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ABSTRACT

Biomolecular interaction modeling has been substantially advanced by foundation
models, yet they often produce all-atom structures that violate basic steric feasibil-
ity. We address this limitation by enforcing physical validity as a strict constraint
during both training and inference with a unified module. At its core is a differ-
entiable projection that maps the provisional atom coordinates from the diffusion
model to the nearest physically valid configuration. This projection is achieved
using a Gauss-Seidel scheme, which exploits the locality and sparsity of the con-
straints to ensure stable and fast convergence at scale. By implicit differentiation
to obtain gradients, our module integrates seamlessly into existing frameworks for
end-to-end finetuning. With our Gauss-Seidel projection module in place, two de-
noising steps are sufficient to produce biomolecular complexes that are both phys-
ically valid and structurally accurate. Across six benchmarks, our 2-step model
achieves the same structural accuracy as state-of-the-art 200-step diffusion base-
lines, delivering ∼10× wall-clock speedups while guaranteeing physical validity.

1 INTRODUCTION

End-to-end, all-atom protein structure predictors that integrate deep learning with generative model-
ing are emerging as transformative tools for biomolecular interaction modeling (Senior et al., 2020b;
Jumper et al., 2021; Abramson et al., 2024; Corso et al., 2023; Watson et al., 2023). These systems
achieve unprecedented accuracy in predicting arbitrary biomolecular complexes and are shaping the
future of computational biology and drug discovery.

Contrary to their high structural accuracy, current predictors often fail to satisfy a conceptually sim-
pler but basic requirement: the physical validity of the all-atom output. This failure, also commonly
termed hallucination, appears as steric clashes, distorted covalent geometry, and stereochemical er-
rors (Fig. 8). In practice, however, physical validity is a prerequisite: Atom-level physics violations
hinder expert assessment (Senior et al., 2020a), undermine structure-based reasoning and experi-
mental planning (Lyu et al., 2019), and also destabilize downstream computational analyses such as
molecular dynamics (Hollingsworth & Dror, 2018; Lindorff-Larsen et al., 2011).

The root cause of this problem lies in the design of current predictors: as generative models, they are
trained to match the empirical distribution of known structures, without enforcing physical validity
as a strict constraint in the training objective. Consequently, these models can assign non-zero prob-
ability to non-physical configurations, a flaw that persist even with large-scale training, both in data
and model size, as observed in recent works (Wohlwend et al., 2024; Passaro et al., 2025; Butten-
schoen et al., 2024; Team et al., 2025). Methods such as Boltz-1-steering (Wohlwend et al., 2024)
reintroduce physics as inference-time guidance by biasing the sampling process towards physically
valid regions. Such guidance can reduce violations, but still cannot guarantee validity: with finite
guidance strength and update steps, invalid configurations remain reachable.

To close this gap, we elevate physical validity to a first-class constraint and enforce it in both train-
ing and inference by explicitly handling validity alongside generation: The denoising network first
outputs provisional atom coordinates; a separate projection module then maps them onto the physi-
cally valid set. Losses are computed on the projected coordinates with gradients propagated through
the projection module. This design allows the denoising network to redirect its capacity toward
improving structural accuracy, offloading the task of avoiding physics violations to the projection
module. This shift further removes the need for large denoising steps: at inference, sampling with
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Ground
Truth

Boltz-1 Boltz-1-Steering Protenix-Mini Ours

200 steps 200 steps 5 steps 2 steps
LDDT: 0.8177 LDDT: 0.8380 LDDT: 0.7795 LDDT: 0.8322

Figure 1: Comparison on PDB 8B3E (protein-ligand complex): global structure (top) and two
zoomed views of the binding pocket (bottom). Protenix-Mini with 5 denoising steps exhibits
backbone-ligand clashing. With 200 steps, Boltz-1 resolves the backbone but leaves clashes be-
tween the side chain and the ligand. Boltz-1-Steering removes clashes by using physics-informed
potentials, but at the cost of large sampling steps. Ours yields physically valid results with only 2
denoising steps.

few steps is sufficient to attain high structural accuracy with guaranteed physical validity. As such,
the reduction in denoising steps is not due to specialized few-step diffusion techniques: it follows
directly from treating physical validity as a constraint throughout both training and inference.

Concretely, we instantiate this decoupling with a differentiable Gauss-Seidel projection placed after
the denoiser. It solves a constrained optimization that projects all-atom coordinates to the nearest
physically valid configuration. The constraints are tightly coupled through shared atoms and their
number scales with the number of atoms, making the optimization problem large. Within the train-
ing loop, the module must also converge in a handful of iterations with low memory per forward
and backward pass. These requirements make pure first-order gradient descent methods impracti-
cal, which requires tiny steps and many iterations to converge. We therefore adopt a Gauss-Seidel
scheme (Saad, 2003), which sweeps over all constraints for a few iterations, enforcing each locally
by updating only the affected atoms. It leverages locality and sparsity of the constraints and thereby
yields faster, more stable convergence than gradient descent. The projection module is differentiable
via implicit differentiation. We integrate it as a drop-in layer within existing biomolecular interac-
tion frameworks (e.g., Boltz (Wohlwend et al., 2024)) and finetune end-to-end. At inference time, 2
denoising steps suffice to produce structurally accurate, physically valid protein complexes.

We evaluate our method on six protein-complex benchmarks: CASP15, Test (Wohlwend et al.,
2024), PoseBusters (Buttenschoen et al., 2024), AF3-AB (Abramson et al., 2024), dsDNA, and
RNA-Protein (Ma et al., 2025). Comparisons include 200-step generative models (Boltz-1, Boltz-
1-Steering (Wohlwend et al., 2024), Boltz-2 Passaro et al. (2025), and Protenix (Team et al., 2025))
and the few-step baseline Protenix-Mini (Gong et al., 2025). Despite using only two denoising
steps, our model achieves competitive structural accuracy while guaranteeing physical validity. For
runtime, our model delivers a ∼10× wall-clock speedup over baselines. Our study largely closes
the gap between guaranteed physical validity and state-of-the-art structural accuracy under few-step
sampling, enabling 2-step all-atom predictions with an order-of-magnitude faster inference.

2 RELATED WORK

Protein Structure Prediction. Deep learning-based foundation models are reshaping the task of
protein structure prediction that produces 3D coordinates from input sequences (Senior et al., 2020b;
Jumper et al., 2021). End-to-end variants extended this paradigm to complexes and large-scale
training and inference (Baek et al., 2021; Evans et al., 2022). AlphaFold-3 further moved to all-
atom biomolecular interaction modeling with a diffusion sampler (Abramson et al., 2024), followed
by improvements on generative models, such as Boltz-2 (Passaro et al., 2025) and Protenix (Team
et al., 2025). These methods typically require hundreds of denoising steps. Few-step variants such
as Protenix-Mini (Team et al., 2025) reduce sampling to two steps while maintaining accuracy, yet
still lack guarantees on physical validity. Boltz-1-Steering (Wohlwend et al., 2024) is the first to
explicitly target this issue by steering sampling with physics-informed potentials, but the guidance
is soft and cannot preclude violations. By contrast, we introduce a Gauss-Seidel projection layer
that enforces physical validity for both training and inference.
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Diffusion Models with Tilted Distribution Sampling. Diffusion models have demonstrated strong
capabilities in producing samples given input conditions (Ho et al., 2020; Dhariwal & Nichol, 2021;
Song et al., 2021). However, in many cases, users require the generated samples to satisfy cer-
tain specific constraints. There are primarily two types of constraint-aware diffusion methods: (i)
Feynman-Kac (FK) steering-based conditional sampling methods (Trippe et al., 2023; Singhal et al.,
2025) , which steer the sampling toward regions that meet desired conditions through reweighting
of the path distribution in the diffusion process, and (ii) manifold-based diffusion models (Bortoli
et al., 2022; Elhag et al., 2024) , which explicitly construct a constrained manifold, ensuring that gen-
erated samples inherently satisfy the desired constraints. However, FK-steering typically requires a
large number of sampling steps, and explicit manifold construction can be computationally expen-
sive when constraints are complex. We introduce a Gauss-Seidel projection module that enforces
constraints in training and inference, thereby circumventing both excessive sampling iterations and
the need for expensive manifold construction.

Constraint Enforcement via Position-Based Dynamics. Enforcing physical constraints has long
been central to physics simulation across computational physics and computer graphics. To handle
boundary conditions (Macklin et al., 2014), collisions, contact, friction (Bridson et al., 2002), and
bond stretching (Ryckaert et al., 1977), many methods have been developed to keep simulations
physically consistent. Among these, position-based dynamics and its extensions (Müller et al., 2007;
Macklin & Müller, 2016; Chen et al., 2024) iteratively project particle positions to satisfy predefined
constraints, proving effective for soft bodies, fluids, and coupled phenomena (Bender et al., 2014).
By updating positions directly instead of integrating stiff forces, these methods remain stable under
large timesteps and avoid costly global solves. Since constraints are enforced through small, local
projections, the overall complexity scales nearly linearly with the number of constraints, which
aligns with our goal of generating proteins that respect local physical constraints.

3 PRELIMINARY

All-Atom Diffusion Model. Proteins can be represented at all-atom resolution (Abramson et al.,
2024; Wohlwend et al., 2024; Passaro et al., 2025), where a structure is specified by the Cartesian
coordinates of all atoms x̂ ∈ RN×3, with N the total number of atoms. This representation en-
ables direct modeling of side-chain orientations, local packing, and explicit inter-atomic geometry.
AlphaFold3 (Abramson et al., 2024) introduced an atom-level diffusion approach that iteratively
denoises atomic coordinates from Gaussian noise. Conditioned on features produced by the atom-
attention encoder, MSA module, and PairFormer, a denoising network runs for hundreds of steps
(typically 200) to generate the all-atom prediction x̂.

Physics-Guided Steering. All-atom diffusion sampling is stochastic and therefore cannot guaran-
tee physical validity. To address this, Boltz-1-Steering (Wohlwend et al., 2024), built upon the
Feynman-Kac framework (Singhal et al., 2025), employs physics-informed potentials. At each
denoising step, these potentials score the validity and tilt the learned denoising model toward a
lower-energy configuration. The energy is a weighted sum of seven terms: tetrahedral atom chiral-
ity, bond stereochemistry, planarity of double bonds, internal ligand distance bounds, steric clashes
avoidance, non-overlapping symmetric chains, and the preservation of covalently bonded chains.
Since this tilted distribution cannot be sampled directly, the method uses importance sampling to
draw multiple candidates, which are then refined with gradient descent updates to further reduce
violations. Although this steering reduces physical errors, it remains a soft approach: it biases the
sampling process toward validity during inference rather than embedding validity into the training.

4 APPROACH

Our goal is to predict all-atom biomolecular complexes that are both structurally accurate and physi-
cally valid. Given provisional coordinates produced by a diffusion module, we enforce validity with
a Gauss-Seidel projection module that sequentially resolves physical constraints on the affected
atoms (Sec. 4.1 and 4.2). The module is differentiable, allowing training losses to be computed on
the projected atom coordinates, and gradients to propagate back through the projection module via
implicit differentiation (Sec. 4.3). Crucially, this module enables accurate inference with only two
denoising steps while guaranteeing physical validity. Fig. 2 illustrates the overall pipeline.
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Atom Attention Encoder

MSA Module

PairFormer Module

Gauss-Seidel Projection Module

Physical Validity Constraints
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Denoising
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Diffusion Module
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Figure 2: Enforcing physical validity during both training and inference via our Gauss-Seidel
projection module. Provisional all-atom coordinates from the diffusion model are corrected by a
Gauss-Seidel projection that sequentially resolves local constraints, each acting on a small set of
atoms and updating coordinates in place. The module is differentiable via implicit differentiation,
allowing seamless integration into training. The same projection is applied at inference, ensuring
physical validity and enabling accurate predictions with as few as two denoising steps.

4.1 PENALTY-BASED FORMULATION FOR PHYSICAL VALIDITY

Given the Cartesian coordinates of all constituent atoms x̂ produced by the diffusion module, our
projection module finds the nearest physically valid coordinate configuration:

xproj = argmin
x

1
2∥x− x̂∥22, s.t. C(x) = 0, (1)

where C(·) : RN×3 → Rm concatenates all constraints that characterize physical validity, and its
zero set defines the feasible space. We follow Boltz-1-Steering (Wohlwend et al., 2024) to define
the constraints. Detailed formulation is provided in Appendix G. Since all terms are locally defined
on pairs or four-atom groups, the total number of constraints m scales with atoms and can be large.
For instance, for PDB 8TGH which consists of 470 residues with 7, 082 atoms, m is ∼13M.

A standard approach to solving the constrained problem Eq. 1 is the penalty method (Boyd & Van-
denberghe, 2004), in which the constraints are incorporated as an exterior penalty into the objective:

xproj = argmin
x

(
E(x) + 1

2∥x− x̂∥22
)
, E(x) = 1

2C(x)⊤α−1C(x), (2)

where we choose a quadratic penalty E(·) and α ∈ Rm×m is a block-diagonal matrix of penalty
coefficients. For sufficiently small α (i.e., large weights α−1), Eq. 2 serves as a numerical realization
of the hard-constrained projection: the minimizer satisfies the constraint up to numerical tolerance.
In our implementation, we set αj = 10−7 to enforce a tight feasibility threshold.

The penalty formulation defines a deterministic mapping x̂ 7→ xproj that links the provisional coor-
dinates of the diffusion module to a physically valid output. Solved on its own, this mapping already
functions as a plug-and-play post-processing module for biomolecular modeling frameworks. Since
the projection can resolve invalidity efficiently, we aim to explicitly decouple validity enforcement
from the network training by integrating the module within the training loop. Concretely, we insert
the module immediately after the diffusion module and compute training losses on the projected
coordinates. In the following sections, we detail the forward solver (Sec. 4.2) and the backward pass
via implicit differentiation (Sec. 4.3), enabling the module to operate as a fully differentiable layer.
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4.2 GAUSS-SEIDEL CONSTRAINT PROJECTION

Solving Eq. 2 alone is classical and admits many off-the-shelf solvers. Embedding it as a differ-
entiable module within a biomolecular modeling pipeline, however, imposes stricter requirements:
very fast convergence per forward pass and training step, and stable convergence under stiff, tightly
coupled constraints. Pure first-order gradient descent, as used in Boltz-1-Steering (Wohlwend et al.,
2024), is ill-suited: it requires small step sizes and prohibitively many iterations to converge to a
zero constraint penalty, making unrolled end-to-end training slow. We therefore propose a Gauss-
Seidel projection that exploits locality and sparsity by sequentially updating only the atoms affected
by each constraint, thereby achieving fast and stable convergence.

We consider the first-order optimality condition for Eq. 2:

∇C(x)⊤α−1C(x) +
(
x− x̂

)
= 0. (3)

We then introduce the Lagrange multiplier λ(x) :=−α−1C(x) by following Stuart & Humphries
(1996) and Servin et al. (2006) to obtain the coupled system:(

x− x̂
)
−∇C(x)⊤λ(x) = 0,

C(x) +αλ(x) = 0.
(4)

This system is nonlinear; we solve it by iterative linearization about the current iterate (x(n),λ(n)).
At iteration n, the linearized system is:[

I −∇C(x(n))⊤

∇C(x(n)) α

] [
∆x
∆λ

]
= −

[
0

C(x(n)) +αλ(n)

]
,

with updates x(n+1) = x(n)+∆x and λ(n+1) = λ(n)+∆λ. It can be shown that with initialization
x(0) = x̂ and λ(0) = 0, the linearized iterates converge to a solution of the original nonlinear system
Eq. 4. See Appendix D for a proof. Applying the Schur complement (Zhang, 2005) with respect to
I gives the reduced system for the multiplier update:(

∇C(x(n))∇C(x(n))⊤ +α
)
∆λ = −C(x(n))−αλ(n), (5)

and the position update ∆x = ∇C(x(n))⊤∆λ.

The primary computation in each iteration is solving the large linear system Eq. 5. Rather than
constructing the full linear system, which is memory-intensive and costly, we employ a Gauss-
Seidel scheme that iteratively sweeps over the constraints: During each sweep, the method addresses
one constraint at a time by updating only the atom coordinates it affects. These new coordinates
are used immediately when processing the next constraint. After a small number of sweeps, the
system converges to a configuration where all constraints are satisfied. This Gauss-Seidel scheme
is significantly more efficient than a global solve because it effectively leverages the locality and
sparsity inherent in Eq. 5. Specifically, for the j-th constraint, the Gauss-Seidel update is

∆λj =
−Cj(x

(n))−αjλ
(n)
j

∇Cj(x(n))∇Cj(x(n))⊤ +αj
, j = 1, ...,m. (6)

Processing all constraints sequentially and repeating for a small number of sweeps (20 in our imple-
mentation) yields fast and stable convergence in practice. To maximize computational throughput,
we implement the solver on GPUs (details in Sec. 5.1). Algorithm 1 outlines the forward process of
the Gauss-Seidel projection module.

Remark 4.1 (Fast Convergence and Constraint Satisfaction of Gauss-Seidel Projection) The
convergence of the Gauss-Seidel projection is of quasi-second order. Each update yields a monotone
decrease with O(1) work per constraint (hence O(m) per sweep). With a strict tolerance and
sufficiently small α, the final iterate satisfies the first-order optimality condition and realizes the
hard-constrained projection. See Appendix E for details.

4.3 DERIVATIVES VIA IMPLICIT DIFFERENTIATION

In the forward pass, the module projects x̂ into xproj = xproj(x̂), which is used to calculate the
training loss L = L(xproj). The corresponding backward pass is to compute the gradient of this loss
with respect to the input of the projection module, ∂L

∂x̂ .

5
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Algorithm 1 Forward Solver of Gauss-Seidel
Projection Module.

Input: Atom coordinates x̂; constraints and
their gradients {Cj ,∇Cj}mj=1; penalty co-
efficients {αj}mj=1; sweeps T

Output: Projected coordinates xproj

1: x(0) ← x̂; λ(0) ← 0
2: for n = 1 to T do ▷ Gauss–Seidel sweeps
3: for j = 1 to m do
4: Compute ∆λj using Eq. 6.
5: x(n+1) ← x(n) +∇Cj(x

(n))∆λj ;
6: λ

(n+1)
j ← λ

(n)
j +∆λj

7: end for
8: end for
9: return xproj ← x(T )

Algorithm 2 Backward Pass of Gauss-Seidel
Projection Module.

Input: Projected coords xproj; upstream gra-
dient ∂L/∂xproj; {Cj ,∇Cj ,∇2Cj}mj=1;
{αj}mj=1; tolerance ε; max iters K

Output: Gradient w.r.t. x̂, i.e., ∂L/∂x̂
1: z0 ← (∂L/∂xproj)

⊤

2: Compute A = H(xproj) + I as in Eq. 7
3: for k = 1 to K do
4: CG update step for A⊤zk =

(
∂L

∂xproj

)⊤
5: if ||zk − zk−1|| ≤ ε then
6: break
7: end if
8: end for
9: return ∂L

∂x̂ ← z⊤

Gauss-Seidel Projection
w/o Finetuning

Gauss-Seidel Projection
w/ Finetuning

Figure 3: Importance of differentiable projection
and finetuning. A post-hoc projection without fine-
tuning applied to a 2-step sampling, while ensuring
physical validity, fails to recover the α-helical sec-
ondary structure (left). Integrating the projection as a
differentiable layer and finetuning the diffusion mod-
ule restores the helix and improves overall structural
accuracy (right).

Making the projection module differen-
tiable is the key to enabling few-step sam-
pling. A standard diffusion module is
trained to handle two tasks simultaneously:
achieving structural accuracy and ensuring
physical validity. It relies on a large number
of denoising steps as its effective capacity
to perform both. Consequently, when the
step budget is small, the model’s structural
accuracy degrades significantly, as shown
in Fig. 3. By finetuning the network with
our differentiable projection module, we
enable a decoupling of responsibilities. The
denoising network learns to focus exclu-
sively on recovering structural accuracy, of-
floading the task of ensuring physical va-
lidity to the projection module. This de-
coupling makes highly accurate predictions
possible even with a very small step budget.

Backpropagating through the Gauss-Seidel
projection is non-trivial because it is implemented with an iterative solver. A naive approach, such
as unrolling the forward iterations for automatic differentiation, is prohibitively memory-intensive
and thus impractical for end-to-end training. We resort to implicit differentiation, a technique from
sensitivity analysis (Burczyński et al., 1997). Specifically, we differentiate the first-order optimality
condition in Eq. 2 with respect to x̂:

(
H(xproj) + I

) ∂xproj

∂x̂
= I, H(x) =

m∑
j=1

α−1
j

[
∇Cj(x)∇Cj(x)

⊤ +Cj(x)∇2Cj(x)
]
, (7)

which is evaluated at x = xproj. By the chain rule ∂L
∂x̂ = ∂L

∂xproj

∂xproj

∂x̂ , we obtain the adjoint system

(
H(xproj) + I

)⊤
z =

( ∂L

∂xproj

)⊤
, and set

∂L

∂x̂
= z⊤. (8)

Analogously to the forward pass, the backward pass requires solving an additional linear system.
We use conjugate gradients (CG) to solve Eq. 8. whose convergence is guaranteed near feasibility
(see Appendix F for details). For runtime efficiency, we implement the CG solver on the GPU.
Algorithm 2 outlines the backward process of the projection module.

6
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Table 1: Quantitative results on 3 of 6 datasets. Our method uses only 2 denoising steps yet always
guarantees physical validity and achieves competitive structural accuracy compared to baselines.
Dark green cells denote the best results among the few-step methods, while light green cells denote
the best results among the 200-step methods. Results for the remaining datasets are in Appendix A.

Method
Metric # Denoise

Steps
Complex

LDDT
Prot-Prot

LDDT
Lig-Prot
LDDT

DockQ
> 0.23

Mean
LDDT-PLI

L-RMSD
< 2 Å

Physical
Validity

C
A

SP
15

Boltz-1 200 0.62±0.07 0.52±0.05 0.53±0.07 0.73±0.27 0.41±0.17 0.20±0.22 0.62±0.03
Protenix 200 0.54±0.04 0.28±0.03 0.34±0.03 0.36±0.19 0.32±0.12 0.21±0.16 0.30±0.03

Boltz-1-Steering 200 0.62±0.07 0.50±0.05 0.59±0.07 0.71±0.29 0.40±0.19 0.16±0.22 1.00±0.00
Boltz-2 200 0.65±0.07 0.49±0.07 0.60±0.08 0.73±0.27 0.52±0.19 0.33±0.24 1.00±0.00

Protenix-Mini 5 0.62±0.05 0.26±0.03 0.38±0.03 0.38±0.15 0.35±0.13 0.11±0.10 0.28±0.03
Ours 2 0.62±0.07 0.37±0.06 0.64±0.06 0.71±0.29 0.29±0.16 0.31±0.28 1.00±0.00

Te
st

Boltz-1 200 0.80±0.01 0.54±0.01 0.48±0.03 0.69±0.06 0.58±0.06 0.56±0.06 0.44±0.02
Protenix 200 0.79±0.01 0.53±0.01 0.38±0.02 0.68±0.06 0.47±0.05 0.42±0.05 0.46±0.02

Boltz-1-Steering 200 0.80±0.01 0.53±0.01 0.51±0.03 0.67±0.06 0.58±0.05 0.55±0.06 0.99±0.00
Boltz-2 200 0.82±0.01 0.58±0.01 0.56±0.03 0.72±0.06 0.64±0.05 0.60±0.06 1.00±0.00

Protenix-Mini 5 0.72±0.02 0.41±0.01 0.35±0.02 0.55±0.06 0.43±0.05 0.36±0.05 0.38±0.02
Ours 2 0.79±0.02 0.52±0.01 0.57±0.04 0.64±0.06 0.46±0.05 0.42±0.06 1.00±0.00

Po
se

B
us

te
rs

Boltz-1 200 0.92±0.01 0.85±0.01 0.67±0.01 0.60±0.10 0.69±0.04 0.62±0.05 0.21±0.01
Protenix 200 0.92±0.01 0.87±0.00 0.72±0.01 0.63±0.11 0.74±0.04 0.67±0.05 0.37±0.03

Boltz-1-Steering 200 0.92±0.01 0.85±0.01 0.68±0.01 0.59±0.101 0.69±0.039 0.63±0.05 0.94±0.02
Boltz-2 200 0.94±0.01 0.95±0.01 0.79±0.01 0.66±0.10 0.81±0.03 0.79±0.04 0.87±0.02

Protenix-Mini 5 0.90±0.01 0.57±0.07 0.70±0.01 0.60±0.10 0.71±0.04 0.63±0.05 0.21±0.03
Ours 2 0.92±0.01 0.85±0.01 0.74±0.01 0.53±0.05 0.57±0.05 0.53±0.05 1.00±0.00

5 EVALUATION

In this section, we evaluate our method’s structural accuracy and physical validity through a series
of experiments. We conduct quantitative results on six protein-complex benchmarks using standard
evaluation metrics (Sec. 5.2). We also provide qualitative visualizations that compare protein struc-
tures and demonstrate the physical validity (Sec. 5.3). Furthermore, we analyze the convergence
speed and wall-clock runtime of our approach (Sec. 5.4). Finally, we conduct an ablation study to
isolate the impact of our Gauss-Seidel projection (Sec. 5.5).

5.1 IMPLEMENTATION DETAILS

With the differentiable Gauss-Seidel projection module in place, we finetune a pre-trained all-atom
diffusion network specifically for 2-step sampling. During finetuning, we retain the original noise
parameterization and denoising objective. At inference time, we use the inference-time sampling
schedule of Protenix-Mini (Team et al., 2025). A Gauss-Seidel projection is applied to the model’s
output to guarantee a physically valid final structure. Appendix C provides pseudo-code and com-
plete algorithms for both training and inference with our projection module. We implement the
differentiable Gauss-Seidel projection on the GPU using the WARP library (Macklin et al., 2024).
In the forward pass, constraints are partitioned into batches with no shared atoms, allowing them to
be processed in parallel. Coordinate updates are accumulated with atomic operations. We use T=20
sweeps. The backward pass solves the adjoint linear system with a conjugate gradient solver fully
on GPU, parallelizing per-constraint operations with atomic accumulation. We set the tolerance
to ε=10−4 and the maximal number of iterations to 1000. The projection module integrates with
PyTorch as a custom autograd layer, avoiding the overhead costs of host-device copies and context
switching. For training, we finetune Boltz-1 (Wohlwend et al., 2024) from open-source pretrained
weights on the RCSB dataset (Burley et al., 2022) (∼ 180,000 structures) using 8 NVIDIA H100
GPUs over two weeks. All evaluations are conducted on NVIDIA A6000 GPUs. For baselines and
evaluation protocol, see Appendix H for details.

5.2 QUANTITATIVE RESULTS

Table 1 and 2 (in Appendix A) summarize the comparison across six protein-complex benchmarks.
Among all methods, ours uses the fewest denoising steps (2 steps). It achieves state-of-the-art ac-
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Boltz-1 Boltz-1-Steering Boltz-2 Protenix Protenix-Mini Ours

PDB 7Y9A

PDB 7XYO

Figure 4: Qualitative comparison with baseline methods. The red color highlights physically
invalid predictions, such as atomic clashes. Our approach consistently guarantees physical validity.

curacy in the few-step regime: Compared to Protenix-Mini (5 steps), our model improves complex-
and interface-level LDDT across all benchmarks. Compared to 200-step baselines, the accuracy of
our method is competitive; on CASP15 and PoseBusters, ours outperforms Boltz-1 and Protenix on
multiple metrics while approaching Boltz-2, which requires 100 times more sampling. The largest
gains appear in Lig-Prot LDDT, where our method leads on CASP15 and TEST and remains close
to the best on PoseBusters, consistent with the projection module’s focus on atom-level geometry.

For physical validity, our approach is unequivocally best: it achieves 100% validity across all bench-
marks. Methods that do not enforce validity (Boltz-1, Protenix, Protenix-Mini) show frequent
clashes and physical errors, whereas steering-based methods (Boltz-1-Steering, Boltz-2) improve
but still admit failures because validity is used as guidance rather than a constraint. These non-
physical outcomes limit downstream usability, whereas our predictions satisfy validity and preserve
high structural accuracy with only two denoising steps.

5.3 QUALITATIVE RESULTS

Fig. 4 and 6 (in Appendix B) present qualitative comparisons, showing that our approach consis-
tently yields physically valid structures while preserving high accuracy. For PDB 7Y9A (with an
N-acetyl-D-glucosamine ligand), which is used to assess ligand–protein interface quality, all base-
lines produce severe ligand–protein atom clashes, whereas our method eliminates these violations.
For PDB 7XYO (557 residues with extensive secondary structure), which is used to evaluate large,
structured assemblies, Boltz-1, Boltz-1-Steering, and Protenix show inter-chain collisions. Protenix-
Mini avoids clashes but introduces large distortion, particularly in the second coiled segment. In
contrast, our method produces clash-free structures while maintaining structural accuracy. Addi-
tional examples are provided in Appendix B.

5.4 ANALYSIS

Analysis on Convergence Speed. We compare the convergence speed of our Gauss-Seidel pro-
jection against gradient descent guidance (Boltz-1-Steering). We add Gaussian noise to the ground
truth coordinates of PDB 8X51 with four levels (σ ∈ {160, 120, 80, 40}) and run the same diffu-
sion module, with either gradient descent guidance or Gauss-Seidel projection to enforce physical
validity. We visualize the potential energy versus the number of update iterations in Fig. 5 (left).
Gauss-Seidel projection reduces the physics potential rapidly and converges within 20 iterations
for all noise levels. In contrast, gradient descent exhibits oscillations and long tails, requiring far
more iterations to achieve a comparable reduction. This gap reflects the algorithms: Gauss-Seidel
projection is of quasi-second order and thus converges faster than first-order gradient descent.
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Figure 5: Convergence and runtime. Left: Potential energy vs. iteration on PDB 8X51 under four
noise levels (σ∈{160, 120, 80, 40}). Gauss-Seidel projection (orange) converges to tolerance within
20 iterations; gradient descent guidance (blue) oscillates and decays slowly. Right: Wall-clock
inference time by atom-count bin on CASP15. Ours is∼10× faster than baselines while maintaining
validity. Runtime includes diffusion and validity module; measured on the same hardware.

Wall-clock Runtime Comparison. To assess practical speed, we measured the wall-clock infer-
ence time (including diffusion and physical validity enforcement) on CASP15. The results, binned
by atom count, are shown in Fig. 5 (right). Our 2-step predictor with Gauss-Seidel projection is con-
sistently the fastest. It achieves a median speedup of ∼9.4× over the 200-step Boltz-1 baseline and
∼9.5× over Protenix-Mini. Compared with Boltz-1-Steering, the speedup is 23−46×. The gains
stem from the reduction in denoising steps and our GPU implementation of the projection module.

5.5 ABLATION STUDY

To isolate the impact of our differentiable Gauss-Seidel (GS) projection, we conduct an ablation
study on CASP15 using the 200-step Boltz-1 model as a reference. We compare four 2-step sam-
pling variants, presented in the order reported in the inset table: (i) a vanilla 2-step sampler with
no mechanism for physical validity; (ii) adding gradient descent (GD) guidance at inference; (iii)
adding GS projection at inference (only as a post-processing) without fine-tuning; (iv) finetuning
with GS projection and also applying it at inference (our full method).

Complex
LDDT

Physical
Validity

200-step 0.6204 0.6209

(i) + 2-step (no guidance, no finetune) 0.5814 0.5846
(ii) + GD at inference, no finetune 0.5778 0.7050
(iii) + GS at inference, no finetune 0.5768 1.00
(iv) + GS at inference, finetune 0.6239 1.00

Moving from the 200-step baseline to
a 2-step sampler without guidance re-
duces both accuracy and physical va-
lidity. Adding gradient descent guid-
ance at inference improves validity
but fails to recover the structural ac-
curacy. Using Gauss-Seidel only as
post-processing guarantees validity,
but at the cost of slightly degrading
the accuracy. Our full setting closes the gap to the 200-step baseline with two denoising steps and
is physically valid. These results show that while Gauss-Seidel projection is necessary to enforce
validity, making it differentiable is critical for high structural accuracy in the few-step regime.

6 CONCLUSION

In this work, we propose a differentiable Gauss-Seidel projection module that enforces physical
validity during both training and inference for all-atom biomolecular interaction modeling. Framed
as a constrained optimization, the module projects the coordinates produced by the diffusion module
to configurations without violating physical validity. Finetuning the diffusion module with this
projection achieves physically valid and structurally accurate outputs with only 2-step denoising,
delivering ∼ 10× faster inference than baselines while maintaining competitive accuracy.

Limitations and Future Work. While our projection module substantially reduces the number of
denoising steps, single-step inference remains out of reach. Future work will focus on achieving it
by combining our projection module with one-step diffusion training techniques.
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Reproducibility Statement. To ensure the reproducibility of our work, we provide detailed ex-
perimental settings in Sec. 5.1, the pseudocode for the Forward Solver and Backward Pass of the
Gauss-Seidel projection module in Sec. 4.2 and Sec. 4.3, the pseudocode for training and inference
algorithms in Appendix C, the details on the baselines and the evaluation protocol in Appendix H,
and the complete formulations of the physical validity constraints in Appendix G.
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Table 2: Quantitative results on the remaining datasets. Dark green cells denote the best results
among the few-step methods. Light green cells denote the best results among the 200-step methods.

Method
Metric # Denoise

Steps
Complex

LDDT
DNA-Prot

LDDT
RNA-Prot

LDDT
Physical
Validity

A
F3

-A
B

Boltz-1 200 0.80±0.02 – – 0.00±0.00
Protenix 200 0.79±0.03 – – 0.00±0.00

Boltz-Steering 200 0.79±0.03 – – 0.90±0.02
Boltz-2 200 0.87±0.03 – – 0.92±0.02

Protenix-Mini 5 0.75±0.03 – – 0.00±0.00
Ours 2 0.79±0.03 – – 1.00±0.00

ds
D

N
A

Boltz-1 200 0.85±0.04 0.76±0.02 – 0.03±0.01
Protenix 200 0.86±0.04 0.78±0.02 – 0.06±0.01

Boltz-Steering 200 0.85±0.04 0.77±0.02 – 1.00±0.00
Boltz-2 200 0.94±0.02 0.89±0.01 – 1.00±0.00

Protenix-Mini 5 0.81±0.05 0.69±0.02 – 0.18±0.03
Ours 2 0.78±0.04 0.70±0.02 – 1.00±0.00

R
N

A
-P

ro
te

in

Boltz-1 200 0.74±0.05 – 0.30±0.02 0.00±0.00
Protenix 200 0.75±0.05 – 0.34±0.02 0.02±0.03

Boltz-Steering 200 0.73±0.05 – 0.30±0.02 0.96±0.01
Boltz-2 200 0.73±0.03 – 0.88±0.05 0.96±0.02

Protenix-Mini 5 0.72±0.06 – 0.36±0.02 0.05±0.04
Ours 2 0.73±0.05 – 0.32±0.02 1.00±0.00

A ADDITIONAL QUANTITATIVE RESULTS

Table 2 shows the quantitative comparison on AF3-AB, dsDNA, and RNA-Protein datasets. Our
method uses only two denoising steps yet always guarantees physical validity and achieves compet-
itive structural accuracy compared to baselines.

B ADDITIONAL QUALITATIVE RESULTS

Fig. 6 shows more qualitative comparisons with baselines. We also visualize full protein struc-
tures predicted by our method and compare them with the ground truth from six datasets, shown in
Fig. 7. The results demonstrate that our model is capable of accurately predicting physically valid
structures.

C TRAINING AND INFERENCE ALGORITHMS

We provide pseudo-code for the training and inference algorithms of our model, shown in Algo-
rithms 3 and 4. The values of hyperparameters shown in both algorithms follow (Gong et al., 2025).

D PROOF FOR THE CONVERGENCE OF LINEARIZATION

Theorem D.1 Consider the nonlinear coupled system(
x− x̂

)
−∇C(x)⊤λ(x) = 0,

C(x) +αλ(x) = 0,
α≻0,

where C : RN×3 → Rm is twice continuously differentiable. Let the linearized iteration be[
I −∇C(x(n))⊤

∇C(x(n)) α

] [
∆x
∆λ

]
= −

[
0

C(x(n)) +αλ(n)

]
, (9)
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Boltz-1 Boltz-1-Steering Boltz-2 Protenix Protenix-Mini Ours
PDB 7XSG

PDB 8FJD

PDB 5SB2

Figure 6: Additional qualitative comparisons. The red color highlights physically invalid struc-
tural predictions, such as side chain clashes (PDB 7XSG and PDB 8FJD) and ligand-related clashes
(PDB 5SB2). Our approach consistently enforces physical validity.

with updates x(n+1) = x(n)+∆x and λ(n+1) = λ(n)+∆λ, and initial values x(0) = x̂, λ(0) = 0.

Then the linearized iterates (x(n),λ(n)) converge to a solution (x∗,λ∗) of the nonlinear system.

Proof. Define

g(x,λ) = (x− x̂)−∇C(x)⊤λ, h(x,λ) = C(x) +αλ,

so that the update of Eq. 9 is equivalent to solving the nonlinear system {g = 0, h = 0}. Lineariz-
ing this system at a given point (x(i),λ(i)) yields the Newton subproblem[

K −∇C(x(i))⊤

∇C(x(i)) α

] [
∆x
∆λ

]
= −

[
g(x(i),λ(i))

h(x(i),λ(i))

]
,

with K = I −
∑

j λj∇2Cj(x
(i)). We thus solve, at each iteration, a linear system obtained by

Newton linearization of the coupled equations. By Newton’s local convergence theorem (Sauer,
2011), the iterates converge quadratically given the Jacobian at the solution (x∗,λ∗) is non-singular
and the initialization lies in its basin of attraction. Taking the Schur complement (Zhang, 2005) with
respect to α≻0 shows that the non-singularity of the Jacobian is equivalent to the invertibility of

S =
(
I−

∑
j

λ∗
j∇2Cj(x

∗)
)
− (−∇C(x∗)⊤)α−1∇C(x∗).

For sufficiently small yet positive definite α, the term ∇C(x∗)⊤α−1∇C(x∗) dominates and S be-
comes strictly positive definite under standard regularity (full row rank of ∇C at x∗), hence invert-
ible. Consequently, the Jacobian is non-singular at the solution, and Newton’s method is guaranteed
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7TPU 7XRX 7XS3 7Y1S 7Y4H

8B5W 8BBR 8BRY 8BVI 8CLZ

8CR7 8DAJ 8G0N 8G53 8GPP

8IUB 8JQE 8K5K 8OWF 8SUT

Figure 7: Visual comparison with the ground truth. We visualize our predicted protein structures
together with their corresponding ground truth (pink colored) across a diverse set of PDB entries.
Each protein’s name is indicated in the top-left corner. Our method shows consistently close agree-
ment with the ground truth, capturing the overall structural features with high fidelity.

to converge locally. In practice, the predictor’s output x(0)=x̂ is close to x∗, so the initialization
within the convergence neighborhood.

We then introduce two controlled approximations to avoid forming the Hessian terms in K. First,
we replace K by the identity I (i.e., a quasi-Newton approximation), which omits the Hessian terms
and introduces a local error of order O(||∆x||2) while retaining a positive-definite S. This does not
affect the global error or the solution of the fixed-point iteration (Macklin & Müller, 2016). Second,
we note that g(x(0),λ(0)) = 0 and that g(x(i),λ(i)) remains small when constraint gradients vary
slowly; accordingly, we set g(x(i),λ(i)) ≈ 0 (Goldenthal et al., 2007; Macklin & Müller, 2016).
Under these approximations, the linear subproblem reduces to Eq. 9.

E PROOF FOR THE CONVERGENCE AND CONSTRAINT SATISFACTION OF
GAUSS-SEIDEL PROJECTION

Theorem E.1 Consider the linear system(
∇C(x(n))∇C(x(n))⊤ +α

)
∆λ = −C(x(n))−αλ(n), α > 0, (10)

with each Gauss-Seidel update

∆λj =
−Cj(x

(n))−αjλ
(n)
j

∇Cj(x(n))∇Cj(x(n))⊤ +αj
, j = 1, ...,m, (11)
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Algorithm 3 Training with Gauss-Seidel Projection

Require: Training dataset consisting of feature-coordinate pairs, D = {(f∗,xtarget)}, optimizer O,
number of epochs E, number of cycles Ncycle, noise c0, noise scale λ

1: for epoch = 1, . . . , E do
2: for each batch ({f∗}, {xtarget}) ∈ D do
3: {sinputs

i } ← ATOM_ATTENTION_ENCODER({f∗})
4: Initialize {si}, {zij} from {sinputs

i }
5: for c ∈ [1, . . . , Ncycle] do
6: {zij} ← MSA_MODULE({fmsa

S }, {zij}, {s
inputs
i })

7: {si}, {zij} ← PAIRFORMER_MODULE({si}, {zij})
8: end for
9: Sample noise: ξ ∼ N (0, IN×3)

10: Construct noisy input: xnoisy = c0 · xtarget + λ · ξ
11: {x̂} = DIFFUSION_MODULE({xnoisy}, c0, {f∗}, {sinputsi }, {si}, {zij})
12: {xpred} = GAUSS-SEIDEL_PROJECTION_MODULE({x̂})
13: Compute loss: {L} = DIFFUSION_LOSS({xpred}, {xtarget})
14: O.zero_grad()
15: Backpropagate: L.backward()
16: Update parameters: O.step()
17: end for
18: end for

Algorithm 4 Inference with Gauss-Seidel Projection

Require: Feature {f∗}, number of cycles Ncycle, noise schedule [c0, c1, c2], γ0, γmin, noise scale λ,
step scale η

1: {sinputs
i } ← ATOM_ATTENTION_ENCODER({f∗})

2: Initialize {si}, {zij} from {sinputs
i }

3: for c ∈ [1, . . . , Ncycle] do
4: {zij} ← MSA_MODULE({fmsa

S }, {zij}, {s
inputs
i })

5: {si}, {zij} ← PAIRFORMER_MODULE({si}, {zij})
6: end for
7: x ∼ c0 · N (0, IN×3)
8: for cτ ∈ [c1, c2] do ▷ 2-step diffusion
9: {x} ← CENTRE_RANDOM_AUGMENTATION({x})

10: γ = γ0 if cτ > γmin else 0
11: t̂ = cτ−1(γ + 1)

12: ξ = λ
√
t̂2 − c2τ−1 · N (0, IN×3)

13: xnoisy = x+ ξ
14: {xdenoised} = DIFFUSION_MODULE({xnoisy}, t̂, {f∗}, {sinputsi }, {si}, {zij})
15: δ = (x− xdenoised)/t̂
16: dt = cτ − t̂
17: x̂ = xnoisy + η · dt · δl
18: x← x̂
19: end for
20: {xproj} = GAUSS-SEIDEL_PROJECTION_MODULE({x̂})
21: return {xproj}

at the n-th Gauss-Seidel sweep. After a sufficient number of Gauss-Seidel sweeps and for sufficiently
small α, the iterates converge in a quasi-second-order manner to the unique solution ∆λ∗. More-
over, each individual update monotonically reduces the residual error and requires only O(1) work,
so a full sweep over all m constraints costs O(m).
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Proof. Define
A = ∇C(x(n))∇C(x(n))⊤ +α, b = −C(x(n))−αλ(n).

The solution of Eq. 10 corresponds exactly to the minimizer of the quadratic optimization problem:

min
∆λ

f(∆λ) =
1

2
∆λ⊤A∆λ− b⊤∆λ. (12)

With α ≻ 0, A is symmetric positive definite (SPD). Hence, Eq. 12 is convex, and Eq. 10 has a
unique solution.

A cyclic Gauss-Seidel sweep on Eq. 10 is exactly cyclic coordinate descent on Eq. 12: each update
minimizes f w.r.t. a single coordinate ∆λj while holding the others fixed, yielding the closed form in
Eq. 11. Because f is strongly convex and quadratic, each coordinate step strictly decreases f unless
already optimal, and the sequence {f(∆λ(k))} is monotonically decreasing. For SPD systems, both
classical matrix-splitting analysis and coordinate-descent theory guarantee linear convergence of
cyclic Gauss-Seidel to the unique minimizer (Varga, 1962; Saad, 2003; Wright, 2015). In particular,
there exists ρ ∈ (0, 1) such that ∥∆λ(k)−∆λ∗∥A ≤ ρk∥∆λ(0)−∆λ∗∥A. Each coordinate update
accesses only the atoms affected by the current constraint, so it is O(1). A full sweep is thus O(m).

The proof of Theorem D.1 shows that Eq. 10 is a quasi-Newton approximation of the first-order
optimality condition Eq. 3. Hence, the convergence speed of the Gauss-Seidel projection is of
quasi-second order. With a strict physical tolerance and sufficiently small penalty parameter α, the
final iterate satisfies the optimality conditions of the penalized projection, meaning that in practice it
realizes a hard-constrained projection (all constraints are strictly satisfied) (Boyd & Vandenberghe,
2004).

F PROOF FOR THE CONVERGENCE OF CONJUGATE GRADIENT

Theorem F.1 Consider the adjoint system(
H(xproj) + I

)⊤
z =

(
∂L

∂xproj

)⊤
, (13)

where

H(x) =

m∑
j=1

α−1
j

(
∇Cj(x)∇Cj(x)

⊤ +Cj(x)∇2Cj(x)
)
. (14)

Near feasibility, the conjugate gradient method converges when applied to this system.

Proof. At the projected point xproj, we have C(xproj) = 0. Hence the second-order small term
Cj(xproj)∇2Cj(xproj) vanish, and

H(xproj) =

m∑
j=1

α−1
j ∇Cj(xproj)∇Cj(xproj)

⊤.

This matrix is SPD, and so is H(xproj) + I. The conjugate gradient method is guaranteed to con-
verge for any linear system with a SPD coefficient matrix (Sauer, 2011), and its convergence rate is
governed by the condition number of the matrix. Since the coefficient matrix contains the identity I,
the condition number is bounded below by the size of I, i.e., m, which ensures that the convergence
of conjugate gradient remains stable in the neighborhood of feasibility.

G DETAILED FORMULATION OF PHYSICAL VALIDITY CONSTRAINTS

Below we present the formalization of each of the physical constraints following Boltz-1-
Steering (Wohlwend et al., 2024), which are visualized in Fig. 8.

(a) Steric Clash. To prevent steric clashes, we impose a constraint on the distance between atoms
in distinct, non-bonded chains, requiring it to be greater than 0.725 times the sum of their Van der
Waals radii:

Cclash(x) =
∑

(i,j)∈Scross chains

max
(
0.725(ri + rj)− ∥xi − xj∥, 0

)
, (15)

where ri denotes the Van der Waals radius of atom i.
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(a) (b) (c) (d) (e) (g)(f)

Figure 8: Visualization of the physical constraints used in our framework. Red highlights indi-
cate the structural or geometric elements subject to constraints, such as spatial arrangements and in-
teratomic distances, while blue highlights denote double bonds or covalent linkages between atoms.

(b) Tetrahedral Atom Chirality. For a chiral center Z with four substituents ordered by Cahn-
Ingold-Prelog (CIP) priority as A,B,C,D, the center is designated R if the bonds (Z − A,Z −
B,Z − C) form a right-handed system, and S if they form a left-handed system. To ensure that the
predicted molecular conformers maintain the correct chirality, we define the constraint based on the
improper torsion angles (X1, X2, X3, Z):

Cchiral(x) =
∑

(i,j,k,l)∈SR chiral sets

max
(π
6
− DihedralAngle(xi,xj ,xk,xl), 0

)
+

∑
(i,j,k,l)∈SS chiral sets

max
(π
6
+ DihedralAngle(xi,xj ,xk,xl), 0

)
.

(16)

(c) Bond Stereochemistry. For a double bond Z1 = Z2, where Z1 has substituents A1, B1 and Z2

has substituents A2, B2 arranged in decreasing Cahn-Ingold-Prelog (CIP) priority, the double bond
is said to have E stereochemistry if the higher-priority atoms A1 and A2 lie on opposite sides of the
bond, and Z stereochemistry otherwise. To ensure that the predicted molecular conformers maintain
the correct stereochemistry, we define the constraint based on the torsion angles (A1, Z1, Z2, A2)
and (B1, Z1, Z2, B2):

Cstereo(x) =
∑

(i,j,k,l)∈SE stereo sets

max
(5π

6
− DihedralAngle(xi,xj ,xk,xl), 0

)
+

∑
(i,j,k,l)∈SZ stereo sets

max
(

DihedralAngle(xi,xj ,xk,xl)−
π

6
, 0
)
.

(17)

(d) Planar Double Bonds. For planar double bonds C1 = C2 between carbon atoms, where C1

has substituents A1, B1 and C2 has substituents A2, B2, we define a flat-bottom constraint based
on the improper torsion angles (A1, B1, C2, C1) and (A2, B2, C1, C2) to enforce planarity of the
double bond:

Cplanar(x) =
∑

(i,j,k,l)∈Strigonal planar sets

max
(

DihedralAngle(xi,xj ,xk,xl)−
π

12
, 0
)
. (18)

(e) Internal Geometry. To ensure that the model generates ligand conformers with physically
realistic distance geometry, we define a flat-bottomed constraint based on the bounds matrices gen-
erated by the RDKit package:

Cgeom(x) =
∑

(i,j)∈Sbonds

max(∥xi − xj∥ − 1.2Uij , 0) + max(0.8Lij − ∥xi − xj∥, 0)

+
∑

(i,j)∈Sangles

max(∥xi − xj∥ − 1.2Uij , 0) + max(0.8Lij − ∥xi − xj∥, 0)

+
∑

(i,j)/∈Sbonds∪Sangles

max(∥xi − xj∥ − 1.2Uij , 0) + max(0.8Lij − ∥xi − xj∥, 0),

(19)

where L and U ∈ RN×N denote the lower and upper bounds matrices. For a pair of atoms (i, j),
Li,j gives the lower distance bound and Ui,j gives the upper distance bound (Buttenschoen et al.,
2024).
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(f) Overlapping Chains. To prevent overlapping chains, we define a constraint based on the dis-
tance between the centroids of symmetric chains with more than one atom:

Coverlap(x) =
∑

(A,B)∈Ssymmetric chains

max
(
1.0− ∥x̄A − x̄B∥, 0

)
, (20)

where x̄A is the centroid of chain A.

(g) Covalently Bonded Chains. To ensure the model respects covalently bonded chains, we define
a constraint to enforce that covalently bonded atoms between separate chains are within 2 Å:

Ccovalent(x) =
∑

(i,j)∈Scovalent bonds

max
(
∥xi − xj∥ − 2, 0

)
. (21)

H DETAILS ON BASELINES AND EVALUATION PROTOCOL

We compare our method against strong baselines: Boltz-1 (the original model) (Wohlwend
et al., 2024), Boltz-1-Steering (Boltz-1 with FK-steering at inference), Boltz-2 (the updated Boltz
model) (Passaro et al., 2025), Protenix (Team et al., 2025) and Protenix-Mini (Gong et al., 2025). All
baselines use 200-step diffusion sampling, whereas Protenix-Mini uses a 5-step sampling. We evalu-
ate our method and all baselines on six benchmarks: CASP15, Test, PoseBusters, AF3-AB, dsDNA,
and RNA-Protein. CASP15 and Test (from Boltz-1 (Wohlwend et al., 2024)) cover diverse assem-
blies, including protein complexes, nucleic acids, and small molecules. PoseBusters (Buttenschoen
et al., 2024) focuses on protein-ligand modeling. AF3-AB (released with AlphaFold3 (Abramson
et al., 2024)) contains protein-antibody complexes. dsDNA (Ma et al., 2025) contains entries with
two DNA chains and one protein chain. RNA-Protein (Ma et al., 2025) contains entries consisting
of one RNA chain and one protein chain.

We compare our method with baselines using standard evaluation metrics, including Complex
LDDT, Prot-Prot LDDT, Lig-Prot LDDT, DNA-Prot LDDT, RNA-Prot LDDT, DockQ > 0.23, Mean
LDDT+PLI, L-RMSD < 2 Å, and Physical Validity. Complex LDDT measures the overall geometric
accuracy throughout the complex, while Prot-Prot LDDT, Lig-Prot LDDT, DNA-Prot LDDT, and
RNA-Prot LDDT focus specifically on the quality of protein-protein, protein-ligand, protein-DNA,
and protein-RNA interfaces, respectively. The average DockQ success rate (DockQ > 0.23), defined
as the proportion of predictions with DockQ > 0.23, measures the fraction of cases where good
protein-protein interactions are correctly predicted. The average protein-ligand interface LDDT
(Mean LDDT+PLI) combines structural accuracy (LDDT) with protein-ligand interaction scores
(PLI) to provide a balanced assessment of both geometry and intermolecular contacts. L-RMSD
is defined as the proportion of ligands with a pocket-aligned RMSD below 2 Å, a widely adopted
measure of molecular docking accuracy. Finally, Physical Validity checks whether the predicted
structures obey fundamental physical constraints, including steric clash, tetrahedral atomic chiral-
ity, bond stereochemistry, planar double bonds, internal geometry, overlay chains, and covalently
bound chains. All evaluation metrics follow those used in Boltz-1 (Wohlwend et al., 2024) and
Protenix (Team et al., 2025).

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

Consistent with the conference policy on LLM usage, we used LLMs solely for language polishing
and improving the clarity of presentation. In particular:

• Scope of use. LLMs were used for language polishing (rephrasing sentences, tightening tran-
sitions, standardizing terminology). They were not used for research ideation, experimental de-
sign, data analysis, derivations, algorithmic contributions, code or figure generation, literature
search/screening, or drafting technical content beyond author-provided prose.

• Authorship and responsibility. All scientific claims, methods, proofs, experiments, and conclu-
sions are authored by the listed authors. We carefully reviewed and verified any text edited with
LLM assistance. The authors accept full responsibility for the contents of the paper, including any
edited passages, and for ensuring the absence of plagiarism or fabricated material.
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• Attribution and citations. All references and technical statements were selected, verified, and
cited by the authors; LLMs were not used to generate or suggest citations.

• Data and privacy. No proprietary, confidential, or personally identifiable information was pro-
vided to LLM tools.
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