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ABSTRACT
Recently, significant advancements have been made in support-
ing text-video retrieval by transferring large-scale image-text pre-
training models through model adaptation, i.e., full fine-tuning, or
prompt tuning, a parameter-efficient fine-tuning strategy. While
full fine-tuning involves high computational costs, particularly
with increasing model size, prompt tuning offers greater flexibil-
ity and efficiency by adjusting only a few learnable parameters.
However, current prompt tuning methods rely on coarse visual and
textual cues for text-video retrieval task, neglecting the domain-
specific features when performing the adaptation. This approach
may lead to sub-optimal performance due to the incorporation
of irrelevant and indiscriminate knowledge. To address such an
issue, we present aMulti-grained Prompt Tuning (MPT) for text-
video retrieval, that designs a variety of specific prompts to ef-
fectively explore semantic interaction across different modalities
with diverse granularity. Specifically, we devise a multi-grained
video encoder that employs spatial, temporal, and global prompts
to transfer the base-generic knowledge from the image-text pre-
trained model while comprehensively excavating determinative
video-specific characteristics. Meanwhile, we introduce a novel
multi-grained text encoder aimed at capturing various levels of
textual clues through the utilization of word and phrase prompts.
Extensive experiments on four benchmark datasets, i.e., MSR-VTT,
ActivityNet, DiDeMo, and LSMDC, demonstrate that MPT achieves
outstanding performance, surpassing state-of-the-art methods with
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negligible computational cost. The codebase is publicly available
at: https://github.com/zchoi/MPT.
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1 INTRODUCTION
The field of multi-modal analysis has sparked tremendous interest
with the explosion of multi-modal data and the growing power of
deep learningmethods. Among these, cross-modal alignment stands
out as a crucial problem, necessitating an integrated comprehension
and investigation of visual and language modalities. As a typical
application of cross-modal learning, the text-video retrieval task [28,
49] aims to retrieve the most relevant video based on a text query,
which is beneficial to numerous visual-language tasks, such as
video captioning [41, 48], video question answering [36, 37], and
video grounding [12, 22]. The general approach to this task follows
the paradigm by first extracting video and text features separately
with distinct backbones and then aligning those features into a
common space. To date, it remains challenging due to the inherent
heterogeneity gap between visual and textual modalities.

Large-scale image-text pre-trained models, e.g., CLIP [34], a cor-
nerstone invention in deep learning, have proven indispensable
in multi-modal analysis. Benefiting from its powerful transferring
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Figure 1: Comparison of the proposed MPT with exist-
ing state-of-the-art methods in terms of efficacy (sum of
R@1,5,10) and efficiency (#Param.) for text-video retrieval.
Note that for a fair comparison, we showcase the results
trained on the MSR-VTT dataset and all models adopt the
CLIP-ViT-B/32 backbone.

abilities, fine-tuning techniques have become prevalent to swiftly
adapt these models to specific downstream tasks including image
recognition [31] and video understanding [26]. As a precursor work
adapts the large-scale image-text pre-trained models into text-video
retrieval task, CLIP4Clip [28] successfully extends the above strat-
egy that proposes a temporal fusion module to capture the dynamic
features of different video frames and performs the cross-modal
alignment on video and text features by a simple meaning pooling.
However, the conventional paradigm of this full fine-tuning strat-
egy often involves tremendous computational costs as the model
size grows (Fig. 1), necessitating the storage of a separate set of
model parameters for each dataset, therebymaking practical deploy-
ment and scalability difficult. Moreover, fully fine-tuning the entire
backbone also poses a risk of catastrophic forgetting of rich prior
knowledge embedded in weights during the pre-training stage.

To alleviate these problems, there have been increasing efforts [5,
18, 24, 44] to explore parameter-efficient transfer learning for swift
adaptions to downstream tasks such as text-video retrieval, i.e., a
flexible alternative tuning strategy that seeks to representative prior
from the large-scale pre-trained image-text model by optimizing
a set of learnable vectors, while keeping the pre-trained weights
frozen. Two pioneering parameter-efficient strategies are Adapter
tuning [17, 39] and Prompt tuning [19, 24]. Specifically, Adapter
tuning requires fine-tuning partial model parameters, e.g., Bias [9],
Proj [19], and Partial [19], or injects a learnable module into the
model, e.g., AdapterATTN/FFN [11, 16]. However, the adapter-based
approaches shown in Fig. 1 have limited retrieval performance and
often require the modification of the model backbone to insert the
external blocks. Compared with it, prompt tuning only learns a
small set of learnable vectors (called prompts) without changing
other model parameters. It obtains performance on par with or
outperforms the full fine-tuning counterparts while efficiently re-
ducing the trainable parameters, as shown in Fig. 1. For instance,
VoP [18] first introduces the prompt tuning into text-video retrieval

and designs three kinds of video-specific prompts while optimizing
the dual branches’ prompts independently. DGL [44] proposes a
cross-modal dynamic prompt tuning method aiming to capture
global video information and encourage inter-modal interaction.

Despite the significant promotion, current prompt tuning meth-
ods solely concentrate on coarse-grained interaction for text-video
retrieval, i.e., only one type of prompt for the corresponding modal-
ity, which hampers the capture of the domain-specific featureswhen
performing the adaptation. Essentially, the videos possess various
inherent properties that contribute to their richness and complexity
such as spatial, temporal, and global information. In addition, the
text also embodies a variety of intrinsic properties including lexical
and contextual semantics, where the former emphasizes the word-
level meaning and the latter controls the associations between joint
words, e.g., under different contexts, the meaning of single word
‘teddy’ in ‘Teddy bear’ and ‘President Teddy’ is completely different.
Therefore, it is essential to analyze the multi-grained semantics in
video-text modalities for prompt tuning-based text-video retrieval
tasks, which also greatly benefits the practical retrieval system.

Based on the above insights, we propose Multi-grained Prompt
Tuning (MPT) for text-video retrieval. Our core idea is to transfer
the encyclopedic knowledge from the pre-trained model while ex-
cavating the multi-grained domain-specific features by leveraging
several distinct prompt vectors. To be specific, we first introduce a
multi-grained video encoder (MVE) that incorporates three types
of prompts, i.e., spatial prompts, temporal prompts, and global
prompts to learn the video-specific characteristics in a local-to-
global manner thoroughly. Likewise, we symmetrically propose a
multi-grained text encoder (MTE) by introducing the word prompts
and phrase prompts to capture the intrinsic lexical and contextual
semantics of the given sentence. Note that the phrase features are
obtained from the word embeddings via a prototype-based learning
strategy without any supervision. Moreover, the above prompting
processes are in parallel and parameter-shared within each layer
for both video and text encoders to effectively maintain the model
size. We carry out extensive experiments on four commonly used
text-video datasets including MSR-VTT, ActivityNet, DiDeMo, and
LSMDC. Learning multi-grained video and text semantics while
maintaining powerful pre-trained knowledge, our MPT consistently
achieves state-of-the-art performance compared to previous meth-
ods. In summary, the main contributions of our work are three-fold:

• We propose a multi-grained prompt tuning (MPT) for text-
video retrieval, which endows the pre-trained image-text
model with multiple fine-grained considerations of video-
textmodalities, thus facilitating the excavations of the domain-
specific features.

• We introduce a multi-grained video encoder by incorporat-
ing three levels of prompts, i.e., spatial, temporal, and global
prompts, to learn the inherent properties of the video modal-
ity. Accordingly, a multi-grained text encoder is devised to
model the lexical and contextual semantics of the given sen-
tence via a word prompt and a phrase prompt.

• Through extensive experiments on four commonly used text-
video benchmarks, i.e., MSR-VTT, ActivityNet, DiDeMo, and
LSMDC, we demonstrate that MPT significantly outperforms
previous methods, achieving the best trade-off between per-
formance and computational cost.



MPT: Multi-grained Prompt Tuning for Text-Video Retrieval MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

2 RELATEDWORKS
2.1 Vision-Language Pre-training
Vision-Language Pre-training (VLP) aims to learn joint represen-
tations of vision and language, thereby outperforming across a
variety of downstream tasks. Recently, profiting from large-scale
visual and textual pairs collected from the Internet, the contrastive
text-image pre-training [6, 29, 34, 40, 46] gains significant achieve-
ments. As a pioneering work, CLIP (Contrastive Language-Image
Pre-training) [34] utilizes a contrastive loss to train two uni-modal
encoders via 400 million pairs of images and texts. And the suc-
cess of derivative works also highlights the adaptability of pre-
trained models such as Flamingo [2] and ALBEF [25]. For video
counterparts, most video-language pre-training [4, 23] is based
on large-scale text-video datasets such as HowTo100M [30] and
WebVid-2M [4]. Despite the advent of works likeClipBERT [23] and
Frozen in Time [4] which have demonstrated considerable potential
in video-language understanding tasks, there are still challenges
that need to be overcome. It is worth noting that videos present
challenges in terms of acquisition costs and effort, leading to limited
scale and suboptimal generalization capabilities. Moreover, video-
language pre-training also requires substantial computing resources
and contends with significant text-irrelevant noise interference in
video data. To mitigate this burden, models like CLIP4Clip [28] and
X-Pool [15] are proposed to transfer the powerful generalization
ability in image-text pre-training to the video domain. Accordingly,
our work follows this scheme for text-video retrieval.

2.2 Prompt Learning
Prompt learning, stemming from language processing (NLP), aims
to adapt pre-trained language models to various downstream tasks.
The original prompts are meticulously crafted language templates
that necessitate substantial expertise and are limited in their ability
to generalize. In order to address the aforementioned issues, the
researchers suggest implementing prompt tuning, a technique that
involves introducing learnable tokens as prompts and exclusively
optimizing these tokens throughout the training process. Motivated
by the achievements of prompt learning in NLP, this paradigm is ex-
tended to vision language models (VLMs). For example, CoOp [50]
applies a series of learnable text prompts into the text input, which
is jointly optimized with image labels during the training process
to improve classification accuracy. Unlike adding prompts on the
text side, VPT [19] employs token-level or pixel-level prompts to
the vision branch, aiming to grasp the intrinsic attributes and rela-
tionships in images. However, the works above consider only the
vision or text-side prompting, which ignores the synergy between
the two modalities. MaPLe [21] introduces multi-modal prompts,
breaking the isolation of visual and text prompts. Recently, the
application of prompt learning in VLMs extends beyond image
processing to video-related tasks like video understanding and text-
video retrieval. For example, VoP [18] makes innovations in visual
prompts and designs different ways to capture the spatio-temporal
characteristics of videos. DGL [44] achieves the modal interaction
of video and text prompts and utilizes global-local prompts interac-
tion to capture global video information. In this work, we further
mine more fine-grained information of both modalities to enhance
the performance of text-video retrieval.

2.3 Text-video Retrieval
Text-video retrieval aims to determine and rank videos based on
their semantically correspondent textual queries and vice versa. Pre-
viousworks like [7, 13, 38, 51] have largely concentrated on complex
fusion modules after extracting offline features, attempting to map
pre-processed text and video data into a common latent space for
alignment. In recent years, significant improvements have been
achieved by adapting large-scale pre-trained image-text models
such as CLIP [34] to various downstream tasks, e.g., image classi-
fication [1, 33], video localization [10, 43], and visual question an-
swering (VQA) [32, 37]. This paradigm has encouraged researchers
to adapt these robust pre-trained image-text models for text-video
retrieval, yielding unprecedented performance. As a preliminary
study, CLIP4Clip [28] fine-tunes the pre-trained CLIP model to
text-video retrieval with several similarity calculations, achiev-
ing remarkable performance on various benchmarks. X-Pool [15]
highlights the deficiency of text-agnostic video pooling and thus
proposes a text-conditioned video interaction for text-video re-
trieval. DicoSA [20] devices a disentangled conceptual framework
and aligns video sets to simulate human reasoning processes. In
contrast to the methods described previously, the present work
seeks to delve into the multi-grained interactions between video
and text using a more parameter-efficient strategy for text-video
retrieval.

3 METHOD
In this section, we present our Multi-grained Prompt Tuning (MPT)
for text-video retrieval. Specifically, we begin with a brief overview
of some critical preliminaries including the task formulation of
text-video retrieval, CLIP-based paradigm, and prompt tuning in
Sec. 3.1. Then, we provide a detailed exposition of MPT in Sec. 3.2,
containing two novel components, i.e., multi-grained video encoder
(MVE) and multi-grained text encoder (MTE), to acquire multi-
grained properties from both visual and textual representations. At
last, we describe the objective function for text-video retrieval in
Sec. 3.3. The overall framework of MPT is depicted in Fig. 2.

3.1 Preliminary
Task Formulation. The text-video retrieval task seeks to explore
well-aligned representations between the texts and videos, includ-
ing two sub-tasks, namely text-to-video retrieval (t2v) and video-to-
text retrieval (v2t). In 𝑡2𝑣 , it aims to retrieve the semantic-related
video 𝑣 ∈ V based on the text query 𝑡 ∈ T , and vice versa for 𝑣2𝑡 ,
where V and T indicate a video gallery and a text gallery, respec-
tively. In practice, a dual-branch architecture is usually adopted,
where the video and text features are first extracted using a Tex-
tEncoder and a VideoEncoder, respectively, and then a similarity
function 𝑠 is to measure the semantic relevance between them,
which can be formalized as:

𝑧𝑡 = 𝑉𝑖𝑑𝑒𝑜𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑡),
𝑧𝑣 = 𝑇𝑒𝑥𝑡𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑣),

𝑠 (𝑡, 𝑣) = z𝑡 · z𝑣
∥z𝑡 ∥∥z𝑣 ∥

.

(1)

RevisitingCLIP-based Paradigm.As a dominant vision-language
model pre-trained on massive web-scale image-text pairs, CLIP [34]
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Figure 2: Overview of the proposed Multi-grained Prompt Tuning (MPT) for text-video retrieval. The left side showcases: (a) the
overall architecture of the proposed method. It learns the domain-specific features when performing pre-trained adaptation by
involving two novel components: (b) a multi-grained video encoder that leverages three types of prompts, i.e., spatial, temporal,
and global, to acquire the inherent video characteristics in parallel, and (c) a multi-grained text encoder to model the intrinsic
lexical and contextual semantics of the description by involving word prompts and phrase prompts.

has experimented with significant advancements in generalizing to
various downstream tasks such as image classification [1, 33] and
video localization [10, 43]. Owing to its dual-branch structure, CLIP
becomes a feasible and effective solution to learning cross-modal
representation for text-video retrieval.

(1) Text Encoder. To extract text features, we first tokenize and
pad the input sentence 𝑡 into a fixed-length token sequence and
then project it into a word embedding𝑊0 ∈ R𝑁×𝐷𝑡 , where 𝑁 is
the number of the text tokens and 𝐷𝑡 is the textual embedding size.
Then the text features are learned by sending the word embeddings
into a𝐾-layer Transformer of pre-trained CLIP, where the operation
of F 𝑡 is defined as:

𝑊𝑖 = F 𝑡𝑖 (𝑊𝑖−1). (2)

Finally, we take the embedding of the [EOS] token𝑊 𝑁
𝐾

from the
last layer of the text encoder as the sentence embedding 𝑧𝑡 :

𝑧𝑡 = TextProj(𝑊 𝑁
𝐾 ). (3)

(2) Video Encoder. Correspondingly, to extract video features,
we first split each frame of the input video 𝑣 into𝑀 non-overlapping
patches and then project them into a frame sequence𝑉0 ∈ R𝐹×𝑀×𝐷𝑣 ,
where 𝐹 is the number of video frames and 𝐷𝑣 is the visual em-
bedding size. Then, we learn the frame features by continually
inputting each video frame 𝑉𝑖;𝑗 ∈ R𝑀×𝐷𝑣 appended with a [CLS]
tokens 𝑐𝑖;𝑗 ∈ R𝐷𝑣 into the image encoder F 𝑣 of the pre-trained
CLIP. Usually, each [CLS] token will learn the global information
about the corresponding video frame. Giving 𝑖-th layer of the video
encoder:

[𝑐𝑖;𝑗 ,𝑉𝑖;𝑗 ] = F 𝑣
𝑖 ( [𝑐𝑖−1;𝑗 ,𝑉𝑖−1;𝑗 ]), (4)

where [, ] indicates the concatenate operation. By selecting all
[CLS] tokens from the last layer as the frame embeddings, we
obtain the video embedding as follows:

𝑧𝑣 = VisualProj(𝑐𝐾 ) . (5)

Prompt Tuning.Despite the progress made in CLIP-based full fine-
tuning algorithm, this strategy inevitably involves computational
costs as it requires updating all parameters, making it infeasible to
adapt to various datasets or deploy on practical retrieval systems.
To move a step further for a more effective and efficient retrieval
model, prior methods have adopted prompt tuning to text-video
retrieval task which has shown great progress. A basic formulation
of prompt turning for this task is summarized as follows:

[𝑊𝑖 , _] = F 𝑡𝑖 ( [𝑊𝑖−1,𝑇𝑖−1]),
[𝑐𝑖;𝑗 ,𝑉𝑖;𝑗 , _] = F 𝑣

𝑖 ( [𝑐𝑖−1;𝑗 ,𝑉𝑖−1;𝑗 , 𝐸𝑖−1]),
(6)

where 𝑇𝑖−1 ∈ R𝐻𝑡×𝐷𝑣 indicates the textual prompt and 𝐸𝑖−1 ∈
R𝐻𝑣×𝐷𝑣 indicates the visual prompt for the 𝑖-th layer, respectively.
‘_’ denotes the outputs at the corresponding positions are discarded.
𝐻𝑡 and 𝐻𝑣 mean the length of the textual and visual prompts.
Nonetheless, current prompt tuning methods are limited to coarse-
grained interaction for text-video retrieval. They typically utilize
only one type of prompt for each modality, which restricts their
ability to capture domain-specific features during adaptation. To
this end, we seek to learn the multi-grained multi-modal semantics
of both video and text via prompt tuning.

3.2 Multi-grained Prompt Tuning (MPT)
In this work, we propose a Multi-grained Prompt Tuning (MPT)
for text-video retrieval task by incorporating different levels of
prompts to capture various properties of video and text modalities.
Multi-grained Video Encoder. As discussed in Sec. 1, video in-
herently contains multiple visual properties, i.e., static spatiality
(intra-frame), dynamic temporality (inter-frame), and global un-
derstanding (whole video). However, solely adopting one type of
visual prompt like Eq. 6 ignores the above-mentioned video char-
acteristics, which may lead to sub-optimal retrieval performance.
To alleviate this issue, we introduce a multi-grained video encoder
(MVE) that learns three types of prompts, i.e., spatial, temporal, and
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global prompts, to acquire adequate video-specific semantics, as
shown in Fig. 2 (b).

For the spatial prompts, we remove the [CLS] tokens from
Eq. 6 to exclusively learn the pure intra-frame patch information.
By doing this, the flow of each video encoder layer in Eq. 4 becomes:

[𝑉𝑖;𝑗 , _] = F 𝑣
𝑖 ( [𝑉𝑖−1;𝑗 , 𝑃𝑠𝑖−1;𝑗 ]), (7)

where 𝑃𝑠
𝑖−1;𝑗 ∈ R

𝐻𝑠×𝐷𝑣 is the spatial prompts for the 𝑖-th layer of
the 𝑗-th frame, and 𝐻𝑠 is the length of the spatial prompts. Note
that we leave the [CLS] token in the subsequent temporal learning
and restrict the spatial prompts to be shared between all frames
that are at the same relative position in their respective videos.

For the temporal prompts, we encourage the dynamic correla-
tion between consecutive video frames by considering the [CLS]
token-based learning, which is typically designed to contain the
general information of video frames. In parallel with spatial prompt-
ing, we combine the temporal prompts with [CLS] tokens of all
frames together as the input for each video encoder layer:

[𝑐𝑖 , _] = F 𝑣
𝑖 ( [𝑐𝑖−1, 𝑃𝑡𝑖−1]), (8)

where 𝑃𝑡
𝑖−1 ∈ R𝐻𝑡×𝐷𝑣 is the temporal prompts belong to 𝑖-th layer

and 𝐻𝑡 is the length of the temporal prompts.
For the global prompts, it is mainly responsible for getting

the overall information of the video across all spatial-temporal
dimensions. Inspired by [44], the global prompts are acting like a
Q-former mechanism to extract the most useful visual information:

[𝐺𝑖 , _, _, _, _] = F 𝑣
𝑖 ( [𝐺𝑖−1, 𝑐𝑖−1,𝑉𝑖−1, 𝑃𝑠𝑖−1, 𝑃

𝑡
𝑖−1]), (9)

where𝐺𝑖−1 ∈ R𝐻𝑔×𝐷𝑡 is the global prompts of the 𝑖-th layer and𝐻𝑔
is the length of the global prompts. Different from the spatial and
temporal prompts, we take the global prompts as the query and the
others as the key and value for the multi-head attention mechanism
to (1) comprehensively summarize the overall video information
from other features, and (2) efficiently reduce the computational
complexity. Note that the above three prompting processes are in
parallel in each video encoder layer and each layer is parameter-
shared between them to maintain the model size.
Multi-grained Text Encoder. Recent approaches [18, 44] mainly
devote attention to the video branch by introducing various prompt
tuning strategies, while ignoring the intrinsic language semantics.
Intuitively, a deeper language understanding requires a lexical level
learning of the main single words, and then forming them into
phrases for further contextual comprehension. Motivation by this,
we propose a multi-grained text encoder (MTE) by employing word
and phrase prompts to learn textual clues from different aspects.

For the word prompts, we follow the basic formulation in Eq. 6
and simply prepend themwith the text feature, forming the input of
the 𝑖-th layer of the text encoder to capture lexical-level semantics
of the word embeddings:

[𝑊𝑖 , _] = F 𝑡𝑖 ( [𝑊𝑖−1, 𝑃
𝑤
𝑖−1]), (10)

where 𝑃𝑤
𝑖−1 ∈ R𝐻𝑤×𝐷𝑡 is the word prompts of the 𝑖-th layer of the

text encoder and 𝐻𝑤 is the length of the word prompts.
For the phrase prompts, to obtain the phrase embeddings, we

first introduce an unsupervised prototype-based strategy to group
semantically relatedword embedding into a common centroid. Com-
pared to the previous phrase-parsing algorithm, our method is more

time-saving and flexible. Particularly, within each text encoder layer,
we define 𝑅 cluster centers 𝑍𝑖 = {𝑍𝑖;𝑟 }𝑅𝑟=1 ∈ R𝑅×𝐷𝑡 and utilize dot
product to calculate the similarities between word embeddings with
these centers. Given a word embedding, its assignments to the 𝑟 -th
cluster can be generated as follows:

𝑎𝑛,𝑟 =
𝑒𝑥𝑝 (𝑊𝑖−1;𝑛𝑍𝑇𝑖−1;𝑟 + 𝑏𝑖−1;𝑟 )∑
𝑟 ′ 𝑒𝑥𝑝 (𝑊𝑖−1;𝑛𝑍𝑇𝑖−1;𝑟 ′ + 𝑏𝑖−1;𝑟 ′ )

, (11)

where 𝑏𝑖−1;𝑛/𝑜 is trainable parameters. Then we can obtain the
aggregated residual features for each cluster as formulated below:

𝑂𝑖−1;𝑟 = 𝑁𝑜𝑟𝑚(
𝑅∑︁
𝑟=1

𝑎𝑛,𝑟 (𝑊𝑖−1;𝑛 − 𝑍𝑖−1;𝑟 )), (12)

where ‘Norm’ means the ℓ2-normalization and 𝑍𝑖−1;𝑟 means the
trainable weights with the same size as 𝑍𝑖−1;𝑟 . To this end, we ob-
tain a set of contextualized phrase features 𝑂𝑖−1 = {𝑂𝑖−1;𝑟 }𝑅𝑟=1 ∈
R𝑅×𝐷𝑡 for the 𝑖-th layer. Then, we combine generated phrase fea-
tures with phrase prompt as the input for 𝑖-th text encoder layer:

[𝑂𝑖 , _] = F 𝑡𝑖 ( [𝑂𝑖−1, 𝑃
𝑝

𝑖−1]). (13)

where 𝑃𝑝
𝑖−1 ∈ R𝐻𝑝×𝐷𝑡 is the phrase prompts and 𝐻𝑝 is the length

of the phrase prompts. Finally, we back-add the cluster features to
their corresponding word embeddings for semantic enhancement:

𝑊𝑖;𝑛 =𝑊𝑖;𝑛 +𝑂𝑖;𝑟 , 𝑖 𝑓 𝑊𝑖;𝑛 ∈ 𝑂𝑖;𝑟 , (14)

where the aggregated word embeddings𝑊𝑖 are prepared for the
input of the next layer of the textual encoder.

3.3 Objective Function
Following [44], we utilize contrastive loss to train our model, re-
garding the paired text-video data as positive and the others as
negative in a mini-batch. We optimize the symmetric text-to-video
and video-to-text losses as follows:

L𝑡2𝑣 =
1
𝐵

𝐵∑︁
𝑖=1

log
𝑒𝑠 (𝑧

𝑖
𝑡 ,𝑧

𝑖
𝑣 )/𝜏∑𝐵

𝑗=1𝑒
𝑠 (𝑧 𝑗𝑡 ,𝑧𝑖𝑣 )/𝜏

,

L𝑣2𝑡 =
1
𝐵

𝐵∑︁
𝑖=1

log
𝑒𝑠 (𝑧

𝑖
𝑡 ,𝑧

𝑖
𝑣 )/𝜏∑𝐵

𝑗=1𝑒
𝑠 (𝑧𝑖𝑡 ,𝑧

𝑗
𝑣 )/𝜏

,

(15)

where 𝐵 represents the mini-batch size, 𝜏 is a learnable tempera-
ture scale, and 𝑠 (𝑧𝑖𝑡 , 𝑧

𝑗
𝑣) is the cosine similarity between the text

representation 𝑧 𝑗𝑡 and the video representation 𝑧𝑖𝑣 . To this, the final
loss function is:

Lretrieval =
1
2
(L𝑡2𝑣 + L𝑣2𝑡 ) . (16)

Note that different from the Eq. 5, we follow [44] and take global
prompt in first position𝐺𝐾 ;0 from the last layer as video embedding.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
Datasets. To verify the effectiveness of our proposed method,
we conduct extensive experiments on four widely used datasets
for text-video retrieval, including MSR-VTT [42], ActivityNet [8],
DiDeMo [3], LSMDC [35].MSR-VTT contains 10,000 video clips,
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Table 1: Comparison with state-of-the-art on the MSR-VTT dataset. Here, along with the performance of common retrieval
metrics, we also report the number of trainable parameters (#TP) and the sum of all recalls (SumR).

Types Methods #TP (M) Text ⇒ Video Video ⇒ Text SumR ↑
R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓

CLIP-ViT-B/32
Finetune CLIP4Clip [28] 123.54 43.1 70.4 80.8 16.2 43.1 70.5 81.2 12.4 389.1

Adapter

Bias [9] 0.1 39.7 66.5 77.3 17.3 41.1 68.4 79.2 13.6 372.2
Proj [19] 0.7 37.1 63.0 76.1 20.5 37.2 64.6 75.9 16.7 353.9
Partial [19] 7.7 39.8 65.3 75.9 19.3 37.9 66.1 77.4 15.5 362.4
AdapterATTN [16] 2.0 37.6 63.2 75.8 18.7 39.6 66.5 76.8 14.7 359.5
AdapterFFN [11] 2.0 38.2 63.5 76.4 17.9 39.9 66.8 77.7 14.2 362.5
Visual-Text Adapter [44] 11.82 39.2 65.7 76.1 17.6 40.7 68.8 77.6 13.7 368.1
Video-Text Adapter [44] 11.94 41.1 67.0 77.1 17.4 42.6 68.4 78.4 13.8 374.6

Prompt

VPT [19] 0.18 42.0 66.6 77.3 19.2 39.4 66.8 77.2 16.2 369.3
UPT [47] 9.57 42.1 67.7 78.2 16.5 42.6 70.3 79.3 12.3 380.2
VoPF+C [18] 14.10 44.6 69.9 80.3 16.3 44.5 70.7 80.6 11.5 390.6
DGL-Linear [44] 0.83 44.7 70.5 79.2 16.2 42.1 70.0 80.6 13.4 387.1
DGL-Transformer [44] 9.57 45.8 69.3 79.4 16.3 43.5 70.5 80.7 13.1 389.2
MPT-Linear (ours) 0.87 45.0 70.8 79.6 16.2 42.8 70.6 81.1 12.9 389.9
MPT-Transformer (ours) 9.61 46.3 70.9 80.7 15.6 45.0 70.9 80.6 12.7 394.4

CLIP-ViT-B/16
CLIP4Clip [28] 123.54 45.6 71.2 80.9 15.2 43.2 72.5 80.7 10.9 394.1
VoPF+C [18] 14.10 47.7 72.4 82.2 12.0 - - - - -
DGL-Linear [44] 0.83 48.3 71.8 80.6 13.4 45.7 74.0 82.9 10.9 403.3
DGL-Transformer [44] 9.57 48.6 71.8 82.2 13.6 46.3 74.2 83.8 9.9 406.9
MPT-Linear (ours) 0.87 48.3 72.0 81.7 14.9 46.5 74.1 82.6 11.8 405.2
MPT-Transformer (ours) 9.61 49.2 72.9 82.4 15.5 47.4 73.9 83.4 10.9 409.3

each annotated with about 20 human-labeled descriptions. Follow-
ing [15, 28, 44], we utilize “training-9K” split [14] for training and
“test 1K-A” split [45] for testing, which includes 9,000 and 1,000
video-descriptions pairs, respectively. ActivityNet is a long-video
dataset, which collects 20,000 videos with 200 different types of
human activities from YouTube. Following [20], we concatenate all
of the video descriptions into a paragraph to test the model with
video-paragraph retrieval on the “val1” split. DiDeMo has 10,000
Flikr videos described by 40,000 sentences. Like the ActivityNet
dataset, all descriptions of a video are merged into a query to evalu-
ate the model. LSMDC is composed of 118,081 video clips extracted
from 202 movies, each of which has a single caption. There are
109,673, 7,408, and 1,000 videos for training, validation, and testing.
Evaluation Metrics. For a fair comparison, we follow the existing
works [18, 44] and employ standard retrieval metrics to evaluate
the performance of the proposed model, including R@K (Recall at
Rank K, higher is better ↑) and MnR (Mean Rank, lower is better ↓).
Specifically, R@K measures the percentage of ground-truth hits in
the top-K ranking list. Here, K is set to 1, 5, and 10, respectively.

4.2 Implementation Details
Following existing works [18, 44], the video and text encoders
are initialized with the pre-trained CLIP [34], and all pre-trained
weights are frozen during the model training. The visual and textual
embedding sizes 𝐷𝑣 and 𝐷𝑡 are set to 768 and 512 respectively. For
the initialization of prompts, inspired by UPT [47], we adopt a

shared embedded encoding layer to generate the word&phrase
and spatial&temporal&global prompts, which can better enhance
the interaction across modalities compared to generating different
prompts solely. Moreover, we further encode these prompts by
utilizing one linear layer or one transformer layer to build the
relationship among them, resulting in two versions of our model,
i.e.,MPT-Linear andMPT-Transformer. By default, the length of
all the above prompts is set to 𝐻𝑠/𝑡/𝑔/𝑤/𝑝 = 4. For MSR-VTT and
LSMDC datasets, we set the max length of the caption to 𝑁 = 32
and uniformly sample 𝐹 = 12 frames per video. For DiDeMo and
ActivityNet datasets, the maximum number of sentences and frames
is all set to 𝑁 /𝐹 = 64. All video frames are resized to 224 × 224
and split into𝑀 = 49 non-overlapping patches. The cluster number
is set to 𝑅 = 5 to learn the phrase features. During training, the
model is trained within 10 epochs by the AdamW optimizer with
0.2 decoupled weight decay. The initial learning rate is set to 1𝑒 − 2
and 5𝑒 − 3 for LSMDC and other datasets, respectively, with warm
up by a cosine scheme [27]. The mini-batch size is 128 for MSR-VTT
and LSMDC and 64 for DiDeMo and ActivityNet, respectively. All
experiments are carried out on 8 NVIDIA RTX A6000 GPUs.

4.3 Performance Comparisons
Compared Methods. In this section, to evaluate the capability
of the proposed MPT, we compare it with state-of-the-art meth-
ods, where all methods are built on the CLIP backbone. The com-
parison methods can be briefly classified into three categories: (i)
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Table 2: Comparison with state-of-the-art on the ActivityNet, DiDeMo, and LSMDC. Briefly, we only report text-to-video
retrieval (t2v) results. * denotes that we evaluated performances using public code provided by corresponding papers.

Types Methods ActivityNet DiDeMo LSMDC

R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓
Finetune CLIP4Clip [28] 40.5 72.4 98.1 7.5 43.4 70.2 80.6 17.5 20.7 38.9 47.2 65.3

Adapter

Bias [9] 31.3 60.3 74.2 13.4 36.5 63.4 75.2 24.8 17.4 36.2 44.9 73.2
Proj [19] 29.8 59.1 73.3 14.2 35.6 61.3 72.6 24.4 15.7 32.7 40.8 83.7
Partial [19] 33.6 64.0 77.8 10.6 39.3 65.5 75.7 22.3 18.0 33.8 41.8 79.9
AdapterATTN [16] 31.6 60.5 74.4 13.1 36.4 62.8 73.9 23.5 18.4 38.0 46.4 68.9
AdapterFFN [11] 31.8 61.0 75.0 12.8 36.3 63.4 75.4 22.9 18.7 38.9 47.3 63.6
Visual-Text Adapter [44] 33.5 64.8 77.5 10.9 - - - - 18.0 34.4 43.5 75.2
Video-Text Adapter [44] 36.4 66.1 79.6 10.0 - - - - 18.3 35.5 44.0 74.8

Prompt
VoPF+P [18] 36.1 65.5 78.5 10.9 45.3 72.3 80.4 13.8 20.7 40.7 49.7 59.1
DGL-Transformer [44] 40.1 69.5 80.9 9.1 45.6∗ 71.7* 81.1* 14.6* 21.2 37.8 48.8 66.5
MPT-Transformer (ours) 41.4 70.9 82.9 7.8 46.4 72.2 81.4 13.4 21.1 41.2 49.4 63.2

Table 3: Ablation study of integrating different prompts in
MPT. MVE and MTE indicate the multi-grained video/text
encoders. S.P: spatial prompts. T.P: temporal prompts. G.P:
global prompts. W.P: word prompts. P.P: phrase prompts.

Line MVE MTE Text ⇒ Video

S.P T.P G.P W.P P.P R@1↑ R@5↑ R@10↑ MnR↓

1 ! ✗ ✗ ! ✗ 42.0 67.5 77.6 16.4
2 ! ! ✗ ! ✗ 44.0 70.2 79.6 15.9
3 ! ! ! ! ✗ 45.3 70.2 80.3 16.2
4 ! ! ! ! ! 46.3 70.9 80.7 15.6

Finetune: updating the entire model’s parameters during training,
including CLIP4Clip [28]. (ii) Adapter: updating only selected pa-
rameters of the model, or additional lightweight learnable modules
inserted into the model, including Bias [9], Proj [19], Partial [19],
AdapterATTN [16], AdapterFFN [11], Visual-Text Adapter [44],
and Video-Text Adapter [44]. (iii) Prompt: updating only a few
additional learnable prompt tokens prepended to input tokens and
keeping backbone frozen, including VPT [19], UPT [47], VoPF+C [18],
and DGL [44]. Our proposed MPT belongs to the third one.
Comparisons on MSR-VTT dataset. Tab. 1 presents the perfor-
mance comparison on the MSR-VTT dataset under the setting of
two backbones, i.e., CLIP-ViT-B/32 and CLIP-ViT-B/16. In addition,
to better showcase the efficacy and efficiency, we also report the
trainable parameters (#TP) and the sum of recall@1/5/10 (SumR).
From the table, we observe that: (1) Compared with the existing
methods (ViT-B/32), our MPT-Transformer obtains an obvious gain
on most evaluation metrics. In particular, our method outperforms
the best counterpart VoPF+C on the SumR metric by large mar-
gins of 5.2%, which indicates overall high-quality retrieval results
of our method. Besides, it achieves better performance in terms
of R@1 than the DGL-Transformer without excessive parameters,
increased by 0.5% and 1.5% for text-to-video and video-to-text re-
trieval, respectively. (2) During training, both two versions of our
method update only 0.7% and 7.7% of the parameters than the fully
fine-tuned method, i.e., CLIP4Clip. Compared to parameter-efficient

methods, although MPT may not have the least trainable parame-
ters, it strikes a better trade-off between performance and efficiency.
(3) By adopting a more powerful backbone, i.e., CLIP-ViT-B/16, our
proposed MPT yields a further performance improvement, which
consistently surpasses previous fine-tuning and prompt tuning
methods. The above results clearly prove the validity of MPT.
Results on otherDatasets. To verify the robustness of ourmethod,
we further provide quantitative experiments on the other three
datasets, i.e., ActivityNet, DiDeMo, and LSMDC, in Tab. 2, where
the table only reports text-to-video results (t2v) for simplicity. We
find that MPT maintains relatively comparable in most evaluation
metrics. It indicates that it is beneficial to leverage diverse prompts
to explore the fine-grained features for text-video retrieval. Specifi-
cally, our method achieves the best performance on ActivityNet and
DiDeMo with R@1 of 41.4% and 46.4%, respectively. In particular,
on ActivityNet, the performance of all prompt tuning methods is
lower than CLIP4Clip, while MPT outperforms CLIP4Clip with an
increase of 0.9%. On LSMDC, MPT also obtains comparable results.
The aforementioned results significantly emphasize the advantages
of the proposed method.

4.4 Ablation Study
In this section, we conduct detailed ablative studies to investigate
the impact of the designed components, where all experiments are
built on the MPT-Transformer with CLIP-ViT-B/32 backbone.
Effectiveness of the designed prompts. In Tab. 3, we investigate
the impact of each type of our devised prompt in MPT. Note that
we report text-to-video retrieval results (𝑡2𝑣) for brevity. Here, the
baseline method only exploits basic spatial and word prompts (Line
1). Subsequently, we conduct component-wise analysis on the other
prompts (temporal, global, and phrase) by progressively adding
them to the baseline method. Overall, all the devised prompts con-
tributed significantly to the overall performance. Specifically, the
baseline model first performs the worst. By integrating temporal
prompt into baseline (Line 2), the performance obtains larger im-
provement, particularly increased by 2.0% in R@1. It reveals the
importance of temporal information for videos. Then, the global
prompt is added to the model (Line 3), which further enhances the



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia H. Zhang et al.

2 4 8 16 32
(a) Hs

42.5

43.3

44.1

44.9

45.7

46.5

47.3

R@
1 

(%
)

text  video
video  text

2 4 8 16 32
(b) Ht

40.5

41.5

42.5

43.5

44.5

45.5

46.5

47.5

text  video
video  text

2 4 8 16 32
(c) Hg

41.0

42.0

43.0

44.0

45.0

46.0

47.0

text  video
video  text

2 4 8 16 32
(d) Hw

41.0

42.0

43.0

44.0

45.0

46.0

text  video
video  text

2 4 8 16 32
(e) Hp

41.0

42.0

43.0

44.0

45.0

46.0

text  video
video  text

Figure 3: Ablation study of different prompt lengths. Here, 𝐻𝑠 , 𝐻𝑡 , 𝐻𝑔, 𝐻𝑤 , and 𝐻𝑝 indicate the length of spatial, temporal,
global, word, and phrase prompts respectively.

Text query: “minecraft zombie kills player and takes heart.”
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Text query:  “a cat is licking a baby.”
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Figure 4: Qualitative analysis of CLIP4Clip, DGL-
Transformer, and our MPT-Transformer with respect
to R@1 results on MSR-VTT dataset, where the correct and
incorrect videos are highlighted with green and red outlines.

performance, indicating that the global prompt enables the com-
prehensive acquirement of video information. Finally, adding the
phrase prompt into the model (Line 4) achieves better performance,
verifying its efficacy in capturing the semantics of contextualized
text. The results show that the proposed prompts are effective in
obtaining modality-specific knowledge about the video and text.
Effectiveness of Prompt Length. To determine the optimal num-
ber of prompt tokens for learning, we conducted experiments with
different lengths𝐻∗ for five prompts, where𝐻∗ = {2, 4, 8, 16, 32}, as
shown in Fig. 3. Empirically, the larger the value of𝐻∗, themore con-
textually relevant knowledge is obtained. However, continuously
expanding prompt length does not yield a sustained improvement.
The possible reason is that too many prompt tokens may involve
redundant noise, harming the valid knowledge acquired from pre-
trained model. Thus, we experimentally set the number of prompt
tokens as 4 for all prompt types in the remaining experiments.

4.5 Qualitative Results
In Fig. 4, we showcase some visualization results of our method on
theMSR-VTT and compare it with CLIP4Clip andDGL-Transformer.
As shown, although CLIP4Clip and DGL-Transformer search out
the related videos, they are inferior in capturing multi-grained
semantics, failing to recall the ground truth videos. However, MPT-
Transformer successfully retrieves correct videos based on text
query, recognizing detailed concepts ‘zombie’ and ‘heart’. To further

a man is talking about making it easier for kids to learn while 
scenes of a school are shown

kids in a circle play with beach ball and surf boards

a girl wearing red top and black trouser is putting a sweater on a dog

Figure 5: Qualitative analysis of attention map of global
prompt attended to each video frame and clustering results of
word embeddings during phrase prompting, where semantic-
related words are successfully grouped into the same proto-
type (marked using the same colors).

comprehend the knowledge learned by model, we visualize the
qualitative results of attention mapping of global prompts and
clusterings of phrase embeddings, where the words marked with
the same colors indicate they belong to the same centroid. In Fig. 5,
we find that: (1) the global prompt captures the discriminative visual
clues and dynamics of video. (2) Our clustering algorithm learns
the associations among words, e.g., ‘wearing’ and ‘putting’, ‘red’
and ‘black’ in the top example, and ‘beach ball’ and ‘surfboards’ in
the bottom example, which contributes to the matching of the two
modalities. These examples explicitly illustrate the efficacy of MPT.

5 CONCLUSION
In this paper, we study how to effectively and efficiently utilize
prompt tuning to acquire domain-specific features when adapt-
ing base-generic pre-trained knowledge for text-video retrieval. To
achieve this target, we propose MPT, a task-specific prompt tuning
that explores the fine-grained features by devising multiple distinc-
tive prompts, focusing on relevant and discriminate knowledge of
both modalities. Concretely, MVE employs spatial, temporal, and
global prompts to comprehensively capture video-specific features
while MTE utilizes word and phrase prompts to learn lexical and
contextual semantics. Extensive experiments on the four text-video
retrieval benchmarks and visualization analysis prove the effective-
ness and interpretability of the proposed method.
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