show improvements over several baseline models.

CCS CONCEPTS
• Applied computing→ Consumer health.
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1 INTRODUCTION
Although combining medications is common in treating complex
diseases or processes requiring synergistic therapy, the possibility
of adverse effects from interacting drugs, known as Drug-Drug
Interactions (DDIs), poses a risk to patient lives. DDIs, often caused
by chemical-physical interactions between co-administered drugs,
contribute significantly to drug withdrawals and incur substantial
healthcare costs. Therefore, DDIs have become a focal point in clin-
ical research. This study falls into the category of DDI prediction,
aiming to forecast interactions between pairs of drugs. Automated
computational methods, such as machine and deep learning, are cru-
cial in addressing this issue due to limitations in manually screening
DDI candidates during clinical trials and handling the rapid growth
of biomedical data. This work proposes a deep learning-based auto-
mated computational approach for predicting DDIs between pairs
of drugs. Leveraging graph convolutional neural networks with
enhanced message-passing functions and aggregators, it learns

graph representations of drugs’ multidimensional features. In the
message-passing step, drug node features are scaled based on the
similarity of neighborhood overlaps. A neighborhood overlap sim-
ilarity algorithm is proposed to derive weighting coefficients for
scaling. In the aggregation stage, the linear correlation between
feature vectors of two drug nodes in the feature space is consid-
ered. Pearson correlation coefficient measures the linear correlation
between feature vectors of two drug nodes, allowing nodes with
stronger linear correlations to have higher contributions.

2 RELATEDWORK
Methods based on automated computation can roughly be classified
into the following categories: (1) methods based on Natural Lan-
guage Processing (NLP), (2) methods based on matrix factorization,
(3) methods based on machine learning,(4) methods based on deep
learning.

NLP-based methods utilize a large amount of text data to mine
and analyze drug-drug interaction (DDI) information using domain
knowledge, clinical evidence, and automated techniques. They can
quickly retrieve, filter, and integrate scattered information, discover
patterns and trends hidden in a large number of literature, and im-
prove computational models with more external knowledge to en-
hance predictive performance and interpretability. Asada et al. pro-
posed a new method for DDI extraction that effectively utilizes ex-
ternal drug database information and information from large-scale
pure text. They focus on drug descriptions and molecular structure
information as drug database information[1]. Liu et al. proposed a
machine learning framework to extract useful features from FDA
adverse event reports and then used a semi-supervised learning
algorithm based on autoencoders to identify potential high-priority
DDIs[2].Zhao et al. proposed a DDI extraction method based on
Syntax Convolutional Neural Networks (CNNs) and achieved better
performance than other state-of-the-art methods[3].

Matrix factorization methods include non-negative matrix fac-
torization, singular value decomposition, principal component anal-
ysis, LU decomposition, etc., and the DDI prediction task is akin
to matrix completion tasks. Zhang et al. proposed a manifold reg-
ularized matrix factorization method for DDI prediction[4]. Yu et
al. developed a novel method called DDINMF based on semi-non-
negative matrix factorization[5]. Zhu et al. designed a dependency
network to model drug dependencies and proposed a probabilistic
matrix tri-factorization model for DDI prediction[6].

Research methods based on machine learning for predicting DDI
are very diverse. For example, Kstrin et al. considered both topo-
logical and semantic feature similarities and used five classifiers to
predict drug-drug interactions[7]. Qian et al. constructed a gradient
boosting classifier using feature similarity and feature selection
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methods to speed up the process and achieve robust predictive
performance[8]. Gottlieb et al. computed seven types of similarities
and combined the two best similarities for each drug pair to gen-
erate a feature[9]. Cami et al. used standard ensemble methods to
combine multiple predictors for DDI prediction[10]. The authors
constructed a DDI network and obtained multiple covariates from
the network to build logistic regression models and generalized
linear mixed models. Chen et al. extracted features from simplified
molecular input line entry system data and drug pair adverse effect
similarity and applied support vector machines (SVMs) to predict
DDI[11].

Models based on deep learning mainly include models based on
graph embeddings, models based on deep neural networks (DNNs),
and models based on knowledge graph embeddings. Compared to
traditional machine learning andmatrix factorization, deep learning
can automatically extract features, reducing human intervention. It
excels in handling complex data features and large-scale datasets,
resulting in higher model accuracy. Rohani et al. computed various
drug similarities and Gaussian interaction curves for drug pairs,
applied this method to select features with maximum information
and less redundancy, then used the feature vectors of drug pairs as
inputs to neural networks for prediction[12]. Zitnick et al. proposed
a method to predict drug side effects, considering DDI prediction
as a multi-modal graph problem involving multiple relationship
chains on the graph, including relationships between drugs, pro-
teins, and side effects[13]. They used Graph Convolutional Net-
works (GCN) as encoders to generate embeddings of nodes on the
graph and used tensor factorization models as decoders to predict
DDIs. Additionally, this work extends GCN to graphs with multi-
ple node types and multiple edge types. As part of deep learning,
Graph Neural Networks (GNNs) are particularly adept at process-
ing graph-structured data. GNNs have many applications, for in-
stance, Gupta et al. proposed a GNN model that integrates spatial,
topological, and temporal information into node representations
to model spatiotemporal processes in road networks, addressing
various challenges[14]. Ding et al. proposed a fine-grained IP geolo-
cation framework based on GNNs[15]. Wang et al. used GNNs to
predict the impact of mutations on protein stability[16]. The ability
of GNNs to extract features from graph-structured data is widely
recognized by many researchers. Using GNNs as a tool for drug
interaction prediction allows for the comprehensive learning of the
topological features of drug interaction networks and the intrin-
sic features of drug nodes. This paper proposes an algorithm that
enhances the message passing and message aggregation functions
of GNNs to improve their learning ability, thereby increasing the
accuracy of drug interaction prediction.

3 PROPOSEDWORK
GCN is a subset of GNN. GCN aggregates information from nodes
and their neighborhoods by introducing convolution operations on
graph-structured data, generating node representations. We take
GCN as tool for our study. GCN progressively updates node feature
representations through multiple rounds of message passing and
aggregation, utilizing information from nodes and their neighbors
to learn each node’s representation. The process comprises three

main parts: message passing, message aggregation, and node rep-
resentation updating. This paper mainly contributes to the first
two parts, illustrated in Fig. 1. In summary, this method aims to
reveal the importance of nodes in a different way by considering
the linear correlation between nodes relative to the target node and
the degree of overlap similarity in their neighborhoods.

3.1 MessagePassing Function
In traditional GCN, each layer defines a matrix that specifies how
node features are transformed before being passed to the next layer.
In other words, the message passing function simply forwards node
features to the next layer. In contrast, the model proposed in this
paper scales node features during the message passing step based
on the degree of neighborhood overlap similarity. To achieve this, a
neighborhood overlap similarity algorithm is introduced to obtain
the weight coefficients used for scaling.The algorithm is as follows:

Firstly, calculate the neighborhood overlap similarity between
the central node and its first-order neighboring nodes using the
following formula:

𝐽 (𝑎, 𝑏) = |𝑋 ∩ 𝑌 |
|𝑋 ∪ 𝑌 | × 𝛼

Where 𝑋 is the first-order neighborhood set of the central node 𝑎
in graph 𝐺 , and 𝑌 is the first-order neighborhood set of the neigh-
bor node 𝑏 in graph 𝐺 . Ultimately, an overlapping neighborhood
similarity matrix is obtained, denoted by 𝐺𝑎𝑡ℎ𝑒𝑟_𝑠𝑖𝑚𝑠:

𝐺𝑎𝑡ℎ𝑒𝑟_𝑠𝑖𝑚𝑠 = {𝐽1, 𝐽2, 𝐽3, . . . , 𝐽 |𝐸 | }
with dimensions |𝐸 |𝑥1.The matrix 𝐺𝑎𝑡ℎ𝑒𝑟 − 𝑠𝑖𝑚𝑠 is processed

by inputting it into a weight function inversely proportional to the
neighborhood overlap similarity. This weight function is defined
as:

𝐺𝐽 (𝑎, 𝑏) =
(

1 + 𝑒− 𝐽 (𝑎,𝑏 )

2
,

1 + 𝑒−2𝐽 (𝑎,𝑏 )

2
, . . . ,

1 + 𝑒−𝑁 𝐽 (𝑎,𝑏 )

2

)𝑇
The term 1+𝑒− 𝐽 (𝑎,𝑏)

2 is used to map the original values to a prob-
ability space, where the range is mapped from [0, 1] to [0.5, 1].
This adjustment increases the confidence in the occurrence of an
event, a process known as calibration in statistics. In probability
theory, probabilities within the range [0.5, 1] are generally consid-
ered closer to the true probabilities of events, as they correspond
to higher confidence levels. This adjustment imbues the resulting
vector with a more dynamic and rich characteristic, allowing for
better expression of similarities and differences between data. It
is commonly used to calibrate model outputs to better align with
real-world scenarios and improve predictive performance.𝑁 is a
positive integer. The obtained vector𝐺 𝐽 (𝑎, 𝑏) is of size |𝐸 |𝑥𝑁 , which
is then fed into a perceptron for nonlinear transformation, merging,
and integration of various features and details from the original
high-dimensional vectors:

𝑓 𝑔(𝑎, 𝑏) = 𝜏 (𝑊𝑀𝐿𝑃 ·𝐺𝐽 (𝑎, 𝑏) + 𝑏𝑖𝑎𝑠)
Here, 𝜏 (·) represents the activation function, and 𝑏𝑖𝑎𝑠 is a con-

stant parameter.Finally, 𝑓 𝑔(𝑎, 𝑏) is input into a dropout layer to
output the final weight coefficients 𝐹 (𝑎, 𝑏).The weight coefficients
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Figure 1: Message passing and message aggregation process

are then incorporated into the message passing process and scaled
using the weight coefficients. The scaling formula is as follows:

𝑛𝑤𝑡 = 𝐹 (𝑤, 𝑣) ∗ ℎ𝑤𝑡 , 𝑤 ∈ 𝑁 (𝑣)

𝑚𝑣𝑡 = (𝑛𝑤𝑡 , 𝑒𝑣𝑤)

3.2 Aggregation Function
After message passing, the central node’s mailbox receives informa-
tion from k-hop neighbors, which is aggregated using a function.
Traditional aggregation functions in graph GCNs are simple mean
and pooling. Specifically, mean aggregation computes the average
of neighbor features, while pooling aggregation performs pooling
operations (e.g., max or mean pooling) on neighbor features to
obtain a summarized representation. In this work, an improvement
is proposed for the GCN model’s aggregation function. Before ag-
gregation, weights are assigned to each node, calculated using the

Pearson correlation coefficient, a statistical measure of linear corre-
lation between two vectors ranging from -1 to 1. This coefficient is
used to scale neighbor features, considering their linear relationship
in feature space. The formula for the Pearson correlation coefficient
is:

𝜌𝑥𝑦 =

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)√︂∑𝑛

𝑖=1 (𝑥𝑖𝑥)2 ·
√︃∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦)2

The magnitude of the Pearson correlation coefficient between
two vectors X and Y can be visually presented. For example, when
the coefficient is 0.990, the visualization of X and Y is as shown
in Figure 2, and when it is 0.894, the visualization is as shown in
Figure 3.

𝑃 = Pearson(𝑛𝑡𝑤 , ℎ𝑡𝑣)

𝑚𝑡+1
𝑣 = (𝑃 ∗ 𝑛𝑡𝑤 , 𝑒𝑣𝑤)
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ℎ𝑡+1
𝑣 = 𝑈𝑡 (ℎ𝑡𝑣,𝑚𝑡+1

𝑣 )
After scaling neighbor features using the Pearson correlation

coefficient as weights,𝑚𝑡+1
𝑣 is obtained.𝑈𝑡 is the update function

used to update the representation vector ℎ𝑡𝑣 of node 𝑣 , resulting
in the final central node representation ℎ𝑡+1

𝑣 . In Figure 1, there is
an example where the central node is numbered 1, and it has four
neighboring nodes, numbered 2, 5, 6, and 7, as shown in step a. Step
b is the message passing process, where neighboring nodes transmit
their feature information to node 1. Before transmission, a weight
coefficient is obtained based on the neighborhood overlap similarity
algorithm. This weight coefficient scales the feature information,
which is then transmitted to the mailbox. In step c, the aggregator
calculates the Pearson correlation coefficient between the scaled
feature information and the feature information of node 1, which
measures the strength of the linear correlation. This results in
another scaling. Finally, in step d, the feature vector of node 1,
which aggregates the neighbor information, is updated.

Figure 2: When the Pearson coefficient equals 0.990.

The proposed modification is compatible with most existing ag-
gregation functions, such as mean and pooling. However, mean
aggregation function is empirically chosen and employed in the cur-
rent model. Additionally, the aggregation function design adheres
to the theory of permutation invariance (Defferrard et al., 2016),
meaning it does not depend on the ordering of nodes in the graph.
This ensures its compatibility with various aggregation functions
to accommodate different graph representations and scenarios.

3.3 Extract drug features
In this study, the datasets were sourced from three databases: Drug-
Bank, PubChem, and DDinter. We obtained the network topology
graph of drug interactions from DDinter, the chemical structure
features of drug molecules from PubChem, and the features such
as drug targets, drug categories, drug ingredients, and metabolic
pathways from DrugBank.

The molecular fingerprints of drugs obtained from the PubChem
database consist of 230 hexadecimal digits, which were converted

Figure 3: When the Pearson coefficient equals 0.894.

into 920 binary digits. As illustrated in Figure 4, each digit of this
binary number represents a chemical structure, with a value of
1 indicating the presence of that structure in the drug molecule
and 0 indicating absence. We calculated the Tanimoto coefficient
between pairs of drugs using these binary numbers. The formula
for calculating the Tanimoto coefficient is as follow:

𝑇 =
|𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 |

In this formula,𝑇 represents the Tanimoto coefficient, and𝐴 and
𝐵 represent two binary numbers. |𝐴 ∩ 𝐵 | represents the number
of positions where both sets 𝐴 and 𝐵 have a value of 1, and |𝐴 ∪
𝐵 | represents the total number of positions where either set 𝐴
or 𝐵 has a value of 1. This computation yields a matrix of drug
two-dimensional structural similarity. We then applied Principal
Component Analysis (PCA) to reduce the dimensionality of this
matrix, resulting in a molecular structure feature vector for each
drug. Next, the drug targets, drug categories, drug ingredients,
and metabolic pathways are encoded as follow: Iterate through
all drugs to determine the common N drug targets. Then, for each
drug, perform the following process: For drugs with a certain target,
change the corresponding position from 0 to 1 in an N-dimensional
zero vector, resulting in an N-dimensional target feature vector
for the drug. The same process is applied to drug categories, drug
ingredients, and metabolic pathways. Finally, this yields target
feature vectors, drug category vectors, drug ingredient vectors, and
metabolic pathway vectors. These vectors are concatenatedwith the
molecular structure feature vectors. Principal Component Analysis
(PCA) is then applied for dimensionality reduction to obtain the
final node feature vectors for each drug.

4 EXPERIMENT
This section primarily evaluates the performance of PGCN-DDI
on various feature sets and compares it with the state-of-the-art
prediction model:DDIMDL. Additionally, we considered several
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Figure 4: A schematic diagram of chemical substructure molecular fingerprints.

popular classification methods, such as DNN and KNN. To demon-
strate our advantages, we compared PGCN-DDI with these mod-
els.We use ACC, AUC, AUPR, and F1 as model evaluation metrics.
ACC (Accuracy) represents the proportion of correctly classified
samples out of the total samples. AUC (Area Under Curve) mea-
sures the area under the ROC curve, evaluating the classifier’s
ability to distinguish between positive and negative samples. AUPR
(Area Under Precision-Recall Curve) reflects the classifier’s per-
formance on imbalanced data by measuring the area under the
precision-recall curve. F1 score is the harmonic mean of precision
and recall, providing a comprehensive evaluation of the classifi-
cation performance. In terms of model implementation, there are
several open-source frameworks to choose from, most of which
are built using the Python programming language, including Deep
Graph Library (DGL), PyTorch Geometric, MXNets, Graph Nets,
and DIG. We choose to implement and experiment using PyG. All
experiments were conducted on a computer equipped with an In-
tel Core i7-10700K@3.8 GHz processor and an NVIDIA GeForce
GTX 3060 Ti GPU. All models were implemented in a Python 3.7.11
environment, trained and tested using the PyTorch framework on
CUDA 11.1. To introduce non-linearity and compute losses, we
adopted the Softmax function and the cross-entropy loss function.
In the previous formula 𝐽 (𝑎, 𝑏), 𝛼 is an adjustable parameter used
to weigh the calculation of Jaccard similarity. By adjusting 𝛼 , the
weighting of neighboring nodes in the Jaccard similarity calculation
can be controlled. A larger 𝛼 value emphasizes the importance of
nodes that commonly appear among the neighbors of nodes 𝑎 and
𝑏, while a smaller 𝛼 value treats all neighboring nodes more equally.
Therefore, the choice of 𝛼 affects the result of the Jaccard similarity
calculation, thereby impacting the calculation of the similarity de-
gree between nodes 𝑎 and 𝑏. This 𝛼 is considered a hyperparameter.
We started with an 𝛼 value of 0.5 and increased it by 0.5 in each
experiment. Ultimately, we found that an 𝛼 value of 1.5 yielded
better results than 1.0 and 2.0.

4.1 Performance on different feature sets
To evaluate the influence of different feature sets on model perfor-
mance, we conducted a series of experiments, including using only
single drug features and different combinations of drug features.
Table 1 shows the results of single features and feature combina-
tions, where S denotes chemical substructures, T denotes targets, C
denotes categories, I denotes ingredients, and M denotes metabolic
pathways. The accuracy when using only the network topology
structure is 0.7611. When chemical substructure features are added,
the accuracy increases to 0.8671. The accuracy for metabolic path-
ways is 0.8217, while for target models it is 0.8321. When only
drug ingredients, drug categories, and other features are added, the
accuracy ranges from 0.770 to 0.780, indicating relatively less infor-
mation provided by these features. We conducted experiments on
feature fusion based on the top three features ranked by the amount
of information provided by single drug features. The accuracy for
the fusion of chemical substructure and metabolic pathways is
0.8783, surpassing all other drug features used in other feature com-
binations. When fusing these three sets of features, the accuracy
for chemical substructure, target, and metabolic pathways is 0.8921.
Training the model on all combinations of four or more features
yields an accuracy of 0.8853. Experimental results indicate that the
performance level of drug combinations using all features cannot
reach that of the aforementioned three features. In Figure 5, it is
evident that when fusing these three sets of features, the remaining
metrics for chemical substructure, target, and metabolic pathways
are all highest.

4.2 Comparing with other methods
In the following experiments, wewill train themodel using a dataset
containing both the network topology information of drug nodes
and the feature information of drug nodes, utilizing only three fea-
tures: chemical substructures, targets, and enzymes, which have
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Figure 5: The four evaluation metrics on different feature sets

Fea ACC AUC AUPR F1
N 0.7611 0.8721 0.8411 0.7321
N+S 0.8671 0.9221 0.8911 0.8381
N+T 0.8321 0.8933 0.8623 0.8031
N+C 0.7791 0.8788 0.8478 0.7501
N+I 0.7703 0.8803 0.8493 0.7413
N+M 0.8217 0.8822 0.8512 0.7927
N+S+T 0.8699 0.9311 0.9001 0.8409
N+S+M 0.8783 0.9403 0.9093 0.8493
N+T+M 0.8576 0.9199 0.8889 0.8286
N+S+M+T 0.8921 0.9533 0.9223 0.8631
N+S+T+C+I+M 0.8853 0.9489 0.9179 0.8563

Table 1: Results of the model on different feature sets.

demonstrated better performance. This experiment will be com-
pared with methods such as DDIMDL, KNN, and DNN, where the
neighbor value for KNN is set to 3. In Figure 6, it can be observed
that PGCN-DDI encloses a larger area with the coordinate axes
compared to the other methods. The experimental results of PGCN-
DDI and the other models are presented in Table 2, where our model
achieves high accuracy and AUC values of 0.8921 and 0.9458, respec-
tively. Additionally, both AUPR and F1 are higher than the other
three methods, as depicted more intuitively in Figure 7, highlighting
the superiority of PGCN-DDI.

5 CONCLUSION
In recent years, deep learning techniques have been applied to
predict Drug-Drug Interactions (DDI). However, most of these stud-
ies have focused on a single feature of drugs or considered only

Method ACC AUC AUPR F1
PGCN-DDI 0.8921 0.9458 0.9208 0.7671
DDIMDL 0.8733 0.9046 0.8796 0.7483
KNN 0.7414 0.8901 0.7922 0.6122
DNN 0.8521 0.9023 0.8773 0.7271

Table 2: Comparison results with other methods.

Figure 6: ROC curve plot comparing results with other meth-
ods.
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Figure 7: The four metrics compared with the other methods

whether one drug interacts with another. In this study, we acquire
multidimensional features of drugs from multiple drug databases,
as well as the topological features of known drug interaction net-
works. We propose a neighborhood overlap similarity algorithm
to enhance the message passing function and utilize Pearson cor-
relation coefficient to study the linear correlation of drug feature
vectors, thereby enhancing the aggregator. Finally, we combine
diverse drug features for DDI prediction and demonstrate through
experiments that our model achieves better prediction accuracy.
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