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ABSTRACT

Morphology-control co-design concerns the coupled optimization of an agent’s
body structure and control policy. A key challenge is that evaluating each can-
didate morphology requires extensive rollouts to re-optimize control and assess
quality, leading to high computational costs and slow convergence. This challenge
is compounded by the non-differentiable interaction between morphology and
control—stemming from discrete design choices and rollout-based evaluation—
which blocks gradient flow across the morphology-control interface and forces
reliance on costly rollout-driven optimization. To address these challenges, we
highlight that the co-design problem can be formulated as a novel variant of a
Stackelberg Markov game, a hierarchical framework where the leader specifies
the morphology and the follower adapts the control. Building on this formulation,
we propose Stackelberg Proximal Policy Optimization (Stackelberg PPO), a policy
gradient method that leverages the intrinsic coupling between leader and follower
to reduce repeated control re-optimization and enable more efficient optimization
under non-differentiable interfaces. Experiments across diverse co-design tasks
demonstrate that Stackelberg PPO outperforms standard PPO in both stability and
final performance.

1 INTRODUCTION

Morphology-control co-design addresses the fundamental challenge of jointly optimizing an agent’s
body structure (morphology) and its control policy. The morphology specifies the agent’s structural
design, including its topology, geometry, joint layout, and actuation limits, whereas the control
policy determines how this structure is operated to produce behavior to interact with the environment
to complete specific tasks (Paul, 2006; Ha & Schmidhuber, 2018). Both aspects are essential for
effective task performance. For example, a quadruped robot with rigid legs provides the structural
basis for locomotion, but without an appropriate gait policy it cannot walk. Conversely, even the
most advanced locomotion policy is ineffective if the robot’s morphology lacks the necessary joints
to support movement. These examples highlight that morphology and control must be co-designed
to ensure each component complements the other. Agents developed under such a paradigm tend
to be more versatile, robust, and efficient than those optimized for either morphology or control in
isolation (Sims, 1994; Lipson & Pollack, 2000; Bongard et al., 2006; Kriegman et al., 2020).

In morphology-control co-design, to fully assess a morphology’s potential, one need to optimize
its control policy to (near) optimality; otherwise, the morphology’s real performance will be un-
derestimated or misjudged (Schaff & Walter, 2022). To achieve this, conventional approaches typ-
ically decompose the process into two separate stages: first, training an optimal control policy for
each candidate morphology—often through reinforcement learning with extensive rollouts in sim-
ulation (Gupta et al., 2021); and then evaluating and optimizing the morphology based on the per-
formance of this best-response control. However, existing methods are commonly designed to treat
morphology and control as independent optimization problems (Wang et al., 2019; Cheney et al.,
2018), which leads to prohibitive sample costs: every candidate morphology requires a costly re-
optimization of its control policy, resulting in slow convergence and poor scalability in complex
morphology design spaces.
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To overcome these limitations, we formulate co-design as a hierarchical game in which the leader
defines the morphology and the follower adapts the best control in response, providing an explicit
characterization of their intrinsic coupling within a unified framework. Building on this perspec-
tive, we introduce a novel variant of the Stackelberg Markov Games (SMGs), termed a phase-
separated SMGs. In this setting, the interaction between leader and follower is separated into two
distinct phases and mediated by an interface: the leader first constructs the morphology through a
sequence of morphology-editing choices (e.g., adding or removing limbs, adjusting lengths), and
the resulting final morphology becomes the interface that conditions the follower’s control. While
this formulation is natural, existing SMGs methods—such as Stackelberg MADDPG (Yang et al.,
2023), which rely on gradient propagation across the leader-follower interface—are not applicable
here. The difficulty lies in the non-differentiable interface, arising from discrete morphology-editing
choices that block gradient flow across the leader-follower interface and hinder the exploitation of
the hierarchical coupling structure.

To this end, we derive Stackelberg policy gradients tailored to phase-separated SMGs with non-
differentiable interfaces. We build on Stackelberg implicit differentiation (SID), which exploits the
leader-follower coupling to anticipate how morphology changes influence the follower’s adaptation
before updating. Thus the leader can update its policy in a way that steers the morphology toward
designs more compatible with downstream control. Since direct differentiation is blocked by the
non-differentiable leader–follower interface, we apply the log-derivative technique (Williams, 1992)
to derive a new Stackelberg surrogate formulation that bypasses this issue and provides a tractable
gradient estimator. We further provide theoretical guarantees, showing that these surrogates are
locally equivalent to the true Stackelberg gradients. To stabilize training under large policy shifts, we
adapt PPO’s likelihood-ratio clipping to our Stackelberg framework, ensuring robust optimization
of the surrogate gradients. Our method, Stackelberg PPO, outperforms the state-of-the-art baselines
by 20.66% on average, and by 32.02% on complex 3D tasks.

2 RELATED WORK

Morphology–Control Co-design Co-optimizing morphology and control is attracting increasing
attention in embodied intelligence (Li et al., 2024; Huang et al., 2024b; Liu et al., 2025). Prior
work optimizes only continuous attributes under a fixed topology, without generating new struc-
tural topologies (Banarse et al., 2019; Huang et al., 2024a). Early topology-editing work treated
the co-design problem as a discrete, non-differentiable search solved using evolutionary strategies
(Sims, 1994; Cheney et al., 2018), requiring each morphology to be paired with a separately trained
controller and thus incurring high computational cost.be paired with a separately trained controller
and thus incurring high computational cost. Subsequent methods introduced structural priors and
parameter sharing to reuse experience across related designs (Dong et al., 2023; Zhao et al., 2020;
Wang et al., 2019; Xiong et al., 2023). More recent RL-based approaches cast structure generation
as sequential edits in an MDP (Gupta et al., 2021; Yuan et al., 2022), with graph and attention ar-
chitectures improving representation quality (Chen et al., 2024; Lu et al., 2025; Yuan et al., 2022).
However, the discrete nature of morphology-editing operations blocks gradient propagation across
the morphology-control interface, preventing efficient learning by capturing their coupled dynamics.
Our work establishes a gradient-driven pathway that allows controller adaptation to directly affect
morphology updates.

Stackelberg Game Learning systems with asymmetric components often exhibit directional de-
pendencies, where one module’s decisions influence another’s adaptation in a non-reciprocal man-
ner (Schmidhuber, 2015). Stackelberg games formalize this asymmetry, with a leader commit-
ting to strategies that followers then best-respond to. Classical approaches study static normal-
form games (Başar & Olsder, 1998; Conitzer & Sandholm, 2006; Von Stengel & Zamir, 2010)
while more recent extensions integrate this structure into sequential decision processes and RL
frameworks(Gerstgrasser & Parkes, 2023; Zhong et al., 2023; Bai et al., 2021), often incorporat-
ing confidence-aware or optimistic mechanisms to manage follower uncertainty (Ling et al., 2023;
Kao et al., 2022; Kar et al., 2015; Mishra et al., 2020). Another line of research applies implicit
differentiation to enable direct gradient flow from the follower to the leader in Stackelberg games. A
complementary line leverages implicit differentiation to propagate follower gradients to the leader
(Zheng et al., 2022; Yang et al., 2023; Vu et al., 2022), typically under DDPG-style settings with ex-
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plicit action-level coupling and alternating updates. Our problem differs in two key aspects: leader
actions (morphology edits) cannot be directly transmitted to the follower, and both agents use non-
alternating PPO-style updates. We extend implicit Stackelberg gradient methods to this more general
regime, enabling (to our knowledge) the first application of implicit Stackelberg differentiation to
morphology–control co-design under PPO algorithm.

3 PRELIMINARIES

Proximal Policy Optimization (PPO) In reinforcement learning, an agent interacts with the en-
vironment by observing a state st, selecting an action at according to its policy πθ, and receiving
feedback in the form of rewards. Vanilla policy gradient methods (Sutton, 1984; Williams, 1992;
Sutton et al., 2000) optimize πθ using a surrogate objective that locally approximates the true perfor-
mance, which has been shown to cause instability when policy updates become too large (Schulman
et al., 2015). PPO (Schulman et al., 2017) addresses this by constraining the likelihood ratio between
new and old policies through a clipping technique:

LPPO(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

where rt(θ) = πθ(at|st)
πθo (at|st) is the likelihood ratio and Ât is an estimator of the advantage function.

The clipping mechanism prevents likelihood ratio rt(θ) from deviating excessively, thereby limiting
policy updates and balancing stability with performance improvement.

Stackelberg Game A Stackelberg game is a hierarchical interaction in which a leader commits to
a strategy and a follower optimizes in response. Let θL and θF denote the decision variables of the
leader and the follower, and let JL(θL, θF ) and JF (θL, θF ) denote their respective objectives. The
leader solves the following bilevel optimization problem, referred to as the Stackelberg objective:

max
θL

JL
(
θL, θF∗ (θ

L)
)

s.t. θF∗ (θ
L) = argmax

θF
JF (θL, θF ) (1)

where θF∗ (θ
L) represents the follower’s best response. The gradient of the leader’s objective can be

written as

∇θLJL
(
θL, θF∗ (θ

L)
)
= ∇θLJL(θL, θF )︸ ︷︷ ︸

leader’s direct gradient

+
(
∇θLθF∗ (θ

L)
)⊤ ∇θF JL(θL, θF )︸ ︷︷ ︸

implicit gradient via influencing follower
(2)

The first term, the leader’s direct gradient, captures the steepest direction in which the leader can
adjust its parameter to directly improve its objective. The second term, the implicit gradient via influ-
encing follower, measures how the leader updates to further improve its objective by implicitly steer-
ing the follower’s update, thereby amplifying the ascent. The Jacobian ∇θLθF∗ (θ

L) follows from
the first-order optimality condition of the follower’s maximization problem, ∇θF JF (θL, θF∗ ) = 0,
which indicates that θF∗ (θ

L) is an implicit function of the leader’s variable θL. This yields(
∇θLθF∗ (θ

L)
)⊤

= −∇θLθF JF (θL, θF )
(
∇2

θF J
F (θL, θF )

)−1
(3)

This implicit differentiation framework, often referred to as Stackelberg implicit differentiation
(SID), is widely used in Stackelberg reinforcement learning (e.g., Stackelberg DDPG (Yang et al.,
2023)), bilevel optimization (Zucchet & Sacramento, 2022), and meta-learning (Pan et al., 2023).

Morphology-Control Co-Design This task refers to designing a robot’s body and its control pol-
icy in an integrated manner. The morphology covers structural aspects such as topology (connectiv-
ity and arrangement of limbs and joints), geometric properties (body proportions and limb lengths),
and, for soft robots, material properties. The controller determines how the robot behaves given its
body—through motor commands, torque signals, or higher-level behaviors (such as gaits or manipu-
lation skills). In co-design, the body and control are inherently coupled: the body defines the agent’s
physical capabilities, while the control learns to exploit them effectively. Existing work typically
formulates the problem as a bi-level structure similar to eq. (1), where πL

θL generates the morphol-
ogy and πF

θF determines the controller (Lu et al., 2025; Yuan et al., 2022). However, in practice,
these methods optimize a shared objective, maxθL,θF J(θL, θF ), which ignores that θF∗ (θ

L) is an
implicit function of θL. As a result, it yields leader updates that differ from the Stackelberg leader
gradient in eq. (2), including only the direct term and omitting the implicit term.

3
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Figure 1: Illustration of the phase-separated Stackelberg Markov Game for morphology–control co-
design. In the leader phase (blue part), the agent incrementally edits the morphology via discrete
topology-altering actions, producing a terminal morphology sLT . In the follower phase (green part),
the control policy is optimized based on this morphology.

4 FORMULATION

Morphology–control co-design concerns the coupled optimization of an agent’s body and controller,
typically formulated as a bi-level optimization problem (Lu et al., 2025; Yuan et al., 2022), which
can naturally be viewed as a leader–follower hierarchy. We highlight that it corresponds to a novel
variant of a Stackelberg Markov game in which the leader specifies the morphology and the follower
adapts the control. The overall process is illustrated in Fig. 1.

In the leader phase, the morphology is usually generated in a step-by-step manner: the leader se-
quentially applies morphology-editing actions (e.g., adding/removing a limb, adjusting its length,
attaching a joint) to gradually evolve the morphology, rather than producing the full morphology
in a single step (Lu et al., 2025; Yuan et al., 2022). This incremental approach is crucial because
the morphology space is high-dimensional and combinatorial, making direct single-step genera-
tion intractable. Starting from an initial morphology sL0 , the leader applies a sequence of actions
aLt to iteratively update the morphology until a terminal morphology sLT is obtained. Specifically,
given a morphology sLt , the leader applies an action aLt , and the morphology transition function PL

produces a new morphology sLt+1 through editing actions, which involve discrete topology-altering
changes, thereby rendering PL inherently non-differentiable:

aLt ∼ πL(· | sLt ), sLt+1 ∼ PL(· | sLt , aLt ), t = 0, 1, . . . , T − 1.

In the follower phase, the follower optimizes its control based on the terminal morphology sLT pro-
vided by the leader. The morphology directly specifies the follower’s action space (e.g., which
joints can apply torques or muscle forces), its state space (e.g., proprioceptive and exteroceptive
signals such as joint positions, forces, or velocities), and the underlying physical dynamics. At each
timestep, given a state sFt , the follower applies a control action aFt and transitions to a new state
according to:

aFt ∼ πF (· | sFt ; sLT ), sFt+1 ∼ PF (· | sFt , aFt ; sLT ), t = T, T + 1, , · · · ,

To evaluate both phases, we introduce reward functions RL and RF for the leader and follower,
respectively. RL(sLt , a

L
t ) provides immediate feedback on each morphology-editing action, typi-

cally capturing costs such as additional material usage or increased complexity. RF (sFt , a
F
t ; s

L
T )

quantifies the follower’s immediate control performance under the given morphology, such as lo-
comotion speed or task success. We formalize the leader-follower interaction through asymmetric
objectives. The leader optimizes its return given the follower’s policy πF

θF , combining short-term
morphology-editing rewards (e.g., morphology complexity penalty) with the follower’s long-term
control rewards under the final morphology:

JL(θL, θF ) = E

[
T−1∑
t=0

γtRL(sLt , a
L
t ) +

∞∑
t=T

γt−TRF (sFt , a
F
t ; s

L
T )

]
(4)

4
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The follower aims to maximize its long-term return, conditioned on the terminal morphology in-
duced by the leader πL

θL :

JF (θL, θF ) = E

[ ∞∑
t=0

γtRF (sFt , a
F
t ; s

L
T )

]
(5)

This formulation highlights the inherent asymmetric coupling: the follower’s optimal policy depends
on the leader’s terminal morphology sLT , while the leader’s payoff depends on both the morphology
design and the follower’s adaptive control. In contrast, prior co-design approaches typically assume
a shared, control-centric objective, i.e., JL = JF (Lu et al., 2025).

Formally, the above procedures can be defined as a novel variant of the Stackelberg Markov Game.
Definition 1. A Phase-Separated Stackelberg Markov Game between a leader policy πL

θL and a
follower policy πF

θF , parameterized by θL and θF respectively, is defined as

G =
(
(SL,AL,PL, RL, µL, T ), (SF ,AF ,PF , RF , µF ), γ

)
.

(i) The leader’s components are given by its state space SL, action space AL, transition function
PL, reward function RL, initial state distribution µL, and acting horizon T .

(ii) The interaction is phase-separated (i.e., non-alternating): the leader first acts for T steps,
producing a terminal state sLT , after which the follower begins acting until termination.

(iii) The leader and the follower interacts through the terminal state sLT ∈ SL, induced by leader’s
action sequence under the transition dynamics PL. The follower acts conditioned on this termi-
nal state, and all its components (SF ,AF ,PF , RF , µF ) are defined conditionally on sLT ∈ SL.

(iv) The leader aims to solve the Stackelberg objective defined in eq. (1).

Analogous to standard RL, the leader’s Q-function is defined from its objective in eq. (4):

QL
πL,πF

(
sLt′ , a

L
t′

)
= E

[
T−1∑
t=t′

γt−t′RL(sLt , a
L
t ) +

∞∑
t=T

γt−t′RF (sFt , aFt ; sLT ); sLt = sLt′ , a
L
t = aLt′ , π

L, πF

]

This Q-function captures the leader’s expected long-term return from a given state–action pair, ac-
counting for both its own rewards before the morphology is finalized and the follower’s rewards
conditioned on the final morphology. From this, the leader’s advantage function is defined as
AL

πL,πF

(
sLt′ , a

L
t′

)
= QL

πL,πF

(
sLt′ , a

L
t′

)
−EaL

t ∼πL

[
QL

πL,πF

(
sLt , a

L
t

)]
. The advantage function mea-

sures how much better (or worse) a specific action aLt′ is compared to the leader’s average behavior
at state sLt′ . A follower’s advantage function AF

πF

(
sFt′ , a

F
t′ ; s

L
T

)
can be analogously defined from its

own objective in eq. (5).

5 METHOD

Most prior work treats morphology-control co-design as a simultaneous optimization problem,
where body and control are optimized jointly as separate variables without explicitly modeling their
dependency. This often leads to unstable training and low sample efficiency. In contrast, we formu-
late the problem as a phase-separated Stackelberg Markov Game (SMG) (Section 4), which explic-
itly captures this coupling: the leader generates a morphology, and the follower optimizes its control
in response. This hierarchical structure models the sequential dependency between morphology and
control, enabling the use of Stackelberg Implicit Differentiation (SID; see Section 3). SID allows
the leader to anticipate the follower’s adaptation and thereby generate morphologies that are more
compatible with downstream control, improving both alignment and efficiency.

A representative approach to implement SID is through a backpropagation-through-interface
method, which propagates gradients from the follower back to the leader’s parameters via the leader-
follower interface, as in Stackelberg MADDPG (Yang et al., 2023). However, this idea is not applica-
ble to our phase-separated SMG. First, as specified in Definition 1 (iii), the leader-follower interface
is realized through the action-to-state mapping PL, which is non-differentiable in morphology-
control co-design, making backpropagation-through-interface intractable. Second, as specified in

5
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Definition 1 (ii), the interaction is phase-separated, i.e., the leader executes T steps to commit the
state to the interface. Consequently, backpropagation must traverse a long chain of leader transi-
tions, making it highly susceptible to gradient explosion or vanishing. These challenges necessitate
new derivations of the Stackelberg gradients, as presented below.

5.1 STACKELBERG POLICY GRADIENT

We now introduce Stackelberg implicit differentiation into our phase-separated Stackelberg Markov
Game defined in Definition 1. Since this formulation departs from the classical SMG, we develop
new derivations for all gradient components in eqs. (2) and (3). We present each term in turn.

Cross-Derivative ∇θLθF JF (θL, θF ) (see eq. (3)). This is the most challenging term. Unlike clas-
sical SMGs where the follower directly takes the leader’s action as input, in our setting the interface
is the terminal state sLT , generated through the transition PL. Backpropagation-through-interface
methods (e.g., Stackelberg MADDPG) are infeasible here, since reaching θL would require differ-
entiating through the non-differentiable transition PL. Instead, we derive the cross-derivative using
the log-derivative technique, analogous to the stochastic policy gradient (Sutton, 1984; Williams,
1992; Sutton et al., 2000), which bypasses the transition’s non-differentiability while relying only
on sampled trajectories. Let (θLo , θ

F
o ) denote the parameters of the behavior policies used for col-

lecting data. Formally, we obtain the following theorem.

Theorem 1. Let AF
t ≜ AF

πL
θLo

,πF
θFo

(
sFt , a

F
t ; s

L
T

)
, and define the surrogate

LF
L,F

(
θL, θF ; θLo , θ

F
o

)
= cE

[
πL
θL

(
aL|sL

)
πL
θL
o
(aL|sL)

[
γTE

[
πF
θF

(
aF |sF ; sLT

)
πF
θF
o

(
aF |sF ; sLT

)AF
πF
θFo

(
sF , aF ; sLT

)]]]
(6)

Then, we have ∇θLθF JF (θL, θF )|θL=θL
o ,θF=θF

o
= ∇θLθFLF

L,F

(
θL, θF ; θLo , θ

F
o

)
|θL=θL

o ,θF=θF
o
.

In eq. (6), the outer expectation is taken over sL ∼ dLθL
o
, aL ∼ πL

θL
o
, sLT ∼ dL,T

θL
o

, where

dL,t
θL
o
(sL) = P (sLt = sL;πL

θL
o
) is the visitation distribution probability of leader policy at step t,

and dLθL
o
(sL) ≜ 1/T

∑
t d

L,t
θL
o
(sL). The inner expectation is taken over sF ∼ dFθF

o
(·; sLT ), aF ∼

πF
θF
o
(·; sLT ), where dFθF

o
denotes the follower’s visitation distribution. The constant c = T/(1−γ) nor-

malizes the distribution, and its effect can be absorbed by the learning rate in practice. Proofs of this
and subsequent theorems are provided in Appendix B. This theorem shows that the cross-derivative
can be expressed as an expectation involving likelihood-ratio (importance-weighted) advantage esti-
mators, thereby extending the classical policy gradient theorem to capture leader-follower coupling
in our phase-separated SMG.

First-Order Derivatives ∇θLJL(θL, θF ) and ∇θF JL(θL, θF ) (see eq. (2)). These first-order
terms are relatively straightforward, as they follow the same structure as the policy gradient the-
orem (Sutton, 1984; Williams, 1992; Sutton et al., 2000). They quantify how the leader’s objective
changes with respect to its own parameters (leader’s direct gradient) and with respect to the fol-
lower’s parameters. Both can be expressed using advantage functions under importance weighting,
as follows.

Proposition 1. We have

∇θLJL(θL, θF )|θL=θL
o ,θF=θF

o
= ∇θLLL

L

(
θL, θF ; θLo , θ

F
o

)
|θL=θL

o ,θF=θF
o

∇θF JL(θL, θF )|θL=θL
o ,θF=θF

o
= ∇θFLL

F

(
θL, θF ; θLo , θ

F
o

)
|θL=θL

o ,θF=θF
o

where LL
L

(
θL, θF ; θLo , θ

F
o

)
= E

[
πL
θL

(
aL|sL

)
πL
θL
o
(aL|sL)

AL
πL
θLo

,πF
θFo

(
sL, aL

) ]

LL
F

(
θL, θF ; θLo , θ

F
o

)
= E

[
γT πF

θF

(
aF |sF ; sLT

)
πF
θF
o

(
aF |sF ; sLT

)πF
θF
o

(
sF , aF ; sLT

) ] (7)
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Inverse of Second-Order Derivative (Hessian)
(
∇2

θF J
F
(
θL, θF

))−1
(see eq. (3)). This last

component involves the inverse Hessian. Although the Hessian can be computed from the derived
loss function (see Appendix Proposition 2), the Hessian is typically indefinite due to the advantage
term, making its inversion unstable. A standard remedy is to approximate it by the Fisher infor-
mation matrix, F(θF ) = E

[
∇θF log πF

θF (a
F | sF ; sLT )∇θF log πF

θF (a
F | sF ; sLT )⊤

]
, which is

positive semi-definite and can be estimated via the KL divergence between policies:

F(θF ) = ∇2
θFLF

KL(θ
L, θF ; θLo , θ

F
o ) = ∇2

θFE
[
KL
(
πF
θF (· | sF ; sLT )

∥∥ πF
θF
o
(· | sF ; sLT )

)]
, (8)

This natural-gradient approximation, used in methods such as natural policy gradient and trust re-
gion policy optimization (Kakade, 2001; Peters & Schaal, 2008; Schulman et al., 2015), avoids
indefiniteness and improves stability. Further stability is obtained by regularizing the Hessian with a
small multiple of the identity

(
∇2

θFLF
KL + λI

)−1
with λ > 0, which has been shown to interpolate

between the standard policy gradient (when λ → ∞) and the standard Stackelberg gradient (when
λ → 0) (Yang et al., 2023).

5.2 ALGORITHMS

Based on the surrogate functions in Eqs. (6) to (8), we compute the leader’s Stackelberg gradient in
Eq. (2). Since these surrogates are locally equivalent to the true Stackelberg gradients, we adopt the
likelihood-ratio clipping technique from PPO (Schulman et al., 2017) to constrain policy divergence
and ensure stable optimization. Note that this application is not a simple reuse of PPO clipping.
Rather, it is grounded in our local-approximation theory on the newly derived Stackelberg surrogate
(see Theorem 1). Moreover, the expectation terms are estimated from sampled trajectories. This
yields sample-based surrogates with PPO clipping, denoted by L̂, and the corresponding estimation
of the leader’s Stackelberg gradient can be expressed as

∇θL ĴL (θL, θ
∗
F (θL)) = ∇θLL̂L

L −∇θLθF L̂
F

L,F

step 1︷ ︸︸ ︷(
∇2

θF L̂
F

KL + λI
)−1

∇θF L̂L
F︸ ︷︷ ︸

step 2

(9)

We refer to this overall procedure as Stackelberg PPO, which integrates PPO-style clipping into the
Stackelberg gradient computation. We first compute step 1 in the above equation, which can be
efficiently implemented using the conjugate gradient method. Conjugate gradient only requires
Hessian-vector products, which can be obtained without explicitly constructing the Hessian via
Pearlmutter’s method (Pearlmutter, 1994): ∇2

θL(θ) v = ∇θ

(
∇⊤

θ L(θ) v
)
. We then compute step

2, which in turn only requires Jacobian-vector products. These can likewise be computed efficiently
without explicitly forming the full Jacobian by using the Jacobian-vector product operation provided
by automatic differentiation frameworks.

6 EXPERIMENTS

Our goal is to test whether leveraging Stackelberg implicit differentiation to regularize the leader’s
gradient can improve sample efficiency and final performance.

All experiments are conducted on MuJoCo-based morphology–control co-design tasks. We adopt
benchmarks from prior work, including three flat-terrain tasks (Crawler, Cheetah, Swimmer,
Glider, Walker) and one complex-terrain task (TerrainCrosser) (Lu et al., 2025). To
further evaluate performance under more challenging conditions, we introduce two new tasks,
Stepper-Regular and Stepper-Hard, where the agent must climb stair-like structures.
These tasks require the design of morphologies capable of effective climbing in addition to ro-
bust control. To test generality beyond locomotion, we also include a contact-rich 3D manipulation
task, Pusher, designed to evaluate whether co-design methods can evolve structures aligned with
manipulation objectives. Additional results on other tasks are provided in Appendix C due to space
constraints. In all environments, morphologies are represented as tree structures with constraints
on depth, branching factor, and joint degrees of freedom. While structural complexity and terrain
difficulty vary, the reward function consistently emphasizes forward velocity, ensuring fair compar-
isons of how different methods balance morphology and control. Each algorithm is evaluated with
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Figure 2: Performance curve with respect to the number of follower steps during training. Shaded
regions denote standard error across seven random seeds.

seven random seeds per task. All reported learning curves show mean values with shaded areas
representing standard deviations. Further details and visualization of the environments are provided
in Appendix C.

6.1 COMPARISON WITH BASELINES

We implement our Stackelberg PPO on top of BodyGen (Lu et al., 2025), a PPO-based framework
that employs transformer-based co-design with graph-aware positional encodings, optimizing mor-
phology and control independently under shared rewards. BodyGen serves as our primary baseline,
with the only modification being the use of Stackelberg policy gradients. Implementation details
are provided in Appendix C. In addition to BodyGen, we compare Stackelberg PPO against several
advanced co-design methods:

• Evolutionary Structure Search (ESS) (Sims, 1994): A canonical evolutionary-algorithm approach
to robot design, where candidate morphologies are scored by handcrafted fitness functions. Here
we instead use a lightweight RL-based training loop for principled evaluation.

• Neural Graph Evolution (NGE) (Wang et al., 2019): Evolutionary search over graph-structured
morphologies with GNN controllers. Each generation independently continues training the inher-
ited parent controller.

• Transform2Act (Yuan et al., 2022): Concurrent RL co-design using separate GNNs for morphol-
ogy and control within unified PPO training, with joint-specific MLP heads for universal control.
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(a) Visualization
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Figure 3: (a) Evolved morphologies visualization. Ablation studies on (b) λ parameter sweep from
0.0 to ∞ and (c) Fisher information matrix on/off comparison, both evaluated on Stepper-Regular
environment.

Figure 2 presents the learning curves across all environments. Stackelberg PPO consistently
achieves the best performance, yielding an average +20.66% improvement over the strongest base-
line. Compared to evolutionary approaches (ESS, NGE), it attains substantially higher sample ef-
ficiency by avoiding the costly rollouts required to evaluate each morphological candidate. Rel-
ative to the vanilla gradient method without Stackelberg differentiation (BodyGen), Stackelberg
PPO achieves superior results in both sample efficiency and final performance. The advantage is
most evident on challenging 3D tasks with large design spaces (Crawler, Stepper-Regular,
Stepper-Hard, Pusher), where our method delivers an average +32.02% improvement. Fig-
ure 3(a) showcases examples of the evolved creatures generated by our method. Additional mor-
phology examples and evolution processes are provided in the appendix E.1 and E.5.

6.2 ABLATION STUDIES

We conduct ablation studies to validate key components of Stackelberg PPO, including (1) the reg-
ularization parameter λ that controls gradient interpolation (eq. 9); and (2) the Fisher gradient
approximation of the Hessian for stability (eq. 8).

Regularization Parameter λ (eq. 9). The parameter λ interpolates between pure Stackelberg
gradients and standard policy gradients. We evaluate Stackelberg PPO on the Stepper-Regular
environment with λ ∈ {0.0, 0.5, 1.0, 5.0, 10.0,∞}, where λ = 0 corresponds to no regularization
and λ = ∞ reduces to the vanilla gradient without Stackelberg differentiation. Figure 3(b) shows
robust performance for λ ∈ [0.5, 10], with degradation only at the extremes (λ = 0 or ∞). This
highlights both the robustness of the method to λ values and the necessity of regularization.

Hessian Computation (eq. 8). We compare our Fisher approximation with direct analytic second-
order gradients (eq. 10). As shown in Figure 3(c), the Fisher approximation achieves stable learning
with nearly twice the performance of the analytic gradient (6000 vs 2500). This improvement arises
from the positive semi-definiteness of the Fisher matrix, which avoids the numerical instabilities
caused by the indefinite raw Hessian.

Sensitivity to PPO Clipping Threshold ϵ. We evaluate the sensitivity of Stackelberg PPO to the
clipping parameter ϵ by sweeping over multiple thresholds and measuring its effect on task perfor-
mance and KL-divergence stability. Figure 4(a) and (b) shows that moderate clipping (e.g., ϵ ≤ 0.4)
yields stable learning with low KL divergence, while removing clipping causes rapid KL growth and
clear performance degradation. Full quantitative results are reported in Appendix E.3.

Leader Horizon T (eq. 6). We examine how the leader horizon T influences structural optimiza-
tion. As shown in Figure 4(c), larger horizons generally improve performance by enabling richer
morphology edits, while overly large values (e.g., T = 11) become harder to optimize and cause
mild degradation—yet still outperform very small horizons such as T = 3. Importantly, increasing
the leader horizon does not introduce higher variance in the leader-gradient update of eq. 6 relative
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(c) Leader Horizon T

Figure 4: (a) Reward learning curves and (b) KL-divergence traces under different clipping thresh-
olds ϵ. (c) Performance comparison under varying leader horizons T . All evaluated on the Stepper-
Regular environment.

to the BodyGen baseline, confirming that the Stackelberg update remains stable across a wide range
of horizon lengths.

7 CONCLUSIONS

We introduced Stackelberg Proximal Policy Optimization (Stackelberg PPO), a reinforcement
learning framework grounded in the Stackelberg game paradigm, which explicitly captures the
leader–follower coupling between high-level design decisions and adaptive control responses. While
this formulation is general, we instantiate it in the context of morphology–control co-design, where
the leader specifies the body structure and the follower adapts the control policy. Instead of treating
design and control as independent, Stackelberg PPO exploits the leader–follower coupling to antic-
ipate how the follower will adapt, enabling the leader to update its policy toward morphologies that
are more compatible with downstream control. Experiments demonstrate that this coupling yields
superior performance and stability over standard PPO, particularly on complex locomotion tasks
where tight coordination between morphology and control is essential.

Despite these promising results, several avenues remain for future work. A key direction is sim-to-
real transfer, which remains challenging due to unmodeled hardware constraints and material dy-
namics. Bridging this gap could enable the real-world deployment of self-evolving robotic systems.
We further envision advances in this area leading to truly adaptive artificial life forms capable of
self-directed evolution, reshaping our understanding of intelligence, embodiment, and the boundary
between designed and evolved systems.

ETHICS STATEMENT

As fundamental AI research and to the best of the authors’ knowledge, there are no clear ethical
risks associated with this work beyond the risks already posed by prior work.

REPRODUCIBILITY STATEMENT

The computational requirements, hyperparameters, and key implementation details are provided in
Appendix D. To ensure reproducibility, the full source code will be released publicly upon accep-
tance of the paper.
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A LLM USAGE STATEMENT

We used LLMs for drafting and refining text extensively throughout the paper. LLMs were not used
to develop algorithms, provide theoretical results, run experiments, or contribute in any other way
to the work beyond the aforementioned writing help.

B THEORETICAL ANALYSIS

In this section, we provide the theoretical foundations of our approach. We first present the trajectory
factorization in the proposed phase-separated Stackelberg Markov Game, which serves as the basis
for proving all the theorems.

Given the trajectory τ ≜
({
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Proof of Theorem 1. Based on policy gradient theorem (Sutton, 1984; Williams, 1992; Sutton et al.,
2000), we have
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Evaluating this identity at the reference parameters (θL, θF ) = (θLo , θ
F
o ) gives
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Proof of Proposition 1. The result follows directly by applying the likelihood-ratio trick in the same
way as the standard proof of the policy gradient theorem (Sutton, 1984; Williams, 1992; Sutton
et al., 2000).

Proposition 2. We have

∇2
θF J

F
(
θL, θF

)
= ∇2

θFEπL
θL

,πF
θF

[ ∞∑
t=T

log πF
θF

(
aFt |sFt ; sLT

)
AF

t

]

+ EπL
θLo

,πF
θFo

∇θF

( ∞∑
t=T

log πF
θF

(
aFt |sFt ; sLT

))
∇θF

( ∞∑
t=T

log πF
θF

(
aFt |sFt ; sLT

)
AF

t

)⊤
 (10)

Proof of Proposition 2. Based on policy gradient theorem (Sutton, 1984; Williams, 1992; Sutton
et al., 2000), we have

∇θF JF
(
θL, θF

)
=

∫
P
(
τ ; θL, θF

)
∇θF

∞∑
t=T

log πF
θF

(
aFt |sFt ; sLT

)
AF

t dτ
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Differentiating this expression again with respect to θF , we obtain
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C ENVIRONMENT DETAILS

In this section, we provide comprehensive details about the nine environments employed in our
experimental evaluation. To ensure fair comparison with existing methods, we adopt all 6 environ-
ments from the BodyGen framework: Crawler, Cheetah, Glider, Walker, Swimmer, and Terrain-
Crosser. Additionally, we introduce three novel environments designed to evaluate different aspects
of our algorithm: Stepper-Regular and Stepper-Hard feature complex topographical structures to
test robustness in challenging terrain, while Pusher evaluates manipulation capabilities. These addi-
tional environments are specifically designed to evaluate our algorithm’s robustness and adaptability
under more challenging conditions, thereby providing a more rigorous assessment of the proposed
method’s capabilities. Figure 5 provides visualizations of all nine environments.

Each agent undergoes dynamic morphological evolution through topological and attribute modifi-
cations during training. The observation includes the root body’s spatial position and velocity, all
joints’ angular positions and velocities, and motor gear parameters. All joints use hinge connections
enabling single-axis rotation. Joint attributes encompass bone vectors, sizes, and motor gear values.
The action space consists of one-dimensional control signals applied to each joint’s motor.

Crawler operates in a 3D environment, where agents exhibit quadrupedal crawling locomotion. The
initial morphology consists of a central root node with four limb branches extending outward. The
body tree is constrained to a maximum depth of 4 levels, with each non-root node supporting at most
2 child limbs. Episodes are terminated when the agent’s body height exceeds 2.0 units to prevent
unrealistic vertical extensions. The reward function encourages forward movement while penalizing
excessive control effort:

rt =
xt+1 − xt

τ
− w · 1

N

∑
j∈Jt

||ut
j ||2 (11)

where xt denotes the agent’s forward position at timestep t, ut
j represents the effective control input

applied to joint (i.e., the raw action scaled by the joint’s gear ratio) applied to joint j at time t,
w = 0.0001 is the control regularization coefficient, N is the total number of joints, and τ = 0.04.

Cheetah features 2D locomotion focused on fast running gaits. The agent begins with an initial
design comprising a root body connected to one primary limb segment. The morphological search
allows a maximum tree depth of 4 with up to 3 child limbs per node. The root body’s angular
orientation is constrained within 20 degrees to maintain stable running posture. Episode termination
occurs when body height falls below 0.7 or exceeds 2.0 units. The reward follows the velocity-based
formulation:

rt =
xt+1 − xt

τ
(12)

where τ = 0.008.

Glider and Walker enable 2D aerial and terrestrial locomotion. Both environments share the same
base morphology: agents start from an initial configuration with three limb segments attached to a
central root, each limb node can support up to three children, and joints can oscillate within a 60◦

range to accommodate wide-range motion. The reward structure follows eq. 12, emphasizing for-
ward displacement. The two tasks differ only in their allowable morphology depth: Glider restricts
the body tree to a maximum depth of 3, while Walker permits up to 4 levels.

Swimmer enables undulatory, snake-like locomotion in a 2D aquatic environment. The agent
evolves in water with a viscosity coefficient of vis = 0.1. The initial morphology consists of a
root body connected to a single limb segment, and each limb node may support up to three child
segments, enabling flexible articulated structures suited for wave-based propulsion. This task serves
as a lightweight validation environment, and thus imposes no early-termination conditions such as
height limits or joint-rotation thresholds. The reward structure follows eq. 12, emphasizing forward
displacement under hydrodynamic resistance.
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TerrainCrosser presents a challenging 2D terrain navigation task using the Cheetah agent con-
figuration. The environment features fixed terrain heights with maximum elevation differences of
zmax = 0.5. Agents must traverse gaps generated from single-channel height maps. Height con-
straints maintain agent stability between 0.7 and 2.0 units, with violations leading to episode termi-
nation. The reward function prioritizes forward progress as defined in eq. 12.

Stepper-Regular and Stepper-Hard introduce challenging staircase navigation tasks that test
agents’ morphological adaptation capabilities for vertical terrain traversal. Both environments uti-
lize the Crawler agent configuration in a 3D setting. Stepper-Regular features stairs with step width
of 1.0 units and height of 0.4 units; Stepper-Hard increases the difficulty by elevating step height
to 0.8 units while maintaining the same width. Unlike the standard Crawler environment, height
termination constraints are removed to allow full exploration of vertical climbing capabilities. The
reward function follows eq. 11, focusing solely on forward progression, thereby maintaining reward
consistency across environments.

Pusher is a challenging 3D manipulation task designed to evaluate whether the co-design system
can generate morphologies and control strategies that effectively interact with external objects. This
environment reuses the Crawler agent configuration in a 3D setting. A rigid cube of side length
1.0 m is placed in front of the agent and constrained to move in the horizontal (x, y) plane. The
observation space augments the agent state with the 3D relative position between the agent’s root
body and the cube. The reward encourages forward displacement of the cube, penalizes lateral
motion, and provides an auxiliary shaping term based on the proximity between the agent and the
cube. A control-effort penalty identical to eq. 11 is applied. Formally, the reward is

rt =
xcube
t+1 − xcube

t

τ
− κ ·

∣∣ycube
t+1 − ycube

t

∣∣
τ

+
1

1 +
∣∣pcube

t − proot
t

∣∣ − w · 1

N

∑
j∈Jt

||ut
j ||2 (13)

where xcube
t and ycube

t denote the cube’s forward and lateral positions at timestep t, pcube
t and proot

t
are the 3D positions of the cube and the agent’s root body, and κ = 0.1 controls the lateral-motion
penalty.
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Crawler Cheetah

Glider

Stepper-Regular Stepper-Hard

TerrainCrosser

3D

2D - xz Plane

3D

2D - xz Plane

2D - xz Plane

3D

Pusher

Walker

3D

2D - xz Plane

Swimmer

2D - xy Plane

Figure 5: Visualization of the nine benchmark environments used in our experiments. Crawler,
Stepper-Regular, Stepper-Hard, and Pusher are 3D tasks; others are 2D (x-z or x-y plane). The
environments differ substantially in required morphology depth, symmetry, and limb arrangement,
enabling evaluation on the generality of morphology–control co-design across locomotion and ma-
nipulation tasks.
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D IMPLEMENTATION DETAILS

D.1 COMPUTATION COST

Following standard reinforcement learning practices, we utilize distributed trajectory sampling
across multiple CPU threads to enhance training efficiency. All models are trained with seven ran-
dom seeds on a high-performance computing cluster equipped with dual Intel® Xeon® processors
(totaling 64 cores) and 24 NVIDIA A100 GPUs. Our implementation uses PyTorch 2.0.1 for all neu-
ral network models and MuJoCo 2.1.0 (Todorov et al., 2012) physics engine for the morphology-
control simulation environments. The training process is computationally efficient, requiring ap-
proximately 30 hours per model when utilizing 10 CPU cores alongside a single NVIDIA A100
GPU across all experimental environments.

D.2 HYPERPARAMETER CONFIGURATION

Stackelberg PPO (Ours): Our method introduces several Stackelberg-specific hyperparameters
that require careful tuning. We conduct grid search over key parameters: Fisher information ma-
trix regularization coefficient λ ∈ {0.5, 1.0, 5.0, 10.0}, maximum conjugate gradient (CG) steps
∈ {10, 20, 30}, and follower sampling steps per episode ∈ {6, 15, 30, 60, 100} during leader up-
date. For the underlying network architecture, we maintain the same configuration as BodyGen (Lu
et al., 2025) without modification to ensure fair comparison, including their MoSAT transformer
blocks and all network-related parameters. The final hyperparameter configuration, along with the
underlying BodyGen network architecture we adopt, is detailed in Table 1.

BodyGen: We follow their original implementation and released code, adopting the same hyper-
parameter configuration as reported in their work (Lu et al., 2025). The settings include MoSAT
Pre-LN normalization, SiLu activation, hidden dimension 64, policy learning rate 5e-5, value learn-
ing rate 3e-4, and other parameters as detailed in Table 1.

Transform2Act: Following the original implementation(Yuan et al., 2022), this baseline uses
GraphConv layers, policy GNN size (64, 64, 64), policy learning rate 5e-5, value GNN size (64,
64, 64), value learning rate 3e-4, JSMLP activation Tanh, JSMLP size (128, 128, 128) for policy
networks, and MLP size (512, 256) for value functions.

NGE: Based on the original implementations (Wang et al., 2019), this evolutionary baseline uses
125 generations, population size 20, elimination rate 0.15, with GraphConv layers, Tanh activation,
policy GNN size (64, 64, 64), policy MLP size (128, 128), value GNN size (64, 64, 64), value MLP
size (512, 256), policy learning rate 5e-5, and value learning rate 3e-4.

D.3 GRADIENT NORMALIZATION

Recall Eq. 2, where the Stackelberg gradient for the leader decomposes into a direct term and a
response-induced term. To avoid scale imbalance between these components, we scale the response-
induced term by a data-dependent factor α computed from the relative norms of the two terms (no
extra hyper-parameters). Let gdir := ∇θLJ

L(θL, θ
F ) and gresp := (∇θLθ

F
∗ (θL))

⊤∇θF J
L(θL, θ

F ).
We update the leader using

∇̂θLJ
L = gdir − α gresp, α = min

(
1,

∥gdir∥2
∥gresp∥2 + ε

)
, (14)

where ε > 0 is a small numerical constant for stability. This rule guarantees α ∥gresp∥2 ≤ ∥gdir∥2,
ensuring the follower-implicit component never dominates while preserving its direction. We use
α = 1 across all experiments for simplicity and consistency.
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Table 1: Hyperparameters of Stackelberg PPO adopted in all experiments

Hyperparameter Value
Fisher Regularization Coefficient λ 5.0
Maximum Conjugate Gradient Steps 20
CG Relative Error Tolerance 10−3

Follower Sampling Steps per Episode 6
Gradient Normalization Ratio α 1.0

Structure Design Steps T stru 5
Attribute Design Steps T attr 1
Transformer Layer Normalization Pre-LN
Transformer Activation Function SiLu
FNN Scaling Ratio r 4
Transformer Blocks number (Policy Network) 3
Transformer Blocks number (Value Network) 3
Transformer Hidden Dimension (Policy Network) 64
Transformer Hidden Dimension (Value Network) 64
Optimizer Adam
Policy Learning Rate 5e-5
Value Learning Rate 3e-4
Clip Gradient Norm 40.0
PPO Clip ϵ 0.2
PPO Batch Size 50000
PPO Minibatch Size 2048
PPO Iterations Per Batch 10
Training Epochs 1000
Discount factor γ 0.995
GAE Parameter λGAE 0.95
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E ADDITIONAL RESULTS

E.1 VISUALIZATION AND QUALITATIVE RESULTS

Figure 6 presents the diverse morphologies discovered by our Stackelberg PPO framework across
different environments. The evolved body designs reveal the sophisticated structural complexity
achieved by our approach, confirming that the Stackelberg game formulation enables continuous co-
adaptation between morphology and control without premature convergence to suboptimal simple
structures. Remarkably, these designs demonstrate emergent functional differentiation, developing
specialized appendages for complementary tasks such as maintaining equilibrium versus providing
propulsive forces.

As illustrated in the training curves presented in Fig. 2, we provide quantitative performance compar-
isons across all evaluated environments. Table 2 summarizes the final episode rewards achieved by
each method, presenting mean values and standard deviations computed over seven random seeds.
All baseline methods are configured using their optimal hyperparameter settings as reported in prior
literature, with detailed specifications provided in Appendix D.2.

Table 2: Performance comparison of Stackelberg PPO against baseline methods across morphology-
control co-design environments. Results show mean episode rewards and standard deviations over
seven random seeds.

Methods Crawler Cheetah Swimmer
Stackelberg PPO (Ours) 11047.90±126.20 13514.94±653.62 1334.98±16.06

BodyGen (Lu et al., 2025) 9098.72±558.26 11575.87±640.65 1302.64±3.71

Transform2Act (Yuan et al., 2022) 3950.80±268.43 8297.90±825.02 737.90±21.04

NGE (Wang et al., 2019) 1482.45±524.97 2534.76±428.68 384.45±112.03

ESS (Sims, 1994) 631.67±122.41 671.67±134.65 190.62±37.84

Methods Walker-Hard Glider-Hard TerrainCrosser
Stackelberg PPO (Ours) 13612.32±501.26 12414.50±498.53 4488.07±467.98

BodyGen (Lu et al., 2025) 11645.89±797.77 11049.95±468.44 4103.25±871.90

Transform2Act (Yuan et al., 2022) 4420.63±267.48 6120.62±1086.62 2364.63±473.80

NGE (Wang et al., 2019) 1504.55±553.15 2081.25±348.17 827.15±427.21

ESS (Sims, 1994) 636.03±125.74 541.55±107.56 426.81±168.30

Methods Pusher Stepper-Regular Stepper-Hard
Stackelberg PPO (Ours) 3462.77±368.09 7215.20±449.02 6003.59±1027.77

BodyGen (Lu et al., 2025) 2779.95±509.18 4685.94±845.23 4685.41±800.09

Transform2Act (Yuan et al., 2022) 1015.28±247.09 2325.69±664.00 1192.39±544.20

NGE (Wang et al., 2019) 551.57±120.65 870.56±215.45 509.12±207.01

ESS (Sims, 1994) 243.14±95.93 351.02±136.28 392.54±151.83
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Cheetah
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Figure 6: Visualization of co-evolved body designs generated through our Stackelberg PPO.
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E.2 EXTENDED ENVIRONMENT EVALUATION

Beyond the environments reported in the main paper, we also include results for the full sets of Glider
and Walker tasks, each provided in three difficulty levels: regular, medium, and hard. In the main text
we present only the hard variants, as they offer the largest design spaces and naturally encompass
the easier tiers, providing a clearer view of morphology–control co-design under less restrictive
structural budgets. Here, we report the complete results mainly for completeness, and to illustrate
how our method behaves under different morphology complexity limits. The six environments differ
only in their structural allowances: Glider uses a maximum tree depth of 3 and Walker a maximum
depth of 4, while the regular/medium/hard variants correspond to maximum child counts of {1, 2, 3}.
All other environment settings are identical.

Figure 7 presents the training curves and the final generated morphologies across all six tasks. Our
method outperforms the baseline across all difficulty levels, with the performance gap increasing
as the design space becomes larger and more challenging. Interestingly, the three difficulty tiers
within each environment achieve similar final performance, suggesting that overall task success is
not strictly tied to structural complexity: even simpler configurations can discover diverse, correct,
and high-quality locomotion patterns.

E.3 ADDITIONAL ABLATION STUDIES AND MECHANISM ANALYSIS

Quantitative Results for PPO Clipping Sensitivity. To complement the qualitative trends shown
in Figure 4(a), we provide the full quantitative statistics for the clipping sweep experiment. The
purpose of this analysis is to examine how the surrogate objective behaves under different clipping
thresholds and to identify when the underlying assumptions of policy-gradient theory remain valid.
From a theoretical perspective, large policy updates can cause the surrogate objective to diverge
from the true return, leading to instability. PPO addresses this by bounding the likelihood ratio
πθ(a | s)/πθ0(a | s) within [1− ϵ, 1+ ϵ], which prevents overly aggressive updates and ensures that
the surrogate remains a reliable approximation. In this experiment, we vary the clipping parameter
ϵ and measure three quantities that together characterize the stability of the update rule: (1) average
performance, (2) likelihood-ratio constraint violations, and (3) KL divergence. Table 3 reports the
full numerical results corresponding to the curves shown in the main text.

Table 3: Sensitivity of Stackelberg PPO to the clipping threshold ϵ.
Clipping Parameter Performance Likelihood Ratio Violations (%) Average KL Divergence
ϵ = 0.1 4934.52±646.40 14.82±0.55 0.0030±0.0006

ϵ = 0.2 7215.20±449.02 13.39±0.83 0.0196±0.0025

ϵ = 0.4 7907.01±208.02 9.92±0.94 0.0343±0.0153

ϵ = 0.6 4778.18±407.84 9.10±1.30 0.0665±0.0188

ϵ = 0.8 2656.92±503.93 7.02±0.81 0.1340±0.0388

No Clipping 1233.26±443.98 0 1.7726±0.1539

Ablation on SID Components and PPO Clipping. To further disentangle the contributions of our
Stackelberg Implicit Differentiation (SID) estimator and PPO clipping, we conduct an additional
controlled ablation. Specifically, we evaluate three variants under the same phase-separated, non-
differentiable Stackelberg setup:

• SID+PPO (full) — our complete method using both SID and PPO clipping,
• PPO-only — standard PPO updates without SID,
• SID-only — applying our SID estimator without PPO clipping.

This ablation assesses whether (i) our SID estimator meaningfully improves leader optimization and
(ii) PPO clipping is required to stabilize the induced surrogate objectives. As shown in Table 4,
both components provide clear performance gains, and the full algorithm consistently achieves the
highest returns across four environments.
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Figure 7: Extended evaluation on Glider and Walker environments under different morphology com-
plexity budgets.(a) Training curves for the regular, medium, and hard variants of each environment.
(b) Final generated morphologies under each complexity tier.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Walker
5% 10% 20% 40% 60% 80% 100%

Ours

Bodygen

Stepper-Regular
5% 10% 20% 40% 60% 80% 100%

Bodygen

Ours

Crawler
5% 10% 20% 40% 60% 80% 100%

Ours

Bodygen

Pusher
5% 10% 20% 40% 60% 80% 100%

Bodygen

Ours

Figure 8: Comparison of morphology evolution between Stackelberg PPO (ours) and BodyGen
across four environments. BodyGen tends to collapse early into low-complexity designs, while
Stackelberg PPO continues exploring structurally richer morphologies, yielding more capable final
structures.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 4: Ablation studies on the components of our SID estimator and PPO clipping, evaluated
under the same phase-separated, non-differentiable Stackelberg setting.

Environment SID+PPO (full) PPO-only (no SID) SID-only (no clipping)
Stepper-Regular 7215.20±449.02 4685.94±845.23 1257.33±530.25

Crawler 11047.90±126.20 9098.72±558.26 35.77±12.25

Cheetah 13514.94±653.62 11575.87±640.65 472.89±77.40

Glider 12414.50±498.53 11049.95±468.44 566.81±89.96

Effect of Leader Gradients on Controller Adaptation. To better understand the mechanism be-
hind Stackelberg PPO’s performance gains, we analyze how morphology updates interact with con-
troller adaptation. Specifically, we investigate whether the improved performance originates from
faster controller adaptation under changing morphologies, or from more informative leader gradients
that guide the structure search more effectively. To isolate these effects, we extract ten intermediate
checkpoints from a BodyGen training run (spanning 10%–100% of training progress). From each
checkpoint, we initialize both methods with identical morphology, controller parameters, and opti-
mizer state, and then train each method for a single epoch. This setup ensures that any difference
in performance improvement reflects differences in the leader update rule, rather than controller
initialization or long-term training.

As shown in Table 5, Stackelberg PPO consistently achieves a larger one-epoch performance im-
provement compared to standard PPO (BodyGen). This indicates that Stackelberg PPO does not
rely on faster controller adaptation; instead, it provides more informative leader gradients that enable
the morphology to improve even when the controller is only partially adapted. These results high-
light the role of the Stackelberg update in stabilizing and accelerating the joint morphology–control
optimization process.

Table 5: Average performance change after one epoch of training from the same checkpoint model,
averaged over 10 checkpoints and 7 seeds, evaluated on Stepper-Regular.

Stackelberg PPO (Ours) BodyGen (PPO)
Performance Change After 1 Epoch +0.392±0.075% +0.224±0.043%

We further provide a visual comparison of morphology evolution to illustrate this effect (Figure 8).
Across multiple environments, BodyGen tends to converge early to low-complexity designs, which
restricts later improvements even as the controller becomes stronger. In contrast, Stackelberg PPO
continues meaningful structural exploration throughout training, enabling richer and more adaptive
morphologies. These qualitative trajectories align with the adaptation results above, reinforcing that
the Stackelberg update produces more informative and better-aligned structural gradients.
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E.4 SAMPLE AND TRAINING EFFICIENCY

Sample Efficiency. To assess the efficiency of different co-design algorithms, we measure how
many environment interaction samples are required to reach a predefined performance threshold. As
reported in Table 6, Stackelberg PPO consistently converges with substantially fewer samples across
all environments. On average, it reaches the threshold with approximately -39% fewer samples
than BodyGen. In contrast, Transform2Act, NGE, and ESS fail to reach any threshold within the
available training budget. These results highlight the advantage of explicitly modeling morphology–
control coupling via a Stackelberg formulation, enabling faster convergence and more stable co-
design dynamics.

Table 6: Sample efficiency comparison: number of samples (in millions) required to reach the
performance threshold.

Environment Threshold Stackelberg PPO BodyGen Transform2Act NGE ESS
Crawler 9000 25.8 47.2 ∞ ∞ ∞
Cheetah 11000 19.2 42.1 ∞ ∞ ∞
Swimmer 1200 14.8 17.0 ∞ ∞ ∞
Walker-Hard 10000 18.1 30.3 ∞ ∞ ∞
Glider-Hard 11000 23.6 49.7 ∞ ∞ ∞
TerrainCrosser 3500 23.9 33.8 ∞ ∞ ∞
Pusher 2500 29.3 39.1 ∞ ∞ ∞
Stepper-Regular 4500 18.5 40.4 ∞ ∞ ∞
Stepper-Hard 4500 27.2 43.1 ∞ ∞ ∞

Training Efficiency. Despite incorporating a bilevel update, Stackelberg PPO introduces only
modest computational overhead. The method avoids explicit Hessian construction or inversion; in-
stead, the conjugate-gradient step relies solely on efficient Hessian–vector products (approximately
one backward pass). As a result, its cost scales linearly with morphology and controller dimension-
ality, rather than quadratically. Moreover, rollout collection dominates overall computation in all
co-design settings, so the additional optimization cost has limited influence on total training time.
Table 7 summarizes the training time under different morphology/control design spaces. Increasing
the structural search space does not incur superlinear overhead, confirming the scalability of Stack-
elberg PPO. The comparison with ES-based approaches in Table 8 further shows that ES reduces
wall-clock time only when substantial CPU parallelization is available, while its resulting designs
remain far less effective than those produced by PPO-based methods.

Overall, our method achieves strong efficiency–performance trade-offs:

• Compared to BodyGen, Stackelberg PPO achieves substantially better sample efficiency
by requiring -39% fewer samples to reach the performance threshold while also obtaining
+20.66% higher final scores. In terms of wall-clock time, the difference between the two
methods is modest (+13%), keeping the overall training cost comparable.

• Compared to ES-based baselines, although ESS attains shorter wall-clock time using 6×
more CPU cores (64 cores), its performance is extremely poor, achieving only a 0.16 frac-
tion of our method’s performance.
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Table 7: Wall-clock training time comparison across environments with different design space sizes
(10 CPU cores + A100 GPU).

Environment Space Size (mean) Space Size (max) Stackelberg PPO BodyGen (PPO)
TerrainCrosser 4.50±0.76 14 33.88±0.42 27.87±1.27

Swimmer 5.50±0.76 14 32.64±0.74 28.13±0.45

Cheetah 6.57±0.90 14 32.96±0.67 29.52±1.03

Glider-Hard 7.33±1.49 9 32.93±0.71 28.93±1.50

Walker-Hard 8.43±1.50 27 32.54±0.62 30.21±1.22

Stepper-Hard 9.57±0.90 29 32.70±1.01 30.25±2.06

Pusher 14.33±4.07 29 33.41±0.82 29.24±1.12

Stepper-Regular 16.40±4.69 29 32.83±0.87 30.17±1.41

Crawler 18.25±1.29 29 33.73±0.64 30.54±1.33

Table 8: Wall-clock training time across methods. NGE results are shown under both 10 CPU cores
and 64 cores to illustrate parallelization effects.

Stackelberg PPO (10 cores) BodyGen (10 cores) NGE (10 cores) NGE (64 cores)
Wall-clock Time 33.07±0.49 h 29.43±0.97 h 45.16±3.72 h 13.52±1.52 h

E.5 MORPHOLOGY EVOLUTION PROCESS VISUALIZATION

Figure 9 showcases the morphological evolution trajectories discovered by our Stackelberg PPO
framework across diverse locomotion tasks and environments. Each row represents a distinct em-
bodiment (Crawler, Cheetah, Swimmer, Glider, Stepper-Regular, Stepper-Hard, Terrain Crosser,
Walker, and Pusher), and the columns depict the progressive morphological changes from early evo-
lution (5%) through convergence (100%). The evolution demonstrates emergent specialization of
appendages for task-specific locomotion requirements.
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Figure 9: Morphological evolution trajectories across eight environments. Each row represents a
distinct robot embodiment, with columns showing progressive stages of morphological adaptation
from 5% to 100% training progress.
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E.6 RESULTS UNDER REALISTIC CO-DESIGN CONSTRAINTS

In the main paper, we adopt a unified forward-progress reward to ensure fair comparison across algo-
rithms and to avoid introducing task-specific reward biases. While this setup is standard and suitable
for benchmarking algorithmic contributions, real-world robot design is often shaped by additional
engineering constraints. To better understand the practical co-design behavior of Stackelberg PPO,
we further evaluate five common realistic constraints under an identical crawler task and training
budget.

These constraints span both morphology- and control-level considerations, including power usage,
manufacturability, torque limits, payload handling, and robustness. Several of these factors are
already captured by our experimental setup:

• Power usage: Energy expenditure is discouraged through a small effort penalty included in
the reward (Equation eq. (11)).

• Torque limits: Joint torque capacity is implicitly limited by bounding the “allowable
torque” attribute during morphology design.

• Manufacturability: Physical realizability is enforced by constraining morphology-editing
attributes such as limb length, joint count, and topology depth (see Appendix C).

• Robustness: Robustness naturally emerges from the evaluation protocol: each
morphology–controller pair is scored using multiple rollouts, causing non-robust designs
to yield lower averaged returns.

To complement these built-in constraints, we further provide more detailed quantitative experiments
that isolate and measure their individual effects.

Power Constraint. We evaluate performance under various power penalty coefficients (0.001, 0.01,
0.1), extending beyond the mild penalty (0.0001) used in the main experiments. Table 9 reports the
detailed performance and control-effort statistics under each penalty coefficient. The generated
morphologies are visualized in Figure 10. Increasing the penalty produces three consistent effects:

• Impact on Performance (velocity reward). As the penalty coefficient increases, both meth-
ods experience reduced forward-progress reward. However, Stackelberg PPO exhibits a
substantially smaller degradation, maintaining stronger performance across all tested set-
tings.

• Impact on Control Effort. Larger penalties encourage more conservative actuation strate-
gies for both approaches, reflected by the lower penalty terms in the table.

• Impact on Morphology–Control Co-Design. With stronger penalties, the optimized mor-
phologies tend to adopt shorter, thicker, and more symmetric limbs, paired with low-torque
gaits characteristic of energy-efficient locomotion.

Penalty Coef. = 0.0001 Penalty Coef. = 0.1

Figure 10: Power constraint under different penalty coefficients. As the penalty increases, the co-
designed morphologies transition toward shorter, thicker, and more symmetric limbs.
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Table 9: Power-constraint setting: performance and power penalties under different penalty coeffi-
cients.

Penalty
Coef.

Performance Power Penalty
Stackelberg PPO (ours) BodyGen Stackelberg PPO (ours) BodyGen

0.0001 11047.90±126.20 9098.72±558.26 5631.42±674.03 2745.84±284.55

0.001 10191.15±371.81 7501.61±671.33 5342.16±584.25 5948.16±254.84

0.01 9853.19±229.37 8304.00±497.56 1582.48±697.61 468.12±516.33

0.1 10585.25±146.80 8974.48±574.29 25.50±22.27 26.34±23.64

Manufacturability Constraint. A manufacturability cost penalty is applied by incorporating two
components into the leader objective: structural complexity is measured by the number of body ele-
ments, and material cost is defined as the total mass. Table 10 summarizes the resulting performance
and morphology characteristics under different penalty coefficients. The trends are consistent with
those observed in the power constraint experiments in (i): our method consistently achieves better
reward–cost tradeoffs across all penalty levels. As shown in Figure 11,The generated morphologies
are compact than the original structure, with fewer distal branches, shorter limbs, and mass con-
centrated near the root. These structures exhibit lower inertia and more efficient force transmission,
supporting stable forward locomotion under cost constraints.

Penalty Coef. = 0
(18 Bodies / 1.73 kg)

Penalty Coef. = 1
(15 Bodies / 1.56 kg)

Penalty Coef. = 10
(8 Bodies / 0.99 kg)

Figure 11: Manufacturability constraint under different penalty coefficients. Higher penalties on
structure complexity and material mass encourage designs with fewer body elements, reduced
branching, and mass concentrated near the root, producing compact morphologies that are easier
to fabricate.

Table 10: Manufacturability constraint setting: performance, morphology complexity, and material
cost under different penalty levels.

Penalty
Coef.

Performance Morphology Complexity Material Cost
Stackelberg
PPO (ours) BodyGen Stackelberg

PPO (ours) BodyGen Stackelberg
PPO (ours) BodyGen

0 11047.90±126.20 9098.72±558.26 16.40±2.45 13.67±2.08 1.71±0.23 1.57±0.32

1 7892.93±349.84 6531.37±437.26 13.67±2.03 9.67±1.61 1.59±0.18 1.32±0.16

10 6825.47±303.09 5372.10±364.79 8.25±0.91 7.50±1.24 0.94±0.08 0.93±0.10
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Torque Limits Constraint. A torque-limit penalty is incorporated by enforcing a 50 N·m cap on
all joints and adding a proportional violation cost to the leader objective. Table 11 summarizes
the quantitative results, and the morphological effects are shown in Figure 12. As in the manufac-
turability and control-effort settings, our method achieves stronger reward–cost tradeoffs when the
controller retains sufficient expressiveness (penalty = 0.01). Under the stronger penalty (0.1), the
tightened actuation constraints reduce the feasible morphology space for all methods, narrowing the
performance gap.

Penalty Coef. = 0 Penalty Coef. = 0.01 Penalty Coef. = 0.1

Figure 12: Torque limits constraint under different penalty coefficients. Tighter actuation limits lead
to noticeably simpler and more compact structures, with shorter limbs and reduced distal branching.

Table 11: Torque limits constraint: performance and torque-violation penalties under different
torque-penalty coefficients.

Penalty
Coef.

Performance Limit Violation Penalty
Stackelberg PPO (ours) BodyGen Stackelberg PPO (ours) BodyGen

0.01 7893.42±84.62 6311.75±98.31 20210.50±6503.22 11350.45±5338.31

0.1 3133.01±70.44 3121.80±54.03 1106.45±64.69 899.35±49.40

Payload Constraint. To evaluate the agent’s ability to maintain locomotion under additional load,
we attach an extra mass to the root link to serve as a payload. During training, the payload value
is randomized within a fixed range (0-0.6 kg) to promote generalization. After training, we evalu-
ate each method under three fixed payload levels (0.2 kg, 0.4 kg, 0.6 kg). As shown in Table 12,
Stackelberg PPO consistently maintains higher forward progress across all payload settings. Figure
13 further compares morphologies trained with and without payload. Under load, the evolved struc-
tures become more symmetric and better support the additional mass, indicating that Stackelberg
PPO adapts the topology itself rather than relying solely on controller compensation.

Without Payload With Payload – Morphology 1 With Payload – Morphology 2

Figure 13: Morphology comparison trained with and without payload. Payload induces more sym-
metric and load-supporting structures.
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Table 12: Payload constraint: performance comparison under different payload weights.
Payload Weight Stackelberg PPO (ours) BodyGen
0.2 kg 8675.08±286.42 5186.31±659.87

0.4 kg 6966.34±473.43 5116.54±546.55

0.6 kg 7347.46±478.01 4523.89±536.99

Robustness Evaluation. We evaluate robustness under two settings: random external forces ap-
plied to the root body at every control step, and terrain friction noise created by randomly varying
the ground’s friction in each episode. For each disturbance level, all policies are tested across mul-
tiple stochastic rollouts, and we report the resulting forward-progress reward. Tables 13 and 14
summarize the results. Across all disturbance magnitudes, Stackelberg PPO consistently demon-
strates substantially higher robustness. For example, when external forces increase from 2 N to 6 N,
performance decreases by only 5.91% for Stackelberg PPO, compared to a much larger 59.57% de-
cline for BodyGen. A similar pattern holds under terrain friction noise. These improvements arise
primarily from more symmetric, mechanically balanced morphologies that better tolerate external
forces and friction variability.

Table 13: Robustness evaluation: performance under different levels of external disturbance forces.
Level Stackelberg PPO (ours) BodyGen
2.0 N 11557.31±124.68 6963.05±450.48

4.0 N 11290.13±164.54 4621.82±597.71

6.0 N 10875.23±250.97 2816.16±857.83

Table 14: Robustness evaluation: performance under different levels of terrain friction noise.
Level Stackelberg PPO (ours) BodyGen
30% 11424.66±112.08 7326.04±421.73

50% 11333.43±141.42 6795.55±493.31

70% 10892.09±149.72 5062.85±579.66
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E.7 DISCUSSION AND EXTENDED EVALUATION ON REALISTIC CO-DESIGN CHALLENGES

In this section, we present broader analyses of morphology–control co-design and extend our re-
sults along four representative challenge dimensions: (i) diverse co-design environments, (ii) multi-
objective and role-specific rewards, (iii) robustness and generalization under unseen disturbances,
and (iv) the use of morphology priors. These studies highlight both the empirical advantages of
Stackelberg PPO and the conceptual benefits of explicitly decoupling structure design from control
learning. Together, they demonstrate that our framework scales naturally to more complex co-design
settings that better reflect real-world robotic demands, and they point toward promising directions
for building more adaptive and physically grounded morphology–control systems.

Diverse co-design environments. Standard co-design benchmarks focus almost exclusively on flat-
terrain locomotion, which poses limited structural or behavioral challenge. To expose a broader
range of morphology–control interactions, we introduce more demanding environments—most no-
tably difficult terrain and manipulation—that require non-periodic motions, contact management,
and functional differentiation across limbs. In the Stepper environments, agents must coordinate
structure and control to handle large discontinuities without exteroceptive sensing. On low stairs,
they develop stable stepping and small hops; on high stairs, the difficulty induces long-range, high-
amplitude jumping behaviors. These emergent solutions reflect the stronger morphological and dy-
namical adaptation required by complex terrain. In the pusher task, co-design must jointly support
locomotion and precise force application. Learned morphologies exhibit clear role specialization:
some limbs provide acceleration and stability, while others regulate contact orientation and apply
controlled pushing forces. Baseline methods typically recover only the locomotion component, re-
lying on collision-based propulsion. These environments reveal aspects of the co-design problem
that flat locomotion cannot capture, and they demonstrate that Stackelberg PPO scales to richer
settings requiring terrain adaptation, contact reasoning, and multi-role morphology design.

Multi-objective and role-specific reward design. As shown earlier in Appendix E.6, our frame-
work naturally accommodates additional objectives such as power consumption or payload capac-
ity. The resulting morphologies and controllers smoothly adapt to the trade-offs introduced by
these objectives, validating the method’s multi-objective co-design capability. Furthermore, the
leader–follower decomposition allows reward terms to be assigned selectively to the structure-design
or control-learning stages. For example, complexity or material-cost penalties can be applied only
to the leader (structure) updates, enabling constraints on morphology without interfering with con-
troller learning. This role-specific reward routing provides a high degree of flexibility for real-world
design requirements.

Robustness and generalization under unseen disturbances Although our current setting does not
include exteroceptive sensing and is not intended for zero-shot transfer to arbitrary unseen worlds,
we evaluate generalization and robustness under an obstacle-navigation task not seen during training.
Policies are trained only on flat terrain (Crawler task) and then tested in environments containing
either sparse or dense grids of square obstacles. As reported in Table 15, Stackelberg PPO obtains
higher forward progress than BodyGen across both difficulty levels. The visualization in Figure 14
further shows that the morphologies produced by our method maintain more consistent forward
motion, whereas baseline agents more frequently stall or deviate under unexpected contacts. These
results illustrate that the co-designed morphology–policy pair exhibits meaningful robustness to
previously unseen disturbances and obstacle interactions.

Dense Obstacle Navigation Sparse Obstacle Navigation

Figure 14: Visualization the unseen obstacle-navigation task environment.
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Table 15: Performance in the unseen obstacle-navigation task under two obstacle densities.

Obstacle Type Spacing Performance
Stackelberg PPO (ours) BodyGen

Sparse Obstacle 16 m (∼4× robot width) 1790.45±161.77 1061.55±228.40

Dense Obstacle 8 m (∼2× robot width) 1698.52±733.02 1007.21±157.42

Incorporating and benefiting from morphology priors. Our framework also supports reusing
morphology priors obtained from related tasks. To examine this, we transfer morphologies evolved
in the Crawler environment to initialize training in the Pusher task. Table 16 shows that both Stackel-
berg PPO and BodyGen benefit from priors in terms of final performance and the number of environ-
ment steps required to reach a threshold reward. Stackelberg PPO consistently obtains higher final
reward and requires fewer steps under both “with prior” and “without prior” conditions. Figure 15
visualizes representative morphologies produced under this setup. While priors accelerate training,
it is generally advisable to choose priors that encode broadly useful structural patterns—such as
stable support geometries or balanced limb arrangements—rather than narrowly specialized solu-
tions. Such general-purpose priors provide a more flexible foundation for downstream adaptation
and reduce the risk of over-constraining the design space.

Crawler Task Prior Pusher Task with Prior

Figure 15: Cross-task reuse of morphology priors: Crawler prior (left) and the resulting Pusher
morphology (right).

Table 16: Performance and sample efficiency in the Pusher task with and without morphology priors.

Condition Performance Steps to Threshold (2500 Reward)
Stackelberg PPO (ours) BodyGen Stackelberg PPO (ours) BodyGen

With Prior 4822.59±114.32 4575.52±112.78 ∼ 8M ∼ 9M
Without Prior 3462.77±368.09 2779.95±509.18 ∼ 32M ∼ 44M
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