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Abstract

Investigating outliers in large language models
(LLMs) is crucial due to their significant impact
on various aspects of LLM performance, in-
cluding quantization and compression. Outliers
often cause considerable quantization errors,
leading to degraded model performance. Iden-
tifying and addressing these outliers can en-
hance the accuracy and efficiency of the quanti-
zation process, enabling smoother deployment
on edge devices or specialized hardware. Re-
cent studies have identified two common types
of outliers in LLMs: massive activations and
channel-wise outliers. While numerous quanti-
zation algorithms have been proposed to miti-
gate their effects and maintain satisfactory ac-
curacy, few have thoroughly explored the root
causes of these outliers in depth.

In this paper, we conduct a comprehensive in-
vestigation into the formation mechanisms of
these outliers and propose potential strategies
to mitigate their occurrence. Ultimately, we
introduce some efficient approaches to elimi-
nate most massive activations and channel-wise
outliers with minimal impact on accuracy.

1 Introduction

Large Language Models (LLMs) have emerged as a
cornerstone in the field of natural language process-
ing (NLP), transforming how we approach various
linguistic tasks. These models, with their ability to
understand and generate human-like text, have rev-
olutionized applications ranging from conventional
NLP tasks such as machine translation (Huang
et al., 2023; Xu et al., 2024; Zhu et al., 2023), sen-
timent analysis (Miah et al., 2024; Wang et al.,
2024; Deng et al., 2023) to advanced tasks such as
code generation (Kazemitabaar et al., 2023; Thakur
et al., 2024; Nakkab et al., 2024). However, the
enormous size of LLMs, often reaching billions of
parameters, presents substantial challenges for de-
ployment, necessitating the use of techniques that
enable efficient inference.

To address this, Post-Training Quantization
(PTQ) (Frantar et al., 2022; Xiao et al., 2023; Lin
et al., 2024a; Yao et al., 2022) provides a prac-
tical, low-cost approach for model quantization,
either completely training-free or with minimal cal-
ibration effort (Cai et al., 2020; Li et al., 2021).
In comparison to Quantization-Aware Training
(QAT), which demands multiple fine-tuning itera-
tions, PTQ incurs much lower computational costs,
making it suitable for LLM. Unfortunately, outliers
in LLM activations and KV vectors (Dettmers et al.,
2022; Zeng et al., 2022) introduce significant mag-
nitude variations among LLLM elements, which in
turn lead to a notable drop in model accuracy when
low-precision PTQ is applied (Xiao et al., 2023;
Tseng et al., 2024; Ashkboos et al., 2024b).

Prior research has identified two types of outliers
in LLM activations. The first, massive activations
(MAs), commonly appear across various LLMs
and are typically linked to specific tokens in cer-
tain channels (Sun et al., 2024). The second type,
channel-wise outliers (Dettmers et al., 2022; Xiao
et al., 2023; Ashkboos et al., 2024b), manifests in
bulk within specific channels. These findings have
inspired a two-stage approach in modern quantiza-
tion techniques: initially, methods are employed
to eliminate outliers in the pretrained LLM, result-
ing in a model with a smoother value distribution
in its activations. Subsequently, quantization al-
gorithms such as GPTQ (Frantar et al., 2022) and
OBQ (Frantar and Alistarh, 2022) are applied to
produce low-precision LLMs, as shown in Figure 1.

Outlier smoothing is a crucial step in achieving
efficient LLM quantization. Understanding the root
causes of outliers is essential for developing effec-
tive quantization techniques and gaining deeper
insights into model behavior and robustness. While
prior studies have identified the presence of MAs
and channel-wise outliers, and proposed methods
to mitigate them (Sun et al., 2024; Liu et al., 2024;
Bini et al., 2024; Xiong et al., 2024), none have
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Figure 1: Given a pretrained LLM, techniques are first
applied to smooth out the outliers in its activations. The
resulting model is then quantized, achieving superior
accuracy.
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explored the fundamental reasons behind the exis-
tence of these outliers from a numerical perspective,
particularly with operator-level granularity. This
finer-grained understanding is crucial, as different
layers and operators may contribute uniquely to
the formation and propagation of LLM outliers,
influencing both performance and accuracy in low-
precision LLMs.

In this work, we investigate the underlying rea-
sons for the existence of outliers in LLMs at the
operator level through extensive empirical analy-
sis. Our study provides valuable insights to guide
the development of effective outlier smoothing al-
gorithms. Building on these findings, we propose
some novel methods to efficiently mitigate the ma-
jority of massive activations and channel-wise out-
liers without compromising model accuracy. This
significantly reduces the complexity of subsequent
LLM quantization processes. In summary, our find-
ings on LLM outliers can be summarized as fol-
lows:

* We empirically demonstrate that massive ac-
tivations (MAs) are predominantly generated
in the initial layers the model. Once these
MAs arise, they persist throughout the LLM,
being propagated through subsequent layers
via residual connections.

* Previous studies indicate that the removal of
MAs can significantly impact the quantization
process. Surprising, our empirical analysis
shows that eliminating MAs introduced by
residual connections has no measurable effect
on the model’s accuracy. Notably, these MAs
constitute the majority of MAs in LLMs.

* Channel-wise outliers in LLMs initially
emerge due to the normalization operations
within the model. The rescaling operation
within the normalization layer exacerbates this
issue by introducing an increasing number of
channel-wise outliers.

* Certain channels within the weight matri-
ces can also contribute to the emergence of
channel-wise outliers in the intermediate re-
sults of LLMs.

2 Background and Related Work
2.1 LLM Operations

Modern LLMs (e.g., Llama series (Touvron et al.,
2023a,b), GPT series (Radford et al., 2019; Brown,
2020)) are constructed as a stack of transformer
decoders, with each decoder comprising two fun-
damental components: a Self-Attention (SA) block
and a feed forward network (FFN), as depicted in
Figure 2 (a). During the LLM serving process,
the input to the Self-Attention (SA) block is first
processed by a normalization operation (e.g., Lay-
erNorm or RMSNorm). As detailed in Figure 3(d),
this normalization consists of two key steps: stan-
dardization and rescaling. Specifically, the input X
is normalized by subtracting its mean ux and di-
viding by its standard deviation o x. Subsequently,
each channel of the standardized output is scaled
by a learnable parameter -y and shifted by another
learnable parameter (5.

The output of the normalization operation is then
multiplied with three weight matrices Wg, W,
and Wy, yielding the outputs referred to as query
(9), key (k), and value (v), which is shown as x3,
x4 and x5 in Figure 2, respectively. The resulting
q and k, in combination with v, will then undergo
multiplication, Softmax, and residual addition to
generate the SA output, as shown in Figure 2 (b).

The output from the SA will then be passed
to the FFN for further processing, which typ-
ically involves a gated MLP (Radford, 2018;
Radford et al., 2019) (Figure 2 (c)) or standard
MLP (Liu et al., 2021; Touvron et al., 2023a,b)
(Figure 2 (d)). The FFN consists of a normaliza-
tion operation, multiple fully connected (FC) lay-
ers along with an intermediate activation function,
such as GeLU (Hendrycks and Gimpel, 2016) or
SiLU (Hendrycks and Gimpel, 2016).

2.2 Outlier in LLM

As prior studies have demonstrated (Dettmers et al.,
2022; Zeng et al., 2022; Sun et al., 2024), outliers
can be categorized into two types: massive activa-
tions (MA) and channel-wise outliers (CO). The
presence of outliers in LLM activations and KV
vectors (Dettmers et al., 2022; Zeng et al., 2022)
often causes a significant drop in model accuracy
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Figure 2: (a) Architecture of a LLM decoder block. (b), (c) and (d) show the architectures of self-attention block,
standard FFN (conventional MLP), and gated FFN (GLU), respectively. The notations will be used throughout the

rest sections.
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Figure 3: (a) One example of massive activation pre-
sented in the inputs x1. (b) An example of outlier chan-
nel at position zs in the LLM. (c¢) The existence of
outlier will lead to an output Y’ different from the origi-
nal output Y. (d) The normalization operations within
LLM.

when low-precision PTQ is applied (Xiao et al.,
2023; Tseng et al., 2024; Ashkboos et al., 2024b).

While earlier research, such as (Bondarenko
et al., 2023), has shown that the attention mech-
anism can lead to excessive activations by concen-
trating too much on specific tokens, resulting in
scenarios where the mechanism fails to remain in-
active and creates an outlier problem, these studies
mainly focus on BERT architectures. In contrast,
our analysis expands the scope to include LLaMA,
GPT, and Qwen models. This broader investiga-
tion provides new insights into the architectural
changes that can give rise to activation outliers. As
discussed in (Li et al., 2024), performing kurtosis
on the activation tensor to reflect on MAs in GLUs,
though our focus here remains on characterizing
and categorizing the outlier phenomenon and pro-
viding a simpler method to remove MAs.

To demonstrate this, we profile the inputs 2 to
the Wy, Wk, and Wy matrices within the self-
attention (SA) block, as shown in Figure 2, using
the Wikitext dataset (Merity et al., 2016) on the
LLaMA-7B model. Following the notations in Fig-
ure 2, we record the input to the normalization
operation, x1. The results presented in Figure 3 (a)
highlights the presence of MAs in z;, with mag-
nitudes often reaching thousands. Furthermore,
these MAs propagate through the normalization
operation, causing x2 to also exhibit some outliers.

Although the magnitude of these outliers is reduced
after normalization, they remain significant. Ad-
ditionally, Figure 3 (b) shows that distribution of
the COs in x9, corroborating earlier findings (Xiao
et al., 2023; Ashkboos et al., 2024b,a; Frantar and
Alistarh, 2023). To isolate the impact of MAs, we
remove them from x5 to better illustrate the distri-
bution of COs.

Figure 3 (c) illustrates that when the input X
contains both types of outliers, its quantized ver-
sion @(X) experiences significant quantization
error. As a result, the output Y’, derived from
the quantized input (X)) and quantized weight
Q (W), deviates considerably from the original out-
put Y = XW, leading to a noticeable degradation
in accuracy.

2.3 Outlier Smoothing for Low-precision
LLM Quantization

Reducing quantization error is crucial for achieving
effective low-precision model quantization. How-
ever, as highlighted by LLM.int8() (Dettmers et al.,
2022), directly quantizing LLMs to INTS8 leads
to significant accuracy loss due to the presence
of outliers. To address these outliers, LLM.int8()
employs a mixed-precision decomposition scheme.
While this approach preserves model accuracy, its
fine-grained decomposition introduces computa-
tional overhead and potential performance bottle-
necks.

Olive (Guo et al., 2023) addresses the impact
of MAs on low-precision quantization by propos-
ing a hybrid quantization scheme that quantizes
MAs separately from the remaining elements. Simi-
larly, PrefixQuant (Chen et al., 2024) groups tokens
with MAs and jointly quantizes them, resulting
in reduced quantization error. This approach has
also been applied to KV cache quantization (Zhang
et al., 2024a), following the same principle. Col-
lectively, these studies highlight the critical im-
portance of understanding outlier behavior within
LLMs to develop more effective quantization strate-



Table 1: TMA values distribution within different LLMs. Initial Top-1 and Initial Top-2 denote the MAs with the
largest and second largest magnitudes within the initial LLM layers. Last-1 and Last-2 denote the last and second
last layers within LLM. The N/A for smaller models indicate that the balancing of signs observed in True Massive

Activations (TMAs) is handled only by the last layer.

LLaMA3.2-3B LLaMA3.1-8B LLaMA2-13B GPT-2 Qwen2.5-7B
Massive Activations Value Position ‘ Value Position ‘ Value Position ‘ Value Position ‘ Value Position
Initial Top-1 -328.25 (0, 588) -300.5 (0, 788) -1211.0 (0, 4743) -449.82 (0, 1591) | -9057.43 (0, 458)
Initial Top-2 -303.25 (0, 1016) -274.75 (0, 1384) -708.0 (0, 2100) -388.98 (0, 506) -5757.42 (0, 2570)
Last-2 Top-1 N/A N/A N/A N/A 414.75 (0, 4743) 169.89 (0, 1591) 9178.38 (0, 458)
Last-2 Top-2 N/A N/A N/A N/A 288.25 (0, 2100) 159.61 (0, 506) 4645.87 (0,2570)
Last-1 Top-1 262.5 (0, 1016) 299.75 (0, 788) 824.0 (0, 4743) 277.06 (0, 1591) 2688.36 (0, 458)
Last-1 Top-2 249.5 (0, 588) 273.5 (0, 1384) 477.0 (0, 2100) 243.73 (0, 506) 2609.71 (0,2570)
: Llama-13B With Residual Llama-13B Without Residual

gies.

On the other hand, to eliminate the channel-wise
outliers, SmoothQuant (Xiao et al., 2023) proposes
migrating the quantization challenge from activa-
tions to weights using scale invariance. This al-
lows INT8 quantization for both weights and acti-
vations across all matrix multiplications in LLMs.
Outlier Suppression+ (Wei et al., 2023) further en-
hances quantization by introducing a fast and stable
scheme for calculating scaling values, effectively
balancing the quantization burden.

To reduce manual intervention and improve
performance under extremely low-bit quantiza-
tion, OmniQuant (Shao et al., 2023) introduces
Learnable Weight Clipping and Learnable Equiv-
alent Transformation, optimizing both weight-
only and weight-activation quantization processes.
In W4AS8 quantization with weight clipping,
QQQ (Zhang et al., 2024b) dynamically manages
outliers through adaptive smoothing. Additionally,
QServe (Lin et al., 2024b) introduces SmoothAt-
tention to mitigate accuracy degradation caused
by 4-bit KV quantization. Both QQQ and QServe
have greatly improved LLM accuracy under W4A8
quantization.

While most previous studies focus on mitigat-
ing the impact of channel-wise outliers during the
quantization process, this work investigates the root
causes of both MAs and COs. We propose some
insights to address these outliers by targeting and
removing them at their fundamental level.

3 Empirical Study on Massive Activation

3.1 Settings

To investigate the formation of massive activa-
tions (MAs), we conduct experiments on vari-
ous LLMs, including the LLaMA series (Touvron
et al., 2023a,b), GPT-2 (Achiam et al., 2023), and
Qwen (Yang and et al., 2024), using two datasets:

Magnitude

10 20 30 0 10 20 30
Layer

—— Top 1 magnitude Top 2 magnitude —— Top 3 magnitude

Figure 4: Left: TMAs and FMAs within the input of
LLaMA-13B across each layer. Right: after removing
the MAs in residual connection, only TMA left.

WikiText (Merity et al., 2016) and C4 (Hugging-
face, 2022). Each experiment is averaged over
100 random samples from the dataset. LLM per-
formance is evaluated using the perplexity (PPL)
metric.

Following the definition of MAs from (Sun et al.,
2024), an activation is considered massive if its
magnitude exceeds 100 and is at least 1,000 times
greater than the median activation magnitude.

3.2 Observations on Massive Activation

In our experiments, we investigate the existence of
MA:ss in the hidden state tensors within the attention
and MLP blocks. Next, we modify the inference
process of LLMs by directly intervening in the lay-
ers where massive activations emerge. Specifically,
for any hidden state exhibiting massive activations,
we manually set those activations to fixed values.
The modified hidden state is then passed to the
subsequent layer, with the remaining computations
proceeding as usual. As a result of these studies,
we have the following surprising observations that
differ from or were not reported in earlier literature,
summarized as follows:

Massive Activations are first appeared in the
FFN Block: We found that for all LLMs, MAs
first appear within the feed-forward network (FFN)
of first layer. Specifically, in models using gated
MLPs, such as the LLaMA series and Qwen, MAs



Table 2: Impact of MAs on the performances (in perplexity) of LLaMA, GPT-2, and Qwen models.

LLaMA3.2-3B LLaMA3.1-8B LLaMA2-13B GPT-2 Qwen2.5-7B

Intervention WikiText C4 | WikiText | WikiText C4 | WikiText C4 | WikiText c4

Original 5.567 10.790 6.941 4.355 6.405 14.795 19.460 6.520 11773
TMAs to meanaty; ~ 1124111.75 21046.82 | 21281.49  1301562.25) 1301562.25 6469.42 | 14.841 19.560 | 71216.17  66588.86
TMAs to zeroes at y;  1138151.23 21951.41 | 21601.10 130201853 1309211.61 712832 | 14911 19928 | 7183561 6751835
TMAs to mean at ys ~ 6.053 14.423 7.026 4355 6.405 14795 19.460 6.537 11.797
TMAs to zeroes at ys ~ 6.237 14.767 7.147 4371 6.498 14.831 19.565 6.642 13.021
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Figure 5: Left: TMAs and FMAs within the input of
GPT-2 across each layer. Right: after removing the
MAs in residual connection, only TMA left.

emerge in yg, the product of y4 and ys, as illustrated
in Figure 2 (c). In contrast, for LLMs with conven-
tional MLPs, like GPT-2, MAs are first produced
immediately after the GeLU activation, represented
by 4 in Figure 2 (d).

Most of MAs are caused by residual connections
within LLM: Among the MAs observed across
LLM layers, most are propagated through residual
connections in both the self-attention (SA) and FFN
blocks. Specifically, after initially appearing in the
FFN, the residual links carry these MAs through
the inputs of SA and FFN blocks across the mid-
dle layers of the LLM. These MAs are not newly
generated but are instead carried forward from pre-
viously produced MAs through the intermediate
layers via residual connections. For the final lay-
ers (e.g., 39th and 40th layers in LLaMA), MAs
are generated spontaneously and are not caused by
residual connections. To differentiate these MAs,
we call the MAs that are caused by the residual
link Fake MAs (FMAs), and rest of MA True
MAs (TMAS).

To illustrate the presence of TMAs and FMAs,
we conduct experiments on LLaMA-13B and GPT-
2. The left side of Figure 4 and Figure 5 show
the top three elements with the highest magnitudes,
identified as MAs, across the input of each layer.
Building on this, we remove the residual connec-
tions for both the SA and FFN layers throughout
the entire LLM. The right side of Figure 4 and Fig-
ure 5 present the results after these residual connec-
tions are removed from all layers. Our observations

x1 at layer 39 without
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i ion residual connection
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Figure 6: The red lines drawn to the origin plane indicate
the MAs. Top three figures are the TMA and FMA of
Llama-13B. The bottom three figures are the TMA of
Llama 13B model after removing MAs in the residual
connection. Layer 4 and Layer 39 have TMA for the
same channel and token but with the opposite sign. The
MAs of layer 25 is eliminated after the removal of the
residual connection.

show that the TMAs at yg effectively eliminates all
TMAs and FMAs. Due to space constraints, we
present results only for LLaMA-13B and GPT-2,
although similar behaviors are observed in other
LLMs.

Trends on TMA Magnitudes: Across various
models, TMAs exhibit consistent behavior: their
magnitude remains fixed within specific channels,
regardless of the input sequence tokens. Analyzing
the sign of these TMAs reveals a clear pattern: in
the final layers, TMAs have a similar magnitude but
opposite sign compared to those in the initial layers,
occurring at the same channel positions. This indi-
cates that TMAs generated in the early layers are
effectively suppressed in the later layers. Table 1
presents the average magnitudes of TMAs across
multiple LLMs, highlighting their presence in the
first initial layers and the last two layers. It also
shows the top two MAs with the largest magnitudes
in each layer’s input, along with their correspond-
ing token and channel indices, shown in the first
and second number within the bracket. While mod-
els like GPT-2 and Qwen display multiple initial



and final layers with high activation magnitudes,
the observed magnitude and sign trends persist.
Figure 6 shows that layer 2 of LLaMA-13B has a
negative TMA while at layer 39 there is a positive
TMA at the same channel and token position.

3.3 Impact of Massive Activation Values on
LLM Accuracy

Building on the presence of TMAs, and FMA:s,
we next analyze their impact on LLM accuracy.
Specifically, we replace all TMAs, which are lo-
cated at yg of FFN with either zero or the mean
value of their respective tensors. As shown in Ta-
ble 2, the results remain comparable to the origi-
nal LLM. Notably, for LLaMA2-13B, GPT-2, and
Qwen, the PPL values are nearly identical to those
of the original LLM on both WikiText-2 and C4,
demonstrating that TMAs, and FMAs can be effec-
tively eliminated without any negative impact on
accuracy performance.

In contrast, the removal of TMAs located at 7
of the FFN results in disastrous effects on LLM per-
formance. As shown in Table 2, replacing TMAs
with mean or zero values significantly increases
PPL across models, with the exception of GPT-2.
Thus, we show that most TMAs can be safely re-
moved by replacing them with either zero or the
mean of the tensor containing them at yg. Conse-
quently, no TMAs can appear at Y7 or propagate
via the residual connection. More detailed infor-
mation for MA in MLP and attention blocks is in
Appendix A.

3.4 Insights for MA Smoothing

The presence of MAs is widely acknowledged as a
major challenge in LLM quantization, particularly
when aiming to enable efficient matrix multiplica-
tion within SA. As demonstrated in Section 3.2 and
Section 3.3, all FMAs can be effectively eliminated
by replacing them with either the mean value or
zero, with negligible impact on LLM performance.
This makes the corresponding activation matrices
significantly easier to quantize.

In contrast, removing TMAs directly leads to se-
vere performance degradation. As a result, existing
outlier smoothing techniques, such as mathemat-
ical invariance transformations (Ashkboos et al.,
2024b) and (Xiao et al., 2023), are typically applied
exclusively to these outliers. Since mathematical
invariance transformations (e.g., Hadamard trans-
form) introduce additional computational overhead
for outlier smoothing, limiting their application to

the small number of TMAs significantly reduces
the overall computational cost.

4 Empirical Study on Channel-wise
Outliers

4.1 Settings

In addition to the presence of MAs, channel-wise
outliers (CO) are also observed within the inter-
mediate results of LLMs, as noted in several prior
studies (Xiao et al., 2023; Ashkboos et al., 2024b;
Tseng et al., 2024; Liu et al., 2024). These out-
liers significantly degrade the performance of low-
precision LLM quantization. Following our study
on MAs, we examine the presence and formation
of channel-wise outliers in various LLMs (LLaMA
series and GPT-2) using two datasets: WikiText
and C4. LLM performance is assessed using the
perplexity (PPL) metric, with each experiment av-
eraged over 100 random samples. Since no formal
study has been conducted on channel-wise outlier
before, we use the following criteria to search for
the channel-wise outlier.

For each channel A; within an activation matrix
A, it is classified as an outlier channel if it satisfies
the following criteria:

 The mean of A; exceeds the overall average
of the tensor by more than mo 4, where m is
a predefined parameter and o 4 is the standard
deviation of elements within A.

* The standard deviation of A; is below a thresh-
old S.

The first criterion ensures that the average value
of the entire channel is sufficiently high to qualify
as an outlier, while the second criterion ensures
that all elements within the channel have similar
magnitudes, aligning with outlier channel behavior.
Without loss of generality, in the following exper-
iment, m is set to 4, and f3 is set to 1/3. We also
present the results under different settings in the
subsequent sections.

4.2 Observations on channel-wise Qutliers

We examine the presence of outlier channels in the
input, output, and hidden state tensors within the
SA and MLP blocks. These correspond to the in-
puts and outputs of the SA and FFN blocks (e.g., z1,
T2, Y1, and y9) as well as intermediate results (e.g.,
T3, T4, Y3, and ys) depicted in Figure 2 (b), (c),
and (d). Next, we delve deeper into normalization
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Figure 7: Changes on number of channel-wise outlier af-
ter the input = of the first layer of LLaMA-13B passing
through the RMSNorm. Outlier channels denoted by red
dots. (a) and (b) shows the results by setting m=6, (c)
and (d) for m=4, and (e) and (f) for m=2, respectively.

operation and attention weight matrix multiplica-
tions, looking at how the learned model weights
associated with each of these transformations af-
fect the occurrence of outlier channels in the output
activations. Specifically, we observe the effects
of smoothening the outlier channels within these
weights by replacing them with fixed values. The
observations are summarized below.
Channel-wise outliers first arise after the nor-
malization operation in first layer: We observe
that in all evaluated LLMs, outlier channels first
emerge during the initial normalization operation
preceding the SA block. Figure 7 illustrates the
average magnitude of each channel in the input and
output of the normalization operation within the
first layer of the SA block. Red dots represent the
outlier channels. The results are shown by vary-
ing the criteria for channel-wise outliers, with m
set to 2, 4, and 6, respectively. Notably, the num-
ber of outlier channels increases largely after the
normalization operation.
Learned rescaling operations inside Normaliza-
tion block produces outlier channel: As shown
in Figure 3 (d), the normalization operation with in
LLM, such as LayerNorm or RMSNorm, are fur-
ther contains two components: standardization and
rescaling. For example, in LayerNorm, the input
is first normalized by subtracting its mean p and
dividing by its standard deviation ¢. Each channel
of the normalized output is then scaled by a learn-
able parameter -y and shifted by another learnable
parameter [3.

We conduct an outlier analysis of tensors within

the normalization block, as illustrated in Figure 8.
To isolate the effects of channel-wise outliers, we
first eliminate massive activations (MAs) from the
input, allowing for a clearer visualization of outlier
channels. In the normalization process, the inputs
undergo token-wise standardization followed by a
rescaling operation. Our findings reveal that the
standardization step does not introduce additional
channel-wise outliers (Figure 8 (c)). However, the
rescaling operation has a channel-specific impact,
which can lead to an increase in channel-wise out-
liers, as depicted in Figure 8 (d).

To further validate the impact of the rescaling
operation, we modify the rescaling factor vector
~ by identifying the indices associated with the
outlier channels in the output of the normalization
operation. This modification was applied to the nor-
malization layers within both SA and FFN layers.
Specifically, the rescaling factor elements at these
indices were replaced with either the mean of the
rescaling vector or zero. Both modifications result
in a noticeable reduction in the number of outlier
channels in the subsequent outputs, as shown in
Figure 9.

4.3 Observations on channel-wise Qutliers in
weight matrix multiplications

In this section, we examine the presence of channel-
wise outliers during matrix multiplication with
weight tensors. As a case study, we focus on the
Query weight matrix (Wq) within the SA block,
and Key and Value matrices have the same trends.
When examining the output activations (x3), new
channel-wise outliers emerge that are absent in the
input activations (x2). Specifically, xg can be com-
puted as follows:

Xg = Wq X2 (1)

If channel-wise outliers are observed in x3 but
not in the corresponding input activations channel
X2, we hypothesize that specific channels (rows)
in Wy, are responsible for the existence of new
channel-wise outlier. These channels, which con-
stitute approximately 1% of all channels within
W,, appear to hold greater numerical importance
compared to others on LLM accuracy. We call
it Qutlier Triggering Channels (OTC).

An important but subtle observation is that these
OTCs do not exhibit outlier characteristics when
analyzing W 4 alone, based on mean and standard
deviation statistics. However, their interaction with
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Figure 8: Changes on number of channel-wise outliers within a normalization block of SA. Outlier channels denoted
by red dots. The channel-wise means of (a) the input x1, (b) x; after removing the MAs, (c) the output of the
standardization operation, and (d) the output of normalization z5 are plotted. A similar observation has been

observed for the normalization block within FFN.
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Figure 9: The blue line shows the number of outlier
channels in the normalization layer inputs for each LLM
layer. To identify the source of these outliers, we exam-
ine the corresponding rescaling factors +y that contribute
to the channel-wise outliers. These rescaling factors are
then replaced with either their mean values (red lines)
or zeros (green lines).

X2 gives rise to outlier activations in xg. This find-
ing highlights the critical role of OTCs in outlier
formation, despite their seemingly unremarkable
statistical profile in isolation. To test this hypothe-
sis, we evaluate model performance by modifying
W in two ways: (a) setting all elements within
the OTCs, which comprise approximately 1% of
the total number of channels in W, to their mean
values, and (b) setting a random 1% of channels
to their mean values. The results of these interven-
tions are presented in Table 3. The modification on
OTC will cause a greater accuracy drop than that
on equivalent amount of random channels. This
comparison highlights the importance of specific
weight channels that contribute to the presence of
channel-wise outliers on the LLM accuracy. Simi-
lar studies have been performed on the key matrix
and observe the trend being similar to query ma-
trix, while the value matrix does not follow this
trend and remain unaffected even after removing
the OTC.

4.4 Insights for channel-wise Outlier
Smoothing

Based on the results presented in Section 4.2 and
Section 4.3, we conclude that the rescaling factor
~ in the rescaling operations within the normaliza-
tion layer plays a significant role in determining
the number of channel-wise outliers in x5 and 5.

Table 3: Analysis on the Importance of OTC, other
LLMs also have similar trends

LLaMA3.2-3B
WikiText C4

5.567 10.790
38.924  165.396
7.5094 11.990

LLaMA3.1-8B
| WikiText ~ C4

6.941 9.046
480.8123 465.2235
7.1700  18.602

LLaMA2-13B
| WikiText ~ C4

4.355 6.405
774.7298 15398.1279
4.4455 6.682

Intervention

base model
Remove OTCs
Remove random channels

These outliers are subsequently propagated into
the matrix multiplication processes. To effectively
mitigate channel-wise outliers in the input, a great
strategy is to fine-tune the rescaling factors ~y to
reduce their variation. This adjustment results in
x2 having fewer outlier channels. However, simply
setting the corresponding rescaling factor to a fix
value will lead to significant accuracy drop.

OTCs within the weight matrices greatly con-
tribute to channel-wise outliers in the intermediate
results of LLMs. A potential solution to address
this issue is to adopt parameter-efficient fine-tuning
techniques, which can effectively eliminate OTCs
without requiring extensive changes to the model.

5 Conclusion

Outliers in LLMs are crucial to address because of
their significant impact on the accuracy of quan-
tized LLMs. In this paper, we undertake a detailed
investigation into the mechanisms behind the for-
mation of outliers and develop strategies to mitigate
their effects. We explore the causes of these outliers
and propose practical approaches for their elimina-
tion, setting the stage for more efficient quantiza-
tion processes.

Our comprehensive analysis not only highlights
the challenges posed by outliers but also provides
innovative solutions that could be pivotal for the
advancement of quantization techniques in LL.Ms.
We hope our findings make a valuable contribution
to the ongoing research within the LLM commu-
nity, especially in addressing the complexities of
quantization challenges presented by outliers.



Limitations

While this survey offers a comprehensive overview
of outliers within LLMs, it is important to acknowl-
edge some limitations. The study of outliers is
specifically tailored to LLMs, and there is scope
for extending this research to other types of large
models that handle multimodal inputs. Further in-
vestigation in these areas could provide a broader
understanding of outlier effects across different
model architectures and enhance the robustness of
multimodal systems.
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A Activation Statistics Across All
Sublayers

To support the claim that TMAs occur only at y6
(and y7 if un-smoothed), we added Table 4 and
Table 5, listing the top-2 absolute activation values
at every sublayer (z1—x9, y1—y7) of layer 2 under a
single WikiText input, both with and without MA
removal at Y6.

¢ There are no MA observed from z1—xg.

* From y;—ysthe top two values remain un-
changed by MA smoothing.

e At y6, the maximum absolute value drops
from —499.25 to 37.09, and at Y7 from
328.25 to 24.125.

Table 4: Top-2 activations in MLP y;—y; of LLaMA-
3.2-3B layer 2, with and without MA removal at Y6.

Sublayer With MA Without MA (y6 only)
Y1 —16.03, 10.01 —16.03, 10.01

Y2 4.19, 3.87 4.19, 3.87

Y3 13.67, 8.5 13.67, 8.5

Ya —36.5, —8.92 —36.5, —8.92

Ys 13.67, 8.5 13.67, 8.5

Y6 —499.25, —37.09 —37.09, 5.09

Y7 328.25, —303.25 24.125, —22.375

B Outlier-Channel Ablation Study

In Table 6, we report the perplexity of LLaMA-3.2-
3B on Wikitext-2 when replacing channels beyond
{6, 4,2} standard deviations (SD) in QKV, Layer-
Norm rescaling factor and MLP weights with (a)
the channel mean, and (b) random channel replace-
ments.
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Table 5: Top-2 absolute values from Attention x1—x7 in
layer 2 of LLaMA-3.2-3B.

Sublayer  Top-2 Values
1 —15.93, 10.58
T2 3.48, 3.47
3 —8.16, —8.05
x4 —9.94, —9.78
Ts5 —0.73,0.71
6 —14.77, —14.51
7 0.99, 0.98
s 0.47, 0.45
Z9 —0.36, —0.34

Table 6: Table A.3: Wikitext-2 PPL under outlier vs.
random channel replacements at different thresholds for
LLaMA-3.2-3B. The base model perplexity is 7.8316.

Intervention (setting to mean) 6 SD 4SD 2SD

QKV outliers 7.8395 7.9201 10.9746
QKV random 7.8315 7.8419 14.0361
LayerNorm outliers 8.3497 11.4209 61.9459
LayerNorm random 7.8338 79110 8.0399
MLP outliers 7.8327 7.9108 15.3786
MLP random 7.8322 7.8452 9.5039

¢ True outlier removals increase PPL from 7.83
to as high as 61.94.

* Qutliers in LayerNorm rescaling factors have
a pronounced impact on perplexity, suggesting
their critical role in maintaining performance.

* Replacing an equal number of randomly se-
lected channels results in considerably smaller
degradation in PPL for most cases.

* Interestingly, for QKV projections, a more
aggressive outlier threshold (2SD) results in
lower perplexity (10.97) compared to replac-
ing an equivalent number of random channels
(14.04), indicating that these outliers may be
less essential to model performance.
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