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ABSTRACT

Since real-world machine systems are running in non-stationary environments,
Continual Test-Time Adaptation (CTTA) task is proposed to adapt the pre-trained
model to continually changing target domains. Recently, existing methods mainly
focus on model-based adaptation, which aims to leverage a self-training manner
to extract the target domain knowledge. However, pseudo labels can be noisy
and the updated model parameters are unreliable under dynamic data distributions,
leading to error accumulation and catastrophic forgetting in the continual adaptation
process. To tackle these challenges and maintain the model plasticity, we design
a Visual Domain Adapter (ViDA) for CTTA, explicitly handling both domain-
specific and domain-shared knowledge. Specifically, we first comprehensively
explore the different domain representations of the adapters with trainable high-
rank or low-rank embedding spaces. Then we inject ViDAs into the pre-trained
model, which leverages high-rank and low-rank features to adapt the current domain
distribution and maintain the continual domain-shared knowledge, respectively. To
exploit the low-rank and high-rank ViDAs more effectively, we further propose a
Homeostatic Knowledge Allotment (HKA) strategy, which adaptively combines
different knowledge from each ViDA. Extensive experiments conducted on four
widely used benchmarks demonstrate that our proposed method achieves state-of-
the-art performance in both classification and segmentation CTTA tasks. Note that,
our method can be regarded as a novel transfer paradigm for large-scale models,
delivering promising results in adaptation to continually changing distributions.

1 INTRODUCTION

Deep Neural Networks (DNN) have achieved remarkable performance in various computer vision
tasks, such as classification (He et al., 2016), object detection (Zhu et al., 2020), and segmentation (Xie
et al., 2021) when the test data distribution is similar to the training data. However, real-world machine
perception systems (Yang et al., 2023a; Li et al., 2023; Arnold et al., 2019) operate in non-stationary
and constantly changing environments, which contain heterogeneous and dynamic domain distribution
shifts. Applying a pre-trained model in these real-world tasks (Sakaridis et al., 2021) can lead to
significant degradation in perception ability on target domains, especially when the target distribution
changes unexpectedly over time. Therefore, the development of continual domain adaptation (DA)
methods is essential for enhancing the generalization capability of DNNs and improving the reliability
of machine perception systems in dynamic environments.

A classical source-free DA task, Test-Time Adaptation (Liang et al., 2023) (TTA), eases the distri-
bution shift between a source domain and a fixed target domain. This is typically achieved through
the utilization of self-training mechanisms (Mummadi et al., 2021; Wang et al., 2020). However,
when adapting to continually changing target domains, pseudo labels are noisy and the updated
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Figure 1: The problem and motivation. (a) Our goal is to effectively adapt the source pre-trained
model to continually changing target domains. We propose Visual Domain Adapters with high-
rank and low-rank embedding spaces to tackle the error accumulation and catastrophic forgetting
challenges during the continual adaptation process. (b) we conduct a t-SNE (Van der Maaten &
Hinton, 2008) distribution analysis for the different adapter representations across four target domains
(ACDC). The low-rank branch exhibits a consistent distribution across the target domains, suggesting
that it can effectively disregard the impact of dynamic distribution shifts. The high-rank branch
demonstrates noticeable distribution discrepancies between the various target domains, suggesting
that it primarily focuses on extracting domain-specific knowledge.

model parameters become uncertain, leading to error accumulation and catastrophic forgetting. To
tackle this problem, Continual Test-Time Adaptation (CTTA) has been proposed (Wang et al., 2022),
which addresses a sequence of different distribution shifts over time rather than a single shift as in
TTA. Furthermore, CTTA also encompasses the efficient continual adaptation of foundation models
(Kirillov et al., 2023) to continual downstream tasks or distributions (Bahng et al., 2022).

Existing CTTA works have primarily employed model-based or prompt-based approaches to extract
target domain-specific and domain-shared knowledge simultaneously. However, for model-based
methods (Wang et al., 2022; Chakrabarty et al., 2023), the noisy pseudo labels are still unreliable
and play a limited role in avoiding error accumulation, particularly in scenarios with significant
distribution gaps. Meanwhile, prompt-based methods (Gan et al., 2023; Yang et al., 2023b) face
difficulties in leveraging soft prompts with limited trainable parameters to learn long-term domain-
shared knowledge and prevent catastrophic forgetting.

To tackle these limitations and maintain the model plasticity, we design a homeostatic Visual Domain
Adapter (ViDA), shown in Fig .1 (a), which explicitly manages domain-specific and domain-shared
knowledge in the continual adaptation process. Specifically, we first carefully explore the different
domain representations of ViDAs with trainable high or low-dimension embedding space in the
middle layer. As shown in Fig. 1 (b), our observations reveal that ViDA with a low-rank embedding
space focuses on task-relevant feature representation, showing trivial distribution distance in different
domains and neglecting the influence of dynamic distribution shifts. Conversely, ViDA with a
high-rank feature concentrates more on extracting domain-specific knowledge, as evidenced by the
feature distribution in different target domains showing an obvious discrepancy. We provide a detailed
explanation of the motivations in Section 3.1 and Appendix B.

This observation motivates us to inject ViDAs into the pre-trained model, which leverages different
domain representations of high and low-dimension features to avoid error accumulation and catas-
trophic forgetting simultaneously. To better extract different domain knowledge, we further propose a
Homeostatic Knowledge Allotment (HKA) strategy to dynamically fuse the knowledge from low-rank
and high-rank ViDA. Based on the data distribution, HKA adaptively regularizes the balance of
different feature representations, including original model, domain-specific, and task-relevant features.
During inference, the low-rank and high-rank ViDAs can be projected into the pre-trained model by
re-parameterization (Ding et al., 2021), which ensures no extra parameter increase and maintains the
model plasticity. In summary, our contributions are as follows:

1) We study the different domain representations of the adapters with high-rank and low-rank features.
Then we design a Visual Domain Adapter (ViDA), explicitly managing domain-specific and task-
relevant knowledge to tackle the error accumulation and catastrophic forgetting problem, respectively.

2) Considering the various distribution shifts for each target sample, we further propose a Homeostatic
Knowledge Allotment (HKA) strategy to dynamically merge knowledge from low-rank and high-rank
ViDAs, thus enhancing ViDAs’ distinct domain representations.
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3) Our CTTA method provides a novel transfer paradigm for large-scale models, delivering promising
results in adaptation to continually changing distributions. Meanwhile, we empower the source model
with domain generalization ability through the proposed homeostatic ViDAs, achieving a significant
improvement on the unseen target domains.

2 RELATED WORK

Test-time adaptation (TTA), also referred to as source-free domain adaptation (Boudiaf et al., 2023;
Kundu et al., 2020; Yang et al., 2021), aims to adapt a source model to an unknown target domain
distribution without relying on any source domain data. Recent research has explored self-training
and entropy regularization techniques to fine-tune the source model (Liang et al., 2020; Chen et al.,
2022). Tent (Wang et al., 2021) updates the training parameters in batch normalization layers by
minimizing entropy. This approach has prompted subsequent exploration in recent works (Niu et al.,
2023; Yuan et al., 2023), which continue to investigate the robustness of normalization layers.

Continual Test-Time Adaptation (CTTA) refers to a scenario where the target domain is not static,
presenting additional challenges for traditional TTA methods. The first approach to address this
challenging task is introduced in (Wang et al., 2022), which combines bi-average pseudo labels and
stochastic weight reset. For addressing error accumulation, Ecotta (Song et al., 2023) introduces a
meta-network to regularize the outputs from both the meta-network and the frozen network. And
RMT (Döbler et al., 2023) introduces a symmetric cross-entropy loss. While these works tackle the
CTTA problem at the model level, (Gan et al., 2023; Yang et al., 2023b; Ni et al., 2023) utilize visual
domain prompts or a small fraction of parameters to extract continual target domain knowledge.

Parameter-Efficient Fine-Tuning (PEFT) has gained significant traction within the field of natural
language processing (NLP) (Hu et al., 2021; Houlsby et al., 2019; Zaken et al., 2021; Hu et al., 2022;
Gao et al., 2021; He et al., 2021; Vu et al., 2022; Qin et al., 2021). Adapter-based models, a form of
PEFT, have gained popularity in NLP. They employ bottleneck architecture adapter modules inserted
between layers in pre-trained models. Inspired by NLP, adapters in visual tasks have also received
widespread attention. In the initial phases of adapter development, residual adapter modules (Rebuffi
et al., 2017; 2018) are proposed to aid in the effective adaptation of convolutional neural networks
across multiple downstream tasks. AdaptFormer (Chen et al.) enhances the ViT (Dosovitskiy
et al., 2020) model by replacing the original multi-layer perceptron (MLP) block with a down-to-up
bottleneck module in a parallel manner. VL-Adapter (Sung et al., 2022) improves the efficiency and
performance of adapters by sharing low-dimensional layer weights to attain knowledge across tasks.

3 METHOD

Preliminary. In Continual Test-Time Adaptation (CTTA), we pre-train the model qθ(y|x) on the
source domain DS = (YS , XS) and adapt it on multiple target domains DTi

= {(XTi
)}ni=1, where

n represents the scale of the continual target datasets. The entire process can not access any source
domain data and can only access target domain data once. The distributions of the target domains (i.e.,
DT1 , DT2 , ..., DTn ) are constantly changing over time. Our goal is to adapt the pre-trained model to
target domains and maintain the perception ability of the model on the seen domain distributions.

Overall Framework. Drawing from the insight that mean teacher predictions are often more
robust than standard models (Tarvainen & Valpola, 2017b; Döbler et al., 2023), we utilize a teacher-
student framework to ensure stability during continual domain adaptation, which also presents a fair
comparison with previous CTTA works (Wang et al., 2022; Gan et al., 2022). The overall framework
and the details of our method are shown in Fig .2.

3.1 MOTIVATION

The CTTA encounters significant challenges, primarily due to error accumulation and catastrophic
forgetting (Wang et al., 2022). Meanwhile, adapters with different dimensional middle-layer features
demonstrate effectiveness in addressing these challenges. This encourages us to take a step further
and justify the principles underlying the use of low-rank adapter and high-rank adapter in the CTTA.
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Figure 2: The framework of Visual Domain Adapter (ViDA). (a) We inject low-rank and high-rank
ViDAs into either linear or Conv layers of the pre-trained source model. The student model processes
the original image, while the teacher model processes an augmented version of the same image. To
update the ViDAs, we construct a teacher-student framework and use a consistency loss (Eq. 6)
as the optimization objective. In addition, the teacher model calculates an uncertainty value (Eq.
4), reflecting the distribution shift of each sample in target domains. (b) Based on the degree of
distribution shift, we introduce the Homeostatic Knowledge Allotment (HKA) strategy, which aims
to dynamically fuse the knowledge from each ViDA with different domain representation.

Low-rank adapter. Our hypothesis regarding the effectiveness of adapters in mitigating catastrophic
forgetting is that their low-rank embedding space representation plays a crucial role. To explore this
further, we conduct a t-SNE distribution study (Van der Maaten & Hinton, 2008) on the third trans-
former block to analyze the feature distributions across four target domains (ACDC dataset (Sakaridis
et al., 2021)). The results are depicted in Fig. 1 (b). Our analysis reveals that the low-rank adapter
exhibits a relatively consistent distribution across the different target domains, suggesting that its
low-rank embedding space can effectively disregard the impact of dynamic distribution shifts and
prioritize the extraction of domain-shared knowledge.

Furthermore, we adopt the domain distance definition proposed by Ben-David (Ben-David et al.,
2006; 2010) and build upon previous domain transfer research (Ganin et al., 2016) by employing
the H-divergence metric to evaluate the domain representations of adapters across different target
domains. The discrepancy distance between two distributions DS and DTi

can be calculated as:

dH(DS , DTi
) = 2 sup

D∼H
| Pr
x∼DS

[D(x) = 1]− Pr
x∼DTi

[D(x) = 1]| (1)

, where H denotes hypothetical space and D denotes discriminator. Similar to (Ruder & Plank, 2017;
Allaway et al., 2021), we adopt the Jensen-Shannon (JS) divergence between two adjacent
domains as an approximation of H-divergence because it has been shown to successfully distinguish
domains. If the inter-domain divergence is relatively small, it can be demonstrated that the feature
representation is consistent and less influenced by cross-domain shifts (Ganin et al., 2016). We
compare the JS values obtained by using the source model alone, injecting a low-rank adapter,
injecting a high-rank adapter, and combining low- and high-rank adapters, as illustrated in Fig. 3
(a). Our results indicate that the feature representation generated by the low-rank adapter exhibits
lower divergence compared to both the original source model and the high-rank adapter, especially
when dealing with later target domains or significant domain shifts between adjacent domains (i.e.,
target domains 9-13). This result simultaneously demonstrates the low-rank adapter’s ability to learn
long-term domain-shared knowledge in a continually changing environment.

To provide clearer evidence for the intuition, we extend our analysis by incorporating the qualitative
analysis of Class Activation Mapping (CAM) on the ImageNet-to-ImageNet-C CTTA. As shown in
Fig .4, we showcase the feature representations from different target domains, including the noise
of Gaussian and Snow. We observe that the low-rank ViDA is inclined to put more weight on
the foreground sample while tending to disregard background noise shifts. This indicates that the
low-rank ViDA attends to locations with more general and task-relevant information.

High-rank adapter. Regarding the domain representation of the adapter with a high-rank feature,
we propose that it is better suited to address error accumulation in the continual adaptation process.
We verify this by t-SNE analyzing the feature distributions between different domains, as shown
in Fig. 1 (b), and observe that there is a clear discrepancy between domains. The distribution
achieves a better aggregation in a single domain. This suggests that high-ranking adapters have a

4



Published as a conference paper at ICLR 2024

(a
) I

nt
er

-D
om

ai
n

D
iv

er
ge

nc
e

(b
) I

nt
ra

-c
la

ss
D

iv
er

ge
nc

e

Domain Shifts Domains

Figure 3: c1 to c15 represent the 15 corruption domains in CIFAR10C listed in sequential order. (a)
Low-rank adapter based model effectively mitigates inter-domain divergence than the source model
across all 14 domain shifts. (b) High-rank adapter based model significantly enhances the intra-class
feature aggregation, yielding results that closely approximate those achieved by our ViDA method.
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Figure 4: The qualitative analysis of the CAM. We adopt CAM to compare the attention of the
low-rank branch, high-rank branch, and the original model during the continual adaptation process.

better grasp of target domain data distribution. Inspired by intra-class dissimilarity proposed by
k-means (MacQueen, 1967), we use normalized intra-class divergence to further verify the domain
representations of high-rank adapters in CIFAR10C. In a given domain, if the intra-class divergence
for each category is smaller, it demonstrates that the model has a better understanding of the current
distribution (Li et al., 2020). As illustrated in Fig. 3 (b), the high-rank adapter is found to drive down
the intra-class divergence within almost all domains, indicating that it can better adapt to current
domain distribution and extract domain-specific knowledge in continual target domains. For more
straightforward verification, we conduct qualitative analysis by incorporating the visualization of
CAM. Conversely, the high-rank ViDA exhibits an inverse pattern, as illustrated in Fig .4. It allocates
more attention to locations characterized by substantial domain shift, encompassing the entirety of
the input images. This behavior aligns with the high-rank branch’s tendency to fit global information
and predominantly extract domain-specific knowledge from the target domain data.

In conclusion, the structure of low-rank ViDA reduces feature redundancy, which leads to an underfit
state during CTTA. Consequently, it tends to acquire general information across continuous target
domains, extracting task-relevant knowledge to mitigate catastrophic forgetting. In contrast, high-rank
ViDA employs a higher-dimensional feature representation that better aligns with the target data
distribution, thereby focusing on learning domain-specific knowledge to prevent error accumulation.
We offer additional justifications and specifically designed experiments in Appendix B.

3.2 VISUAL DOMAIN ADAPTER

The above observation motivates us to introduce high-rank and low-rank Visual Domain Adapters
(ViDAs) into the source pre-trained model, aiming to simultaneously adapt current domain distribution
and maintain the continual domain-shared knowledge in CTTA.

The architecture. The design principle of injecting ViDAs into the pre-trained model is simple yet
effective, which is illustrated in Fig .2 (b). As we can see there are three sub-branches, the linear
(or Conv) layer in the middle branch is originated from the original network, while the right branch
and left branch are bottleneck structures and separately indicate the high-rank ViDA and low-rank
ViDA. Specifically, the right branch (high-rank) contains an up-projection layer with parameters
Wh

up ∈ Rd×dh , a down-projection layer with parameters Wh
down ∈ Rdh×d, where dh (e.g., dh = 128)

is the middle dimension of high-rank feature and satisfies dh ≥ d. There is not any non-linear layer
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in the ViDA. And we utilize the linear layer as the projection layer when the original model is
transformer architecture and adopt 1 × 1 Conv as the projection layer when the original model is
a convolution network. In contrast, the left low-rank branch first injects a down-projection layer
with parameters W l

down ∈ Rd×dl

, then place an up-projection layer with parameters W l
up ∈ Rdl×d,

where dl (e.g., dl = 1) stand for the middle dimension of the low-rank feature (dl ≪ d). For a input
feature f , the produced features of high-rank (fh) and low-rank ViDA (fl) are formulated as:

fh = Wh
down · (Wh

up · f); fl = W l
up · (W l

down · f) (2)
The two-branch bottleneck is connected to the output feature of the original network (fo) through the
residual connection via scale factors (λh and λl). The fusion knowledge (ff ) can be described as:

ff = fo + λh × fh + λl × fl (3)
The domain knowledge scale factors (λh and λl) are adaptively obtained through the homeostatic
knowledge allotment strategy, which is shown in Section 3.3. During inference, the different domain-
represented ViDAs (linear relation) can be projected into the pre-trained model by re-parameterization
(Ding et al., 2021), which ensures no extra model parameter increase of the original model.

3.3 HOMEOSTATIC KNOWLEDGE ALLOTMENT

Method motivation. In CTTA, target domain data can only be accessed once and exhibits different
distribution shifts, which underscores the importance of efficient domain transfer. Moreover, to
effectively address error accumulation and catastrophic forgetting, it becomes necessary to extract
different knowledge and manage it separately. Although the specialized structures of low-rank and
high-rank ViDAs contribute to distinct domain representation learning, the continual adaptation
process also needs to regularize the knowledge fusion weight to ensure the efficient capture of
relevant domain-specific knowledge without compromising the retention of long-term domain-shared
knowledge. HKA design. As depicted in Fig .2 (b), we draw inspiration from (Ovadia et al., 2019;
Roy et al., 2022) and introduce an uncertainty value to quantify the degree of distribution shift
for each sample. While the confidence score is a common measure to assess prediction reliability,
it tends to fluctuate irregularly and becomes unreliable in continual changing environment. To
address this limitation, we employ the MC Dropout technique (Gal & Ghahramani, 2016) on linear
layers, enabling multiple forward propagations to obtain m sets of probabilities for each sample.
Subsequently, we calculate the uncertainty value U(x) for a given input x, which are formulated as:

U(x) =

(
1

m

m∑
i=1

∥pi(y|x)− µ∥2
) 1

2

(4)

Where pi(y|x) is the predicted probability of the input x in the ith forward propagation and µ is the
average value of m times prediction. To dynamically adjust the scale factors (λh and λl) based on
the uncertainty score, the formulation is as follows:{

λh = 1 + U(x) λl = 1− U(x), U(x) ≥ Θ
λh = 1− U(x) λl = 1 + U(x), U(x) < Θ

(5)

The threshold value of uncertainty is denoted as Θ, where Θ = 0.2. To realize the homeostasis of
different domain knowledge, when facing the sample with a large uncertainty value, we adaptively
increase the fusion weight of domain-specific knowledge (λh). Conversely, if the input has a low
uncertainty value, the fusion weight of domain-shared knowledge (λl) will be increased.

3.4 OPTIMIZATION OBJECTIVE

Following previous CTTA work (Wang et al., 2022), we leverage the teacher model T to generate
the pseudo labels ỹ for updating ViDAs. And the consistency loss Lce is the optimization objective.

Lce(x) = − 1

C

C∑
c

ỹ(c) log ŷ(c) (6)

Where ŷ is the output of our student model S , C means the number of categories. Same as previous
works(Gan et al., 2023), we load the source pre-trained parameters to initialize the weight of both
models and adopt the exponential moving average (EMA) to update the teacher model with ViDAs.

T t = αT t−1 + (1− α)St (7)
Where t is the time step. And we set the updating weight α = 0.999 (Tarvainen & Valpola, 2017a).
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4 EXPERIMENT

In Section 4.2 and 4.3, we compare our method with other SOTA methods on classification and
semantic segmentation CTTA. In Section 4.4, we employ the foundation models (DINOv2 (Kirillov
et al., 2023) and SAM (Oquab et al., 2023)) as the backbone and evaluate the efficacy of our method.
In Section 4.5, we further evaluate the domain generalization ability of the proposed method on unseen
target domains. Comprehensive ablation studies are conducted in Section 4.6. More quantitative
comparisons and qualitative analyses are shown in the Appendix C and D, respectively.

4.1 TASK SETTINGS AND DATASETS

Dataset. We evaluate our method on three classification CTTA benchmarks, including CIFAR10-
to-CIFAR10C, CIFAR100-to-CIFAR100C (Krizhevsky et al., 2009) and ImageNet-to-ImageNet-C
(Hendrycks & Dietterich, 2019). For segmentation CTTA (Yang et al., 2023b), we evaluate our
method on Cityscapes-to-ACDC, where the Cityscapes dataset (Cordts et al., 2016) serves as the
source domain, and the ACDC dataset (Sakaridis et al., 2021) represents the target domains.

CTTA Task setting. Following (Wang et al., 2022), in classification CTTA tasks, we sequentially
adapt the pre-trained source model to the fifteen target domains with the largest corruption severity
(level 5). The online prediction results were evaluated immediately after encountering the input
data. Regarding segmentation CTTA (Yang et al., 2023b), the source model is an off-the-shelf
pre-trained on the Cityscapes dataset. As for the continual target domains, we utilize the ACDC
dataset, which consists of images collected in four unseen visual conditions: Fog, Night, Rain, and
Snow. To simulate continual environmental changes in real-life scenarios, we cyclically repeat the
same sequence of target domains (Fog→Night→Rain→Snow) multiple times.

Implementation Details. In our CTTA experiments, we follow the implementation details specified
in previous works (Wang et al., 2022) to ensure consistency and comparability. We adopt ViT-base
(Dosovitskiy et al., 2020) and ResNet (He et al., 2016) as the backbone in the classification CTTA. In
the case of ViT-base, we resize the input images to 224x224, while maintaining the original image
resolution for other backbones. For segmentation CTTA, we adopt the pre-trained Segformer-B5
model (Xie et al., 2021) as the source model. We down-sample the input size from 1920x1080 to
960x540 for target domain data. The optimizer is performed using Adam (Kingma & Ba, 2014)
with (β1, β2) = (0.9, 0.999). We set the learning rates to specific values for each task: 1e-4 for
CIFAR10C, 5e-7 for ImageNetC, and 3e-4 for ACDC. To initialize our visual domain adapters, we
train adapters for several iterations on classification datasets (e.g., ImageNet). We apply a range of
image resolution scale factors [0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0] for the augmentation method and
construct the teacher model inputs (Wang et al., 2022).

4.2 THE EFFECTIVENESS ON CLASSIFICATION CTTA

Table 1: Classification error rate(%) for ImageNet-to-ImageNet-C online CTTA task. Gain(%)
represents the percentage of improvement in model accuracy compared with the source method.
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eg Mean↓ Gain

ResNet50

Source (He et al., 2015) 97.8 97.1 98.2 81.7 89.8 85.2 78 83.5 77.1 75.9 41.3 94.5 82.5 79.3 68.6 82 0.0
TENT (Wang et al., 2021) 81.6 74.6 72.7 77.6 73.8 65.5 55.3 61.6 63 51.7 38.2 72.1 50.8 47.4 53.3 62.6 +19.4
CoTTA (Wang et al., 2022) 84.7 82.1 80.6 81.3 79.0 68.6 57.5 60.3 60.5 48.3 36.6 66.1 47.2 41.2 46.0 62.7 +19.3
EcoTTA (Song et al., 2023) - - - - - - - - - - - - - - - 63.4 +18.6

Ours Proposed 79.3 74.7 73.1 76.9 74.5 65.0 56.4 59.8 62.6 49.6 38.2 66.8 49.6 43.1 46.2 61.2 +20.8

ViT-base

Source (Dosovitskiy et al., 2020) 53.0 51.8 52.1 68.5 78.8 58.5 63.3 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2 55.8 0.0
Pseudo (Lee, 2013) 45.2 40.4 41.6 51.3 53.9 45.6 47.7 40.4 45.7 93.8 98.5 99.9 99.9 98.9 99.6 61.2 -5.4
TENT (Wang et al., 2021) 52.2 48.9 49.2 65.8 73 54.5 58.4 44.0 47.7 50.3 23.9 72.8 55.7 34.4 33.9 51.0 +4.8
CoTTA (Wang et al., 2022) 52.9 51.6 51.4 68.3 78.1 57.1 62.0 48.2 52.7 55.3 25.9 90.0 56.4 36.4 35.2 54.8 +1.0

VDP (Gan et al., 2023) 52.7 51.6 50.1 58.1 70.2 56.1 58.1 42.1 46.1 45.8 23.6 70.4 54.9 34.5 36.1 50.0 +5.8
Ours Proposed 47.7 42.5 42.9 52.2 56.9 45.5 48.9 38.9 42.7 40.7 24.3 52.8 49.1 33.5 33.1 43.4 +12.4

ImageNet-to-ImageNet-C. Given the source model pre-trained on ImageNet, we conduct CTTA
on ImageNet-C, which consists of fifteen corruption types that occur sequentially during the test
time. In Table 1, methods that utilize the ViT backbone achieve lower classification errors compared
to those using the ResNet50 backbone, demonstrating ViT’s superior generalization capability in
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Table 2: Average error rate (%) for the stan-
dard CIFAR10-to-CIAFAR10C and CIFAR100-
to-CIAFAR100C CTTA. All results are evalu-
ated on the ViT-base, and the fine-grained perfor-
mances are shown in Appendix E.

Target Method Source Tent CoTTA VDP Ours

Cifar10C Mean↓ 28.2 23.5 24.6 24.1 20.7
Gain↑ 0.0 +4.7 +3.6 +4.1 +7.5

Cifar100C Mean↓ 35.4 32.1 34.8 35.0 27.3
Gain↑ 0.0 +3.3 +0.7 +0.4 +8.1

Table 3: Average error rate (%) for the CIFAR10-
to-CIFAR10C CTTA task. All results are eval-
uated on the ViT-Base, which uses the pre-
trained encoder parameter of foundation large-
scale models (DINOv2 and SAM).

Backbone Method Source Tent CoTTA Ours

DINOv2 Mean↓ 25.0 21.7 29.3 20.2
Gain↑ 0.0 +3.2 −4.3 +4.8

SAM Mean↓ 39.3 37.5 39.4 34.1
Gain↑ 0.0 +1.8 −0.1 +5.2

the continually changing environment. For ViT-base, the average classification error is up to 55.8%
when we directly test the source model on target domains. Our method can outperform all previous
methods, achieving a 12.4% and 6.6% improvement over the source model and previous SOTA
method, respectively. Moreover, our method showcases remarkable performance across the majority
of corruption types, highlighting its effective mitigation of error accumulation and catastrophic
forgetting. In addition, we conduct a 10-round CTTA experiment in Appendix B.1, which repeat
10 rounds of 15 corruption sequences in ImageNet-C. The performance of our method consistently
improves over time, demonstrating its enduring robustness in the long-term adaptation process.

To further validate the effectiveness of our method, we conduct experiments on CIFAR10-to-
CIFAR10C and CIFAR100-to-CIFAR100C. As illustrated in Table 2, in CIFAR10C, our approach
achieved a 2.8% improvement compared to the previous SOTA model. We extend our evaluation to
CIFAR100C, which comprises a larger number of categories in each domain. Our approach surpasses
all previous methods, which show the same trend as the above CTTA experiments. Therefore,
the results prove that our method mitigates the challenges posed by continual distribution shifts,
regardless of the number of categories present in each domain. In addition, we provide supplementary
CTTA experiments utilizing convolutional backbones in the Appendix C.5.

4.3 THE EFFECTIVENESS ON SEGMENTATION CTTA

Table 4: Performance comparison for Cityscape-to-ACDC CTTA. We sequentially repeat the
same sequence of target domains three times. Mean is the average score of mIoU.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 2 3 Mean↑ GainMethod REF Fog Night Rain Snow Mean↑ Fog Night Rain Snow Mean↑ Fog Night Rain Snow Mean↑

Source (Xie et al., 2021) 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 56.7 /
TENT (Wang et al., 2020) 69.0 40.2 60.1 57.3 56.7 68.3 39.0 60.1 56.3 55.9 67.5 37.8 59.6 55.0 55.0 55.7 -1.0
CoTTA (Wang et al., 2022) 70.9 41.2 62.4 59.7 58.6 70.9 41.1 62.6 59.7 58.6 70.9 41.0 62.7 59.7 58.6 58.6 +1.9
DePT (Gao et al., 2022) 71.0 40.8 58.2 56.8 56.5 68.2 40.0 55.4 53.7 54.3 66.4 38.0 47.3 47.2 49.7 53.4 -3.3
VDP (Gan et al., 2023) 70.5 41.1 62.1 59.5 58.3 70.4 41.1 62.2 59.4 58.2 70.4 41.0 62.2 59.4 58.2 58.2 +1.5
Ours Proposed 71.6 43.2 66.0 63.4 61.1 73.2 44.5 67.0 63.9 62.2 73.2 44.6 67.2 64.2 62.3 61.9 +5.2

Cityscapes-to-ACDC. As presented in Table 4, we observed a gradual decrease in the mIoUs of
TENT and DePT over time, indicating the occurrence of catastrophic forgetting. In contrast, our
method has a continual improvement of average mIoU (61.1→62.2→62.3) when the same sequence
of target domains is repeated. Significantly, the proposed method surpasses the previous SOTA
CTTA method (Wang et al., 2022) by achieving a 3.3% increase in mIoU. This notable improvement
showcases our method’s ability to adapt continuously to dynamic target domains in the pixel-level
task. The 10 rounds semantic segmentation CTTA experiments are shown in Appendix C.6.

4.4 CONTINUAL ADAPTING FOR FOUNDATION MODELS

Foundation models (Bommasani et al., 2021) are trained on large-scale datasets, endowing them with
powerful generalization capabilities and the ability to capture representations of common features.
However, performing full fine-tuning on the foundation model is time-consuming and economically
impractical. Hence, our adaptation method proves valuable by enhancing the continual transfer
performance of foundation models. As indicated in Table 3, we introduce foundation models
as the pre-trained model and adapt them to continual target domains (CIFAR10C). Our approach
achieved a performance improvement of 4.8% on the representative image-level foundation model
DINOv2 (Oquab et al., 2023) and 5.2% on pixel-level foundation model SAM (Kirillov et al., 2023).
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Table 5: The domain generalization compar-
isons on ImageNet-C. Results are evaluated on
ViT-base. Mean and Gain(%) represent the per-
formance on unseen target domains.

Directly test on unseen domains Unseen
Method bri. contrast elastic pixelate jpeg Mean↓
Source 26.4 91.4 57.5 38.0 36.2 49.9
Tent 25.8 91.9 57.0 37.2 35.7 49.5
CoTTA 25.3 88.1 55.7 36.4 34.6 48.0
Ours 24.6 68.2 49.8 34.7 34.1 42.3

Table 6: Average error rate (%) for the
ImageNet-to-ImageNet-C. V iDAh and V iDAl

represent the high-rank and low-rank ViDAs.
IHKA means inversed HKA strategy.

V iDAh V iDAl HKA IHKA Mean↓
Ex1 - - - - 55.8
Ex2 ✓ - - - 50.7
Ex3 - ✓ - - 51.2
Ex4 ✓ ✓ - - 45.6
Ex5 ✓ ✓ ✓ - 43.4
Ex6 ✓ ✓ - ✓ 46.3

Our method consistently and reliably improves the performance of the foundation model on the
continually changing environment. Note that, we only use the pre-trained encoder of SAM and add
a classification head, which is fine-tuned on the source domain. Our approach empowers the large-
scale model with the capability of continuous transfer learning, without undermining its plasticity.
Additional CTTA experiments of foundation models are shown in Appendix C.1 and C.2

4.5 DOMAIN GENERALIZATION ON UNSEEN CONTINUAL DOMAINS

To investigate the domain generalization (DG) ability of our method, we follow the leave-one-domain-
out rule (Zhou et al., 2021; Li et al., 2017) to leverage 10/15 domains of ImageNet-C as source
domains for model training while the rest (5/15 domains) are treated as target domains without any
form of adaptation. Specifically, we first use our proposed method to continually adapt the source
pre-trained model to 10/15 domains of ImageNet-C without any supervision. Then we directly test
on the 5/15 unseen domains. Surprisingly, our method reduces 7.6% on the average error on unseen
domains (Table 5), which has a significant improvement over other methods. The promising results
demonstrate that our method possesses DG ability by effectively extracting domain-shared knowledge.
More DG experiments are provided in the supplementary Appendix C.3.

4.6 ABLATION STUDY

Effectiveness of each component. We conduct the ablation study on ImageNet-to-ImageNet-C
CTTA scenario and evaluate the contribution of each component in our method, including high-rank
ViDA (V iDAh), low-rank ViDA (V iDAl), and Homeostatic Knowledge Allotment (HKA) strategy.
As shown in Table 6 (Ex2), by introducing the high-rank ViDA, the error decreases by 5.1% compared
to Ex1, demonstrating that high-rank features can extract more domain-specific knowledge for
adaptation in target domains. As shown in Ex3, low-rank ViDA gains 4.6% improvement compared
to Ex1. The result proves that the domain-share knowledge extracted from low-rank feature can also
improve the classification ability on continual target domains. Ex4 has a remarkable improvement
of 10.2% overall, demonstrating that the two types of ViDA can compensate for each other in the
continual adaptation process. Ex5 achieves a 12.4% improvement, demonstrating the effectiveness of
the HKA strategy in enhancing the distinct domain representations of each type of ViDA. To further
assess the effectiveness of HKA, we perform an additional experiment, denoted as Ex6, by inverting
the scale factors within the HKA strategy. Specifically, for samples exhibiting high uncertainty, we
reduced λh while increase λl. This results in a marginal increase of 0.7% error compared to Ex4 and
2.9% error compared to Ex5. The additional ablation studies are shown in Appendix C.4.

5 CONCLUSION

In this paper, we propose a homeostatic Visual Domain Adapter (ViDA) to address error accumulation
and catastrophic forgetting problems in Continual Test-Time Adaptation (CTTA) tasks. And we
investigate that the low-rank ViDA can disregard the impact of dynamic distribution shifts and
prioritize the extraction of domain-shared knowledge, and the high-rank ViDA can extract more
reliable domain-specific knowledge. Meanwhile, we further propose a Homeostatic Knowledge
Allotment (HKA) strategy to dynamically fuse the knowledge from low-rank and high-rank ViDAs,
thus enhancing ViDAs’ distinct domain representations.
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A APPENDIX

The supplementary materials presented in this paper offer a comprehensive quantitative and qualitative
analysis of the proposed method. In Appendix B, we provide additional empirical observations and
justifications for our motivation, including specifically designed quantitative analysis, qualitative
analysis of the distribution, and justification for distribution divergence. Additionally, we present
extra continual adaptation experiments for Foundation Models in Appendices C.1 and C.2, which are
conducted on ImageNet-to-ImageNet-C and Cityscape-to-ACDC scenarios. To assess the domain
generalization ability of our method, we conducted additional experiments directly testing a varying
number of unseen domains in Appendix C.3. The ablation study on middle-layer dimension is
described in Appendix C.4. Furthermore, Appendix C.5 presents additional CTTA classification
experiments utilizing the convolutional backbone, while Appendix C.6 outlines 10 rounds of semantic
segmentation CTTA experiments. We provide an additional qualitative analysis in Appendix D.
Moreover, we extend the classification results of our submission to include fine-grained performance
in Appendix E, showcasing the error rates across fifteen corruption types.

B SUPPLEMENTARY JUSTIFICATIONS FOR MOTIVATION

The study of Continual Test-Time Adaptation (CTTA) poses significant challenges, particularly
in addressing error accumulation and catastrophic forgetting (Wang et al., 2022; Gan et al., 2023).
Notably, the use of adapters with low-rank and high-rank features have demonstrated promising results
in mitigating these challenges in our submission. In this section, we aim to provide comprehensive
implementation details regarding the evidence supporting our motivation. Furthermore, we have
introduced two new specially designed quantitative experiments in Section B.1. The first one is a
10-round CTTA experiment aimed at investigating the different domain representations of low-rank
and high-rank ViDA during the long-term adaptation process. The second experiment explores the
performance when all adapters adopt the same structures, such as using two high-rank adapters or
two low-rank adapters. This experiment is conducted to validate that low-rank ViDA and high-rank
ViDA complement each other in adapting to continually changing environments.

B.1 SPECIALLY DESIGNED QUANTITATIVE ANALYSIS

To provide stronger evidence for our assumption, we have developed two evaluation approaches for
both low-rank and high-rank adapters, which directly reflect their ability to extract domain-shared
and domain-specific knowledge on ImageNet-to-ImageNet-C.

First, as shown in Figure 5 (b), we execute a 10 rounds CTTA experiment on ImageNet-to-ImageNet-
C. In this comprehensive experiment, we simulate a long-term adaptation scenario by repeating 10
rounds of 15 corruption sequences in the ImageNet-C. Remarkably, the high-rank ViDA achieves
competitive results over other methods during the initial 1 to 3 rounds. This result demonstrates
the high-rank feature’s capacity to efficiently learn target domain-specific knowledge. However, an
increment in error rates becomes obvious during the later rounds (rounds 5 to 10). The results validate
the potential for encountering catastrophic forgetting when focusing exclusively on domain-specific
knowledge. In contrast, the performance of the low-rank ViDA remains consistently robust throughout
the continual adaptation process, verifying it concentrates more on extracting task-relevant knowledge
and effectively prevents the catastrophic forgetting problem. And our proposed method consistently
improves over time, demonstrating its robustness in the long-term adaptation process.

Second, we execute an ImageNet-to-ImageNet-C CTTA experiment using a combination of two high-
rank adapters or two low-rank adapters, as shown in Table 7. To ensure fairness, we conducted these
experiments without implementing the homeostatic knowledge allotment (HKA) strategy. Notably,
the two low-rank adapters (Ex2) demonstrated consistently lower long-term error rates compared
to the source model and two high-rank adapters. The above results can be attributed to the fact that
the two low-rank ViDAs tend to learn general information and domain-shared knowledge during
continual adaptation. However, our method outperforms the two low-rank adapters across 14 out of 15
corruption types. This indicates that solely relying on low-rank adapters without the involvement of
high-rank adapters is insufficient to fit target domains and match their data distribution. On the other
hand, the performance of the two high-rank adapters initially surpasses our approach (Ex4) in the early
stages, covering the first few target domains. Nevertheless, a noticeable performance degradation
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Table 7: Classification error rate(%) for ImageNet-to-ImageNet-C online CTTA task. Gain(%)
represents the percentage of improvement in model accuracy compared with the source method. 2×
means using two same structures of adapters.
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Ex1 Source 53.0 51.8 52.1 68.5 78.8 58.5 63.3 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2 55.8
Ex2 2×Low-rank 51.2 48.3 47.8 56.9 66.5 49.3 54.4 42.1 47.0 45.2 23.2 65.6 52.0 33.4 33.5 47.7
Ex3 2×High-rank 50.1 47.9 45.3 54.8 66.7 51.4 56.1 44.0 49.2 48.3 25.7 69.7 56.3 34.6 33.7 48.9
Ex4 Ours 50.3 45.9 45.5 55.1 62.3 46.6 51.7 39.7 44.0 42.2 23.0 62.4 50.1 33.4 32.5 45.6

(a) t-SNE distribution analysis (b) 10 Rounds CTTA on ImageNet-to-ImageNet-C
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Figure 5: (a) We conduct more t-SNE results for the low-rank adapter and high-rank adapter on the
ACDC dataset. The first to third columns illustrate the feature distributions of transformer blocks 1,
2, and 4, respectively. (b) The 10 rounds CTTA experiment on ImageNet-to-ImageNet-C, repeating
10 rounds of 15 corruption sequences.

becomes apparent in later target domains. This observation underscores a crucial finding: while
increasing the number of high-rank ViDAs might enhance domain-specific knowledge acquisition
during the initial phases of CTTA, it simultaneously exacerbates catastrophic forgetting throughout
the entire adaptation process. In contrast, the fusion of both low-rank and high-rank ViDAs (Ex4)
yields the most substantial improvement when compared to other configurations. Our collaborative
approach leverages the distinct domain representations of these adapters to compensate for each
other’s advantages and achieve a more robust and effective continual adaptation.

B.2 ADDITIONAL DISTRIBUTION QUALITATIVE ANALYSIS

We employed t-distributed stochastic neighbor embedding (t-SNE) (Van der Maaten & Hinton, 2008)
to visualize the distribution of adapters across four continual target domains. This visualization
was specifically conducted in the context of the Cityscapes-to-ACDC experiment, representing
a scenario with continually changing real-world environments.In our submission, we perform t-
SNE analysis on the outputs of the third transformer block in the Segformer-B5 model (Xie et al.,
2021). The objective was to qualitatively compare the feature distributions of ViDAs with different
dimension features. Furthermore, our findings revealed that the qualitative results obtained from
different layers (i.e., transformer block 1, 2, and 4) of the Segformer-B5 model exhibited similar
distribution representations. As illustrated in Figure 5 (a), there is a noticeable distribution gap
due to the significant domain shift between the night domain and other domains. Interestingly, the
low-rank ViDA effectively reduces the distribution distance across different target domains, indicating
its focus on extracting task-relevant knowledge. On the other hand, the high-rank ViDA exhibits
notable distribution discrepancies among the various target domains, indicating its focus on extracting
domain-specific knowledge.
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B.3 DISTRIBUTION DISTANCE

To provide clearer evidence for our assumption, we directly calculate the distribution distance to
represent different domain representation of adapters. We adopt the domain distance definition
proposed by Ben-David (Ben-David et al., 2006; 2010) and build upon previous domain transfer
research (Ganin et al., 2016) by employing the H-divergence metric to further evaluate the domain
representations of adapters across different target domains. H-divergence between DS and DTi can
be calculated as

dH(DS , DTi
) = 2 sup

D∼H
| Pr
x∼DS

[D(x) = 1]− Pr
x∼DTi

[D(x) = 1]| (8)

, where H denotes hypothetical space and D denotes discriminator. Similar to (Ruder & Plank, 2017;
Allaway et al., 2021), we adopt the Jensen-Shannon (JS) divergence between two adjacent
domains as an approximation of H-divergence because it has been shown to successfully distinguish
domains. If the inter-domain divergence is relatively small, it can be demonstrated that the feature
representation is consistent and less influenced by cross-domain shifts (Ganin et al., 2016).

JS(PDS
||PDTi

) =
1

2
KL(PDS

||
PDS

+ PDTi

2
) +

1

2
KL(PDTi

||
PDS

+ PDTi

2
) (9)

Where Kullback-Leibler (KL) divergence between two domain is

KL(P1||P2) =

n∑
i=0

P1(xi)log(
P1(xi)

P2(xi)
) (10)

Where P denotes probability distribution of model output features. We split the output feature space
into mutually disjoint intervals xi. n range from 0 to 1000. To investigate the effectiveness of
adapters in adapting to continual target domains, we compare the JS values obtained by using the
source model alone, injecting low-rank adapter, injecting high-rank adapter, and combining low-high
adapters, as illustrated in Figure 3(a) of our submission. The low-rank adapter exhibits notably lower
divergence values compared to the others, demonstrating robust task-relevant feature representation
in various cross-domain phases. For high-rank adapter, we use normalized intra-class divergence to
further verify the domain representations of high-rank adapters in CIFAR10C, which is inspired by
intra-cluster dissimilarity proposed by k-means (MacQueen, 1967). We first calculate the Euclidean
distance clustering center for each category:

µ =
1

|C|
∑
ei∼C

ei (11)

, where ei stands for output feature in class C. Then following (MacQueen, 1967), we introduce
normalized intra-class divergence E by

E = ϕ(
1

|C|
∑
ei∼C

||ei − µ||22) (12)

ϕ(·) denotes for normlization function. In a given domain, if the intra-class divergence for each
category is smaller, it demonstrates that the model has a better understanding of the current distribution
(Li et al., 2020). As illustrated in Figure 3(b) of the submission, the high-rank adapter is found to
drive down divergence within almost all domains and can better extract domain-specific knowledge
in target domains.

C ADDITIONAL EXPERIMENT

C.1 ADDITIONAL CLASSIFICATION CTTA EXPERIMENTS FOR FOUNDATION MODELS

To demonstrate the effectiveness of our proposed method in enhancing the continual adaptation
ability of foundation models such as DINOv2 (Oquab et al., 2023) and SAM (Kirillov et al., 2023),
we conduct additional experiments on a more extensive dataset, namely ImagNet-to-ImageNet-C.
Our approach involve loading the weight parameters of the foundation model and fine-tuning it
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Table 8: Average error rate (%) for the ImageNet-to-ImageNet-C CTTA task. All results are evaluated
on the ViT-Base, which uses the pre-trained encoder parameter of DINOv2 and SAM.

Backbone Method REF
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DINOv2

Source 52.3 50.5 51.2 57.3 83.8 60.1 62.6 47.1 56.9 58.1 22.5 88.4 60.3 32.4 35.0 54.6 0.0
Tent (Wang et al., 2021) ICLR2021 51.7 43.6 50.4 56.2 74.1 51.7 67.2 46.9 53.2 50.1 25.2 69.6 58.0 29.5 39.4 51.1 +3.5

CoTTA (Wang et al., 2022) CVPR2022 51.4 62.1 50.4 78.3 75.2 62.8 60.3 48.4 59.0 58.8 31.6 90.7 49.2 39.1 36.5 56.9 -2.3
Ours Proposed 49.0 49.8 50.7 61.4 60.2 49.7 42.6 47.1 51.9 45.3 27.1 49.7 47.4 32.0 29.4 46.2 +8.4

SAM

Source 67.9 62.1 51.6 69.7 92.6 65.4 59.8 53.9 61.2 64.1 39.0 91.6 60.1 47.3 67.0 63.6 0.0
Tent (Wang et al., 2021) ICLR2021 67.2 59.1 48.8 56.2 72.5 59.4 61.0 49.1 57.9 63.7 33.8 77.0 51.4 39.5 55.2 55.5 +8.1

CoTTA (Wang et al., 2022) CVPR2022 68.1 64.5 50.4 67.1 80.1 68.9 67.0 63.1 69.5 61.4 40.6 88.2 58.3 43.5 68.4 63.9 -0.3
Ours Proposed 59.9 55.7 40.2 84.3 49.6 59.7 59.0 47.8 48.3 57.4 26.6 71.8 42.9 41.7 50.3 53.0 +10.6

on ImagNet, thus constructing our source model. It is important to note that we solely utilize
the pre-trained encoder of SAM and incorporated a classification head, which is fine-tuned on the
source domain. Subsequently, we adapt the source model to continual target domains (ImageNet-C)
comprising fifteen corruption types. The results, as depicted in Table 8, demonstrate that our approach
achieved a significant performance improvement of 8.4% on the representative image-level foundation
model DINOv2 and 10.6% on the pixel-level foundation model SAM. These outcomes underscore the
effectiveness of our method for large-scale models, consistently and reliably improving performance
across target domains. Combining Table 1-3 from the submission, we were surprised to discover a
significant decrease in model performance for the classification CTTA task when using the pre-trained
encoder parameters of SAM. As SAM is a pixel-level foundation model, we then attempted to
investigate the effectiveness of SAM’s pretrained parameters in the segmentation CTTA task.

C.2 ADDITIONAL SEGMENTATION CTTA EXPERIMENTS FOR FOUNDATION MODELS

As shown in Table 9, we conducted segmentation CTTA using SAM’s pre-trained parameters on the
Cityscapes-to-ACDC scenario. However, it’s worth noting that the Segformer model (Xie et al., 2021),
which we employed in our main experiments, does not incorporate positional encoding. Therefore,
we adopted the SETR model (Zheng et al., 2021) as our new baseline for loading SAM’s pre-trained
parameters. As shown in the table, our approach with SAM’s pre-trained parameters outperforms
others on the ACDC target domains. This aligns with the assumption that SAM, being a pixel-level
foundational model, excels in capturing fine-grained feature representations in dense CTTA tasks.

Table 9: Performance comparison for Cityscape-to-ACDC CTTA. All results are evaluated on the
SETR, which uses the pre-trained parameter of source model or SAM.

Method Pre-trained Fog Night Rain Snow Mean mIoU
Source (Xie et al., 2021) Source model 72.6 43.1 63.0 64.3 60.8
Source (Xie et al., 2021) SAM (Kirillov et al., 2023) 74.8 44.1 66.7 66.6 63.0

CoTTA (Wang et al., 2022) SAM (Kirillov et al., 2023) 75.4 45.9 67.3 68.7 64.3
Ours SAM (Kirillov et al., 2023) 76.5 47.2 68.1 70.7 65.6

C.3 DOMAIN GENERALIZATION ON A DIFFERENT NUMBER OF UNSEEN TARGET DOMAINS

Similar to our previous submission, we follow the leave-one-domain-out principle (Zhou et al., 2021;
Li et al., 2017), where we utilize a subset of ImageNet-C domains as new source domains for model
training, while leaving the remaining domains as target domains without any adaptation. However, in
contrast to previous domain generalization experiments, we adopt an unsupervised continual test-time
adaptation (CTTA) approach for training the model on these unlabeled source domains. We solely
utilize the ImageNet pre-trained parameters as the initial weights of the model. In the supplementary
material, we utilize 5 out of 15 and 7 out of 15 domains from ImageNet-C as the source domains,
leaving the remaining 10 out of 15 and 8 out of 15 domains as unseen target domains. Surprisingly,
the results presented in Table 10 and 11 demonstrate that our method achieves a reduction of 9.6% and
9.1% in the average error on these unseen domains, respectively. These promising outcomes validate
the DG ability of our method, as it effectively extracts domain-shared knowledge and provides a new
perspective for enhancing DG performance within an unsupervised paradigm.
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Table 10: The domain generalization experiments on ImageNet-C, where the source model was
continually adapted on the first 5 domains and directly tested on 10 unseen domains. The evaluation
of the results was conducted using ViT-base.

Directly test on 10 unseen domains Unseen
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Source 58.5 63.3 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2 53.3
Tent (Wang et al., 2021) 56.0 61.3 45.7 49.6 56.6 24.8 94.0 55.6 37.1 35.1 51.6
CoTTA (Wang et al., 2022) 57.3 62.1 49.1 52.0 57.1 26.4 91.9 57.1 37.6 35.3 52.6
Ours 46.4 52.7 39.8 43.7 42.2 23.5 71.5 49.6 33.9 33.3 43.7

Table 11: The domain generalization experiments on ImageNet-C, where the source model was
continually adapted on the first 7 domains and directly tested on 8 unseen domains. The evaluation of
the results was conducted using ViT-base.

Directly test on 8 unseen domains Unseen

Method
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Source 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2 51.4
Tent (Wang et al., 2021) 44.3 48.8 51.8 24.9 83.7 55.2 35.4 34.7 47.4
CoTTA (Wang et al., 2022) 48.8 52.2 56.7 26.1 91.1 57.0 37.3 35.3 50.6
Ours 39.6 43.7 41.7 23.7 63.7 51.7 33.3 33.6 42.3

C.4 ADDITIONAL ABLATION STUDY

How does the middle-layer dimension influence the performance?
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Figure 6: The middle-layer dimension influence of the performance

According to Figure 6, we observe that as the dimension decreases, the error rate concurrently drops.
This trend suggests that lower-dimension middle layer more effectively extract the domain-shared
knowledge, leading to an improved model performance. However, an opposite trend emerges when
dimension surpasses 16, with performance enhancements accompanying increased dimension. This
correlation implies that middle layers with a higher dimension excel in extracting domain-specific
knowledge. And we find that when the dimension is larger than 128, the performance improvement
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is limited but brings a larger number of parameters. Therefore, we set the dimension of the high-
dimension middle layer to 128 in our study.

How do different adapter initialization methods impact ViDA performance?

Pre-training the low-rank and high-rank ViDAs using source data is an unnecessary step and does
not compromise the effectiveness of our approach. ViDAs can demonstrate comparable CTTA
performance when they have a relatively stable initial parameter. As illustrated in the Table 12, we
conduct an additional experiment on the Cityscape-to-ACDC scenario. ViDAs with random initial
parameters and ViDAs with parameters pre-trained on ImageNet achieved 60.5 and 61.4 mIoU in
target domains, respectively, exhibiting notable improvements compared to previous methods.

Table 12: The ablation study examines adapter initialization methods on the Cityscape-to-ACDC
CTTA scenario.

Adapter pre-train Fog Night Rain Snow Mean (IoU)

Source - 69.1 40.3 59.7 57.8 56.7
CoTTA - 70.9 41.2 62.4 59.7 58.6

Ours Source 71.6 43.2 66.0 63.4 61.1
Ours Random initial 71.6 43.6 64.9 61.9 60.5
Ours ImageNet 71.6 44.3 66.0 63.5 61.4

C.5 EXPERIMENTS ON CLASSIFICATION CTTA WITH CONVOLUTIONAL BACKBONES

Table 13: Classification error rate(%) for standard CIFAR10-to-CIAFAR10C online CTTA task.
Results are evaluated on WideResNet-28. Mean is the average value of the error rate. Gain(%)
represents the percentage of improvement in model accuracy compared with the source method.

Method REF Conference Mean↓ Gain

Source (Zagoruyko & Komodakis, 2016) BMVC2016 43.5 0.0
BN Stats Adapt (Schneider et al., 2020) NeurIPS2020 20.4 +23.1

TENT (Wang et al., 2021) ICLR2021 20.7 +22.8
CoTTA (Wang et al., 2022) CVPR2022 16.2 +27.3
RoTTA (Yuan et al., 2023) CVPR2023 17.5 +26.0
NOTE (Gong et al., 2022) NeurIPS2022 20.2 +23.3

EcoTTA (Song et al., 2023) ICCV2023 16.8 +26.7
SATA (Chakrabarty et al., 2023) 2023.4.20 16.1 +27.4
Ours Proposed 2023.5.18 15.8 +27.7

CIFAR10-to-CIFAR10C standard task. In contrast to the experiments conducted in our submission,
we introduce a change in the backbone of the classification model to WideResNet-28, which is
consistent with previous works (Wang et al., 2022). Specifically, we modify the up-projection layer
and down-projection layer to utilize 1× 1 convolutions, while the adapters are placed alongside the
original 3 × 3 convolutions. For ViDA, we maintain a low-rank dimension of 1 and a high-rank
dimension of 128. As depicted in Table 13, our method achieves a 27.7% improvement over the
source model. These findings demonstrate that our method successfully address error accumulation
and catastrophic forgetting problem, regardless of the network backbone employed.

C.6 ADDITIONAL EXPERIMENTS ON SEGMENTATION CTTA

We further present the segmentation CTTA experiment with 10 rounds on Table 14. Notably, it
demonstrates a consistent enhancement in mean mIoU during the initial rounds (rounds 1-3) while
maintaining stable performance in subsequent rounds (rounds 4-10). After averaging over 10 rounds ,
our method achieved a 3.0% mIoU improvement compared to the previous SOTA method. As shown
in Table 14 (CoTTA∗), we adjust the hyperparameters of the CoTTA method by raising the learning
rate to 3e-4, which aligns with our implementation details. The impact of this adjustment is evident
in the initial three rounds of segmentation, where performance notably improves. However, as we
progress to subsequent CTTA rounds, we observe a noticeable decline in segmentation accuracy and
encounter the problem of catastrophic forgetting.
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Table 14: 10 rounds segmentation CTTA on Cityscape-to-ACDC. We sequentially repeat the
same sequence of target domains 10 times. Mean is the average score of mIoU.

Round 1 2 3 4 5 Mean
Method Fog NightRainSnowMean Fog NightRainSnowMean Fog NightRainSnowMean Fog NightRainSnowMean Fog NightRainSnowMean
Source 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 56.7 40.3 59.7 57.8 56.7 56.7 40.3 59.7 57.8 56.7 cont.
CoTTA 70.9 41.2 62.4 59.7 58.6 70.9 41.1 62.6 59.7 58.6 70.9 41.0 62.7 59.7 58.6 70.9 41.0 62.7 59.7 58.6 70.9 41.0 62.8 59.7 58.6 cont.
CoTTA∗ 71.9 45.0 67.1 63.1 61.8 71.9 43.6 65.6 61.8 60.7 69.6 39.7 63.5 60.4 58.3 68.3 39.6 61.8 59.4 57.3 67.8 38.9 62.1 59.7 57.1 cont.

Ours 71.6 43.2 66.0 63.4 61.1 73.2 44.5 67.0 63.9 62.2 73.2 44.6 67.2 64.2 62.3 70.9 44.0 66.0 63.2 61.0 72.0 43.7 66.3 63.1 61.3 cont.
Round 6 7 8 9 10 Mean
Method Fog NightRainSnowMean Fog NightRainSnowMean Fog NightRainSnowMean Fog NightRainSnowMean Fog NightRainSnowMean
Source 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 56.7 40.3 59.7 57.8 56.7 56.7 40.3 59.7 57.8 56.7 56.7
CoTTA 70.9 41.0 62.8 59.7 58.6 70.9 41.1 62.6 59.7 58.6 70.9 41.1 62.6 59.7 58.6 70.8 41.1 62.6 59.7 58.6 70.8 41.1 62.6 59.7 58.6 58.6
CoTTA∗ 67.7 39.8 62.7 59.7 57.5 67.3 39.7 63.2 59.6 57.7 67.6 40.1 63.2 58.0 57.2 65.0 38.8 60.7 58.5 55.8 66.9 38.9 62.7 58.7 56.8 58.0

Ours 72.2 44.0 66.6 62.9 61.4 72.3 44.8 66.5 62.9 61.6 72.1 45.1 66.2 62.9 61.5 71.9 45.3 66.3 62.9 61.5 72.2 45.2 66.5 62.9 61.6 61.6

D ADDITIONAL QUALITATIVE ANALYSIS

To further validate the effectiveness of our proposed method, we present additional qualitative
comparisons on the Cityscapes-to-ACDC CTTA scenario. Initially, we pre-train the Segformer-B5
model (Xie et al., 2021) on the source domain and subsequently adapt it to four target domains in
ACDC. In order to assess the performance of our approach, we conduct a qualitative comparison
with two leading methods, namely CoTTA (Wang et al., 2022) and VDP (Gan et al., 2023). The
visualizations of the segmentation outputs, obtained through the CTTA process, are depicted in
Figure 7. Our method exhibits better segmentation map compared to CoTTA and VDP across all
four target domains, as it effectively distinguishes the sidewalk from the road (shown in white box).
This demonstrates the capability of our method to achieve more accurate segmentation results while
mitigating the impact of dynamic domain shifts. Moreover, in the other categories, our method’s
segmentation maps closely resemble the Ground Truth, leading to a visual enhancements. Lastly, we
have included a video visualization in the supplementary material that showcases a comprehensive
comparison of segmentation performance. This video provides a dynamic and visual representation
of the results obtained from our experiments.

road sidew build wall fence pole tr.light tr.sign veget terrain sky person rider car truck bus train m.bike bike n/a.
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Figure 7: Qualitative comparison of our method with previous SOTA methods on the ACDC dataset.
Our method could better segment different pixel-wise classes such as shown in the white box.

21



Published as a conference paper at ICLR 2024

Table 15: A fine-grained Classification error rate(%) for standard CIFAR10-to-CIAFAR10C online
CTTA task. Results are evaluated on ViT-base.
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Source 60.1 53.2 38.3 19.9 35.5 22.6 18.6 12.1 12.7 22.8 5.3 49.7 23.6 24.7 23.1 28.2 0.0
Pseudo-label (Lee, 2013) 59.8 52.5 37.2 19.8 35.2 21.8 17.6 11.6 12.3 20.7 5.0 41.7 21.5 25.2 22.1 26.9 +1.3
TENT-continual (Wang et al., 2021) 57.7 56.3 29.4 16.2 35.3 16.2 12.4 11.0 11.6 14.9 4.7 22.5 15.9 29.1 19.5 23.5 +4.7
CoTTA (Wang et al., 2022) 58.7 51.3 33.0 20.1 34.8 20 15.2 11.1 11.3 18.5 4.0 34.7 18.8 19.0 17.9 24.6 +3.6
VDP(Gan et al., 2023) 57.5 49.5 31.7 21.3 35.1 19.6 15.1 10.8 10.3 18.1 4 27.5 18.4 22.5 19.9 24.1 +4.1
Ours (proposed) 52.9 47.9 19.4 11.4 31.3 13.3 7.6 7.6 9.9 12.5 3.8 26.3 14.4 33.9 18.2 20.7 +7.5

Table 16: A fine-grained Classification error rate(%) for standard CIFAR100-to-CIAFAR100C online
CTTA task. Results are evaluated on ViT-base.
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Source 55.0 51.5 26.9 24.0 60.5 29.0 21.4 21.1 25.0 35.2 11.8 34.8 43.2 56.0 35.9 35.4 0.0
Pseudo-label (Lee, 2013) 53.8 48.9 25.4 23.0 58.7 27.3 19.6 20.6 23.4 31.3 11.8 28.4 39.6 52.3 33.9 33.2 +2.2
TENT-continual (Wang et al., 2021) 53.0 47.0 24.6 22.3 58.5 26.5 19.0 21.0 23.0 30.1 11.8 25.2 39.0 47.1 33.3 32.1 +3.3
CoTTA (Wang et al., 2022) 55.0 51.3 25.8 24.1 59.2 28.9 21.4 21.0 24.7 34.9 11.7 31.7 40.4 55.7 35.6 34.8 +0.6
VDP (Gan et al., 2023) 54.8 51.2 25.6 24.2 59.1 28.8 21.2 20.5 23.3 33.8 7.5 11.7 32.0 51.7 35.2 32.0 +3.4
Ours (proposed) 50.1 40.7 22.0 21.2 45.2 21.6 16.5 17.9 16.6 25.6 11.5 29.0 29.6 34.7 27.1 27.3 +8.1

E FINE-GRAINED PERFORMANCE

In this section, we expand upon the classification results presented in our submission by providing a
details of fine-grained performance. We assess the error rates across fifteen corruption types to gain
deeper insights. To be specific, we augment the information provided in Table 2 of our submission
with the additional details presented in Table 15 and 16. These tables offer a comprehensive view of
the performance of our approach in addressing the CIFAR-10-to-CIFAR-10C and CIFAR-100-to-
CIFAR-100C CTTA scenarios, respectively.

22


	Introduction
	Related work
	Method
	Motivation
	Visual Domain Adapter
	Homeostatic Knowledge Allotment
	Optimization Objective

	Experiment
	Task settings and Datasets
	The Effectiveness on Classification CTTA
	The Effectiveness on Segmentation CTTA
	Continual Adapting for Foundation Models
	Domain Generalization on Unseen Continual Domains
	Ablation study

	Conclusion
	Appendix
	Supplementary Justifications for Motivation
	Specially Designed Quantitative Analysis
	Additional Distribution Qualitative Analysis
	Distribution Distance

	Additional Experiment
	Additional Classification CTTA Experiments for Foundation Models
	Additional Segmentation CTTA Experiments for Foundation Models
	Domain Generalization on a Different Number of Unseen Target Domains
	Additional Ablation study
	Experiments on Classification CTTA with Convolutional Backbones
	Additional Experiments on Segmentation CTTA

	Additional Qualitative Analysis
	Fine-grained Performance

