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Abstract
Investigating outliers in large language models001
(LLMs) is crucial due to their significant impact002
on various aspects of LLM performance, in-003
cluding quantization and compression. Outliers004
often cause considerable quantization errors,005
leading to degraded model performance. Iden-006
tifying and addressing these outliers can en-007
hance the accuracy and efficiency of the quanti-008
zation process, enabling smoother deployment009
on edge devices or specialized hardware. Re-010
cent studies have identified two common types011
of outliers in LLMs: massive activations and012
channel-wise outliers. While numerous quanti-013
zation algorithms have been proposed to miti-014
gate their effects and maintain satisfactory ac-015
curacy, few have thoroughly explored the root016
causes of these outliers in depth.017

In this paper, we conduct a comprehensive in-018
vestigation into the formation mechanisms of019
these outliers and propose potential strategies020
to mitigate their occurrence. Ultimately, we021
introduce some efficient approaches to elimi-022
nate most massive activations and channel-wise023
outliers with minimal impact on accuracy.024

1 Introduction025

Large Language Models (LLMs) have emerged as a026

cornerstone in the field of natural language process-027

ing (NLP), transforming how we approach various028

linguistic tasks. These models, with their ability to029

understand and generate human-like text, have rev-030

olutionized applications ranging from conventional031

NLP tasks such as machine translation (Huang032

et al., 2023; Xu et al., 2024; Zhu et al., 2023), sen-033

timent analysis (Miah et al., 2024; Wang et al.,034

2024; Deng et al., 2023) to advanced tasks such as035

code generation (Kazemitabaar et al., 2023; Thakur036

et al., 2024; Nakkab et al., 2024). However, the037

enormous size of LLMs, often reaching billions of038

parameters, presents substantial challenges for de-039

ployment, necessitating the use of techniques that040

enable efficient inference.041

To address this, Post-Training Quantization 042

(PTQ) (Frantar et al., 2022; Xiao et al., 2023; Lin 043

et al., 2024a; Yao et al., 2022) provides a prac- 044

tical, low-cost approach for model quantization, 045

either completely training-free or with minimal cal- 046

ibration effort (Cai et al., 2020; Li et al., 2021). 047

In comparison to Quantization-Aware Training 048

(QAT), which demands multiple fine-tuning itera- 049

tions, PTQ incurs much lower computational costs, 050

making it suitable for LLM. Unfortunately, outliers 051

in LLM activations and KV vectors (Dettmers et al., 052

2022; Zeng et al., 2022) introduce significant mag- 053

nitude variations among LLM elements, which in 054

turn lead to a notable drop in model accuracy when 055

low-precision PTQ is applied (Xiao et al., 2023; 056

Tseng et al., 2024; Ashkboos et al., 2024b). 057

Prior research has identified two types of outliers 058

in LLM activations. The first, massive activations 059

(MAs), commonly appear across various LLMs 060

and are typically linked to specific tokens in cer- 061

tain channels (Sun et al., 2024). The second type, 062

channel-wise outliers (Dettmers et al., 2022; Xiao 063

et al., 2023; Ashkboos et al., 2024b), manifests in 064

bulk within specific channels. These findings have 065

inspired a two-stage approach in modern quantiza- 066

tion techniques: initially, methods are employed 067

to eliminate outliers in the pretrained LLM, result- 068

ing in a model with a smoother value distribution 069

in its activations. Subsequently, quantization al- 070

gorithms such as GPTQ (Frantar et al., 2022) and 071

OBQ (Frantar and Alistarh, 2022) are applied to 072

produce low-precision LLMs, as shown in Figure 1. 073

Outlier smoothing is a crucial step in achieving 074

efficient LLM quantization. Understanding the root 075

causes of outliers is essential for developing effec- 076

tive quantization techniques and gaining deeper 077

insights into model behavior and robustness. While 078

prior studies have identified the presence of MAs 079

and channel-wise outliers, and proposed methods 080

to mitigate them (Sun et al., 2024; Liu et al., 2024; 081

Bini et al., 2024; Xiong et al., 2024), none have 082
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Figure 1: Given a pretrained LLM, techniques are first
applied to smooth out the outliers in its activations. The
resulting model is then quantized, achieving superior
accuracy.

explored the fundamental reasons behind the exis-083

tence of these outliers from a numerical perspective,084

particularly with operator-level granularity. This085

finer-grained understanding is crucial, as different086

layers and operators may contribute uniquely to087

the formation and propagation of LLM outliers,088

influencing both performance and accuracy in low-089

precision LLMs.090

In this work, we investigate the underlying rea-091

sons for the existence of outliers in LLMs at the092

operator level through extensive empirical analy-093

sis. Our study provides valuable insights to guide094

the development of effective outlier smoothing al-095

gorithms. Building on these findings, we propose096

some novel methods to efficiently mitigate the ma-097

jority of massive activations and channel-wise out-098

liers without compromising model accuracy. This099

significantly reduces the complexity of subsequent100

LLM quantization processes. In summary, our find-101

ings on LLM outliers can be summarized as fol-102

lows:103

• We empirically demonstrate that massive ac-104

tivations (MAs) are predominantly generated105

in the initial layers the model. Once these106

MAs arise, they persist throughout the LLM,107

being propagated through subsequent layers108

via residual connections.109

• Previous studies indicate that the removal of110

MAs can significantly impact the quantization111

process. Surprising, our empirical analysis112

shows that eliminating MAs introduced by113

residual connections has no measurable effect114

on the model’s accuracy. Notably, these MAs115

constitute the majority of MAs in LLMs.116

• Channel-wise outliers in LLMs initially117

emerge due to the normalization operations118

within the model. The rescaling operation119

within the normalization layer exacerbates this120

issue by introducing an increasing number of121

channel-wise outliers.122

• Certain channels within the weight matri- 123

ces can also contribute to the emergence of 124

channel-wise outliers in the intermediate re- 125

sults of LLMs. 126

2 Background and Related Work 127

2.1 LLM Operations 128

Modern LLMs (e.g., Llama series (Touvron et al., 129

2023a,b), GPT series (Radford et al., 2019; Brown, 130

2020)) are constructed as a stack of transformer 131

decoders, with each decoder comprising two fun- 132

damental components: a Self-Attention (SA) block 133

and a feed forward network (FFN), as depicted in 134

Figure 2 (a). During the LLM serving process, 135

the input to the Self-Attention (SA) block is first 136

processed by a normalization operation (e.g., Lay- 137

erNorm or RMSNorm). As detailed in Figure 3(d), 138

this normalization consists of two key steps: stan- 139

dardization and rescaling. Specifically, the input X 140

is normalized by subtracting its mean µX and di- 141

viding by its standard deviation σX . Subsequently, 142

each channel of the standardized output is scaled 143

by a learnable parameter γ and shifted by another 144

learnable parameter β. 145

The output of the normalization operation is then 146

multiplied with three weight matrices WQ, WK , 147

and WV , yielding the outputs referred to as query 148

(q), key (k), and value (v), which is shown as x3, 149

x4 and x5 in Figure 2, respectively. The resulting 150

q and k, in combination with v, will then undergo 151

multiplication, Softmax, and residual addition to 152

generate the SA output, as shown in Figure 2 (b). 153

The output from the SA will then be passed 154

to the FFN for further processing, which typ- 155

ically involves a gated MLP (Radford, 2018; 156

Radford et al., 2019) (Figure 2 (c)) or standard 157

MLP (Liu et al., 2021; Touvron et al., 2023a,b) 158

(Figure 2 (d)). The FFN consists of a normaliza- 159

tion operation, multiple fully connected (FC) lay- 160

ers along with an intermediate activation function, 161

such as GeLU (Hendrycks and Gimpel, 2016) or 162

SiLU (Hendrycks and Gimpel, 2016). 163

2.2 Outlier in LLM 164

As prior studies have demonstrated (Dettmers et al., 165

2022; Zeng et al., 2022; Sun et al., 2024), outliers 166

can be categorized into two types: massive activa- 167

tions (MA) and channel-wise outliers (CO). The 168

presence of outliers in LLM activations and KV 169

vectors (Dettmers et al., 2022; Zeng et al., 2022) 170

often causes a significant drop in model accuracy 171
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Figure 2: (a) Architecture of a LLM decoder block. (b), (c) and (d) show the architectures of self-attention block,
standard FFN (conventional MLP), and gated FFN (GLU), respectively. The notations will be used throughout the
rest sections.
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when low-precision PTQ is applied (Xiao et al.,172

2023; Tseng et al., 2024; Ashkboos et al., 2024b).173

While earlier research, such as (Bondarenko174

et al., 2023), has shown that the attention mech-175

anism can lead to excessive activations by concen-176

trating too much on specific tokens, resulting in177

scenarios where the mechanism fails to remain in-178

active and creates an outlier problem, these studies179

mainly focus on BERT architectures. In contrast,180

our analysis expands the scope to include LLaMA,181

GPT, and Qwen models. This broader investiga-182

tion provides new insights into the architectural183

changes that can give rise to activation outliers. As184

discussed in (Li et al., 2024), performing kurtosis185

on the activation tensor to reflect on MAs in GLUs,186

though our focus here remains on characterizing187

and categorizing the outlier phenomenon and pro-188

viding a simpler method to remove MAs.189

To demonstrate this, we profile the inputs x2 to190

the WQ, WK , and WV matrices within the self-191

attention (SA) block, as shown in Figure 2, using192

the Wikitext dataset (Merity et al., 2016) on the193

LLaMA-7B model. Following the notations in Fig-194

ure 2, we record the input to the normalization195

operation, x1. The results presented in Figure 3 (a)196

highlights the presence of MAs in x1, with mag-197

nitudes often reaching thousands. Furthermore,198

these MAs propagate through the normalization199

operation, causing x2 to also exhibit some outliers.200

Although the magnitude of these outliers is reduced 201

after normalization, they remain significant. Ad- 202

ditionally, Figure 3 (b) shows that distribution of 203

the COs in x2, corroborating earlier findings (Xiao 204

et al., 2023; Ashkboos et al., 2024b,a; Frantar and 205

Alistarh, 2023). To isolate the impact of MAs, we 206

remove them from x2 to better illustrate the distri- 207

bution of COs. 208

Figure 3 (c) illustrates that when the input X 209

contains both types of outliers, its quantized ver- 210

sion QpXq experiences significant quantization 211

error. As a result, the output Y 1, derived from 212

the quantized input QpXq and quantized weight 213

QpW q, deviates considerably from the original out- 214

put Y “ XW , leading to a noticeable degradation 215

in accuracy. 216

2.3 Outlier Smoothing for Low-precision 217

LLM Quantization 218

Reducing quantization error is crucial for achieving 219

effective low-precision model quantization. How- 220

ever, as highlighted by LLM.int8() (Dettmers et al., 221

2022), directly quantizing LLMs to INT8 leads 222

to significant accuracy loss due to the presence 223

of outliers. To address these outliers, LLM.int8() 224

employs a mixed-precision decomposition scheme. 225

While this approach preserves model accuracy, its 226

fine-grained decomposition introduces computa- 227

tional overhead and potential performance bottle- 228

necks. 229

Olive (Guo et al., 2023) addresses the impact 230

of MAs on low-precision quantization by propos- 231

ing a hybrid quantization scheme that quantizes 232

MAs separately from the remaining elements. Simi- 233

larly, PrefixQuant (Chen et al., 2024) groups tokens 234

with MAs and jointly quantizes them, resulting 235

in reduced quantization error. This approach has 236

also been applied to KV cache quantization (Zhang 237

et al., 2024a), following the same principle. Col- 238

lectively, these studies highlight the critical im- 239

portance of understanding outlier behavior within 240

LLMs to develop more effective quantization strate- 241
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Table 1: TMA values distribution within different LLMs. Initial Top-1 and Initial Top-2 denote the MAs with the
largest and second largest magnitudes within the initial LLM layers. Last-1 and Last-2 denote the last and second
last layers within LLM. The N/A for smaller models indicate that the balancing of signs observed in True Massive
Activations (TMAs) is handled only by the last layer.

LLaMA3.2-3B LLaMA3.1-8B LLaMA2-13B GPT-2 Qwen2.5-7B

Massive Activations Value Position Value Position Value Position Value Position Value Position

Initial Top-1 -328.25 (0, 588) -300.5 (0, 788) -1211.0 (0, 4743) -449.82 (0, 1591) -9057.43 (0, 458)
Initial Top-2 -303.25 (0, 1016) -274.75 (0, 1384) -708.0 (0, 2100) -388.98 (0, 506) -5757.42 (0, 2570)
Last-2 Top-1 N/A N/A N/A N/A 414.75 (0, 4743) 169.89 (0, 1591) 9178.38 (0, 458)
Last-2 Top-2 N/A N/A N/A N/A 288.25 (0, 2100) 159.61 (0, 506) 4645.87 (0, 2570)
Last-1 Top-1 262.5 (0, 1016) 299.75 (0, 788) 824.0 (0, 4743) 277.06 (0, 1591) 2688.36 (0, 458)
Last-1 Top-2 249.5 (0, 588) 273.5 (0, 1384) 477.0 (0, 2100) 243.73 (0, 506) 2609.71 (0, 2570)

gies.242

On the other hand, to eliminate the channel-wise243

outliers, SmoothQuant (Xiao et al., 2023) proposes244

migrating the quantization challenge from activa-245

tions to weights using scale invariance. This al-246

lows INT8 quantization for both weights and acti-247

vations across all matrix multiplications in LLMs.248

Outlier Suppression+ (Wei et al., 2023) further en-249

hances quantization by introducing a fast and stable250

scheme for calculating scaling values, effectively251

balancing the quantization burden.252

To reduce manual intervention and improve253

performance under extremely low-bit quantiza-254

tion, OmniQuant (Shao et al., 2023) introduces255

Learnable Weight Clipping and Learnable Equiv-256

alent Transformation, optimizing both weight-257

only and weight-activation quantization processes.258

In W4A8 quantization with weight clipping,259

QQQ (Zhang et al., 2024b) dynamically manages260

outliers through adaptive smoothing. Additionally,261

QServe (Lin et al., 2024b) introduces SmoothAt-262

tention to mitigate accuracy degradation caused263

by 4-bit KV quantization. Both QQQ and QServe264

have greatly improved LLM accuracy under W4A8265

quantization.266

While most previous studies focus on mitigat-267

ing the impact of channel-wise outliers during the268

quantization process, this work investigates the root269

causes of both MAs and COs. We propose some270

insights to address these outliers by targeting and271

removing them at their fundamental level.272

3 Empirical Study on Massive Activation273

3.1 Settings274

To investigate the formation of massive activa-275

tions (MAs), we conduct experiments on vari-276

ous LLMs, including the LLaMA series (Touvron277

et al., 2023a,b), GPT-2 (Achiam et al., 2023), and278

Qwen (Yang and et al., 2024), using two datasets:279
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Figure 4: Left: TMAs and FMAs within the input of
LLaMA-13B across each layer. Right: after removing
the MAs in residual connection, only TMA left.

WikiText (Merity et al., 2016) and C4 (Hugging- 280

face, 2022). Each experiment is averaged over 281

100 random samples from the dataset. LLM per- 282

formance is evaluated using the perplexity (PPL) 283

metric. 284

Following the definition of MAs from (Sun et al., 285

2024), an activation is considered massive if its 286

magnitude exceeds 100 and is at least 1,000 times 287

greater than the median activation magnitude. 288

3.2 Observations on Massive Activation 289

In our experiments, we investigate the existence of 290

MAs in the hidden state tensors within the attention 291

and MLP blocks. Next, we modify the inference 292

process of LLMs by directly intervening in the lay- 293

ers where massive activations emerge. Specifically, 294

for any hidden state exhibiting massive activations, 295

we manually set those activations to fixed values. 296

The modified hidden state is then passed to the 297

subsequent layer, with the remaining computations 298

proceeding as usual. As a result of these studies, 299

we have the following surprising observations that 300

differ from or were not reported in earlier literature, 301

summarized as follows: 302

Massive Activations are first appeared in the 303

FFN Block: We found that for all LLMs, MAs 304

first appear within the feed-forward network (FFN) 305

of first layer. Specifically, in models using gated 306

MLPs, such as the LLaMA series and Qwen, MAs 307
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Table 2: Impact of MAs on the performances (in perplexity) of LLaMA, GPT-2, and Qwen models.

LLaMA3.2-3B LLaMA3.1-8B LLaMA2-13B GPT-2 Qwen2.5-7B

Intervention WikiText C4 WikiText C4 WikiText C4 WikiText C4 WikiText C4

Original 5.567 10.790 6.941 9.046 4.355 6.405 14.795 19.460 6.520 11.773
TMAs to mean at y7 1124111.75 21046.82 21281.49 1301562.25 1301562.25 6469.42 14.841 19.560 71216.17 66588.86
TMAs to zeroes at y7 1138151.23 21951.41 21601.10 1302018.53 1309211.61 7128.32 14.911 19.928 71835.61 67518.35
TMAs to mean at y6 6.053 14.423 7.026 10.046 4.355 6.405 14.795 19.460 6.537 11.797
TMAs to zeroes at y6 6.237 14.767 7.147 10.255 4.371 6.498 14.831 19.565 6.642 13.021
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Figure 5: Left: TMAs and FMAs within the input of
GPT-2 across each layer. Right: after removing the
MAs in residual connection, only TMA left.

emerge in y6, the product of y4 and y5, as illustrated308

in Figure 2 (c). In contrast, for LLMs with conven-309

tional MLPs, like GPT-2, MAs are first produced310

immediately after the GeLU activation, represented311

by y4 in Figure 2 (d).312

Most of MAs are caused by residual connections313

within LLM: Among the MAs observed across314

LLM layers, most are propagated through residual315

connections in both the self-attention (SA) and FFN316

blocks. Specifically, after initially appearing in the317

FFN, the residual links carry these MAs through318

the inputs of SA and FFN blocks across the mid-319

dle layers of the LLM. These MAs are not newly320

generated but are instead carried forward from pre-321

viously produced MAs through the intermediate322

layers via residual connections. For the final lay-323

ers (e.g., 39th and 40th layers in LLaMA), MAs324

are generated spontaneously and are not caused by325

residual connections. To differentiate these MAs,326

we call the MAs that are caused by the residual327

link Fake MAs (FMAs), and rest of MA True328

MAs (TMAs).329

To illustrate the presence of TMAs and FMAs,330

we conduct experiments on LLaMA-13B and GPT-331

2. The left side of Figure 4 and Figure 5 show332

the top three elements with the highest magnitudes,333

identified as MAs, across the input of each layer.334

Building on this, we remove the residual connec-335

tions for both the SA and FFN layers throughout336

the entire LLM. The right side of Figure 4 and Fig-337

ure 5 present the results after these residual connec-338

tions are removed from all layers. Our observations339
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show that the TMAs at y6 effectively eliminates all 340

TMAs and FMAs. Due to space constraints, we 341

present results only for LLaMA-13B and GPT-2, 342

although similar behaviors are observed in other 343

LLMs. 344

345

Trends on TMA Magnitudes: Across various 346

models, TMAs exhibit consistent behavior: their 347

magnitude remains fixed within specific channels, 348

regardless of the input sequence tokens. Analyzing 349

the sign of these TMAs reveals a clear pattern: in 350

the final layers, TMAs have a similar magnitude but 351

opposite sign compared to those in the initial layers, 352

occurring at the same channel positions. This indi- 353

cates that TMAs generated in the early layers are 354

effectively suppressed in the later layers. Table 1 355

presents the average magnitudes of TMAs across 356

multiple LLMs, highlighting their presence in the 357

first initial layers and the last two layers. It also 358

shows the top two MAs with the largest magnitudes 359

in each layer’s input, along with their correspond- 360

ing token and channel indices, shown in the first 361

and second number within the bracket. While mod- 362

els like GPT-2 and Qwen display multiple initial 363
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and final layers with high activation magnitudes,364

the observed magnitude and sign trends persist.365

Figure 6 shows that layer 2 of LLaMA-13B has a366

negative TMA while at layer 39 there is a positive367

TMA at the same channel and token position.368

3.3 Impact of Massive Activation Values on369

LLM Accuracy370

Building on the presence of TMAs, and FMAs,371

we next analyze their impact on LLM accuracy.372

Specifically, we replace all TMAs, which are lo-373

cated at y6 of FFN with either zero or the mean374

value of their respective tensors. As shown in Ta-375

ble 2, the results remain comparable to the origi-376

nal LLM. Notably, for LLaMA2-13B, GPT-2, and377

Qwen, the PPL values are nearly identical to those378

of the original LLM on both WikiText-2 and C4,379

demonstrating that TMAs, and FMAs can be effec-380

tively eliminated without any negative impact on381

accuracy performance.382

In contrast, the removal of TMAs located at y7383

of the FFN results in disastrous effects on LLM per-384

formance. As shown in Table 2, replacing TMAs385

with mean or zero values significantly increases386

PPL across models, with the exception of GPT-2.387

Thus, we show that most TMAs can be safely re-388

moved by replacing them with either zero or the389

mean of the tensor containing them at y6. Conse-390

quently, no TMAs can appear at Y7 or propagate391

via the residual connection. More detailed infor-392

mation for MA in MLP and attention blocks is in393

Appendix A.394

3.4 Insights for MA Smoothing395

The presence of MAs is widely acknowledged as a396

major challenge in LLM quantization, particularly397

when aiming to enable efficient matrix multiplica-398

tion within SA. As demonstrated in Section 3.2 and399

Section 3.3, all FMAs can be effectively eliminated400

by replacing them with either the mean value or401

zero, with negligible impact on LLM performance.402

This makes the corresponding activation matrices403

significantly easier to quantize.404

In contrast, removing TMAs directly leads to se-405

vere performance degradation. As a result, existing406

outlier smoothing techniques, such as mathemat-407

ical invariance transformations (Ashkboos et al.,408

2024b) and (Xiao et al., 2023), are typically applied409

exclusively to these outliers. Since mathematical410

invariance transformations (e.g., Hadamard trans-411

form) introduce additional computational overhead412

for outlier smoothing, limiting their application to413

the small number of TMAs significantly reduces 414

the overall computational cost. 415

4 Empirical Study on Channel-wise 416

Outliers 417

4.1 Settings 418

In addition to the presence of MAs, channel-wise 419

outliers (CO) are also observed within the inter- 420

mediate results of LLMs, as noted in several prior 421

studies (Xiao et al., 2023; Ashkboos et al., 2024b; 422

Tseng et al., 2024; Liu et al., 2024). These out- 423

liers significantly degrade the performance of low- 424

precision LLM quantization. Following our study 425

on MAs, we examine the presence and formation 426

of channel-wise outliers in various LLMs (LLaMA 427

series and GPT-2) using two datasets: WikiText 428

and C4. LLM performance is assessed using the 429

perplexity (PPL) metric, with each experiment av- 430

eraged over 100 random samples. Since no formal 431

study has been conducted on channel-wise outlier 432

before, we use the following criteria to search for 433

the channel-wise outlier. 434

For each channel Aj within an activation matrix 435

A, it is classified as an outlier channel if it satisfies 436

the following criteria: 437

• The mean of Aj exceeds the overall average 438

of the tensor by more than mσA, where m is 439

a predefined parameter and σA is the standard 440

deviation of elements within A. 441

• The standard deviation of Aj is below a thresh- 442

old β. 443

The first criterion ensures that the average value 444

of the entire channel is sufficiently high to qualify 445

as an outlier, while the second criterion ensures 446

that all elements within the channel have similar 447

magnitudes, aligning with outlier channel behavior. 448

Without loss of generality, in the following exper- 449

iment, m is set to 4, and β is set to 1{3. We also 450

present the results under different settings in the 451

subsequent sections. 452

4.2 Observations on channel-wise Outliers 453

We examine the presence of outlier channels in the 454

input, output, and hidden state tensors within the 455

SA and MLP blocks. These correspond to the in- 456

puts and outputs of the SA and FFN blocks (e.g., x1, 457

x2, y1, and y2) as well as intermediate results (e.g., 458

x3, x4, y3, and y5) depicted in Figure 2 (b), (c), 459

and (d). Next, we delve deeper into normalization 460
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(c) Channelwise magnitude within x1 (d) Channelwise magnitude within x2

(a) Channelwise magnitude within x1 (b) Channelwise magnitude within x2

(e) Channelwise magnitude within x1 (f) Channelwise magnitude within x2

Figure 7: Changes on number of channel-wise outlier af-
ter the input x1 of the first layer of LLaMA-13B passing
through the RMSNorm. Outlier channels denoted by red
dots. (a) and (b) shows the results by setting m=6, (c)
and (d) for m=4, and (e) and (f) for m=2, respectively.

operation and attention weight matrix multiplica-461

tions, looking at how the learned model weights462

associated with each of these transformations af-463

fect the occurrence of outlier channels in the output464

activations. Specifically, we observe the effects465

of smoothening the outlier channels within these466

weights by replacing them with fixed values. The467

observations are summarized below.468

Channel-wise outliers first arise after the nor-469

malization operation in first layer: We observe470

that in all evaluated LLMs, outlier channels first471

emerge during the initial normalization operation472

preceding the SA block. Figure 7 illustrates the473

average magnitude of each channel in the input and474

output of the normalization operation within the475

first layer of the SA block. Red dots represent the476

outlier channels. The results are shown by vary-477

ing the criteria for channel-wise outliers, with m478

set to 2, 4, and 6, respectively. Notably, the num-479

ber of outlier channels increases largely after the480

normalization operation.481

Learned rescaling operations inside Normaliza-482

tion block produces outlier channel: As shown483

in Figure 3 (d), the normalization operation with in484

LLM, such as LayerNorm or RMSNorm, are fur-485

ther contains two components: standardization and486

rescaling. For example, in LayerNorm, the input487

is first normalized by subtracting its mean µ and488

dividing by its standard deviation σ. Each channel489

of the normalized output is then scaled by a learn-490

able parameter γ and shifted by another learnable491

parameter β.492

We conduct an outlier analysis of tensors within493

the normalization block, as illustrated in Figure 8. 494

To isolate the effects of channel-wise outliers, we 495

first eliminate massive activations (MAs) from the 496

input, allowing for a clearer visualization of outlier 497

channels. In the normalization process, the inputs 498

undergo token-wise standardization followed by a 499

rescaling operation. Our findings reveal that the 500

standardization step does not introduce additional 501

channel-wise outliers (Figure 8 (c)). However, the 502

rescaling operation has a channel-specific impact, 503

which can lead to an increase in channel-wise out- 504

liers, as depicted in Figure 8 (d). 505

To further validate the impact of the rescaling 506

operation, we modify the rescaling factor vector 507

γ by identifying the indices associated with the 508

outlier channels in the output of the normalization 509

operation. This modification was applied to the nor- 510

malization layers within both SA and FFN layers. 511

Specifically, the rescaling factor elements at these 512

indices were replaced with either the mean of the 513

rescaling vector or zero. Both modifications result 514

in a noticeable reduction in the number of outlier 515

channels in the subsequent outputs, as shown in 516

Figure 9. 517

4.3 Observations on channel-wise Outliers in 518

weight matrix multiplications 519

In this section, we examine the presence of channel- 520

wise outliers during matrix multiplication with 521

weight tensors. As a case study, we focus on the 522

Query weight matrix (Wq) within the SA block, 523

and Key and Value matrices have the same trends. 524

When examining the output activations (x3), new 525

channel-wise outliers emerge that are absent in the 526

input activations (x2). Specifically, x3 can be com- 527

puted as follows: 528

x3 “ Wq ¨ x2 (1) 529

If channel-wise outliers are observed in x3 but 530

not in the corresponding input activations channel 531

x2, we hypothesize that specific channels (rows) 532

in Wq are responsible for the existence of new 533

channel-wise outlier. These channels, which con- 534

stitute approximately 1% of all channels within 535

Wq, appear to hold greater numerical importance 536

compared to others on LLM accuracy. We call 537

it Outlier Triggering Channels (OTC). 538

An important but subtle observation is that these 539

OTCs do not exhibit outlier characteristics when 540

analyzing Wq alone, based on mean and standard 541

deviation statistics. However, their interaction with 542
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(a) Channelwise magnitude within x1 (b) Channelwise magnitude within x2

(a) (b) (c) (d)

Figure 8: Changes on number of channel-wise outliers within a normalization block of SA. Outlier channels denoted
by red dots. The channel-wise means of (a) the input x1, (b) x1 after removing the MAs, (c) the output of the
standardization operation, and (d) the output of normalization x2 are plotted. A similar observation has been
observed for the normalization block within FFN.

(a) Channelwise magnitude within x1 (b) Channelwise magnitude within x2

(a) (b) (c) (d)

(a) Channelwise outliers within x2 (b) Channelwise outliers within y2

Figure 9: The blue line shows the number of outlier
channels in the normalization layer inputs for each LLM
layer. To identify the source of these outliers, we exam-
ine the corresponding rescaling factors γ that contribute
to the channel-wise outliers. These rescaling factors are
then replaced with either their mean values (red lines)
or zeros (green lines).

x2 gives rise to outlier activations in x3. This find-543

ing highlights the critical role of OTCs in outlier544

formation, despite their seemingly unremarkable545

statistical profile in isolation. To test this hypothe-546

sis, we evaluate model performance by modifying547

Wq in two ways: (a) setting all elements within548

the OTCs, which comprise approximately 1% of549

the total number of channels in Wq, to their mean550

values, and (b) setting a random 1% of channels551

to their mean values. The results of these interven-552

tions are presented in Table 3. The modification on553

OTC will cause a greater accuracy drop than that554

on equivalent amount of random channels. This555

comparison highlights the importance of specific556

weight channels that contribute to the presence of557

channel-wise outliers on the LLM accuracy. Simi-558

lar studies have been performed on the key matrix559

and observe the trend being similar to query ma-560

trix, while the value matrix does not follow this561

trend and remain unaffected even after removing562

the OTC.563

4.4 Insights for channel-wise Outlier564

Smoothing565

Based on the results presented in Section 4.2 and566

Section 4.3, we conclude that the rescaling factor567

γ in the rescaling operations within the normaliza-568

tion layer plays a significant role in determining569

the number of channel-wise outliers in x2 and y2.570

Table 3: Analysis on the Importance of OTC, other
LLMs also have similar trends

LLaMA3.2-3B LLaMA3.1-8B LLaMA2-13B

Intervention WikiText C4 WikiText C4 WikiText C4

base model 5.567 10.790 6.941 9.046 4.355 6.405
Remove OTCs 38.924 165.396 480.8123 465.2235 774.7298 15398.1279
Remove random channels 7.5094 11.990 7.1700 18.602 4.4455 6.682

These outliers are subsequently propagated into 571

the matrix multiplication processes. To effectively 572

mitigate channel-wise outliers in the input, a great 573

strategy is to fine-tune the rescaling factors γ to 574

reduce their variation. This adjustment results in 575

x2 having fewer outlier channels. However, simply 576

setting the corresponding rescaling factor to a fix 577

value will lead to significant accuracy drop. 578

OTCs within the weight matrices greatly con- 579

tribute to channel-wise outliers in the intermediate 580

results of LLMs. A potential solution to address 581

this issue is to adopt parameter-efficient fine-tuning 582

techniques, which can effectively eliminate OTCs 583

without requiring extensive changes to the model. 584

5 Conclusion 585

Outliers in LLMs are crucial to address because of 586

their significant impact on the accuracy of quan- 587

tized LLMs. In this paper, we undertake a detailed 588

investigation into the mechanisms behind the for- 589

mation of outliers and develop strategies to mitigate 590

their effects. We explore the causes of these outliers 591

and propose practical approaches for their elimina- 592

tion, setting the stage for more efficient quantiza- 593

tion processes. 594

Our comprehensive analysis not only highlights 595

the challenges posed by outliers but also provides 596

innovative solutions that could be pivotal for the 597

advancement of quantization techniques in LLMs. 598

We hope our findings make a valuable contribution 599

to the ongoing research within the LLM commu- 600

nity, especially in addressing the complexities of 601

quantization challenges presented by outliers. 602
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Limitations603

While this survey offers a comprehensive overview604

of outliers within LLMs, it is important to acknowl-605

edge some limitations. The study of outliers is606

specifically tailored to LLMs, and there is scope607

for extending this research to other types of large608

models that handle multimodal inputs. Further in-609

vestigation in these areas could provide a broader610

understanding of outlier effects across different611

model architectures and enhance the robustness of612

multimodal systems.613
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A Activation Statistics Across All833

Sublayers834

To support the claim that TMAs occur only at y6835

(and y7 if un-smoothed), we added Table 4 and836

Table 5, listing the top-2 absolute activation values837

at every sublayer (x1–x9, y1–y7) of layer 2 under a838

single WikiText input, both with and without MA839

removal at Y6.840

• There are no MA observed from x1–x9.841

• From y1–y5the top two values remain un-842

changed by MA smoothing.843

• At y6, the maximum absolute value drops844

from ´499.25 to 37.09, and at Y7 from845

328.25 to 24.125.846

Table 4: Top-2 activations in MLP y1–y7 of LLaMA-
3.2-3B layer 2, with and without MA removal at Y6.

Sublayer With MA Without MA (y6 only)

y1 ´16.03, 10.01 ´16.03, 10.01
y2 4.19, 3.87 4.19, 3.87
y3 13.67, 8.5 13.67, 8.5
y4 ´36.5, ´8.92 ´36.5, ´8.92
y5 13.67, 8.5 13.67, 8.5
y6 ´499.25, ´37.09 ´37.09, 5.09
y7 328.25, ´303.25 24.125, ´22.375

B Outlier-Channel Ablation Study847

In Table 6, we report the perplexity of LLaMA-3.2-848

3B on Wikitext-2 when replacing channels beyond849

t6, 4, 2u standard deviations (SD) in QKV, Layer-850

Norm rescaling factor and MLP weights with (a)851

the channel mean, and (b) random channel replace-852

ments.853

Table 5: Top-2 absolute values from Attention x1–x7 in
layer 2 of LLaMA-3.2-3B.

Sublayer Top-2 Values

x1 ´15.93, 10.58
x2 3.48, 3.47
x3 ´8.16, ´8.05
x4 ´9.94, ´9.78
x5 ´0.73, 0.71
x6 ´14.77, ´14.51
x7 0.99, 0.98
x8 0.47, 0.45
x9 ´0.36, ´0.34

Table 6: Table A.3: Wikitext-2 PPL under outlier vs.
random channel replacements at different thresholds for
LLaMA-3.2-3B. The base model perplexity is 7.8316.

Intervention (setting to mean) 6 SD 4 SD 2 SD

QKV outliers 7.8395 7.9201 10.9746
QKV random 7.8315 7.8419 14.0361
LayerNorm outliers 8.3497 11.4209 61.9459
LayerNorm random 7.8338 7.9110 8.0399
MLP outliers 7.8327 7.9108 15.3786
MLP random 7.8322 7.8452 9.5039

• True outlier removals increase PPL from 7.83 854

to as high as 61.94. 855

• Outliers in LayerNorm rescaling factors have 856

a pronounced impact on perplexity, suggesting 857

their critical role in maintaining performance. 858

• Replacing an equal number of randomly se- 859

lected channels results in considerably smaller 860

degradation in PPL for most cases. 861

• Interestingly, for QKV projections, a more 862

aggressive outlier threshold (2SD) results in 863

lower perplexity (10.97) compared to replac- 864

ing an equivalent number of random channels 865

(14.04), indicating that these outliers may be 866

less essential to model performance. 867
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