

EFFICIENT MORPHOLOGY-CONTROL CO-DESIGN VIA STACKELBERG PPO UNDER NON-DIFFERENTIABLE LEADER-FOLLOWER INTERFACES

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Morphology-control co-design concerns the coupled optimization of an agent’s
 014 body structure and control policy. A key challenge is that evaluating each can-
 015 didate morphology requires extensive rollouts to re-optimize control and assess
 016 quality, leading to high computational costs and slow convergence. This challenge
 017 is compounded by the non-differentiable interaction between morphology and
 018 control—stemming from discrete design choices and rollout-based evaluation—
 019 which blocks gradient flow across the morphology-control interface and forces
 020 reliance on costly rollout-driven optimization. To address these challenges, we
 021 highlight that the co-design problem can be formulated as a novel variant of a
 022 Stackelberg Markov game, a hierarchical framework where the leader specifies
 023 the morphology and the follower adapts the control. Building on this formulation,
 024 we propose *Stackelberg Proximal Policy Optimization (Stackelberg PPO)*, a policy
 025 gradient method that leverages the intrinsic coupling between leader and follower
 026 to reduce repeated control re-optimization and enable more efficient optimization
 027 under non-differentiable interfaces. Experiments across diverse co-design tasks
 028 demonstrate that Stackelberg PPO outperforms standard PPO in both stability and
 029 final performance.

1 INTRODUCTION

031 Morphology-control co-design addresses the fundamental challenge of jointly optimizing an agent’s
 032 body structure (morphology) and its control policy. The morphology specifies the agent’s structural
 033 design, including its topology, geometry, joint layout, and actuation limits, whereas the control
 034 policy determines how this structure is operated to produce behavior to interact with the environment
 035 to complete specific tasks (Paul, 2006; Ha & Schmidhuber, 2018). Both aspects are essential for
 036 effective task performance. For example, a quadruped robot with rigid legs provides the structural
 037 basis for locomotion, but without an appropriate gait policy it cannot walk. Conversely, even the
 038 most advanced locomotion policy is ineffective if the robot’s morphology lacks the necessary joints
 039 to support movement. These examples highlight that morphology and control must be co-designed
 040 to ensure each component complements the other. Agents developed under such a paradigm tend
 041 to be more versatile, robust, and efficient than those optimized for either morphology or control in
 042 isolation (Sims, 1994; Lipson & Pollack, 2000; Bongard et al., 2006; Kriegman et al., 2020).

044 In morphology-control co-design, to fully assess a morphology’s potential, one need to optimize
 045 its control policy to (near) optimality; otherwise, the morphology’s real performance will be un-
 046 derestimated or misjudged (Schaff & Walter, 2022). To achieve this, conventional approaches typ-
 047 ically decompose the process into two separate stages: first, training an optimal control policy for
 048 each candidate morphology—often through reinforcement learning with extensive rollouts in sim-
 049 ulation (Gupta et al., 2021); and then evaluating and optimizing the morphology based on the per-
 050 formance of this best-response control. However, existing methods are commonly designed to treat
 051 morphology and control as independent optimization problems (Wang et al., 2019; Cheney et al.,
 052 2018), which leads to prohibitive sample costs: every candidate morphology requires a costly re-
 053 optimization of its control policy, resulting in slow convergence and poor scalability in complex
 morphology design spaces.

To overcome these limitations, we formulate co-design as a hierarchical game in which the leader defines the morphology and the follower adapts the best control in response, providing an explicit characterization of their intrinsic coupling within a unified framework. Building on this perspective, we introduce a novel variant of the **Stackelberg Markov Games (SMGs)**, termed a *phase-separated SMGs*. In this setting, the interaction between leader and follower is separated into two distinct phases and mediated by an interface: the leader first constructs the morphology through a sequence of morphology-editing choices (e.g., adding or removing limbs, adjusting lengths), and the resulting final morphology becomes the interface that conditions the follower’s control. While this formulation is natural, existing SMGs methods—such as Stackelberg MADDPG (Yang et al., 2023), which rely on gradient propagation across the leader-follower interface—are not applicable here. The difficulty lies in the non-differentiable interface, arising from discrete morphology-editing choices that block gradient flow across the leader-follower interface and hinder the exploitation of the hierarchical coupling structure.

To this end, we derive Stackelberg policy gradients tailored to phase-separated SMGs with non-differentiable interfaces. We build on Stackelberg implicit differentiation (SID), which exploits the leader-follower coupling to anticipate how morphology changes influence the follower’s adaptation before updating. Thus the leader can update its policy in a way that steers the morphology toward designs more compatible with downstream control. **Since direct differentiation is blocked by the non-differentiable leader–follower interface, we apply the log-derivative technique (Williams, 1992) to derive a new Stackelberg surrogate formulation that bypasses this issue and provides a tractable gradient estimator.** We further provide theoretical guarantees, showing that these surrogates are locally equivalent to the true Stackelberg gradients. To stabilize training under large policy shifts, we adapt PPO’s likelihood-ratio clipping to our Stackelberg framework, ensuring robust optimization of the surrogate gradients. Our method, *Stackelberg PPO*, outperforms the state-of-the-art baselines by 20.66% on average, and by 32.02% on complex 3D tasks.

2 RELATED WORK

Morphology–Control Co-design Co-optimizing morphology and control is attracting increasing attention in embodied intelligence (Li et al., 2024; Huang et al., 2024b; Liu et al., 2025). **Prior work optimizes only continuous attributes under a fixed topology, without generating new structural topologies** (Banarse et al., 2019; Huang et al., 2024a). Early topology-editing work treated the co-design problem as a discrete, non-differentiable search solved using evolutionary strategies (Sims, 1994; Cheney et al., 2018), requiring each morphology to be paired with a separately trained controller and thus incurring high computational cost. Subsequent methods introduced structural priors and parameter sharing to reuse experience across related designs (Dong et al., 2023; Zhao et al., 2020; Wang et al., 2019; Xiong et al., 2023). More recent RL-based approaches cast structure generation as sequential edits in an MDP (Gupta et al., 2021; Yuan et al., 2022), with graph and attention architectures improving representation quality (Chen et al., 2024; Lu et al., 2025; Yuan et al., 2022). **However, the discrete nature of morphology-editing operations blocks gradient propagation across the morphology-control interface, preventing efficient learning by capturing their coupled dynamics.** Our work establishes a gradient-driven pathway that allows controller adaptation to directly affect morphology updates.

Stackelberg Game Learning systems with asymmetric components often exhibit directional dependencies, where one module’s decisions influence another’s adaptation in a non-reciprocal manner (Schmidhuber, 2015). Stackelberg games formalize this asymmetry, with a leader committing to strategies that followers then best-respond to. Classical approaches study static normal-form games (Başar & Olsder, 1998; Conitzer & Sandholm, 2006; Von Stengel & Zamir, 2010) while more recent extensions integrate this structure into sequential decision processes and RL frameworks (Gerstgrasser & Parkes, 2023; Zhong et al., 2023; Bai et al., 2021), often incorporating confidence-aware or optimistic mechanisms to manage follower uncertainty (Ling et al., 2023; Kao et al., 2022; Kar et al., 2015; Mishra et al., 2020). Another line of research applies implicit differentiation to enable direct gradient flow from the follower to the leader in Stackelberg games. A complementary line leverages implicit differentiation to propagate follower gradients to the leader (Zheng et al., 2022; Yang et al., 2023; Vu et al., 2022), typically under DDPG-style settings with ex-

108 plicit action-level coupling and alternating updates. Our problem differs in two key aspects: leader
 109 actions (morphology edits) cannot be directly transmitted to the follower, and both agents use non-
 110 alternating PPO-style updates. We extend implicit Stackelberg gradient methods to this more general
 111 regime, enabling (to our knowledge) the first application of implicit Stackelberg differentiation to
 112 morphology–control co-design under PPO algorithm.

114 3 PRELIMINARIES

116 **Proximal Policy Optimization (PPO)** In reinforcement learning, an agent interacts with the en-
 117 vironment by observing a state s_t , selecting an action a_t according to its policy π_θ , and receiving
 118 feedback in the form of rewards. Vanilla policy gradient methods (Sutton, 1984; Williams, 1992;
 119 Sutton et al., 2000) optimize π_θ using a surrogate objective that locally approximates the true per-
 120 formance, which has been shown to cause instability when policy updates become too large (Schulman
 121 et al., 2015). PPO (Schulman et al., 2017) addresses this by constraining the likelihood ratio between
 122 new and old policies through a clipping technique:

$$123 \mathcal{L}^{\text{PPO}}(\theta) = \mathbb{E}_t \left[\min \left(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right],$$

125 where $r_t(\theta) = \frac{\pi_\theta(a_t|s_t)}{\pi_{\theta_o}(a_t|s_t)}$ is the likelihood ratio and \hat{A}_t is an estimator of the advantage function.
 126 The clipping mechanism prevents likelihood ratio $r_t(\theta)$ from deviating excessively, thereby limiting
 127 policy updates and balancing stability with performance improvement.

129 **Stackelberg Game** A *Stackelberg game* is a hierarchical interaction in which a leader commits to
 130 a strategy and a follower optimizes in response. Let θ^L and θ^F denote the decision variables of the
 131 leader and the follower, and let $J^L(\theta^L, \theta^F)$ and $J^F(\theta^L, \theta^F)$ denote their respective objectives. The
 132 leader solves the following bilevel optimization problem, referred to as the *Stackelberg objective*:

$$133 \max_{\theta^L} J^L(\theta^L, \theta_*^F(\theta^L)) \quad \text{s.t. } \theta_*^F(\theta^L) = \arg \max_{\theta^F} J^F(\theta^L, \theta^F) \quad (1)$$

135 where $\theta_*^F(\theta^L)$ represents the follower’s best response. The gradient of the leader’s objective can be
 136 written as

$$137 \nabla_{\theta^L} J^L(\theta^L, \theta_*^F(\theta^L)) = \underbrace{\nabla_{\theta^L} J^L(\theta^L, \theta^F)}_{\text{leader's direct gradient}} + \underbrace{(\nabla_{\theta^L} \theta_*^F(\theta^L))^\top \nabla_{\theta^F} J^L(\theta^L, \theta^F)}_{\text{implicit gradient via influencing follower}} \quad (2)$$

140 The first term, the *leader’s direct gradient*, captures the steepest direction in which the leader can
 141 adjust its parameter to directly improve its objective. The second term, the *implicit gradient via influ-
 142 encing follower*, measures how the leader updates to further improve its objective by implicitly steer-
 143 ing the follower’s update, thereby amplifying the ascent. The Jacobian $\nabla_{\theta^L} \theta_*^F(\theta^L)$ follows from
 144 the first-order optimality condition of the follower’s maximization problem, $\nabla_{\theta^F} J^F(\theta^L, \theta_*^F) = 0$,
 145 which indicates that $\theta_*^F(\theta^L)$ is an implicit function of the leader’s variable θ^L . This yields

$$146 (\nabla_{\theta^L} \theta_*^F(\theta^L))^\top = -\nabla_{\theta^L \theta^F} J^F(\theta^L, \theta^F) (\nabla_{\theta^F}^2 J^F(\theta^L, \theta^F))^{-1} \quad (3)$$

147 This implicit differentiation framework, often referred to as **Stackelberg implicit differentiation**
 148 (**SID**), is widely used in Stackelberg reinforcement learning (e.g., Stackelberg DDPG (Yang et al.,
 149 2023)), bilevel optimization (Zucchet & Sacramento, 2022), and meta-learning (Pan et al., 2023).

151 **Morphology-Control Co-Design** This task refers to designing a robot’s body and its control pol-
 152 icy in an integrated manner. The morphology covers structural aspects such as topology (connectiv-
 153 ity and arrangement of limbs and joints), geometric properties (body proportions and limb lengths),
 154 and, for soft robots, material properties. The controller determines how the robot behaves given its
 155 body—through motor commands, torque signals, or higher-level behaviors (such as gaits or manipu-
 156 lation skills). In co-design, the body and control are inherently coupled: the body defines the agent’s
 157 physical capabilities, while the control learns to exploit them effectively. Existing work typically
 158 formulates the problem as a bi-level structure similar to eq. (1), where $\pi_{\theta^L}^L$ generates the morphol-
 159 ogy and $\pi_{\theta^F}^F$ determines the controller (Lu et al., 2025; Yuan et al., 2022). However, in practice,
 160 these methods optimize a shared objective, $\max_{\theta^L, \theta^F} J(\theta^L, \theta^F)$, which ignores that $\theta_*^F(\theta^L)$ is an
 161 implicit function of θ^L . As a result, it yields leader updates that differ from the Stackelberg leader
 162 gradient in eq. (2), including only the direct term and omitting the implicit term.

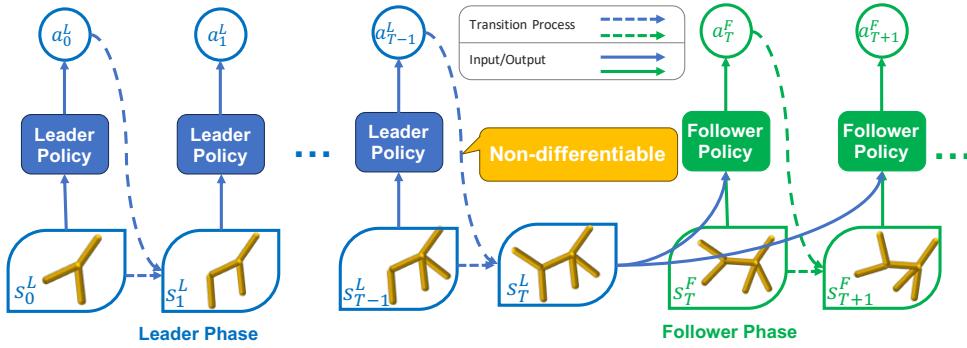


Figure 1: Illustration of the phase-separated Stackelberg Markov Game for morphology–control co-design. In the leader phase (blue part), the agent incrementally edits the morphology via discrete topology-altering actions, producing a terminal morphology s_T^L . In the follower phase (green part), the control policy is optimized based on this morphology.

4 FORMULATION

Morphology–control co-design concerns the coupled optimization of an agent’s body and controller, typically formulated as a bi-level optimization problem (Lu et al., 2025; Yuan et al., 2022), which can naturally be viewed as a leader–follower hierarchy. We highlight that it corresponds to a novel variant of a Stackelberg Markov game in which the leader specifies the morphology and the follower adapts the control. The overall process is illustrated in Fig. 1.

In the *leader* phase, the morphology is usually generated in a step-by-step manner: the leader sequentially applies morphology-editing actions (e.g., adding/removing a limb, adjusting its length, attaching a joint) to gradually evolve the morphology, rather than producing the full morphology in a single step (Lu et al., 2025; Yuan et al., 2022). This incremental approach is crucial because the morphology space is high-dimensional and combinatorial, making direct single-step generation intractable. Starting from an initial morphology s_0^L , the leader applies a sequence of actions a_t^L to iteratively update the morphology until a terminal morphology s_T^L is obtained. Specifically, given a morphology s_t^L , the leader applies an action a_t^L , and the morphology transition function \mathcal{P}^L produces a new morphology s_{t+1}^L through editing actions, which involve discrete topology-altering changes, thereby rendering \mathcal{P}^L inherently non-differentiable:

$$a_t^L \sim \pi^L(\cdot | s_t^L), \quad s_{t+1}^L \sim \mathcal{P}^L(\cdot | s_t^L, a_t^L), \quad t = 0, 1, \dots, T-1.$$

In the *follower* phase, the follower optimizes its control based on the terminal morphology s_T^L provided by the leader. The morphology directly specifies the follower’s action space (e.g., which joints can apply torques or muscle forces), its state space (e.g., proprioceptive and exteroceptive signals such as joint positions, forces, or velocities), and the underlying physical dynamics. At each timestep, given a state s_t^F , the follower applies a control action a_t^F and transitions to a new state according to:

$$a_t^F \sim \pi^F(\cdot | s_t^F; s_T^L), \quad s_{t+1}^F \sim \mathcal{P}^F(\cdot | s_t^F, a_t^F; s_T^L), \quad t = T, T+1, \dots,$$

To evaluate both phases, we introduce reward functions R^L and R^F for the leader and follower, respectively. $R^L(s_t^L, a_t^L)$ provides immediate feedback on each morphology-editing action, typically capturing costs such as additional material usage or increased complexity. $R^F(s_t^F, a_t^F; s_T^L)$ quantifies the follower’s immediate control performance under the given morphology, such as locomotion speed or task success. We formalize the leader-follower interaction through asymmetric objectives. The leader optimizes its return given the follower’s policy π_{θ^F} , combining short-term morphology-editing rewards (e.g., morphology complexity penalty) with the follower’s long-term control rewards under the final morphology:

$$J^L(\theta^L, \theta^F) = \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma^t R^L(s_t^L, a_t^L) + \sum_{t=T}^{\infty} \gamma^{t-T} R^F(s_t^F, a_t^F; s_T^L) \right] \quad (4)$$

216 The follower aims to maximize its long-term return, conditioned on the terminal morphology in-
 217 duced by the leader $\pi_{\theta^L}^L$:
 218

$$219 \quad J^F(\theta^L, \theta^F) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t R^F(s_t^F, a_t^F; s_T^L) \right] \quad (5)$$

222 This formulation highlights the inherent asymmetric coupling: the follower’s optimal policy depends
 223 on the leader’s terminal morphology s_T^L , while the leader’s payoff depends on both the morphology
 224 design and the follower’s adaptive control. **In contrast, prior co-design approaches typically assume**
 225 **a shared, control-centric objective, i.e., $J^L = J^F$ (Lu et al., 2025).**

226 Formally, the above procedures can be defined as a novel variant of the Stackelberg Markov Game.
 227

228 **Definition 1.** A Phase-Separated Stackelberg Markov Game between a leader policy $\pi_{\theta^L}^L$ and a
 229 follower policy $\pi_{\theta^F}^F$, parameterized by θ^L and θ^F respectively, is defined as

$$230 \quad \mathcal{G} = ((\mathcal{S}^L, \mathcal{A}^L, \mathcal{P}^L, R^L, \mu^L, T), (\mathcal{S}^F, \mathcal{A}^F, \mathcal{P}^F, R^F, \mu^F), \gamma).$$

- 232 (i) The leader’s components are given by its state space \mathcal{S}^L , action space \mathcal{A}^L , transition function
 233 \mathcal{P}^L , reward function R^L , initial state distribution μ^L , and acting horizon T .
- 234 (ii) The interaction is phase-separated (i.e., non-alternating): the leader first acts for T steps,
 235 producing a terminal state s_T^L , after which the follower begins acting until termination.
- 236 (iii) The leader and the follower interacts through the terminal state $s_T^L \in \mathcal{S}^L$, induced by leader’s
 237 action sequence under the transition dynamics \mathcal{P}^L . The follower acts conditioned on this termi-
 238 nal state, and all its components $(\mathcal{S}^F, \mathcal{A}^F, \mathcal{P}^F, R^F, \mu^F)$ are defined conditionally on $s_T^L \in \mathcal{S}^L$.
- 239 (iv) The leader aims to solve the Stackelberg objective defined in eq. (1).

241 Analogous to standard RL, the leader’s Q-function is defined from its objective in eq. (4):
 242

$$243 \quad Q_{\pi^L, \pi^F}^L(s_{t'}^L, a_{t'}^L) = \mathbb{E} \left[\sum_{t=t'}^{T-1} \gamma^{t-t'} R^L(s_t^L, a_t^L) + \sum_{t=T}^{\infty} \gamma^{t-t'} R^F(s_t^F, a_t^F; s_T^L); s_t^L = s_{t'}^L, a_t^L = a_{t'}^L, \pi^L, \pi^F \right]$$

245 This Q-function captures the leader’s expected long-term return from a given state-action pair, ac-
 246 counting for both its own rewards before the morphology is finalized and the follower’s rewards
 247 conditioned on the final morphology. From this, the leader’s advantage function is defined as
 248 $A_{\pi^L, \pi^F}^L(s_{t'}^L, a_{t'}^L) = Q_{\pi^L, \pi^F}^L(s_{t'}^L, a_{t'}^L) - \mathbb{E}_{a_t^L \sim \pi^L} [Q_{\pi^L, \pi^F}^L(s_t^L, a_t^L)]$. The advantage function mea-
 249 sures how much better (or worse) a specific action $a_{t'}^L$ is compared to the leader’s average behavior
 250 at state $s_{t'}^L$. A follower’s advantage function $A_{\pi^F}^F(s_{t'}^F, a_{t'}^F; s_T^L)$ can be analogously defined from its
 251 own objective in eq. (5).
 252

254 5 METHOD

256 Most prior work treats morphology-control co-design as a *simultaneous optimization* problem,
 257 where body and control are optimized jointly as separate variables without explicitly modeling their
 258 dependency. This often leads to unstable training and low sample efficiency. In contrast, we formu-
 259 late the problem as a *phase-separated Stackelberg Markov Game (SMG)* (Section 4), which explic-
 260 itly captures this coupling: the leader generates a morphology, and the follower optimizes its control
 261 in response. This hierarchical structure models the sequential dependency between morphology and
 262 control, enabling the use of *Stackelberg Implicit Differentiation* (SID; see Section 3). SID allows
 263 the leader to anticipate the follower’s adaptation and thereby generate morphologies that are more
 264 compatible with downstream control, improving both alignment and efficiency.

265 A representative approach to implement SID is through a backpropagation-through-interface
 266 method, which propagates gradients from the follower back to the leader’s parameters via the leader-
 267 follower interface, as in Stackelberg MADDPG (Yang et al., 2023). However, this idea is not applica-
 268 ble to our phase-separated SMG. First, as specified in Definition 1 (iii), the leader-follower interface
 269 is realized through the action-to-state mapping \mathcal{P}^L , which is non-differentiable in morphology-
 control co-design, making backpropagation-through-interface intractable. Second, as specified in

270 Definition 1 (ii), the interaction is *phase-separated*, i.e., the leader executes T steps to commit the
 271 state to the interface. Consequently, backpropagation must traverse a long chain of leader transi-
 272 tions, making it highly susceptible to gradient explosion or vanishing. These challenges necessitate
 273 new derivations of the Stackelberg gradients, as presented below.
 274

275 5.1 STACKELBERG POLICY GRADIENT 276

277 We now introduce Stackelberg implicit differentiation into our phase-separated Stackelberg Markov
 278 Game defined in Definition 1. Since this formulation departs from the classical SMG, we develop
 279 new derivations for all gradient components in eqs. (2) and (3). We present each term in turn.
 280

281 **Cross-Derivative** $\nabla_{\theta^L \theta^F} J^F(\theta^L, \theta^F)$ (see eq. (3)). This is the most challenging term. Unlike clas-
 282 sical SMGs where the follower directly takes the leader’s action as input, in our setting the interface
 283 is the terminal state s_T^L , generated through the transition \mathcal{P}^L . Backpropagation-through-interface
 284 methods (e.g., Stackelberg MADDPG) are infeasible here, since reaching θ^L would require differ-
 285 entiating through the non-differentiable transition \mathcal{P}^L . Instead, we derive the cross-derivative using
 286 the log-derivative technique, analogous to the stochastic policy gradient (Sutton, 1984; Williams,
 287 1992; Sutton et al., 2000), which bypasses the transition’s non-differentiability while relying only
 288 on sampled trajectories. Let (θ_o^L, θ_o^F) denote the parameters of the behavior policies used for col-
 289 lecting data. Formally, we obtain the following theorem.
 290

291 **Theorem 1.** Let $A_t^F \triangleq A_{\pi_{\theta_o^L}^F, \pi_{\theta_o^F}^F}^F(s_t^F, a_t^F; s_T^L)$, and define the surrogate

$$292 \mathcal{L}_{L,F}^F(\theta^L, \theta^F; \theta_o^L, \theta_o^F) = c \mathbb{E} \left[\frac{\pi_{\theta^L}^L(a^L | s^L)}{\pi_{\theta_o^L}^L(a^L | s^L)} \left[\gamma^T \mathbb{E} \left[\frac{\pi_{\theta^F}^F(a^F | s^F, s_T^L)}{\pi_{\theta_o^F}^F(a^F | s^F, s_T^L)} A_{\pi_{\theta_o^F}^F}^F(s^F, a^F; s_T^L) \right] \right] \right] \quad (6)$$

295 Then, we have $\nabla_{\theta^L \theta^F} J^F(\theta^L, \theta^F)|_{\theta^L=\theta_o^L, \theta^F=\theta_o^F} = \nabla_{\theta^L \theta^F} \mathcal{L}_{L,F}^F(\theta^L, \theta^F; \theta_o^L, \theta_o^F)|_{\theta^L=\theta_o^L, \theta^F=\theta_o^F}$.
 296

297 In eq. (6), the outer expectation is taken over $s^L \sim d_{\theta_o^L}^{L,t}$, $a^L \sim \pi_{\theta_o^L}^L$, $s_T^L \sim d_{\theta_o^L}^{L,T}$, where
 298 $d_{\theta_o^L}^{L,t}(s^L) = P(s_t^L = s^L; \pi_{\theta_o^L}^L)$ is the visitation distribution probability of leader policy at step t ,
 299 and $d_{\theta_o^L}^L(s^L) \triangleq 1/T \sum_t d_{\theta_o^L}^{L,t}(s^L)$. The inner expectation is taken over $s^F \sim d_{\theta_o^F}^F(\cdot; s_T^L)$, $a^F \sim$
 300 $\pi_{\theta_o^F}^F(\cdot; s_T^L)$, where $d_{\theta_o^F}^F$ denotes the follower’s visitation distribution. The constant $c = T/(1-\gamma)$ nor-
 301 malizes the distribution, and its effect can be absorbed by the learning rate in practice. Proofs of this
 302 and subsequent theorems are provided in Appendix B. This theorem shows that the cross-derivative
 303 can be expressed as an expectation involving likelihood-ratio (importance-weighted) advantage esti-
 304 mators, thereby extending the classical policy gradient theorem to capture leader-follower coupling
 305 in our phase-separated SMG.
 306

308 **First-Order Derivatives** $\nabla_{\theta^L} J^L(\theta^L, \theta^F)$ and $\nabla_{\theta^F} J^L(\theta^L, \theta^F)$ (see eq. (2)). These first-order
 309 terms are relatively straightforward, as they follow the same structure as the policy gradient the-
 310 orems (Sutton, 1984; Williams, 1992; Sutton et al., 2000). They quantify how the leader’s objective
 311 changes with respect to its own parameters (leader’s direct gradient) and with respect to the fol-
 312 lower’s parameters. Both can be expressed using advantage functions under importance weighting,
 313 as follows.

314 **Proposition 1.** We have

$$316 \nabla_{\theta^L} J^L(\theta^L, \theta^F)|_{\theta^L=\theta_o^L, \theta^F=\theta_o^F} = \nabla_{\theta^L} \mathcal{L}_L^L(\theta^L, \theta^F; \theta_o^L, \theta_o^F)|_{\theta^L=\theta_o^L, \theta^F=\theta_o^F}$$

$$317 \nabla_{\theta^F} J^L(\theta^L, \theta^F)|_{\theta^L=\theta_o^L, \theta^F=\theta_o^F} = \nabla_{\theta^F} \mathcal{L}_F^L(\theta^L, \theta^F; \theta_o^L, \theta_o^F)|_{\theta^L=\theta_o^L, \theta^F=\theta_o^F}$$

$$319 \text{where } \mathcal{L}_L^L(\theta^L, \theta^F; \theta_o^L, \theta_o^F) = \mathbb{E} \left[\frac{\pi_{\theta^L}^L(a^L | s^L)}{\pi_{\theta_o^L}^L(a^L | s^L)} A_{\pi_{\theta_o^L}^L, \pi_{\theta_o^F}^F}^L(s^L, a^L) \right] \quad (7)$$

$$320 \mathcal{L}_F^L(\theta^L, \theta^F; \theta_o^L, \theta_o^F) = \mathbb{E} \left[\gamma^T \frac{\pi_{\theta^F}^F(a^F | s^F, s_T^L)}{\pi_{\theta_o^F}^F(a^F | s^F, s_T^L)} \pi_{\theta_o^F}^F(s^F, a^F; s_T^L) \right]$$

324 **Inverse of Second-Order Derivative (Hessian)** $(\nabla_{\theta^F}^2 J^F(\theta^L, \theta^F))^{-1}$ (see eq. (3)). This last
 325 component involves the inverse Hessian. Although the Hessian can be computed from the derived
 326 loss function (see Appendix Proposition 2), the Hessian is typically indefinite due to the advantage
 327 term, making its inversion unstable. A standard remedy is to approximate it by the Fisher infor-
 328 mation matrix, $\mathcal{F}(\theta^F) = \mathbb{E}[\nabla_{\theta^F} \log \pi_{\theta^F}^F(a^F | s^F; s_T^L) \nabla_{\theta^F} \log \pi_{\theta^F}^F(a^F | s^F; s_T^L)^\top]$, which is
 329 positive semi-definite and can be estimated via the KL divergence between policies:

$$330 \quad \mathcal{F}(\theta^F) = \nabla_{\theta^F}^2 \mathcal{L}_{\text{KL}}^F(\theta^L, \theta^F; \theta_o^L, \theta_o^F) = \nabla_{\theta^F}^2 \mathbb{E}[\text{KL}(\pi_{\theta^F}^F(\cdot | s^F; s_T^L) \| \pi_{\theta_o^F}^F(\cdot | s^F; s_T^L))], \quad (8)$$

332 This natural-gradient approximation, used in methods such as natural policy gradient and trust
 333 region policy optimization (Kakade, 2001; Peters & Schaal, 2008; Schulman et al., 2015), avoids
 334 indefiniteness and improves stability. Further stability is obtained by regularizing the Hessian with a
 335 small multiple of the identity $(\nabla_{\theta^F}^2 \mathcal{L}_{\text{KL}}^F + \lambda I)^{-1}$ with $\lambda > 0$, which has been shown to interpolate
 336 between the standard policy gradient (when $\lambda \rightarrow \infty$) and the standard Stackelberg gradient (when
 337 $\lambda \rightarrow 0$) (Yang et al., 2023).

339 5.2 ALGORITHMS

341 Based on the surrogate functions in Eqs. (6) to (8), we compute the leader’s Stackelberg gradient in
 342 Eq. (2). Since these surrogates are locally equivalent to the true Stackelberg gradients, we adopt the
 343 likelihood-ratio clipping technique from PPO (Schulman et al., 2017) to constrain policy divergence
 344 and ensure stable optimization. Note that this application is not a simple reuse of PPO clipping.
 345 Rather, it is grounded in our local-approximation theory on the newly derived Stackelberg surrogate
 346 (see Theorem 1). Moreover, the expectation terms are estimated from sampled trajectories. This
 347 yields sample-based surrogates with PPO clipping, denoted by $\hat{\mathcal{L}}$, and the corresponding estimation
 348 of the leader’s Stackelberg gradient can be expressed as

$$349 \quad \nabla_{\theta^L} \hat{J}^L(\theta_L, \theta_F^*(\theta_L)) = \nabla_{\theta_L} \hat{\mathcal{L}}_L^L - \underbrace{\nabla_{\theta_L \theta_F} \hat{\mathcal{L}}_{L,F}^F \left(\nabla_{\theta_F}^2 \hat{\mathcal{L}}_{\text{KL}}^F + \lambda I \right)^{-1} \nabla_{\theta_F} \hat{\mathcal{L}}_F^L}_{\text{step 2}} \quad (9)$$

step 1

353 We refer to this overall procedure as *Stackelberg PPO*, which integrates PPO-style clipping into the
 354 Stackelberg gradient computation. We first compute *step 1* in the above equation, which can be
 355 efficiently implemented using the conjugate gradient method. Conjugate gradient only requires
 356 Hessian-vector products, which can be obtained without explicitly constructing the Hessian via
 357 Pearlmutter’s method (Pearlmutter, 1994): $\nabla_{\theta}^2 \mathcal{L}(\theta) v = \nabla_{\theta} (\nabla_{\theta}^{\top} \mathcal{L}(\theta) v)$. We then compute *step*
 358 2, which in turn only requires Jacobian-vector products. These can likewise be computed efficiently
 359 without explicitly forming the full Jacobian by using the Jacobian-vector product operation provided
 360 by automatic differentiation frameworks.

362 6 EXPERIMENTS

364 Our goal is to test whether leveraging Stackelberg implicit differentiation to regularize the leader’s
 365 gradient can improve sample efficiency and final performance.

367 All experiments are conducted on MuJoCo-based morphology-control co-design tasks. We adopt
 368 benchmarks from prior work, including three flat-terrain tasks (Crawler, Cheetah, Swimmer,
 369 Glider, Walker) and one complex-terrain task (TerrainCrosser) (Lu et al., 2025). To
 370 further evaluate performance under more challenging conditions, we introduce two new tasks,
 371 Stepper-Regular and Stepper-Hard, where the agent must climb stair-like structures.
 372 These tasks require the design of morphologies capable of effective climbing in addition to ro-
 373 bust control. To test generality beyond locomotion, we also include a contact-rich 3D manipulation
 374 task, Pusher, designed to evaluate whether co-design methods can evolve structures aligned with
 375 manipulation objectives. Additional results on other tasks are provided in Appendix C due to space
 376 constraints. In all environments, morphologies are represented as tree structures with constraints
 377 on depth, branching factor, and joint degrees of freedom. While structural complexity and terrain
 difficulty vary, the reward function consistently emphasizes forward velocity, ensuring fair compar-
 isons of how different methods balance morphology and control. Each algorithm is evaluated with

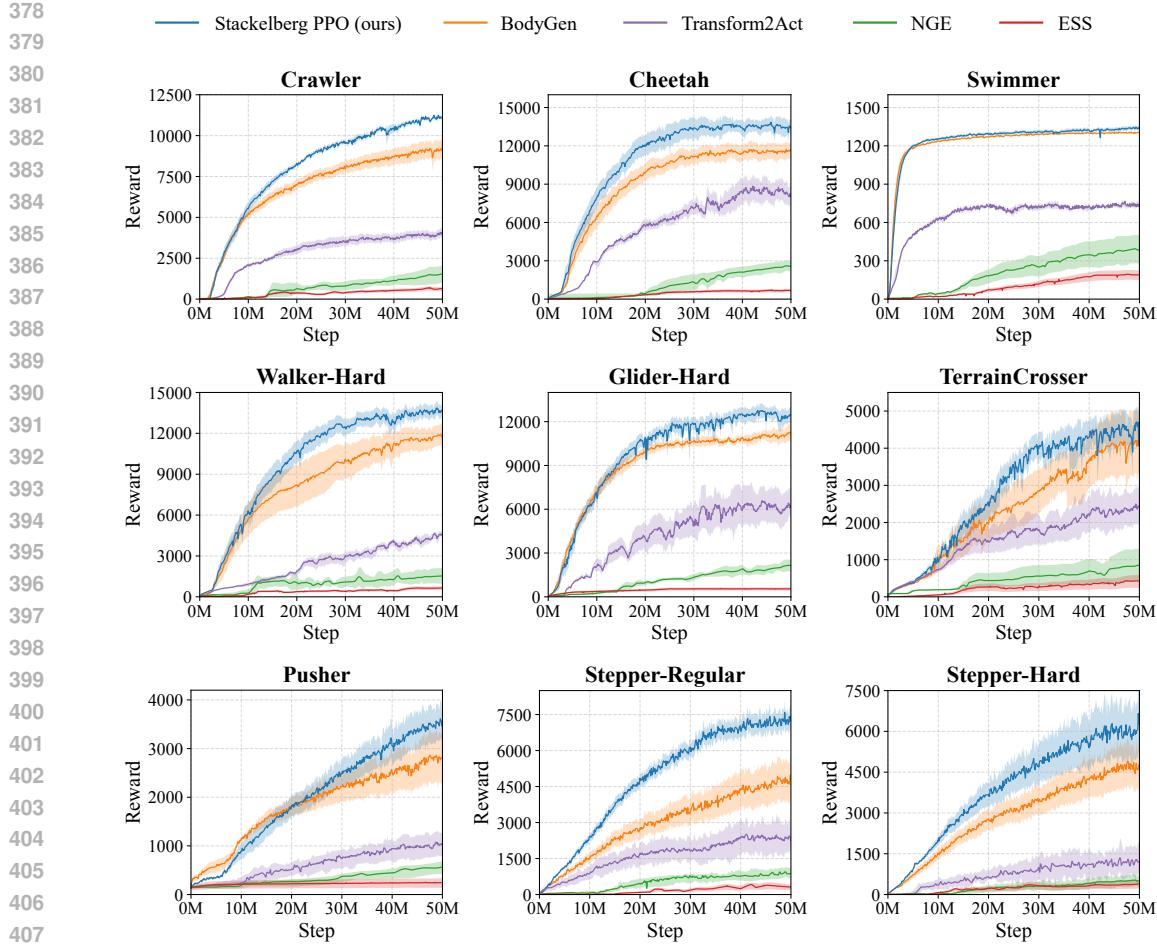


Figure 2: Performance curve with respect to the number of follower steps during training. Shaded regions denote standard error across seven random seeds.

seven random seeds per task. All reported learning curves show mean values with shaded areas representing standard deviations. Further details and visualization of the environments are provided in Appendix C.

6.1 COMPARISON WITH BASELINES

We implement our Stackelberg PPO on top of *BodyGen* (Lu et al., 2025), a PPO-based framework that employs transformer-based co-design with graph-aware positional encodings, optimizing morphology and control independently under shared rewards. *BodyGen* serves as our primary baseline, with the only modification being the use of Stackelberg policy gradients. Implementation details are provided in Appendix C. In addition to *BodyGen*, we compare Stackelberg PPO against several advanced co-design methods:

- *Evolutionary Structure Search (ESS)* (Sims, 1994): A canonical evolutionary-algorithm approach to robot design, where candidate morphologies are scored by handcrafted fitness functions. Here we instead use a lightweight RL-based training loop for principled evaluation.
- *Neural Graph Evolution (NGE)* (Wang et al., 2019): Evolutionary search over graph-structured morphologies with GNN controllers. Each generation independently continues training the inherited parent controller.
- *Transform2Act* (Yuan et al., 2022): Concurrent RL co-design using separate GNNs for morphology and control within unified PPO training, with joint-specific MLP heads for universal control.

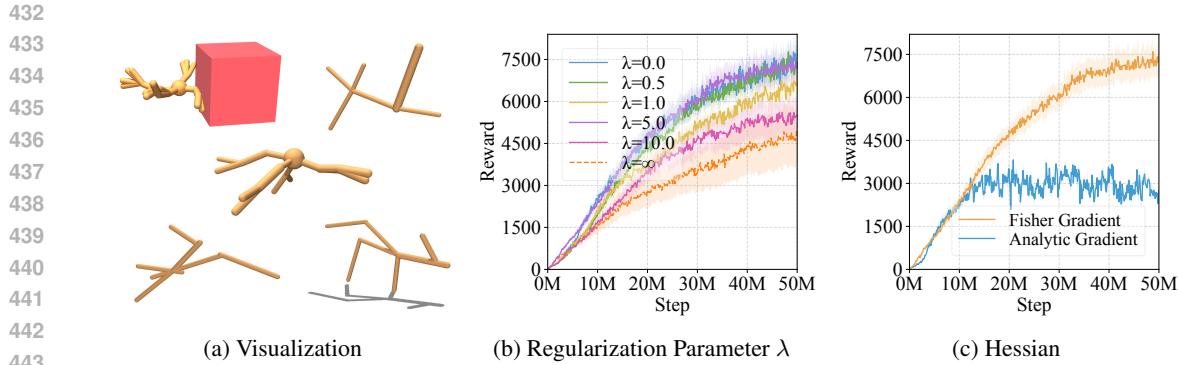


Figure 3: (a) Evolved morphologies visualization. Ablation studies on (b) λ parameter sweep from 0.0 to ∞ and (c) Fisher information matrix on/off comparison, both evaluated on Stepper-Regular environment.

Figure 2 presents the learning curves across all environments. Stackelberg PPO consistently achieves the best performance, yielding an average **+20.66%** improvement over the strongest baseline. Compared to evolutionary approaches (ESS, NGE), it attains substantially higher sample efficiency by avoiding the costly rollouts required to evaluate each morphological candidate. Relative to the vanilla gradient method without Stackelberg differentiation (BodyGen), Stackelberg PPO achieves superior results in both sample efficiency and final performance. The advantage is most evident on challenging 3D tasks with large design spaces (Crawler, Stepper-Regular, Stepper-Hard, [Pusher](#)), where our method delivers an average **+32.02%** improvement. Figure 3(a) showcases examples of the evolved creatures generated by our method. [Additional morphology examples and evolution processes are provided in the appendix E.1 and E.5.](#)

6.2 ABLATION STUDIES

We conduct ablation studies to validate key components of Stackelberg PPO, including (1) the regularization parameter λ that controls gradient interpolation (eq. 9); and (2) the Fisher gradient approximation of the Hessian for stability (eq. 8).

Regularization Parameter λ (eq. 9). The parameter λ interpolates between pure Stackelberg gradients and standard policy gradients. We evaluate Stackelberg PPO on the Stepper-Regular environment with $\lambda \in \{0.0, 0.5, 1.0, 5.0, 10.0, \infty\}$, where $\lambda = 0$ corresponds to *no regularization* and $\lambda = \infty$ reduces to the vanilla gradient without Stackelberg differentiation. Figure 3(b) shows robust performance for $\lambda \in [0.5, 10]$, with degradation only at the extremes ($\lambda = 0$ or ∞). This highlights both the robustness of the method to λ values and the necessity of regularization.

Hessian Computation (eq. 8). We compare our Fisher approximation with direct analytic second-order gradients (eq. 10). As shown in Figure 3(c), the Fisher approximation achieves stable learning with nearly twice the performance of the analytic gradient (6000 vs 2500). This improvement arises from the positive semi-definiteness of the Fisher matrix, which avoids the numerical instabilities caused by the indefinite raw Hessian.

Sensitivity to PPO Clipping Threshold ϵ . We evaluate the sensitivity of Stackelberg PPO to the clipping parameter ϵ by sweeping over multiple thresholds and measuring its effect on task performance and KL-divergence stability. Figure 4(a) and (b) shows that moderate clipping (e.g., $\epsilon \leq 0.4$) yields stable learning with low KL divergence, while removing clipping causes rapid KL growth and clear performance degradation. Full quantitative results are reported in Appendix E.3.

Leader Horizon T (eq. 6). We examine how the leader horizon T influences structural optimization. As shown in Figure 4(c), larger horizons generally improve performance by enabling richer morphology edits, while overly large values (e.g., $T = 11$) become harder to optimize and cause mild degradation—yet still outperform very small horizons such as $T = 3$. Importantly, increasing the leader horizon does *not* introduce higher variance in the leader-gradient update of eq. 6 relative

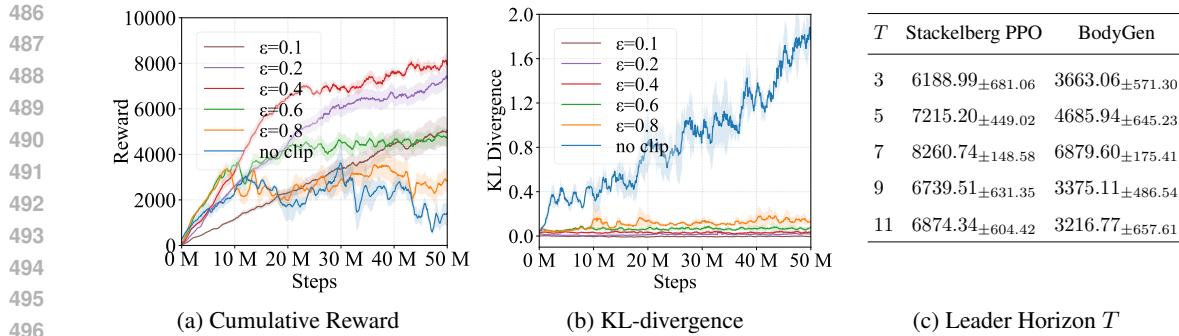


Figure 4: (a) Reward learning curves and (b) KL-divergence traces under different clipping thresholds ϵ . (c) Performance comparison under varying leader horizons T . All evaluated on the Stepper-Regular environment.

to the BodyGen baseline, confirming that the Stackelberg update remains stable across a wide range of horizon lengths.

7 CONCLUSIONS

We introduced *Stackelberg Proximal Policy Optimization (Stackelberg PPO)*, a reinforcement learning framework grounded in the **Stackelberg game** paradigm, which explicitly captures the leader–follower coupling between high-level design decisions and adaptive control responses. While this formulation is general, we instantiate it in the context of morphology–control co-design, where the leader specifies the body structure and the follower adapts the control policy. Instead of treating design and control as independent, Stackelberg PPO exploits the leader–follower coupling to anticipate how the follower will adapt, enabling the leader to update its policy toward morphologies that are more compatible with downstream control. Experiments demonstrate that this coupling yields superior performance and stability over standard PPO, particularly on complex locomotion tasks where tight coordination between morphology and control is essential.

Despite these promising results, several avenues remain for future work. A key direction is sim-to-real transfer, which remains challenging due to unmodeled hardware constraints and material dynamics. Bridging this gap could enable the real-world deployment of self-evolving robotic systems. We further envision advances in this area leading to truly adaptive artificial life forms capable of self-directed evolution, reshaping our understanding of intelligence, embodiment, and the boundary between designed and evolved systems.

ETHICS STATEMENT

As fundamental AI research and to the best of the authors’ knowledge, there are no clear ethical risks associated with this work beyond the risks already posed by prior work.

REPRODUCIBILITY STATEMENT

The computational requirements, hyperparameters, and key implementation details are provided in Appendix D. To ensure reproducibility, the full source code will be released publicly upon acceptance of the paper.

REFERENCES

Yu Bai, Chi Jin, Huan Wang, and Caiming Xiong. Sample-efficient learning of stackelberg equilibria in general-sum games. *Advances in Neural Information Processing Systems*, 34:25799–25811, 2021.

540 Dylan Banarse, Yoram Bachrach, Siqi Liu, Guy Lever, Nicolas Heess, Chrisantha Fernando, Push-
 541 meet Kohli, and Thore Graepel. The body is not a given: Joint agent policy learning and morphol-
 542 ogy evolution. In *AAMAS'19: Proceedings of the 18th International Conference on Autonomous
 543 Agents and MultiAgent Systems*, volume 18, pp. 1134–1142. IFAAMAS, 2019.

544 Tamer Başar and Geert Jan Olsder. *Dynamic noncooperative game theory*. SIAM, 1998.

545 Josh Bongard, Victor Zykov, and Hod Lipson. Resilient machines through continuous self-modeling.
 546 *Science*, 314(5802):1118–1121, 2006.

547 Runfa Chen, Ling Wang, Yu Du, Tianrui Xue, Fuchun Sun, Jianwei Zhang, and Wenbing Huang.
 548 Subequivariant reinforcement learning in 3d multi-entity physical environments. *arXiv preprint
 549 arXiv:2407.12505*, 2024.

550 Nick Cheney, Josh Bongard, Vytas SunSpiral, and Hod Lipson. Scalable co-optimization of mor-
 551 phology and control in embodied machines. *Journal of The Royal Society Interface*, 15(143):
 552 20170937, 2018.

553 Vincent Conitzer and Tuomas Sandholm. Computing the optimal strategy to commit to. In *Proceed-
 554 ings of the 7th ACM conference on Electronic commerce*, pp. 82–90, 2006.

555 Heng Dong, Junyu Zhang, Tonghan Wang, and Chongjie Zhang. Symmetry-aware robot design with
 556 structured subgroups. In *International Conference on Machine Learning*, pp. 8334–8355. PMLR,
 557 2023.

558 Matthias Gerstgrasser and David C Parkes. Oracles & followers: Stackelberg equilibria in deep
 559 multi-agent reinforcement learning. In *International Conference on Machine Learning*, pp.
 560 11213–11236. PMLR, 2023.

561 Agrim Gupta, Silvio Savarese, Surya Ganguli, and Li Fei-Fei. Embodied intelligence via learning
 562 and evolution. *Nature communications*, 12(1):5721, 2021.

563 David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In *Advances
 564 in Neural Information Processing Systems (NeurIPS)*, 2018.

565 Kangyao Huang, Di Guo, Xinyu Zhang, Xiangyang Ji, and Huaping Liu. Competevo: towards
 566 morphological evolution from competition. In *Proceedings of the Thirty-Third International Joint
 567 Conference on Artificial Intelligence, IJCAI '24*, 2024a. ISBN 978-1-956792-04-1. doi: 10.
 568 24963/ijcai.2024/10. URL <https://doi.org/10.24963/ijcai.2024/10>.

569 Suning Huang, Boyuan Chen, Huazhe Xu, and Vincent Sitzmann. Dittogym: Learning to control
 570 soft shape-shifting robots. In *Proceedings of the Twelfth International Conference on Learning
 571 Representations (ICLR)*, 2024b.

572 Sham Kakade. A natural policy gradient. In *Advances in Neural Information Processing Systems*,
 573 volume 14, 2001.

574 Hsu Kao, Chen-Yu Wei, and Vijay Subramanian. Decentralized cooperative reinforcement learning
 575 with hierarchical information structure. In *International Conference on Algorithmic Learning
 576 Theory*, pp. 573–605. PMLR, 2022.

577 Debarun Kar, Fei Fang, Francesco Delle Fave, Nicole Sintov, and Milind Tambe. ” a game of
 578 thrones” when human behavior models compete in repeated stackelberg security games. In *Pro-
 579 ceedings of the 2015 international conference on autonomous agents and multiagent systems*, pp.
 580 1381–1390, 2015.

581 Sam Kriegman, Douglas Blackiston, Michael Levin, and Josh Bongard. Scalable sim-to-real transfer
 582 of soft robot designs. In *Conference on Robot Learning (CoRL)*, pp. 2187–2200, 2020.

583 Muhan Li, David Matthews, and Sam Kriegman. Reinforcement learning for freeform robot design.
 584 In *2024 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 8799–8806.
 585 IEEE, 2024.

594 Chun Kai Ling, J Zico Kolter, and Fei Fang. Function approximation for solving stackelberg equi-
 595 librium in large perfect information games. In *Proceedings of the AAAI Conference on Artificial*
 596 *Intelligence*, volume 37, pp. 5764–5772, 2023.

597

598 Hod Lipson and Jordan B. Pollack. Automatic design and manufacture of robotic lifeforms. In
 599 *Proceedings of the National Conference on Artificial Intelligence (AAAI)*, pp. 921–926, 2000.

600

601 Huaping Liu, Di Guo, and Angelo Cangelosi. Embodied intelligence: A synergy of morphology,
 602 action, perception and learning. *ACM Computing Surveys*, 57(7):1–36, 2025.

603

604 Haofei Lu, Zhe Wu, Junliang Xing, Jianshu Li, Ruoyu Li, Zhe Li, and Yuanchun Shi. Bodygen:
 605 Advancing towards efficient embodiment co-design. In *International Conference on Learning*
 606 *Representations*, 2025. Spotlight.

607

608 Rajesh K Mishra, Deepanshu Vasal, and Sriram Vishwanath. Model-free reinforcement learning for
 609 stochastic stackelberg security games. In *2020 59th IEEE Conference on Decision and Control*
 610 (*CDC*), pp. 348–353. IEEE, 2020.

611

612 Yunian Pan, Tao Li, Henger Li, Tianyi Xu, Zizhan Zheng, and Quanyan Zhu. A first order meta
 613 stackelberg method for robust federated learning. *CoRR*, 2023.

614

615 Chandana Paul. Morphological computation: A basis for the analysis of morphology and control
 616 requirements. *Robotics and Autonomous Systems*, 54(8):619–630, 2006.

617

618 Barak A. Pearlmutter. Fast exact multiplication by the hessian. *Neural Computation*, 6(1):147–160,
 619 1994.

620

621 Jan Peters and Stefan Schaal. Natural actor-critic. *Neurocomputing*, 71(7-9):1180–1190, 2008.

622

623 Charles Schaff and Matthew R Walter. N-limb: Neural limb optimization for efficient morphological
 624 design. *arXiv preprint arXiv:2207.11773*, 2022.

625

626 Jürgen Schmidhuber. On learning to think: Algorithmic information theory for novel combina-
 627 tions of reinforcement learning controllers and recurrent neural world models. *arXiv preprint*
 628 *arXiv:1511.09249*, 2015.

629

630 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
 631 policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR,
 632 2015.

633

634 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal pol-
 635 icy optimization algorithms. In *Proceedings of the 34th International Conference on Machine*
 636 *Learning (ICML)*, 2017. URL <https://arxiv.org/abs/1707.06347>.

637

638 Karl Sims. Evolving virtual creatures. In *Proceedings of the 21st Annual Conference on Computer*
 639 *Graphics and Interactive Techniques (SIGGRAPH '94)*, pp. 15–22, New York, NY, USA, 1994.
 640 ACM. doi: 10.1145/192161.192167.

641

642 Richard S Sutton, David A McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
 643 ods for reinforcement learning with function approximation. In *Advances in Neural Information*
 644 *Processing Systems*, volume 12, pp. 1057–1063, 2000.

645

646 Richard Stuart Sutton. *Temporal credit assignment in reinforcement learning*, 1984. URL <http://incompleteideas.net/papers/Sutton-PhD-thesis.pdf>. Doctoral dissertation,
 647 University of Massachusetts, Amherst.

648

649 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 650 In *2012 IEEE/RSJ international conference on intelligent robots and systems*, pp. 5026–5033.
 651 IEEE, 2012.

652

653 Bernhard Von Stengel and Shmuel Zamir. Leadership games with convex strategy sets. *Games and*
 654 *Economic Behavior*, 69(2):446–457, 2010.

648 Quoc-Liem Vu, Zane Alumbaugh, Ryan Ching, Quanchen Ding, Arnav Mahajan, Benjamin Chas-
649 nov, Sam Burden, and Lillian J Ratliff. Stackelberg policy gradient: Evaluating the performance
650 of leaders and followers. In *ICLR 2022 Workshop on Gamification and Multiagent Solutions*,
651 2022.

652 Tingwu Wang, Yuhao Zhou, Sanja Fidler, and Jimmy Ba. Neural graph evolution: Towards efficient
653 automatic robot design. In *International Conference on Learning Representations (ICLR)*, 2019.

654 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
655 learning. *Machine Learning*, 8(3):229–256, 1992.

656 Zheng Xiong, Jacob Beck, and Shimon Whiteson. Universal morphology control via contextual
657 modulation. In *International Conference on Machine Learning*, pp. 38286–38300. PMLR, 2023.

658 Boling Yang, Liyuan Zheng, Lillian J Ratliff, Byron Boots, and Joshua R Smith. Stackelberg games
659 for learning emergent behaviors during competitive autocurricula. In *2023 IEEE International
660 Conference on Robotics and Automation (ICRA)*, pp. 5501–5507. IEEE, 2023.

661 Ye Yuan, Yuda Song, Zhengyi Luo, Wen Sun, and Kris M. Kitani. Transform2act: Learning a
662 transform-and-control policy for efficient agent design. In *International Conference on Learning
663 Representations (ICLR)*, 2022.

664 Allan Zhao, Jie Xu, Mina Konaković-Luković, Josephine Hughes, Andrew Spielberg, Daniela Rus,
665 and Wojciech Matusik. Robogrammar: graph grammar for terrain-optimized robot design. *ACM
666 Transactions on Graphics (TOG)*, 39(6):1–16, 2020.

667 Liyuan Zheng, Tanner Fiez, Zane Alumbaugh, Benjamin Chasnov, and Lillian J Ratliff. Stackel-
668 berg actor-critic: Game-theoretic reinforcement learning algorithms. In *Proceedings of the AAAI
669 conference on artificial intelligence*, volume 36, pp. 9217–9224, 2022.

670 Han Zhong, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Can reinforcement learning find
671 stackelberg-nash equilibria in general-sum markov games with myopically rational followers?
672 *Journal of Machine Learning Research*, 24(35):1–52, 2023.

673 Nicolas Zucchet and Joao Sacramento. Beyond backpropagation: bilevel optimization through im-
674 plicit differentiation and equilibrium propagation. *Neural Computation*, 34(12):2309–2346, 2022.

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A LLM USAGE STATEMENT**
 703

704 We used LLMs for drafting and refining text extensively throughout the paper. LLMs were not used
 705 to develop algorithms, provide theoretical results, run experiments, or contribute in any other way
 706 to the work beyond the aforementioned writing help.
 707

708 **B THEORETICAL ANALYSIS**
 709

710 In this section, we provide the theoretical foundations of our approach. We first present the trajectory
 711 factorization in the proposed phase-separated Stackelberg Markov Game, which serves as the basis
 712 for proving all the theorems.
 713

714 Given the trajectory $\tau \triangleq \left(\{s_t^L, a_t^L\}_{t=0}^{T-1}, s_T^L, \{s_t^F, a_t^F\}_{t=T}^{\infty} \right)$, the trajectory distribution naturally
 715 factorizes into two phases:
 716

$$717 P(\tau; \pi_{\theta^L}^L, \pi_{\theta^F}^F) \\ 718 = \mu^L(s_0^L) \prod_{t=0}^{T-1} \pi_{\theta^L}^L(a_t^L | s_t^L) \mathcal{P}^L(s_{t+1}^L | s_t^L, a_t^L) \mu^F(s_0^F; s_T^L) \prod_{t=T}^{\infty} \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) \mathcal{P}(a_{s_{t+1}}^F | s_t^F, a_t^F; s_T^L)$$

719 *Proof of Theorem 1.* Based on policy gradient theorem (Sutton, 1984; Williams, 1992; Sutton et al.,
 720 2000), we have
 721

$$722 \nabla_{\theta^F} J^F(\theta^L, \theta^F) = \int P(\tau; \theta^L, \theta^F) \gamma^T \sum_{t=T}^{\infty} \nabla_{\theta^F} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) A_t^F d\tau$$

723 Differentiating both sides with respect to θ^L yields the cross derivative:
 724

$$725 \nabla_{\theta^L, \theta^F}^2 J^F(\theta^L, \theta^F) \\ 726 = \nabla_{\theta^L} (\nabla_{\theta^F} J^F(\theta^L, \theta^F)) \\ 727 = \nabla_{\theta^L} \int P(\tau; \theta^L, \theta^F) \left[\gamma^T \sum_{t=T}^{\infty} \nabla_{\theta^F} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) A_t^F \right] d\tau \\ 728 = \int \nabla_{\theta^L} P(\tau; \theta^L, \theta^F) \left[\gamma^T \sum_{t=T}^{\infty} \nabla_{\theta^F} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) A_t^F \right]^{\top} d\tau \\ 729 = \int P(\tau; \theta^L, \theta^F) \nabla_{\theta^L} \log P(\tau; \theta^L, \theta^F) \left[\gamma^T \sum_{t=T}^{\infty} \nabla_{\theta^F} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) A_t^F \right]^{\top} d\tau \\ 730 = \int P(\tau; \theta^L, \theta^F) \left[\sum_{t=0}^{T-1} \nabla_{\theta^L} \log \pi_{\theta^L}^L(a_t^L | s_t^L) \right] \left[\gamma^T \sum_{t=T}^{\infty} \nabla_{\theta^F} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) A_t^F \right]^{\top} d\tau \\ 731 = \nabla_{\theta^L, \theta^F} \int P(\tau; \theta^L, \theta^F) \left[\sum_{t=0}^{T-1} \log \pi_{\theta^L}^L(a_t^L | s_t^L) \right] \left[\gamma^T \sum_{t=T}^{\infty} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) A_t^F \right]^{\top} d\tau$$

732 Evaluating this identity at the reference parameters $(\theta^L, \theta^F) = (\theta_o^L, \theta_o^F)$ gives
 733

$$\begin{aligned}
& \nabla_{\theta^L, \theta^F}^2 J^F(\theta^L, \theta^F) |_{\theta^L=\theta_o^L, \theta^F=\theta_o^F} \\
&= \nabla_{\theta^L, \theta^F}^2 \int P(\tau; \theta_o^L, \theta_o^F) \left[\sum_{t=0}^{T-1} \frac{\pi_{\theta^L}^L(a_t^L | s_t^L)}{\pi_{\theta_o^L}^L(a_t^L | s_t^L)} \right] \left[\gamma^T \sum_{t=T}^{\infty} \frac{\pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L)}{\pi_{\theta_o^F}^F(a_t^F | s_t^F; s_T^L)} A_{\pi_{\theta^F}^F}(s_t^F, a_t^F; s_T^L) \right] d\tau \\
&= \nabla_{\theta^L, \theta^F}^2 \int P(\tau_{0:T}^L; \theta_o^L, \theta_o^F) \left[\sum_{t=0}^{T-1} \frac{\pi_{\theta^L}^L(a_t^L | s_t^L)}{\pi_{\theta_o^L}^L(a_t^L | s_t^L)} \right] \\
&\quad \int P(\tau_{T:\infty}^F; \theta_o^L, \theta_o^F) \left[\gamma^T \sum_{t=T}^{\infty} \frac{\pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L)}{\pi_{\theta_o^F}^F(a_t^F | s_t^F; s_T^L)} A_{\pi_{\theta^F}^F}(s_t^F, a_t^F; s_T^L) \right] d\tau \\
&= \nabla_{\theta^L, \theta^F}^2 \sum_{t=0}^{T-1} \int P(\tau_{0:T}^L; \theta_o^L, \theta_o^F) \left[\frac{\pi_{\theta^L}^L(a_t^L | s_t^L)}{\pi_{\theta_o^L}^L(a_t^L | s_t^L)} \right] \\
&\quad \sum_{t'=T}^{\infty} \int P(\tau_{T:\infty}^F; \theta_o^L, \theta_o^F, \theta_o^F, \theta_o^F) \left[\gamma^T \frac{\pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L)}{\pi_{\theta_o^F}^F(a_t^F | s_t^F; s_T^L)} A_{\pi_{\theta^F}^F}(s_t^F, a_t^F; s_T^L) \right] d\tau \\
&= \nabla_{\theta^L, \theta^F}^2 \int d_{\theta_o^L}^L(s^L) \pi_{\theta_o^L}^L(a^L | s^L) d_{\theta_o^F}^{L,T}(s_T^L) \left[\frac{\pi_{\theta^L}^L(a^L | s^L)}{\pi_{\theta_o^L}^L(a^L | s^L)} \right] \\
&\quad \int d_{\theta_o^F}^F(s^F; s_T^L) \pi_{\theta_o^F}^F(a^F | s^F; s_T^L) \left[\gamma^T \frac{\pi_{\theta^F}^F(a^F | s^F; s_T^L)}{\pi_{\theta_o^F}^F(a^F | s^F; s_T^L)} A_{\pi_{\theta^F}^F}(s^F, a^F; s_T^L) \right] d\tau \\
&= \nabla_{\theta^L, \theta^F} \mathcal{L}_{L,F}^F(\theta^L, \theta^F; \theta_o^L, \theta_o^F) |_{\theta^L=\theta_o^L, \theta^F=\theta_o^F}
\end{aligned}$$

□

Proof of Proposition 1. The result follows directly by applying the likelihood-ratio trick in the same way as the standard proof of the policy gradient theorem (Sutton, 1984; Williams, 1992; Sutton et al., 2000).

□

Proposition 2. We have

$$\begin{aligned}
\nabla_{\theta^F}^2 J^F(\theta^L, \theta^F) &= \nabla_{\theta^F}^2 E_{\pi_{\theta^L}^L, \pi_{\theta^F}^F} \left[\sum_{t=T}^{\infty} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) A_t^F \right] \\
&\quad + E_{\pi_{\theta^L}^L, \pi_{\theta^F}^F} \left[\nabla_{\theta^F} \left(\sum_{t=T}^{\infty} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) \right) \nabla_{\theta^F} \left(\sum_{t=T}^{\infty} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) A_t^F \right)^{\top} \right] \quad (10)
\end{aligned}$$

Proof of Proposition 2. Based on policy gradient theorem (Sutton, 1984; Williams, 1992; Sutton et al., 2000), we have

$$\nabla_{\theta^F} J^F(\theta^L, \theta^F) = \int P(\tau; \theta^L, \theta^F) \nabla_{\theta^F} \sum_{t=T}^{\infty} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) A_t^F d\tau$$

810 Differentiating this expression again with respect to θ^F , we obtain
 811

$$\begin{aligned}
 812 \quad & \nabla_{\theta^F}^2 J_F(\theta_L, \theta_F) \\
 813 \quad &= \nabla_{\theta^F} \int P(\tau; \theta^L, \theta^F) \nabla_{\theta^F} \sum_{t=T}^{\infty} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) A_t^F d\tau \\
 814 \quad &= \int P(\tau; \theta^L, \theta^F) \nabla_{\theta^F}^2 \sum_{t=T}^{\infty} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) A_t^F d\tau \\
 815 \quad & \quad + \int P(\tau; \theta^L, \theta^F) \nabla_{\theta^F} \log P(\tau; \theta^L, \theta^F) \left(\nabla_{\theta^F} \sum_{t=T}^{\infty} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) \right)^\top d\tau \\
 816 \quad &= \int P(\tau; \theta^L, \theta^F) \nabla_{\theta^F}^2 \sum_{t=T}^{\infty} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) A_t^F d\tau \\
 817 \quad & \quad + \int P(\tau; \theta^L, \theta^F) \left(\nabla_{\theta^F} \sum_{t=T}^{\infty} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) \right) \left(\nabla_{\theta^F} \sum_{t=T}^{\infty} \log \pi_{\theta^F}^F(a_t^F | s_t^F; s_T^L) A_t^F \right)^\top d\tau
 \end{aligned}$$

□

826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **C ENVIRONMENT DETAILS**
865

866 In this section, we provide comprehensive details about the nine environments employed in our
 867 experimental evaluation. To ensure fair comparison with existing methods, we adopt all 6 environments
 868 from the BodyGen framework: **Crawler**, **Cheetah**, **Glider**, **Walker**, **Swimmer**, and **Terrain-
 869 Crosser**. Additionally, we introduce three novel environments designed to evaluate different aspects
 870 of our algorithm: **Stepper-Regular** and **Stepper-Hard** feature complex topographical structures to
 871 test robustness in challenging terrain, while **Pusher** evaluates manipulation capabilities. These additional
 872 environments are specifically designed to evaluate our algorithm’s robustness and adaptability
 873 under more challenging conditions, thereby providing a more rigorous assessment of the proposed
 874 method’s capabilities. Figure 5 provides visualizations of all nine environments.

875 Each agent undergoes dynamic morphological evolution through topological and attribute modifi-
 876 cations during training. The observation includes the root body’s spatial position and velocity, all
 877 joints’ angular positions and velocities, and motor gear parameters. All joints use hinge connections
 878 enabling single-axis rotation. Joint attributes encompass bone vectors, sizes, and motor gear values.
 879 The action space consists of one-dimensional control signals applied to each joint’s motor.

880 **Crawler** operates in a 3D environment, where agents exhibit quadrupedal crawling locomotion. The
 881 initial morphology consists of a central root node with four limb branches extending outward. The
 882 body tree is constrained to a maximum depth of 4 levels, with each non-root node supporting at most
 883 2 child limbs. Episodes are terminated when the agent’s body height exceeds 2.0 units to prevent
 884 unrealistic vertical extensions. The reward function encourages forward movement while penalizing
 885 excessive control effort:

$$886 r_t = \frac{x_{t+1} - x_t}{\tau} - w \cdot \frac{1}{N} \sum_{j \in \mathcal{J}_t} \|\mathbf{u}_j^t\|^2 \quad (11)$$

888 where x_t denotes the agent’s forward position at timestep t , \mathbf{u}_j^t represents the effective control input
 889 applied to joint (i.e., the raw action scaled by the joint’s gear ratio) applied to joint j at time t ,
 890 $w = 0.0001$ is the control regularization coefficient, N is the total number of joints, and $\tau = 0.04$.

891 **Cheetah** features 2D locomotion focused on fast running gaits. The agent begins with an initial
 892 design comprising a root body connected to one primary limb segment. The morphological search
 893 allows a maximum tree depth of 4 with up to 3 child limbs per node. The root body’s angular
 894 orientation is constrained within 20 degrees to maintain stable running posture. Episode termination
 895 occurs when body height falls below 0.7 or exceeds 2.0 units. The reward follows the velocity-based
 896 formulation:

$$897 r_t = \frac{x_{t+1} - x_t}{\tau} \quad (12)$$

899 where $\tau = 0.008$.

900 **Glider** and **Walker** enable 2D aerial and terrestrial locomotion. Both environments share the same
 901 base morphology: agents start from an initial configuration with three limb segments attached to a
 902 central root, each limb node can support up to three children, and joints can oscillate within a 60°
 903 range to accommodate wide-range motion. The reward structure follows eq. 12, emphasizing for-
 904 ward displacement. The two tasks differ only in their allowable morphology depth: Glider restricts
 905 the body tree to a maximum depth of 3, while Walker permits up to 4 levels.

906 **Swimmer** enables undulatory, snake-like locomotion in a 2D aquatic environment. The agent
 907 evolves in water with a viscosity coefficient of $vis = 0.1$. The initial morphology consists of a
 908 root body connected to a single limb segment, and each limb node may support up to three child
 909 segments, enabling flexible articulated structures suited for wave-based propulsion. This task serves
 910 as a lightweight validation environment, and thus imposes no early-termination conditions such as
 911 height limits or joint-rotation thresholds. The reward structure follows eq. 12, emphasizing forward
 912 displacement under hydrodynamic resistance.

913
914
915
916
917

918 **TerrainCrosser** presents a challenging 2D terrain navigation task using the Cheetah agent config-
 919 uration. The environment features fixed terrain heights with maximum elevation differences of
 920 $z_{max} = 0.5$. Agents must traverse gaps generated from single-channel height maps. Height con-
 921 straints maintain agent stability between 0.7 and 2.0 units, with violations leading to episode termi-
 922 nation. The reward function prioritizes forward progress as defined in eq. 12.

923 **Stepper-Regular and Stepper-Hard** introduce challenging staircase navigation tasks that test
 924 agents' morphological adaptation capabilities for vertical terrain traversal. Both environments uti-
 925 lize the Crawler agent configuration in a 3D setting. Stepper-Regular features stairs with step width
 926 of 1.0 units and height of 0.4 units; Stepper-Hard increases the difficulty by elevating step height
 927 to 0.8 units while maintaining the same width. Unlike the standard Crawler environment, height
 928 termination constraints are removed to allow full exploration of vertical climbing capabilities. The
 929 reward function follows eq. 11, focusing solely on forward progression, thereby maintaining reward
 930 consistency across environments.

931 **Pusher** is a challenging 3D manipulation task designed to evaluate whether the co-design system
 932 can generate morphologies and control strategies that effectively interact with external objects. This
 933 environment reuses the Crawler agent configuration in a 3D setting. A rigid cube of side length
 934 1.0 m is placed in front of the agent and constrained to move in the horizontal (x, y) plane. The
 935 observation space augments the agent state with the 3D relative position between the agent's root
 936 body and the cube. The reward encourages forward displacement of the cube, penalizes lateral
 937 motion, and provides an auxiliary shaping term based on the proximity between the agent and the
 938 cube. A control-effort penalty identical to eq. 11 is applied. Formally, the reward is

$$939 \quad r_t = \frac{x_{t+1}^{\text{cube}} - x_t^{\text{cube}}}{\tau} - \kappa \cdot \frac{|y_{t+1}^{\text{cube}} - y_t^{\text{cube}}|}{\tau} + \frac{1}{1 + |\mathbf{p}_t^{\text{cube}} - \mathbf{p}_t^{\text{root}}|} - w \cdot \frac{1}{N} \sum_{j \in \mathcal{J}_t} \|\mathbf{u}_j^t\|^2 \quad (13)$$

940 where x_t^{cube} and y_t^{cube} denote the cube's forward and lateral positions at timestep t , $\mathbf{p}_t^{\text{cube}}$ and $\mathbf{p}_t^{\text{root}}$
 941 are the 3D positions of the cube and the agent's root body, and $\kappa = 0.1$ controls the lateral-motion
 942 penalty.

943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

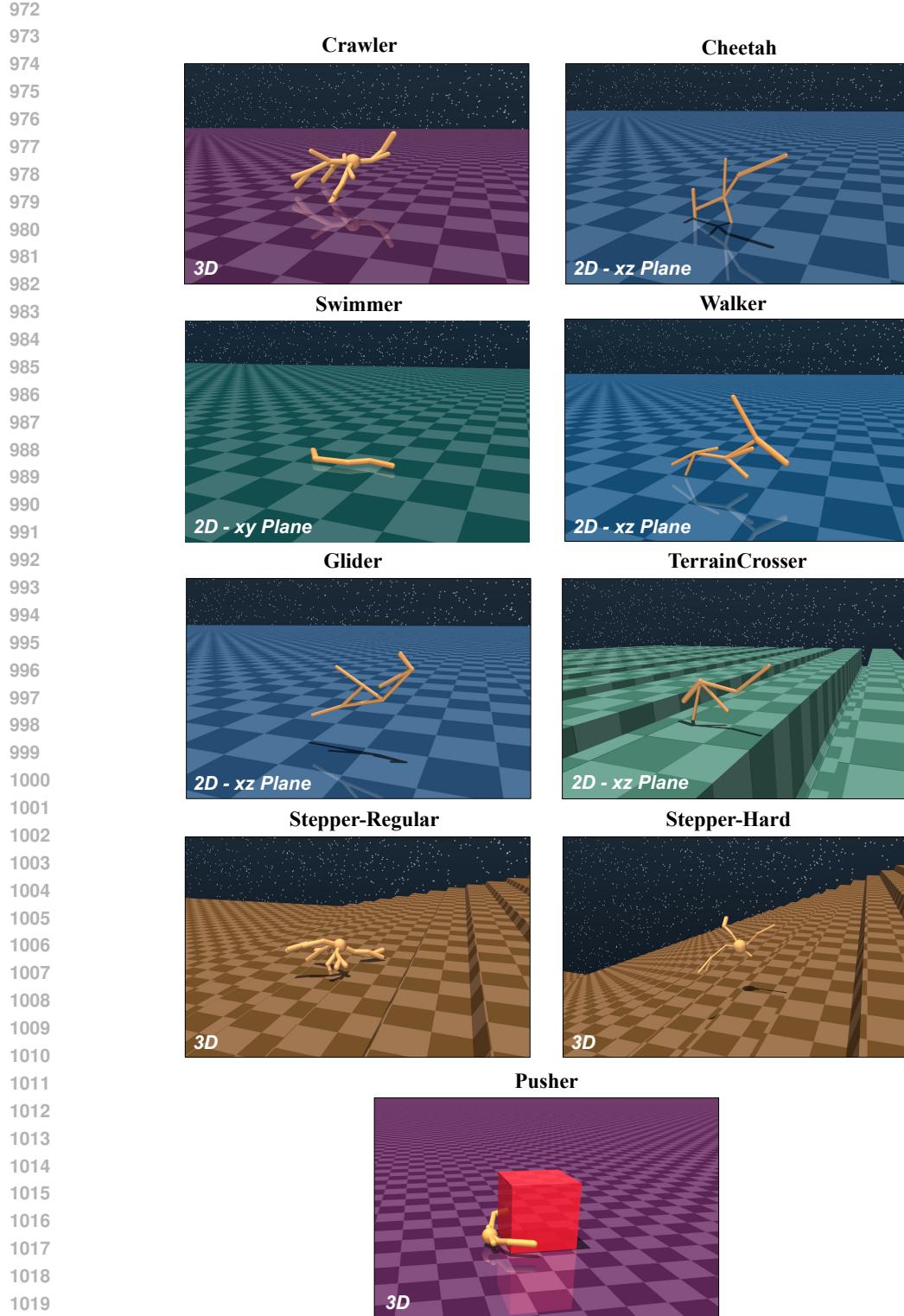


Figure 5: Visualization of the nine benchmark environments used in our experiments. Crawler, Stepper-Regular, Stepper-Hard, and Pusher are 3D tasks; others are 2D (x-z or x-y plane). The environments differ substantially in required morphology depth, symmetry, and limb arrangement, enabling evaluation on the generality of morphology-control co-design across locomotion and manipulation tasks.

1026
1027

D IMPLEMENTATION DETAILS

1028
1029

D.1 COMPUTATION COST

1030
1031

Following standard reinforcement learning practices, we utilize distributed trajectory sampling across multiple CPU threads to enhance training efficiency. All models are trained with **seven** random seeds on a high-performance computing cluster equipped with dual Intel® Xeon® processors (totaling 64 cores) and 24 NVIDIA A100 GPUs. Our implementation uses PyTorch 2.0.1 for all neural network models and MuJoCo 2.1.0 (Todorov et al., 2012) physics engine for the morphology-control simulation environments. The training process is computationally efficient, requiring approximately 30 hours per model when utilizing 10 CPU cores alongside a single NVIDIA A100 GPU across all experimental environments.

1032
1033

D.2 HYPERPARAMETER CONFIGURATION

1034
1035

Stackelberg PPO (Ours): Our method introduces several Stackelberg-specific hyperparameters that require careful tuning. We conduct grid search over key parameters: Fisher information matrix regularization coefficient $\lambda \in \{0.5, 1.0, 5.0, 10.0\}$, maximum conjugate gradient (CG) steps $\in \{10, 20, 30\}$, and follower sampling steps per episode $\in \{6, 15, 30, 60, 100\}$ during leader update. For the underlying network architecture, we maintain the same configuration as BodyGen (Lu et al., 2025) without modification to ensure fair comparison, including their MoSAT transformer blocks and all network-related parameters. The final hyperparameter configuration, along with the underlying BodyGen network architecture we adopt, is detailed in Table 1.

1036
1037

BodyGen: We follow their original implementation and released code, adopting the same hyperparameter configuration as reported in their work (Lu et al., 2025). The settings include MoSAT Pre-LN normalization, SiLu activation, hidden dimension 64, policy learning rate 5e-5, value learning rate 3e-4, and other parameters as detailed in Table 1.

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047

Transform2Act: Following the original implementation (Yuan et al., 2022), this baseline uses GraphConv layers, policy GNN size (64, 64, 64), policy learning rate 5e-5, value GNN size (64, 64, 64), value learning rate 3e-4, JSMLP activation Tanh, JSMLP size (128, 128, 128) for policy networks, and MLP size (512, 256) for value functions.

1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060

NGE: Based on the original implementations (Wang et al., 2019), this evolutionary baseline uses 125 generations, population size 20, elimination rate 0.15, with GraphConv layers, Tanh activation, policy GNN size (64, 64, 64), policy MLP size (128, 128), value GNN size (64, 64, 64), value MLP size (512, 256), policy learning rate 5e-5, and value learning rate 3e-4.

1061
1062

D.3 GRADIENT NORMALIZATION

1063
1064
1065
1066
1067

Recall Eq. 2, where the Stackelberg gradient for the leader decomposes into a *direct* term and a *response-induced* term. To avoid scale imbalance between these components, we scale the response-induced term by a data-dependent factor α computed from the relative norms of the two terms (no extra hyper-parameters). Let $g_{\text{dir}} := \nabla_{\theta_L} J^L(\theta_L, \theta^F)$ and $g_{\text{resp}} := (\nabla_{\theta_L} \theta_*^F(\theta_L))^\top \nabla_{\theta_F} J^L(\theta_L, \theta^F)$. We update the leader using

1068
1069
1070

$$\widehat{\nabla_{\theta_L} J^L} = g_{\text{dir}} - \alpha g_{\text{resp}}, \quad \alpha = \min\left(1, \frac{\|g_{\text{dir}}\|_2}{\|g_{\text{resp}}\|_2 + \varepsilon}\right), \quad (14)$$

1071
1072
1073

where $\varepsilon > 0$ is a small numerical constant for stability. This rule guarantees $\alpha \|g_{\text{resp}}\|_2 \leq \|g_{\text{dir}}\|_2$, ensuring the follower-implicit component never dominates while preserving its direction. We use $\alpha = 1$ across all experiments for simplicity and consistency.

1074
1075
1076
1077
1078
1079

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092

Table 1: Hyperparameters of Stackelberg PPO adopted in all experiments

1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

Hyperparameter	Value
Fisher Regularization Coefficient λ	5.0
Maximum Conjugate Gradient Steps	20
CG Relative Error Tolerance	10^{-3}
Follower Sampling Steps per Episode	6
Gradient Normalization Ratio α	1.0
Structure Design Steps T^{stru}	5
Attribute Design Steps T^{attr}	1
Transformer Layer Normalization	Pre-LN
Transformer Activation Function	SiLu
FNN Scaling Ratio r	4
Transformer Blocks number (Policy Network)	3
Transformer Blocks number (Value Network)	3
Transformer Hidden Dimension (Policy Network)	64
Transformer Hidden Dimension (Value Network)	64
Optimizer	Adam
Policy Learning Rate	5e-5
Value Learning Rate	3e-4
Clip Gradient Norm	40.0
PPO Clip ϵ	0.2
PPO Batch Size	50000
PPO Minibatch Size	2048
PPO Iterations Per Batch	10
Training Epochs	1000
Discount factor γ	0.995
GAE Parameter λ_{GAE}	0.95

1134 **E ADDITIONAL RESULTS**
11351136 **E.1 VISUALIZATION AND QUALITATIVE RESULTS**
1137

1138 Figure 6 presents the diverse morphologies discovered by our Stackelberg PPO framework across
1139 different environments. The evolved body designs reveal the sophisticated structural complexity
1140 achieved by our approach, confirming that the Stackelberg game formulation enables continuous co-
1141 adaptation between morphology and control without premature convergence to suboptimal simple
1142 structures. Remarkably, these designs demonstrate emergent functional differentiation, developing
1143 specialized appendages for complementary tasks such as maintaining equilibrium versus providing
1144 propulsive forces.

1145 As illustrated in the training curves presented in Fig. 2, we provide quantitative performance compar-
1146 isons across all evaluated environments. Table 2 summarizes the final episode rewards achieved by
1147 each method, presenting mean values and standard deviations computed over [seven](#) random seeds.
1148 All baseline methods are configured using their optimal hyperparameter settings as reported in prior
1149 literature, with detailed specifications provided in Appendix D.2.

1150
1151 Table 2: Performance comparison of Stackelberg PPO against baseline methods across morphology-
1152 control co-design environments. Results show mean episode rewards and standard deviations over
1153 [seven random seeds](#).

1154 Methods	1155 Crawler	1156 Cheetah	1157 Swimmer
Stackelberg PPO (Ours)	11047.90\pm126.20	13514.94\pm653.62	1334.98\pm16.06
BodyGen (Lu et al., 2025)	9098.72 \pm 558.26	11575.87 \pm 640.65	1302.64 \pm 3.71
Transform2Act (Yuan et al., 2022)	3950.80 \pm 268.43	8297.90 \pm 825.02	737.90 \pm 21.04
NGE (Wang et al., 2019)	1482.45 \pm 524.97	2534.76 \pm 428.68	384.45 \pm 112.03
ESS (Sims, 1994)	631.67 \pm 122.41	671.67 \pm 134.65	190.62 \pm 37.84
1161 Methods	1162 Walker-Hard	1163 Glider-Hard	1164 TerrainCrosser
Stackelberg PPO (Ours)	13612.32\pm501.26	12414.50\pm498.53	4488.07\pm467.98
BodyGen (Lu et al., 2025)	11645.89 \pm 797.77	11049.95 \pm 468.44	4103.25 \pm 871.90
Transform2Act (Yuan et al., 2022)	4420.63 \pm 267.48	6120.62 \pm 1086.62	2364.63 \pm 473.80
NGE (Wang et al., 2019)	1504.55 \pm 553.15	2081.25 \pm 348.17	827.15 \pm 427.21
ESS (Sims, 1994)	636.03 \pm 125.74	541.55 \pm 107.56	426.81 \pm 168.30
1168 Methods	1169 Pusher	1170 Stepper-Regular	1171 Stepper-Hard
Stackelberg PPO (Ours)	3462.77\pm368.09	7215.20\pm449.02	6003.59\pm1027.77
BodyGen (Lu et al., 2025)	2779.95 \pm 509.18	4685.94 \pm 845.23	4685.41 \pm 800.09
Transform2Act (Yuan et al., 2022)	1015.28 \pm 247.09	2325.69 \pm 664.00	1192.39 \pm 544.20
NGE (Wang et al., 2019)	551.57 \pm 120.65	870.56 \pm 215.45	509.12 \pm 207.01
ESS (Sims, 1994)	243.14 \pm 95.93	351.02 \pm 136.28	392.54 \pm 151.83

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

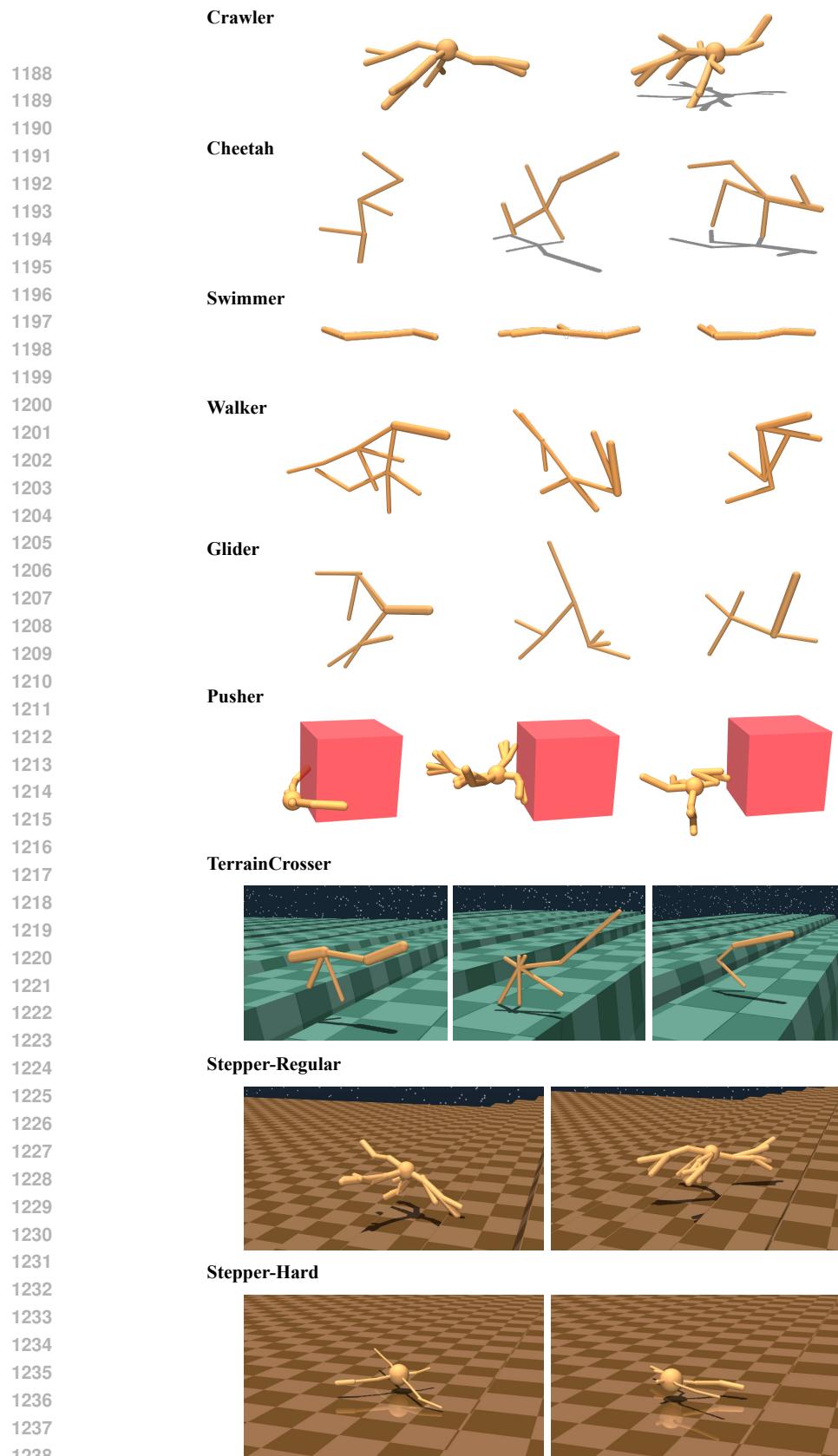


Figure 6: Visualization of co-evolved body designs generated through our Stackelberg PPO.

1242 E.2 EXTENDED ENVIRONMENT EVALUATION
1243

1244 Beyond the environments reported in the main paper, we also include results for the full sets of Glider
 1245 and Walker tasks, each provided in three difficulty levels: regular, medium, and hard. In the main text
 1246 we present only the hard variants, as they offer the largest design spaces and naturally encompass
 1247 the easier tiers, providing a clearer view of morphology-control co-design under less restrictive
 1248 structural budgets. Here, we report the complete results mainly for completeness, and to illustrate
 1249 how our method behaves under different morphology complexity limits. The six environments differ
 1250 only in their structural allowances: Glider uses a maximum tree depth of 3 and Walker a maximum
 1251 depth of 4, while the regular/medium/hard variants correspond to maximum child counts of $\{1, 2, 3\}$.
 1252 All other environment settings are identical.

1253 Figure 7 presents the training curves and the final generated morphologies across all six tasks. Our
 1254 method outperforms the baseline across all difficulty levels, with the performance gap increasing
 1255 as the design space becomes larger and more challenging. Interestingly, the three difficulty tiers
 1256 within each environment achieve similar final performance, suggesting that overall task success is
 1257 not strictly tied to structural complexity: even simpler configurations can discover diverse, correct,
 1258 and high-quality locomotion patterns.

1259 E.3 ADDITIONAL ABLATION STUDIES AND MECHANISM ANALYSIS
1260

1261 **Quantitative Results for PPO Clipping Sensitivity.** To complement the qualitative trends shown
 1262 in Figure 4(a), we provide the full quantitative statistics for the clipping sweep experiment. The
 1263 purpose of this analysis is to examine how the surrogate objective behaves under different clipping
 1264 thresholds and to identify when the underlying assumptions of policy-gradient theory remain valid.
 1265 From a theoretical perspective, large policy updates can cause the surrogate objective to diverge
 1266 from the true return, leading to instability. PPO addresses this by bounding the likelihood ratio
 1267 $\pi_\theta(a | s)/\pi_{\theta_0}(a | s)$ within $[1 - \epsilon, 1 + \epsilon]$, which prevents overly aggressive updates and ensures that
 1268 the surrogate remains a reliable approximation. In this experiment, we vary the clipping parameter
 1269 ϵ and measure three quantities that together characterize the stability of the update rule: (1) average
 1270 performance, (2) likelihood-ratio constraint violations, and (3) KL divergence. Table 3 reports the
 1271 full numerical results corresponding to the curves shown in the main text.

1273 Table 3: Sensitivity of Stackelberg PPO to the clipping threshold ϵ .

1274 Clipping Parameter	1275 Performance	1276 Likelihood Ratio Violations (%)	1277 Average KL Divergence
$\epsilon = 0.1$	4934.52 ± 646.40	14.82 ± 0.55	0.0030 ± 0.0006
$\epsilon = 0.2$	7215.20 ± 449.02	13.39 ± 0.83	0.0196 ± 0.0025
$\epsilon = 0.4$	7907.01 ± 208.02	9.92 ± 0.94	0.0343 ± 0.0153
$\epsilon = 0.6$	4778.18 ± 407.84	9.10 ± 1.30	0.0665 ± 0.0188
$\epsilon = 0.8$	2656.92 ± 503.93	7.02 ± 0.81	0.1340 ± 0.0388
No Clipping	1233.26 ± 443.98	0	1.7726 ± 0.1539

1281 **Ablation on SID Components and PPO Clipping.** To further disentangle the contributions of our
 1282 Stackelberg Implicit Differentiation (SID) estimator and PPO clipping, we conduct an additional
 1283 controlled ablation. Specifically, we evaluate three variants under the same phase-separated, non-
 1284 differentiable Stackelberg setup:

- 1286 • **SID+PPO (full)** — our complete method using both SID and PPO clipping,
- 1287 • **PPO-only** — standard PPO updates without SID,
- 1288 • **SID-only** — applying our SID estimator without PPO clipping.

1289 This ablation assesses whether (i) our SID estimator meaningfully improves leader optimization and
 1290 (ii) PPO clipping is required to stabilize the induced surrogate objectives. As shown in Table 4,
 1291 both components provide clear performance gains, and the full algorithm consistently achieves the
 1292 highest returns across four environments.

1293

1294

1295

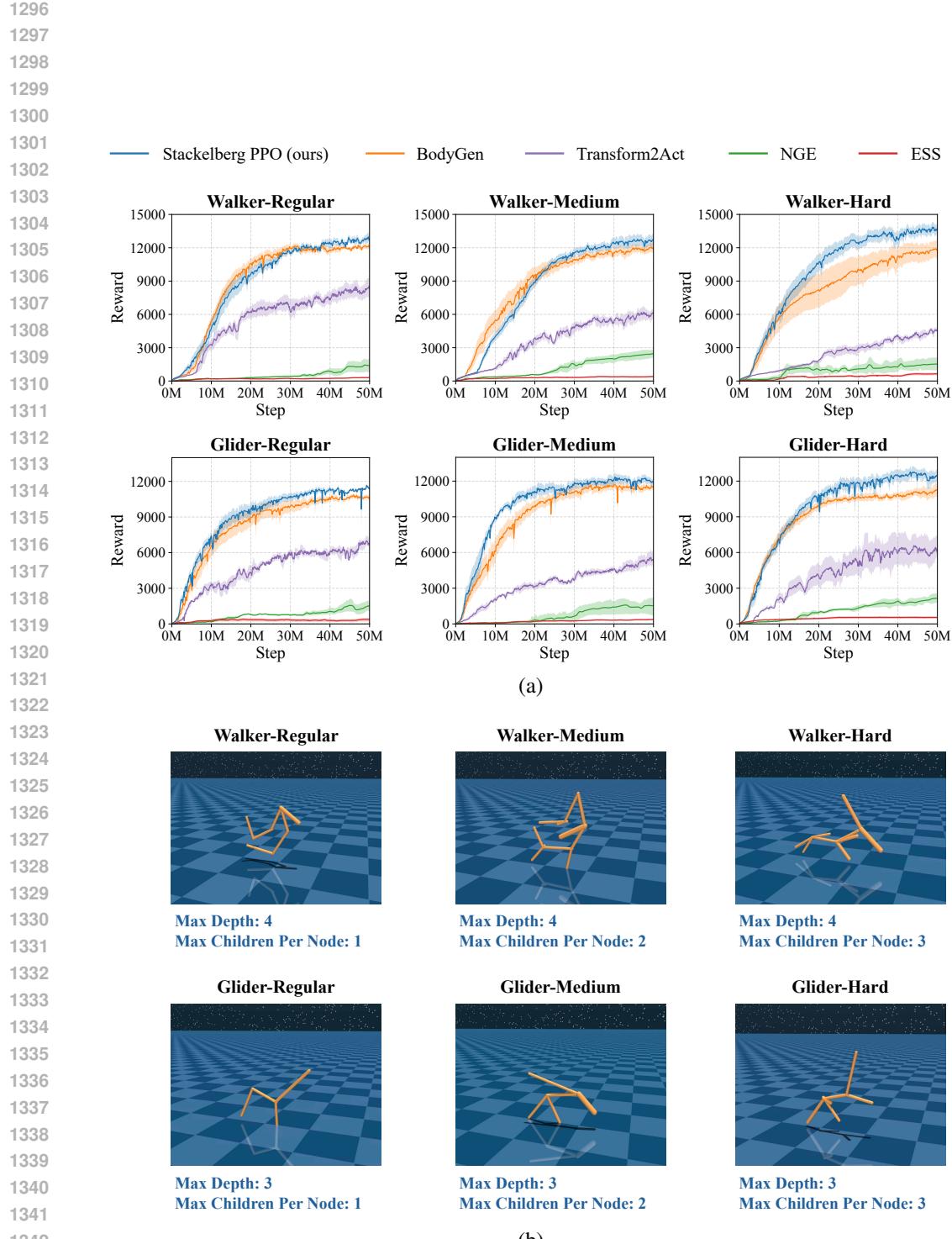
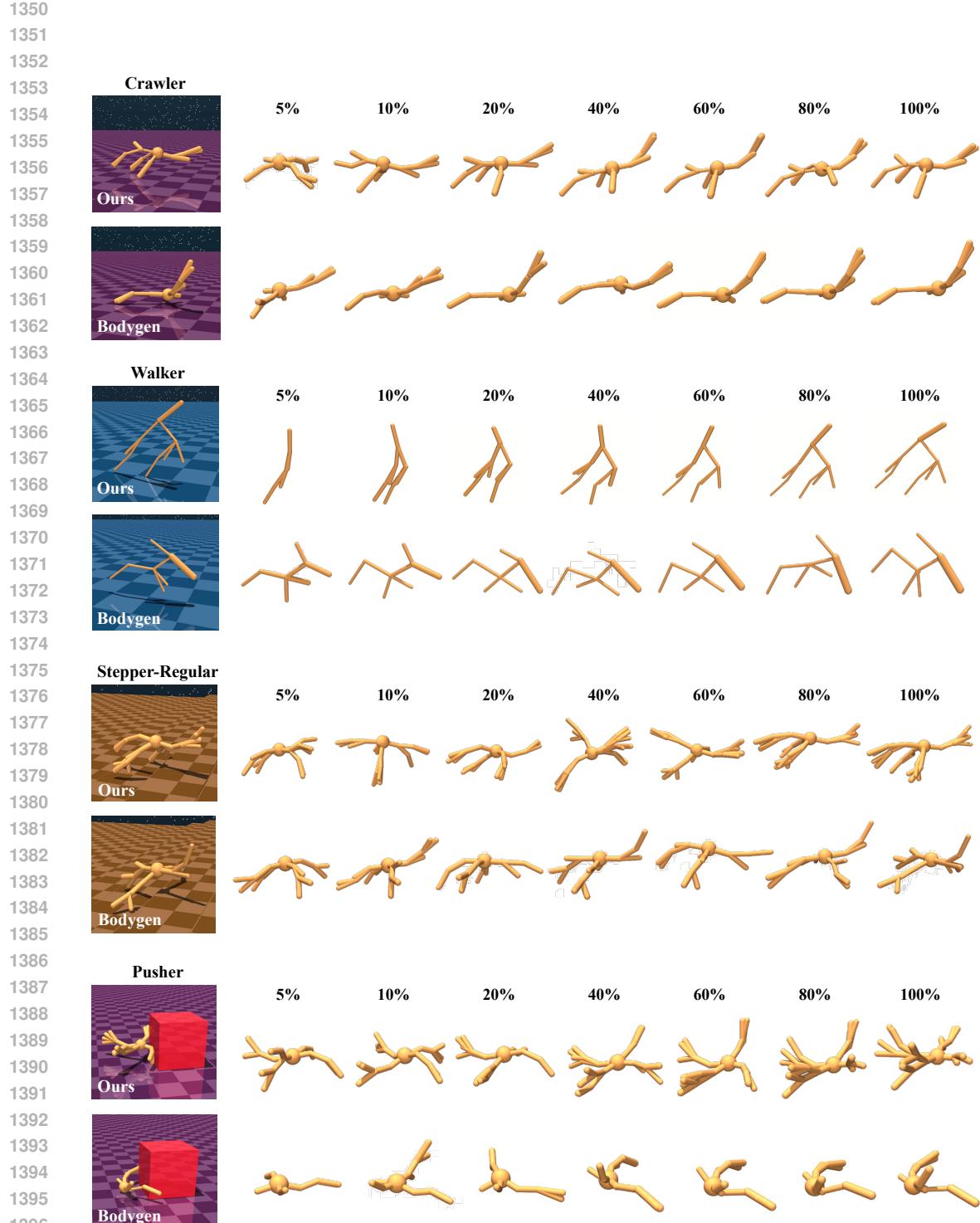


Figure 7: Extended evaluation on Glider and Walker environments under different morphology complexity budgets.(a) Training curves for the regular, medium, and hard variants of each environment. (b) Final generated morphologies under each complexity tier.



1404
 1405 Table 4: Ablation studies on the components of our SID estimator and PPO clipping, evaluated
 1406 under the same phase-separated, non-differentiable Stackelberg setting.

Environment	SID+PPO (full)	PPO-only (no SID)	SID-only (no clipping)
Stepper-Regular	7215.20\pm449.02	4685.94 \pm 845.23	1257.33 \pm 530.25
Crawler	11047.90\pm126.20	9098.72 \pm 558.26	35.77 \pm 12.25
Cheetah	13514.94\pm653.62	11575.87 \pm 640.65	472.89 \pm 77.40
Glider	12414.50\pm498.53	11049.95 \pm 468.44	566.81 \pm 89.96

1413
 1414 **Effect of Leader Gradients on Controller Adaptation.** To better understand the mechanism be-
 1415 hind Stackelberg PPO’s performance gains, we analyze how morphology updates interact with con-
 1416 troller adaptation. Specifically, we investigate whether the improved performance originates from
 1417 faster controller adaptation under changing morphologies, or from more informative leader gradients
 1418 that guide the structure search more effectively. To isolate these effects, we extract *ten intermediate*
 1419 *checkpoints* from a BodyGen training run (spanning 10%–100% of training progress). From each
 1420 checkpoint, we initialize both methods with *identical* morphology, controller parameters, and opti-
 1421 mizer state, and then train each method for a *single epoch*. This setup ensures that any difference
 1422 in performance improvement reflects differences in the leader update rule, rather than controller
 1423 initialization or long-term training.

1424 As shown in Table 5, Stackelberg PPO consistently achieves a larger one-epoch performance im-
 1425 provement compared to standard PPO (BodyGen). This indicates that Stackelberg PPO does not
 1426 rely on faster controller adaptation; instead, it provides more informative leader gradients that enable
 1427 the morphology to improve even when the controller is only partially adapted. These results high-
 1428 light the role of the Stackelberg update in stabilizing and accelerating the joint morphology–control
 1429 optimization process.

1430
 1431 Table 5: Average performance change after one epoch of training from the same checkpoint model,
 1432 averaged over 10 checkpoints and 7 seeds, evaluated on Stepper-Regular.

	Stackelberg PPO (Ours)	BodyGen (PPO)
Performance Change After 1 Epoch	+0.392 \pm 0.075 %	+0.224 \pm 0.043 %

1433
 1434 We further provide a visual comparison of morphology evolution to illustrate this effect (Figure 8).
 1435 Across multiple environments, BodyGen tends to converge early to low-complexity designs, which
 1436 restricts later improvements even as the controller becomes stronger. In contrast, Stackelberg PPO
 1437 continues meaningful structural exploration throughout training, enabling richer and more adaptive
 1438 morphologies. These qualitative trajectories align with the adaptation results above, reinforcing that
 1439 the Stackelberg update produces more informative and better-aligned structural gradients.

1458 E.4 SAMPLE AND TRAINING EFFICIENCY
1459

1460 **Sample Efficiency.** To assess the efficiency of different co-design algorithms, we measure how
1461 many environment interaction samples are required to reach a predefined performance threshold. As
1462 reported in Table 6, Stackelberg PPO consistently converges with substantially fewer samples across
1463 all environments. On average, it reaches the threshold with approximately **-39%** fewer samples
1464 than BodyGen. In contrast, Transform2Act, NGE, and ESS fail to reach any threshold within the
1465 available training budget. These results highlight the advantage of explicitly modeling morphology–
1466 control coupling via a Stackelberg formulation, enabling faster convergence and more stable co-
1467 design dynamics.

1468
1469 Table 6: Sample efficiency comparison: number of samples (in millions) required to reach the
1470 performance threshold.

Environment	Threshold	Stackelberg PPO	BodyGen	Transform2Act	NGE	ESS
Crawler	9000	25.8	47.2	∞	∞	∞
Cheetah	11000	19.2	42.1	∞	∞	∞
Swimmer	1200	14.8	17.0	∞	∞	∞
Walker-Hard	10000	18.1	30.3	∞	∞	∞
Glider-Hard	11000	23.6	49.7	∞	∞	∞
TerrainCrosser	3500	23.9	33.8	∞	∞	∞
Pusher	2500	29.3	39.1	∞	∞	∞
Stepper-Regular	4500	18.5	40.4	∞	∞	∞
Stepper-Hard	4500	27.2	43.1	∞	∞	∞

1482 **Training Efficiency.** Despite incorporating a bilevel update, Stackelberg PPO introduces only
1483 modest computational overhead. The method avoids explicit Hessian construction or inversion; in-
1484 stead, the conjugate-gradient step relies solely on efficient Hessian–vector products (approximately
1485 one backward pass). As a result, its cost scales *linearly* with morphology and controller dimen-
1486 sionality, rather than quadratically. Moreover, rollout collection dominates overall computation in all
1487 co-design settings, so the additional optimization cost has limited influence on total training time.
1488 Table 7 summarizes the training time under different morphology/control design spaces. Increasing
1489 the structural search space does not incur superlinear overhead, confirming the scalability of Stack-
1490 elberg PPO. The comparison with ES-based approaches in Table 8 further shows that ES reduces
1491 wall-clock time only when substantial CPU parallelization is available, while its resulting designs
1492 remain far less effective than those produced by PPO-based methods.

1493 Overall, our method achieves strong efficiency–performance trade-offs:

- 1494 • Compared to BodyGen, Stackelberg PPO achieves substantially better sample efficiency
1495 by requiring **-39%** fewer samples to reach the performance threshold while also obtaining
1496 **+20.66%** higher final scores. In terms of wall-clock time, the difference between the two
1497 methods is modest (**+13%**), keeping the overall training cost comparable.
- 1498 • Compared to ES-based baselines, although ESS attains shorter wall-clock time using **6×**
1499 more CPU cores (64 cores), its performance is extremely poor, achieving only a **0.16** frac-
1500 tion of our method’s performance.

1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512

1513 Table 7: Wall-clock training time comparison across environments with different design space sizes
1514 (10 CPU cores + A100 GPU).

1515

Environment	Space Size (mean)	Space Size (max)	Stackelberg PPO	BodyGen (PPO)
TerrainCrosser	4.50 ± 0.76	14	33.88 ± 0.42	27.87 ± 1.27
Swimmer	5.50 ± 0.76	14	32.64 ± 0.74	28.13 ± 0.45
Cheetah	6.57 ± 0.90	14	32.96 ± 0.67	29.52 ± 1.03
Glider-Hard	7.33 ± 1.49	9	32.93 ± 0.71	28.93 ± 1.50
Walker-Hard	8.43 ± 1.50	27	32.54 ± 0.62	30.21 ± 1.22
Stepper-Hard	9.57 ± 0.90	29	32.70 ± 1.01	30.25 ± 2.06
Pusher	14.33 ± 4.07	29	33.41 ± 0.82	29.24 ± 1.12
Stepper-Regular	16.40 ± 4.69	29	32.83 ± 0.87	30.17 ± 1.41
Crawler	18.25 ± 1.29	29	33.73 ± 0.64	30.54 ± 1.33

1525

1526

1527 Table 8: Wall-clock training time across methods. NGE results are shown under both 10 CPU cores
1528 and 64 cores to illustrate parallelization effects.

1529

	Stackelberg PPO (10 cores)	BodyGen (10 cores)	NGE (10 cores)	NGE (64 cores)
Wall-clock Time	33.07 ± 0.49 h	29.43 ± 0.97 h	45.16 ± 3.72 h	13.52 ± 1.52 h

1532

1533

E.5 MORPHOLOGY EVOLUTION PROCESS VISUALIZATION

1534

1535 Figure 9 showcases the morphological evolution trajectories discovered by our Stackelberg PPO
1536 framework across diverse locomotion tasks and environments. Each row represents a distinct em-
1537 bodiment (Crawler, Cheetah, Swimmer, Glider, Stepper-Regular, Stepper-Hard, Terrain Crosser,
1538 Walker, and Pusher), and the columns depict the progressive morphological changes from early evo-
1539 lution (5%) through convergence (100%). The evolution demonstrates emergent specialization of
1540 appendages for task-specific locomotion requirements.

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

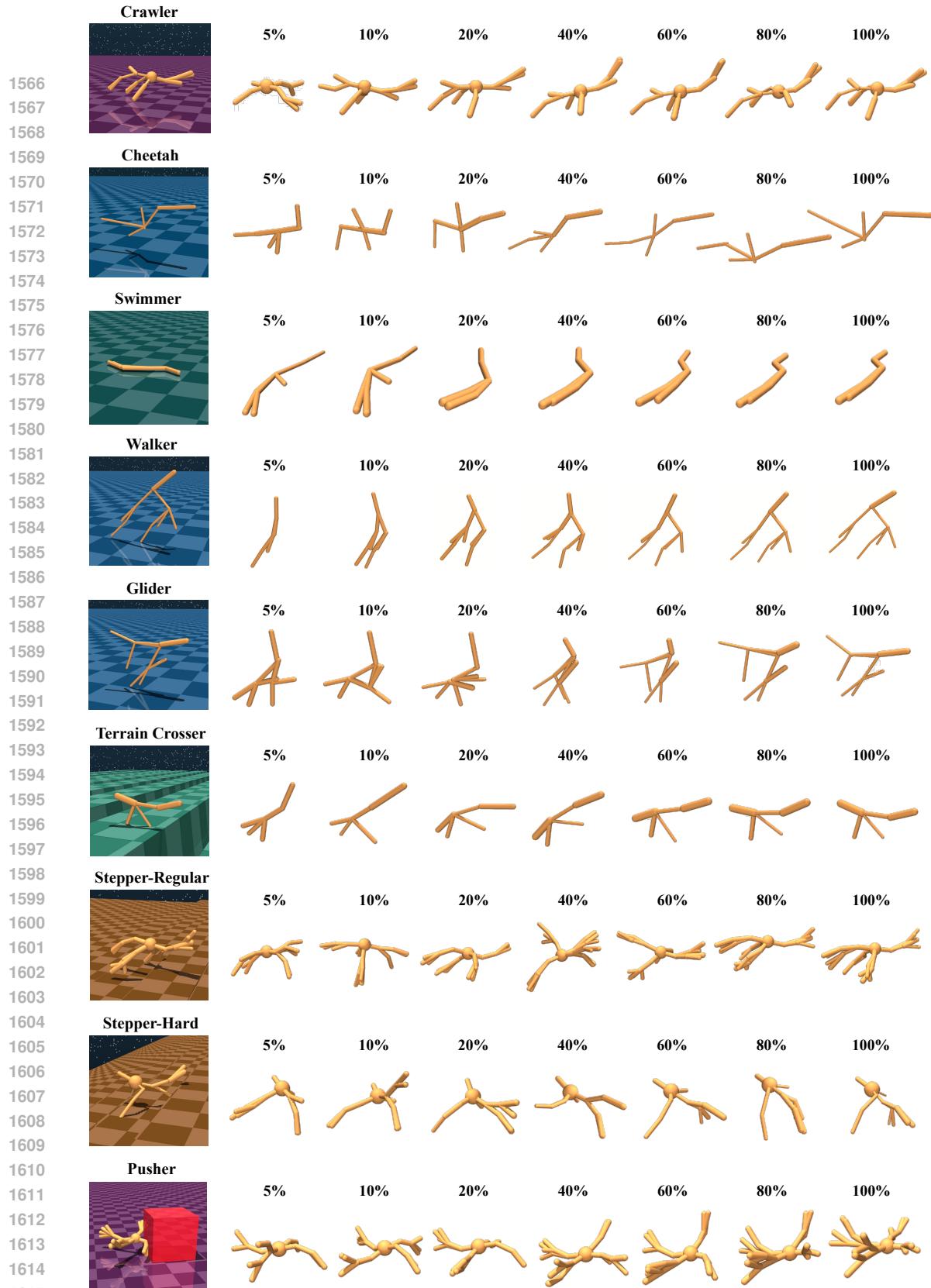


Figure 9: Morphological evolution trajectories across eight environments. Each row represents a distinct robot embodiment, with columns showing progressive stages of morphological adaptation from 5% to 100% training progress.

1620
1621

E.6 RESULTS UNDER REALISTIC CO-DESIGN CONSTRAINTS

1622
1623
1624
1625
1626
1627

In the main paper, we adopt a unified forward-progress reward to ensure fair comparison across algorithms and to avoid introducing task-specific reward biases. While this setup is standard and suitable for benchmarking algorithmic contributions, real-world robot design is often shaped by additional engineering constraints. To better understand the practical co-design behavior of Stackelberg PPO, we further evaluate five common realistic constraints under an identical crawler task and training budget.

1628
1629
1630

These constraints span both morphology- and control-level considerations, including power usage, manufacturability, torque limits, payload handling, and robustness. Several of these factors are already captured by our experimental setup:

1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641

- Power usage: Energy expenditure is discouraged through a small effort penalty included in the reward (Equation eq. (11)).
- Torque limits: Joint torque capacity is implicitly limited by bounding the “allowable torque” attribute during morphology design.
- Manufacturability: Physical realizability is enforced by constraining morphology-editing attributes such as limb length, joint count, and topology depth (see Appendix C).
- Robustness: Robustness naturally emerges from the evaluation protocol: each morphology–controller pair is scored using multiple rollouts, causing non-robust designs to yield lower averaged returns.

1642
1643

To complement these built-in constraints, we further provide more detailed quantitative experiments that isolate and measure their individual effects.

1644
1645
1646
1647
1648

Power Constraint. We evaluate performance under various power penalty coefficients (0.001, 0.01, 0.1), extending beyond the mild penalty (0.0001) used in the main experiments. Table 9 reports the detailed performance and control-effort statistics under each penalty coefficient. The generated morphologies are visualized in Figure 10. Increasing the penalty produces three consistent effects:

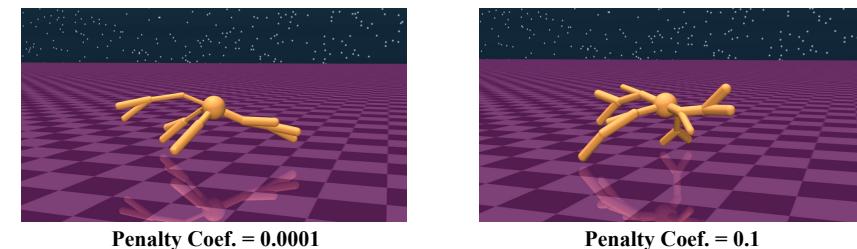
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
16591660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Figure 10: Power constraint under different penalty coefficients. As the penalty increases, the co-designed morphologies transition toward shorter, thicker, and more symmetric limbs.

1674

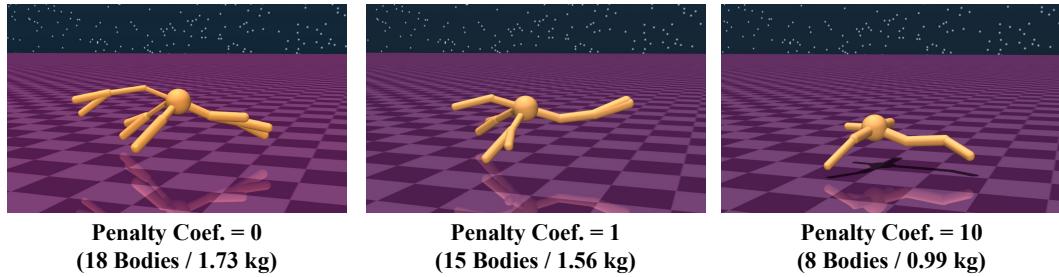
1675
1676
Table 9: Power-constraint setting: performance and power penalties under different penalty coeffi-
cients.

Penalty Coef.	Performance		Power Penalty	
	Stackelberg PPO (ours)	BodyGen	Stackelberg PPO (ours)	BodyGen
0.0001	11047.90\pm126.20	9098.72 \pm 558.26	5631.42 \pm 674.03	2745.84 \pm 284.55
0.001	10191.15\pm371.81	7501.61 \pm 671.33	5342.16 \pm 584.25	5948.16 \pm 254.84
0.01	9853.19\pm229.37	8304.00 \pm 497.56	1582.48 \pm 697.61	468.12 \pm 516.33
0.1	10585.25\pm146.80	8974.48 \pm 574.29	25.50 \pm 22.27	26.34 \pm 23.64

1683

1684

Manufacturability Constraint. A manufacturability cost penalty is applied by incorporating two components into the leader objective: structural complexity is measured by the number of body elements, and material cost is defined as the total mass. Table 10 summarizes the resulting performance and morphology characteristics under different penalty coefficients. The trends are consistent with those observed in the power constraint experiments in (i): our method consistently achieves better reward–cost tradeoffs across all penalty levels. As shown in Figure 11, The generated morphologies are compact than the original structure, with fewer distal branches, shorter limbs, and mass concentrated near the root. These structures exhibit lower inertia and more efficient force transmission, supporting stable forward locomotion under cost constraints.



1701

1702
1703
Figure 11: Manufacturability constraint under different penalty coefficients. Higher penalties on
1704 structure complexity and material mass encourage designs with fewer body elements, reduced
1705 branching, and mass concentrated near the root, producing compact morphologies that are easier
1706 to fabricate.
1707

1708

1709

1710

1711

1712
Table 10: Manufacturability constraint setting: performance, morphology complexity, and material
1713 cost under different penalty levels.

Penalty Coef.	Performance		Morphology Complexity		Material Cost	
	Stackelberg PPO (ours)	BodyGen	Stackelberg PPO (ours)	BodyGen	Stackelberg PPO (ours)	BodyGen
0	11047.90\pm126.20	9098.72 \pm 558.26	16.40 \pm 2.45	13.67 \pm 2.08	1.71 \pm 0.23	1.57 \pm 0.32
1	7892.93\pm349.84	6531.37 \pm 437.26	13.67 \pm 2.03	9.67 \pm 1.61	1.59 \pm 0.18	1.32 \pm 0.16
10	6825.47\pm303.09	5372.10 \pm 364.79	8.25 \pm 0.91	7.50 \pm 1.24	0.94 \pm 0.08	0.93 \pm 0.10

1719

1720

1721

1722

1723

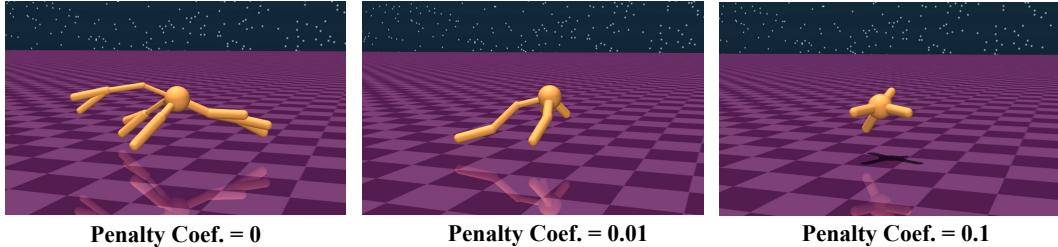
1724

1725

1726

1727

1728
 1729 **Torque Limits Constraint.** A torque-limit penalty is incorporated by enforcing a 50 N·m cap on
 1730 all joints and adding a proportional violation cost to the leader objective. Table 11 summarizes
 1731 the quantitative results, and the morphological effects are shown in Figure 12. As in the manufac-
 1732 turability and control-effort settings, our method achieves stronger reward–cost tradeoffs when the
 1733 controller retains sufficient expressiveness (penalty = 0.01). Under the stronger penalty (0.1), the
 1734 tightened actuation constraints reduce the feasible morphology space for all methods, narrowing the
 1735 performance gap.



1745 Figure 12: Torque limits constraint under different penalty coefficients. Tighter actuation limits lead
 1746 to noticeably simpler and more compact structures, with shorter limbs and reduced distal branching.
 1747

1748
 1749 Table 11: Torque limits constraint: performance and torque-violation penalties under different
 1750 torque-penalty coefficients.
 1751

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 Penalty Coef.	1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 Performance		1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 Limit Violation Penalty	
	1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 Stackelberg PPO (ours)	1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 BodyGen	1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 Stackelberg PPO (ours)	1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 BodyGen
0.01	7893.42±84.62	6311.75±98.31	20210.50±6503.22	11350.45±5338.31
0.1	3133.01±70.44	3121.80±54.03	1106.45±64.69	899.35±49.40

1757
 1758 **Payload Constraint.** To evaluate the agent’s ability to maintain locomotion under additional load,
 1759 we attach an extra mass to the root link to serve as a payload. During training, the payload value
 1760 is randomized within a fixed range (0–0.6 kg) to promote generalization. After training, we eval-
 1761 uate each method under three fixed payload levels (0.2 kg, 0.4 kg, 0.6 kg). As shown in Table 12,
 1762 Stackelberg PPO consistently maintains higher forward progress across all payload settings. Figure
 1763 13 further compares morphologies trained with and without payload. Under load, the evolved struc-
 1764 tures become more symmetric and better support the additional mass, indicating that Stackelberg
 1765 PPO adapts the topology itself rather than relying solely on controller compensation.

1774
 1775 Figure 13: Morphology comparison trained with and without payload. Payload induces more sym-
 1776 metric and load-supporting structures.
 1777

1782

1783

Table 12: Payload constraint: performance comparison under different payload weights.

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

Robustness Evaluation. We evaluate robustness under two settings: random external forces applied to the root body at every control step, and terrain friction noise created by randomly varying the ground’s friction in each episode. For each disturbance level, all policies are tested across multiple stochastic rollouts, and we report the resulting forward-progress reward. Tables 13 and 14 summarize the results. Across all disturbance magnitudes, Stackelberg PPO consistently demonstrates substantially higher robustness. For example, when external forces increase from 2 N to 6 N, performance decreases by only 5.91% for Stackelberg PPO, compared to a much larger 59.57% decline for BodyGen. A similar pattern holds under terrain friction noise. These improvements arise primarily from more symmetric, mechanically balanced morphologies that better tolerate external forces and friction variability.

1802

1803

1804

1805

1806

1807

1808

1809

Table 13: Robustness evaluation: performance under different levels of external disturbance forces.

Level	Stackelberg PPO (ours)	BodyGen
2.0 N	11557.31 \pm 124.68	6963.05 \pm 450.48
4.0 N	11290.13 \pm 164.54	4621.82 \pm 597.71
6.0 N	10875.23 \pm 250.97	2816.16 \pm 857.83

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

Table 14: Robustness evaluation: performance under different levels of terrain friction noise.

Level	Stackelberg PPO (ours)	BodyGen
30%	11424.66 \pm 112.08	7326.04 \pm 421.73
50%	11333.43 \pm 141.42	6795.55 \pm 493.31
70%	10892.09 \pm 149.72	5062.85 \pm 579.66

1836
1837

E.7 DISCUSSION AND EXTENDED EVALUATION ON REALISTIC CO-DESIGN CHALLENGES

1838
1839
1840
1841
1842
1843
1844
1845

In this section, we present broader analyses of morphology–control co-design and extend our results along four representative challenge dimensions: (i) diverse co-design environments, (ii) multi-objective and role-specific rewards, (iii) robustness and generalization under unseen disturbances, and (iv) the use of morphology priors. These studies highlight both the empirical advantages of Stackelberg PPO and the conceptual benefits of explicitly decoupling structure design from control learning. Together, they demonstrate that our framework scales naturally to more complex co-design settings that better reflect real-world robotic demands, and they point toward promising directions for building more adaptive and physically grounded morphology–control systems.

1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859

Diverse co-design environments. Standard co-design benchmarks focus almost exclusively on flat-terrain locomotion, which poses limited structural or behavioral challenge. To expose a broader range of morphology–control interactions, we introduce more demanding environments—most notably difficult terrain and manipulation—that require non-periodic motions, contact management, and functional differentiation across limbs. In the Stepper environments, agents must coordinate structure and control to handle large discontinuities without exteroceptive sensing. On low stairs, they develop stable stepping and small hops; on high stairs, the difficulty induces long-range, high-amplitude jumping behaviors. These emergent solutions reflect the stronger morphological and dynamical adaptation required by complex terrain. In the pusher task, co-design must jointly support locomotion and precise force application. Learned morphologies exhibit clear role specialization: some limbs provide acceleration and stability, while others regulate contact orientation and apply controlled pushing forces. Baseline methods typically recover only the locomotion component, relying on collision-based propulsion. These environments reveal aspects of the co-design problem that flat locomotion cannot capture, and they demonstrate that Stackelberg PPO scales to richer settings requiring terrain adaptation, contact reasoning, and multi-role morphology design.

1860
1861
1862
1863
1864
1865
1866
1867
1868

Multi-objective and role-specific reward design. As shown earlier in Appendix E.6, our framework naturally accommodates additional objectives such as power consumption or payload capacity. The resulting morphologies and controllers smoothly adapt to the trade-offs introduced by these objectives, validating the method’s multi-objective co-design capability. Furthermore, the leader–follower decomposition allows reward terms to be assigned selectively to the structure-design or control-learning stages. For example, complexity or material-cost penalties can be applied only to the leader (structure) updates, enabling constraints on morphology without interfering with controller learning. This role-specific reward routing provides a high degree of flexibility for real-world design requirements.

1869
1870
1871
1872
1873
1874
1875
1876
1877
1878

Robustness and generalization under unseen disturbances Although our current setting does not include exteroceptive sensing and is not intended for zero-shot transfer to arbitrary unseen worlds, we evaluate generalization and robustness under an obstacle-navigation task not seen during training. Policies are trained only on flat terrain (Crawler task) and then tested in environments containing either sparse or dense grids of square obstacles. As reported in Table 15, Stackelberg PPO obtains higher forward progress than BodyGen across both difficulty levels. The visualization in Figure 14 further shows that the morphologies produced by our method maintain more consistent forward motion, whereas baseline agents more frequently stall or deviate under unexpected contacts. These results illustrate that the co-designed morphology–policy pair exhibits meaningful robustness to previously unseen disturbances and obstacle interactions.

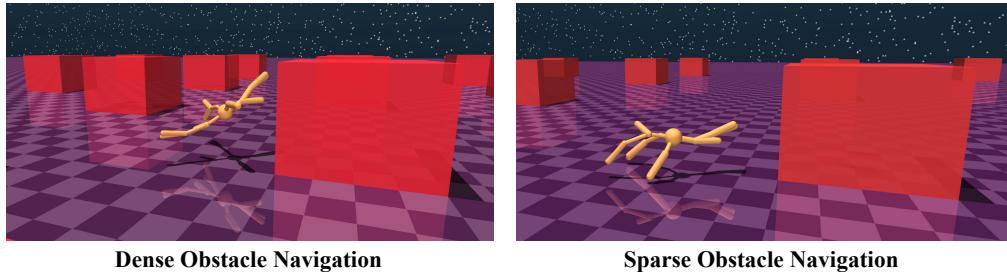
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Figure 14: Visualization the unseen obstacle-navigation task environment.

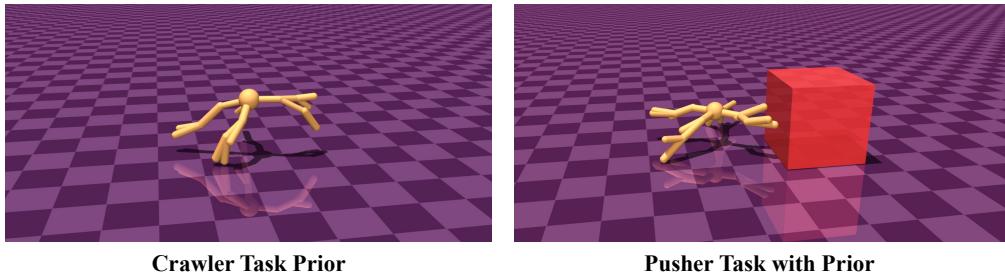
1890

1891 Table 15: Performance in the unseen obstacle-navigation task under two obstacle densities.

Obstacle Type	Spacing	Performance	
		Stackelberg PPO (ours)	BodyGen
Sparse Obstacle	16 m ($\sim 4 \times$ robot width)	1790.45\pm161.77	1061.55 \pm 228.40
Dense Obstacle	8 m ($\sim 2 \times$ robot width)	1698.52\pm733.02	1007.21 \pm 157.42

1896

1897 **Incorporating and benefiting from morphology priors.** Our framework also supports reusing
 1899 morphology priors obtained from related tasks. To examine this, we transfer morphologies evolved
 1900 in the Crawler environment to initialize training in the Pusher task. Table 16 shows that both Stackel-
 1901 berg PPO and BodyGen benefit from priors in terms of final performance and the number of environ-
 1902 ment steps required to reach a threshold reward. Stackelberg PPO consistently obtains higher final
 1903 reward and requires fewer steps under both “with prior” and “without prior” conditions. Figure 15
 1904 visualizes representative morphologies produced under this setup. While priors accelerate training,
 1905 it is generally advisable to choose priors that encode broadly useful structural patterns—such as
 1906 stable support geometries or balanced limb arrangements—rather than narrowly specialized solu-
 1907 tions. Such general-purpose priors provide a more flexible foundation for downstream adaptation
 1908 and reduce the risk of over-constraining the design space.

1919 Figure 15: Cross-task reuse of morphology priors: Crawler prior (left) and the resulting Pusher
 1920 morphology (right).

1921

1922

1923 Table 16: Performance and sample efficiency in the Pusher task with and without morphology priors.

Condition	Performance		Steps to Threshold (2500 Reward)	
	Stackelberg PPO (ours)	BodyGen	Stackelberg PPO (ours)	BodyGen
With Prior	4822.59\pm114.32	4575.52 \pm 112.78	$\sim 8M$	$\sim 9M$
Without Prior	3462.77\pm368.09	2779.95 \pm 509.18	$\sim 32M$	$\sim 44M$

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943