

000 001 002 003 004 005 PHYSICALLY VALID BIOMOLECULAR INTERACTION 006 MODELING WITH GAUSS-SEIDEL PROJECTION 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Biomolecular interaction modeling has been substantially advanced by foundation models, yet they often produce all-atom structures that violate basic steric feasibility. We address this limitation by enforcing physical validity as a strict constraint during both training and inference with a unified module. At its core is a differentiable projection that maps the provisional atom coordinates from the diffusion model to the nearest physically valid configuration. This projection is achieved using a Gauss-Seidel scheme, which exploits the locality and sparsity of the constraints to ensure stable and fast convergence at scale. By implicit differentiation to obtain gradients, our module integrates seamlessly into existing frameworks for end-to-end finetuning. With our Gauss-Seidel projection module in place, two denoising steps are sufficient to produce biomolecular complexes that are both physically valid and structurally accurate. Across six benchmarks, our 2-step model achieves the same structural accuracy as state-of-the-art 200-step diffusion baselines, delivering $\sim 10\times$ wall-clock speedups while guaranteeing physical validity.

1 INTRODUCTION

End-to-end, all-atom protein structure predictors that integrate deep learning with generative modeling are emerging as transformative tools for biomolecular interaction modeling (Senior et al., 2020b; Jumper et al., 2021; Abramson et al., 2024; Corso et al., 2023; Watson et al., 2023). These systems achieve unprecedented accuracy in predicting arbitrary biomolecular complexes and are shaping the future of computational biology and drug discovery.

Contrary to their high structural accuracy, current predictors often fail to satisfy a conceptually simpler but basic requirement: the *physical validity* of the all-atom output. This failure, also commonly termed hallucination, appears as steric clashes, distorted covalent geometry, and stereochemical errors (Fig. 11). In practice, however, physical validity is a prerequisite: Atom-level physics violations hinder expert assessment (Senior et al., 2020a), undermine structure-based reasoning and experimental planning (Lyu et al., 2019), and also destabilize downstream computational analyses such as molecular dynamics (Hollingsworth & Dror, 2018; Lindorff-Larsen et al., 2011).

The root cause of this problem lies in the design of current predictors: as generative models, they are trained to match the empirical distribution of known structures, without enforcing physical validity as a strict constraint in the training objective. Consequently, these models can assign non-zero probability to non-physical configurations, a flaw that persists even with large-scale training, both in data and model size, as observed in recent works (Wohlwend et al., 2024; Passaro et al., 2025; Buttenschoen et al., 2024; Team et al., 2025). Methods such as Boltz-1-steering (Wohlwend et al., 2024) reintroduce physics as inference-time guidance by biasing the sampling process towards physically valid regions. Such guidance can reduce violations, but still cannot guarantee validity: with finite guidance strength and update steps, invalid configurations remain reachable.

To close this gap, we elevate physical validity to a *first-class constraint* and enforce it in *both training and inference* by explicitly handling validity alongside generation: The denoising network first outputs provisional atom coordinates; a separate projection module then maps them onto the physically valid set. Losses are computed on the projected coordinates with gradients propagated through the projection module. This design allows the denoising network to redirect its capacity toward improving structural accuracy, offloading the task of avoiding physics violations to the projection module. This shift further removes the need for large denoising steps: at inference, sampling with

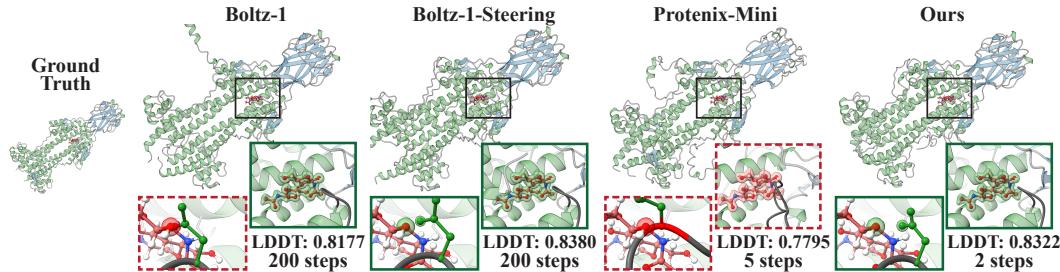


Figure 1: **Comparison on PDB 8B3E** (protein-ligand complex): global structure (top) and two zoomed views of the binding pocket (bottom). Protenix-Mini with 5 denoising steps exhibits backbone-ligand clashing. With 200 steps, Boltz-1 resolves the backbone but leaves clashes between the side chain and the ligand. Boltz-1-Steering removes clashes by using physics-informed potentials, but at the cost of large sampling steps. Ours yields physically valid results with only 2 denoising steps.

few steps is sufficient to attain high structural accuracy with guaranteed physical validity. As such, the reduction in denoising steps is not due to specialized few-step diffusion techniques: it follows directly from treating physical validity as a constraint throughout both training and inference.

Concretely, we instantiate this decoupling with a *differentiable Gauss-Seidel projection* placed after the denoiser. It solves a constrained optimization that projects all-atom coordinates to the nearest physically valid configuration. The constraints are tightly coupled through shared atoms and their number scales with the number of atoms, making the optimization problem large. Within the training loop, the module must also converge in a handful of iterations with low memory per forward and backward pass. These requirements make pure first-order gradient descent methods impractical, which requires tiny steps and many iterations to converge. We therefore adopt a Gauss-Seidel scheme (Saad, 2003), which sweeps over all constraints for a few iterations, enforcing each locally by updating only the affected atoms. It leverages locality and sparsity of the constraints and thereby yields faster, more stable convergence than gradient descent. The projection module is differentiable via implicit differentiation. We integrate it as a drop-in layer within existing biomolecular interaction frameworks (e.g., Boltz (Wohlwend et al., 2024)) and finetune end-to-end. At inference time, 2 denoising steps suffice to produce structurally accurate, physically valid protein complexes.

We evaluate our method on six protein-complex benchmarks: CASP15, Test (Wohlwend et al., 2024), PoseBusters (Buttenschoen et al., 2024), AF3-AB (Abramson et al., 2024), dsDNA, and RNA-Protein (Ma et al., 2025). Comparisons include 200-step generative models (Boltz-1, Boltz-1-Steering (Wohlwend et al., 2024), Boltz-2 Passaro et al. (2025), and Protenix (Team et al., 2025)) and the few-step baseline Protenix-Mini (Gong et al., 2025). Despite using only two denoising steps, our model achieves competitive structural accuracy while guaranteeing physical validity. For runtime, our model delivers a $\sim 10\times$ wall-clock speedup over baselines. Our study largely closes the gap between guaranteed physical validity and state-of-the-art structural accuracy under few-step sampling, enabling 2-step all-atom predictions with an order-of-magnitude faster inference.

2 RELATED WORK

Protein Structure Prediction. Deep learning-based foundation models are reshaping the task of protein structure prediction that produces 3D coordinates from input sequences (Senior et al., 2020b; Jumper et al., 2021). End-to-end variants extended this paradigm to complexes and large-scale training and inference (Baek et al., 2021; Evans et al., 2022). AlphaFold-3 further moved to all-atom biomolecular interaction modeling with a diffusion sampler (Abramson et al., 2024), followed by improvements on generative models, such as Boltz-2 (Passaro et al., 2025) and Protenix (Team et al., 2025). These methods typically require hundreds of denoising steps. Few-step variants such as Protenix-Mini (Team et al., 2025) reduce sampling to two steps while maintaining accuracy, yet still lack guarantees on physical validity. Boltz-1-Steering (Wohlwend et al., 2024) is the first to explicitly target this issue by steering sampling with physics-informed potentials, but the guidance is soft and cannot preclude violations. By contrast, we introduce a Gauss-Seidel projection layer that enforces physical validity for both training and inference.

108 **Diffusion Models with Tilted Distribution Sampling.** Diffusion models have demonstrated strong
 109 capabilities in producing samples given input conditions (Ho et al., 2020; Dhariwal & Nichol, 2021;
 110 Song et al., 2021). However, in many cases, users require the generated samples to satisfy cer-
 111 tain specific constraints. There are primarily two types of constraint-aware diffusion methods: (i)
 112 Feynman-Kac (FK) steering-based conditional sampling methods (Trippe et al., 2023; Singhal et al.,
 113 2025), which steer the sampling toward regions that meet desired conditions through reweighting
 114 of the path distribution in the diffusion process, and (ii) manifold-based diffusion models (Bortoli
 115 et al., 2022; Elhag et al., 2024), which explicitly construct a constrained manifold, ensuring that gen-
 116 erated samples inherently satisfy the desired constraints. However, FK-steering typically requires a
 117 large number of sampling steps, and explicit manifold construction can be computationally expen-
 118 sive when constraints are complex. We introduce a Gauss-Seidel projection module that enforces
 119 constraints in training and inference, thereby circumventing both excessive sampling iterations and
 120 the need for expensive manifold construction.

121 **Constraint Enforcement via Position-Based Dynamics.** Enforcing physical constraints has long
 122 been central to physics simulation across computational physics and computer graphics. To handle
 123 boundary conditions (Macklin et al., 2014), collisions, contact, friction (Bridson et al., 2002), and
 124 bond stretching (Ryckaert et al., 1977), many methods have been developed to keep simulations
 125 physically consistent. Among these, position-based dynamics and its extensions (Müller et al., 2007;
 126 Macklin & Müller, 2016; Chen et al., 2024) iteratively project particle positions to satisfy predefined
 127 constraints, proving effective for soft bodies, fluids, and coupled phenomena (Bender et al., 2014).
 128 By updating positions directly instead of integrating stiff forces, these methods remain stable under
 129 large timesteps and avoid costly global solves. Since constraints are enforced through small, local
 130 projections, the overall complexity scales nearly linearly with the number of constraints, which
 131 aligns with our goal of generating proteins that respect local physical constraints.

132 **Finetuning Diffusion Models.** Finetuning has become essential for tailoring diffusion models to
 133 specific downstream tasks. To enhance controllability, many recent works employ reinforcement
 134 learning (RL) strategies: (i) methods such as DRaFT (Clark et al., 2024) and DPPO (Ren et al.,
 135 2024) treat the denoising trajectory as a policy to directly optimize reward functions; (ii) approaches
 136 like DPOK (Fan et al., 2023) and DiffPPO (Xiao et al., 2024) leverage preference data or human
 137 feedback. While effective at steering generation, these RL-based methods often incur high compu-
 138 tational costs or exhibit sensitivity to the quality of the feedback signal. In contrast, we introduce
 139 a Gauss-Seidel projection during training to finetune the model via strictly defined physical con-
 140 straints, circumventing the instability of policy gradient estimation.

142 3 PRELIMINARY

144 **All-Atom Diffusion Model.** Proteins can be represented at *all-atom* resolution (Abramson et al.,
 145 2024; Wohlwend et al., 2024; Passaro et al., 2025), where a structure is specified by the Cartesian
 146 coordinates of all atoms $\hat{\mathbf{x}} \in \mathbb{R}^{N \times 3}$, with N the total number of atoms. This representation en-
 147 ables direct modeling of side-chain orientations, local packing, and explicit inter-atomic geometry.
 148 AlphaFold3 (Abramson et al., 2024) introduced an atom-level diffusion approach that iteratively
 149 denoises atomic coordinates from Gaussian noise. Conditioned on features produced by the atom-
 150 attention encoder, MSA module, and PairFormer, a denoising network runs for hundreds of steps
 151 (typically 200) to generate the all-atom prediction $\hat{\mathbf{x}}$.

152 **Physics-Guided Steering.** All-atom diffusion sampling is stochastic and therefore cannot guaran-
 153 tee *physical validity*. To address this, Boltz-1-Steering (Wohlwend et al., 2024), built upon the
 154 Feynman-Kac framework (Singhal et al., 2025), employs physics-informed potentials. At each
 155 denoising step, these potentials score the validity and tilt the learned denoising model toward a
 156 lower-energy configuration. The energy is a weighted sum of seven terms: tetrahedral atom chiral-
 157 ity, bond stereochemistry, planarity of double bonds, internal ligand distance bounds, steric clashes
 158 avoidance, non-overlapping symmetric chains, and the preservation of covalently bonded chains.
 159 Since this tilted distribution cannot be sampled directly, the method uses importance sampling to
 160 draw multiple candidates, which are then refined with gradient descent updates to further reduce
 161 violations. Although this steering reduces physical errors, it remains a soft approach: it biases the
 162 sampling process toward validity during inference rather than embedding validity into the training.

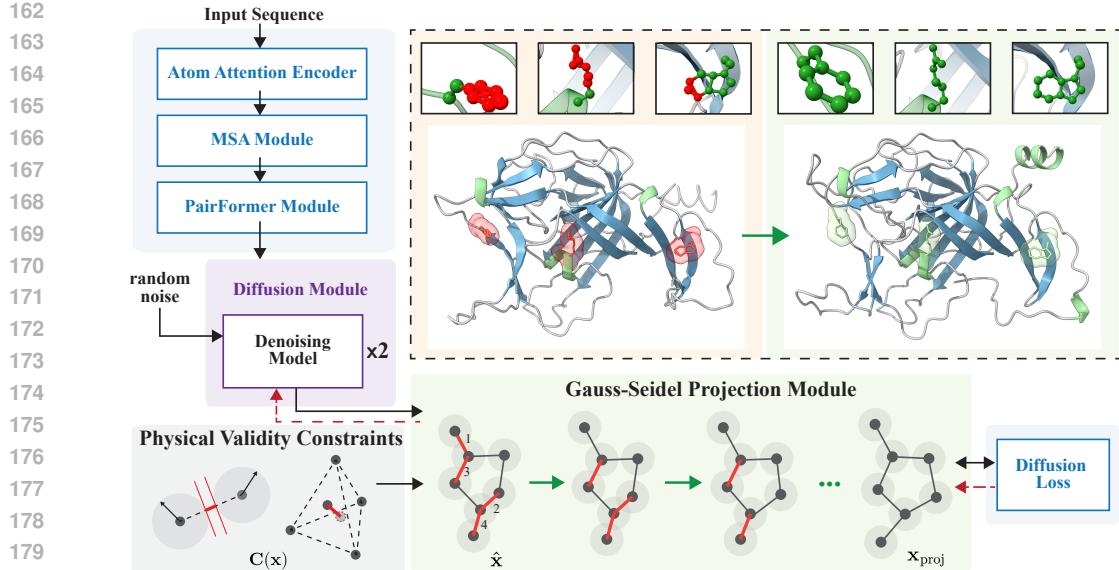


Figure 2: **Enforcing physical validity during both training and inference via our Gauss-Seidel projection module.** Provisional all-atom coordinates from the diffusion model are corrected by a Gauss-Seidel projection that sequentially resolves local constraints, each acting on a small set of atoms and updating coordinates in place. The module is differentiable via implicit differentiation, allowing seamless integration into training. The same projection is applied at inference, ensuring physical validity and enabling accurate predictions with as few as two denoising steps.

4 APPROACH

Our goal is to predict all-atom biomolecular complexes that are both structurally accurate and physically valid. Given provisional coordinates produced by a diffusion module, we enforce validity with a Gauss-Seidel projection module that sequentially resolves physical constraints on the affected atoms (Sec. 4.1 and 4.2). The module is differentiable, allowing training losses to be computed on the projected atom coordinates, and gradients to propagate back through the projection module via implicit differentiation (Sec. 4.3). Crucially, this module enables accurate inference with only two denoising steps while guaranteeing physical validity. Fig. 2 illustrates the overall pipeline.

4.1 PENALTY-BASED FORMULATION FOR PHYSICAL VALIDITY

Given the Cartesian coordinates of all constituent atoms $\hat{\mathbf{x}}$ produced by the diffusion module, our projection module finds the nearest physically valid coordinate configuration:

$$\mathbf{x}_{\text{proj}} = \arg \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \hat{\mathbf{x}}\|_2^2, \quad \text{s.t. } \mathbf{C}(\mathbf{x}) = \mathbf{0}, \quad (1)$$

where $\mathbf{C}(\cdot) : \mathbb{R}^{N \times 3} \rightarrow \mathbb{R}^m$ concatenates all constraints that characterize physical validity, and its zero set defines the feasible space. We follow Boltz-1-Steering (Wohlwend et al., 2024) to define the constraints. Detailed formulation is provided in Appendix M. Since all terms are locally defined on pairs or four-atom groups, the total number of constraints m scales with atoms and can be large. For instance, for PDB 8TGH which consists of 470 residues with 7,082 atoms, m is $\sim 13M$.

A standard approach to solving the constrained problem Eq. 1 is the *penalty method* (Boyd & Vandenberghe, 2004), in which the constraints are incorporated as an exterior penalty into the objective:

$$\mathbf{x}_{\text{proj}} = \arg \min_{\mathbf{x}} (E(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \hat{\mathbf{x}}\|_2^2), \quad E(\mathbf{x}) = \frac{1}{2} \mathbf{C}(\mathbf{x})^\top \boldsymbol{\alpha}^{-1} \mathbf{C}(\mathbf{x}), \quad (2)$$

where we choose a quadratic penalty $E(\cdot)$ and $\boldsymbol{\alpha} \in \mathbb{R}^{m \times m}$ is a block-diagonal matrix of penalty coefficients. For sufficiently small $\boldsymbol{\alpha}$ (i.e., large weights $\boldsymbol{\alpha}^{-1}$), Eq. 2 serves as a numerical realization of the hard-constrained projection: the minimizer satisfies the constraint up to numerical tolerance. In our implementation, we set $\alpha_j = 10^{-7}$ or 10^{-6} to enforce a tight feasibility threshold.

The penalty formulation defines a deterministic mapping $\hat{\mathbf{x}} \mapsto \mathbf{x}_{\text{proj}}$ that links the provisional coordinates of the diffusion module to a physically valid output. Solved on its own, this mapping already functions as a plug-and-play post-processing module for biomolecular modeling frameworks. Since the projection can resolve invalidity efficiently, we aim to explicitly decouple validity enforcement from the network training by integrating the module *within* the training loop. Concretely, we insert the module immediately after the diffusion module and compute training losses on the projected coordinates. In the following sections, we detail the forward solver (Sec. 4.2) and the backward pass via implicit differentiation (Sec. 4.3), enabling the module to operate as a fully differentiable layer.

4.2 GAUSS-SEIDEL CONSTRAINT PROJECTION

Solving Eq. 2 alone is classical and admits many off-the-shelf solvers. Embedding it as a differentiable module within a biomolecular modeling pipeline, however, imposes stricter requirements: very fast convergence per forward pass and training step, and stable convergence under stiff, tightly coupled constraints. Pure first-order gradient descent, as used in Boltz-1-Steering (Wohlwend et al., 2024), is ill-suited: it requires small step sizes and prohibitively many iterations to converge to a zero constraint penalty, making unrolled end-to-end training slow. We therefore propose a Gauss-Seidel projection that exploits locality and sparsity by sequentially updating only the atoms affected by each constraint, thereby achieving fast and stable convergence.

We consider the first-order optimality condition for Eq. 2:

$$\boxed{\nabla \mathbf{C}(\mathbf{x})^\top \boldsymbol{\alpha}^{-1} \mathbf{C}(\mathbf{x}) + (\mathbf{x} - \hat{\mathbf{x}}) = \mathbf{0}.} \quad (3)$$

We then introduce the Lagrange multiplier $\boldsymbol{\lambda}(\mathbf{x}) := -\boldsymbol{\alpha}^{-1} \mathbf{C}(\mathbf{x})$ by following Stuart & Humphries (1996) and Servin et al. (2006) to obtain the coupled system:

$$\begin{aligned} (\mathbf{x} - \hat{\mathbf{x}}) - \nabla \mathbf{C}(\mathbf{x})^\top \boldsymbol{\lambda}(\mathbf{x}) &= \mathbf{0}, \\ \mathbf{C}(\mathbf{x}) + \boldsymbol{\alpha} \boldsymbol{\lambda}(\mathbf{x}) &= \mathbf{0}. \end{aligned} \quad (4)$$

This system is nonlinear; we solve it by iterative linearization about the current iterate $(\mathbf{x}^{(n)}, \boldsymbol{\lambda}^{(n)})$. At iteration n , the linearized system is:

$$\begin{bmatrix} \mathbf{I} & -\nabla \mathbf{C}(\mathbf{x}^{(n)})^\top \\ \nabla \mathbf{C}(\mathbf{x}^{(n)}) & \boldsymbol{\alpha} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x} \\ \Delta \boldsymbol{\lambda} \end{bmatrix} = - \begin{bmatrix} \mathbf{0} \\ \mathbf{C}(\mathbf{x}^{(n)}) + \boldsymbol{\alpha} \boldsymbol{\lambda}^{(n)} \end{bmatrix},$$

with updates $\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} + \Delta \mathbf{x}$ and $\boldsymbol{\lambda}^{(n+1)} = \boldsymbol{\lambda}^{(n)} + \Delta \boldsymbol{\lambda}$. It can be shown that with initialization $\mathbf{x}^{(0)} = \hat{\mathbf{x}}$ and $\boldsymbol{\lambda}^{(0)} = \mathbf{0}$, the linearized iterates converge to a solution of the original nonlinear system Eq. 4. See Appendix J for a proof. Applying the Schur complement (Zhang, 2005) with respect to \mathbf{I} gives the reduced system for the multiplier update:

$$(\nabla \mathbf{C}(\mathbf{x}^{(n)}) \nabla \mathbf{C}(\mathbf{x}^{(n)})^\top + \boldsymbol{\alpha}) \Delta \boldsymbol{\lambda} = -\mathbf{C}(\mathbf{x}^{(n)}) - \boldsymbol{\alpha} \boldsymbol{\lambda}^{(n)}, \quad (5)$$

and the position update $\Delta \mathbf{x} = \nabla \mathbf{C}(\mathbf{x}^{(n)})^\top \Delta \boldsymbol{\lambda}$.

The primary computation in each iteration is solving the large linear system Eq. 5. Rather than constructing the full linear system, which is memory-intensive and costly, we employ a *Gauss-Seidel* scheme that iteratively sweeps over the constraints: During each sweep, the method addresses one constraint at a time by updating only the atom coordinates it affects. These new coordinates are used immediately when processing the next constraint. After a small number of sweeps, the system converges to a configuration where all constraints are satisfied. This Gauss-Seidel scheme is significantly more efficient than a global solve because it effectively leverages the locality and sparsity inherent in Eq. 5. Specifically, for the j -th constraint, the Gauss-Seidel update is

$$\Delta \boldsymbol{\lambda}_j = \frac{-\mathbf{C}_j(\mathbf{x}^{(n)}) - \boldsymbol{\alpha}_j \boldsymbol{\lambda}_j^{(n)}}{\nabla \mathbf{C}_j(\mathbf{x}^{(n)}) \nabla \mathbf{C}_j(\mathbf{x}^{(n)})^\top + \boldsymbol{\alpha}_j}, \quad j = 1, \dots, m. \quad (6)$$

Processing all constraints sequentially and repeating for a small number of sweeps (20 in our implementation) yields fast and stable convergence in practice. To maximize computational throughput, we implement the solver on GPUs (details in Sec. 5.1). Algorithm 1 outlines the forward process of the Gauss-Seidel projection module.

270

271

272

273

Algorithm 1 Forward Solver of Gauss-Seidel Projection Module.

274

275

276

Input: Atom coordinates $\hat{\mathbf{x}}$; constraints and their gradients $\{\mathbf{C}_j, \nabla \mathbf{C}_j\}_{j=1}^m$; penalty coefficients $\{\alpha_j\}_{j=1}^m$; sweeps T

277

Output: Projected coordinates \mathbf{x}_{proj}

278

1: $\mathbf{x}^{(0)} \leftarrow \hat{\mathbf{x}}$; $\boldsymbol{\lambda}^{(0)} \leftarrow \mathbf{0}$

279

2: **for** $n = 1$ to T **do** \triangleright Gauss-Seidel sweeps

280

3: **for** $j = 1$ to m **do**

281

4: Compute $\Delta \boldsymbol{\lambda}_j$ using Eq. 6.

282

5: $\mathbf{x}^{(n+1)} \leftarrow \mathbf{x}^{(n)} + \nabla \mathbf{C}_j(\mathbf{x}^{(n)}) \Delta \boldsymbol{\lambda}_j$;

283

6: $\boldsymbol{\lambda}_j^{(n+1)} \leftarrow \boldsymbol{\lambda}_j^{(n)} + \Delta \boldsymbol{\lambda}_j$

284

7: **end for**

285

8: **end for**

286

9: **return** $\mathbf{x}_{\text{proj}} \leftarrow \mathbf{x}^{(T)}$

287

Remark 4.1 (Fast Convergence and Constraint Satisfaction of Gauss-Seidel Projection) The convergence of the Gauss-Seidel projection is of quasi-second order. Each update yields a monotone decrease with $O(1)$ work per constraint (hence $O(m)$ per sweep). With a strict tolerance and sufficiently small α , the final iterate satisfies the first-order optimality condition and realizes the hard-constrained projection. See Appendix K for details.

293

294

4.3 DERIVATIVES VIA IMPLICIT DIFFERENTIATION

295

296

297

298

In the forward pass, the module projects $\hat{\mathbf{x}}$ into $\mathbf{x}_{\text{proj}} = \mathbf{x}_{\text{proj}}(\hat{\mathbf{x}})$, which is used to calculate the training loss $L = L(\mathbf{x}_{\text{proj}})$. The corresponding backward pass is to compute the gradient of this loss with respect to the input of the projection module, $\frac{\partial L}{\partial \hat{\mathbf{x}}}$.

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

Making the projection module differentiable is the key to enabling few-step sampling. A standard diffusion module is trained to handle two tasks simultaneously: achieving structural accuracy and ensuring physical validity. It relies on a large number of denoising steps as its effective capacity to perform both. Consequently, when the step budget is small, the model’s structural accuracy degrades significantly, as shown in Fig. 3. By finetuning the network with our differentiable projection module, we enable a decoupling of responsibilities. The denoising network learns to focus exclusively on recovering structural accuracy, offloading the task of ensuring physical validity to the projection module. This decoupling makes highly accurate predictions possible even with a very small step budget.

317

318

319

320

321

Backpropagating through the Gauss-Seidel projection is non-trivial because it is implemented with an iterative solver. A naive approach, such as unrolling the forward iterations for automatic differentiation, is prohibitively memory-intensive and thus impractical for end-to-end training. We resort to *implicit differentiation*, a technique from sensitivity analysis (Burczyński et al., 1997). Specifically, we differentiate the first-order optimality condition in Eq. 2 with respect to $\hat{\mathbf{x}}$:

322

323

$$(\mathbf{H}(\mathbf{x}_{\text{proj}}) + \mathbf{I}) \frac{\partial \mathbf{x}_{\text{proj}}}{\partial \hat{\mathbf{x}}} = \mathbf{I}, \quad \mathbf{H}(\mathbf{x}) = \sum_{j=1}^m \alpha_j^{-1} [\nabla \mathbf{C}_j(\mathbf{x}) \nabla \mathbf{C}_j(\mathbf{x})^\top + \mathbf{C}_j(\mathbf{x}) \nabla^2 \mathbf{C}_j(\mathbf{x})], \quad (7)$$

Algorithm 2 Backward Pass of Gauss-Seidel Projection Module.

Input: Projected coords \mathbf{x}_{proj} ; upstream gradient $\frac{\partial L}{\partial \mathbf{x}_{\text{proj}}}$; $\{\mathbf{C}_j, \nabla \mathbf{C}_j, \nabla^2 \mathbf{C}_j\}_{j=1}^m$; $\{\alpha_j\}_{j=1}^m$; tolerance ε ; max iters K

Output: Gradient w.r.t. $\hat{\mathbf{x}}$, i.e., $\frac{\partial L}{\partial \hat{\mathbf{x}}}$

1: $\mathbf{z}_0 \leftarrow (\frac{\partial L}{\partial \mathbf{x}_{\text{proj}}})^\top$

2: Compute $\mathbf{A} = \mathbf{H}(\mathbf{x}_{\text{proj}}) + \mathbf{I}$ as in Eq. 7

3: **for** $k = 1$ to K **do**

4: CG update step for $\mathbf{A}^\top \mathbf{z}_k = \left(\frac{\partial L}{\partial \mathbf{x}_{\text{proj}}} \right)^\top$

5: **if** $\|\mathbf{z}_k - \mathbf{z}_{k-1}\| \leq \varepsilon$ **then**

6: **break**

7: **end if**

8: **end for**

9: **return** $\frac{\partial L}{\partial \hat{\mathbf{x}}} \leftarrow \mathbf{z}^\top$

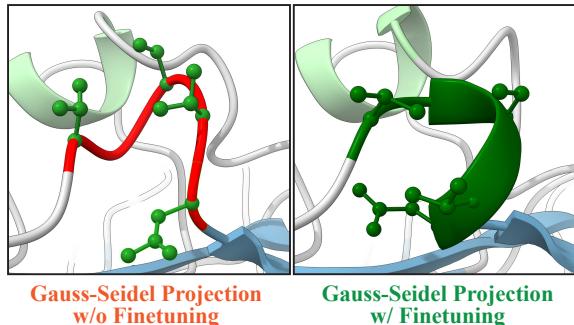


Figure 3: Importance of differentiable projection and finetuning. A post-hoc projection without finetuning w/ a 2-step sampling, while ensuring physical validity, fails to recover the α -helical secondary structure (left). Integrating the projection as a differentiable layer and finetuning diffusion module restores the helix and improves structural accuracy (right).

324 which is evaluated at $\mathbf{x} = \mathbf{x}_{\text{proj}}$. By the chain rule $\frac{\partial L}{\partial \hat{\mathbf{x}}} = \frac{\partial L}{\partial \mathbf{x}_{\text{proj}}} \frac{\partial \mathbf{x}_{\text{proj}}}{\partial \hat{\mathbf{x}}}$, we obtain the adjoint system
 325

$$326 \quad 327 \quad 328 \quad (\mathbf{H}(\mathbf{x}_{\text{proj}}) + \mathbf{I})^{\top} \mathbf{z} = \left(\frac{\partial L}{\partial \mathbf{x}_{\text{proj}}} \right)^{\top}, \quad \text{and set} \quad \frac{\partial L}{\partial \hat{\mathbf{x}}} = \mathbf{z}^{\top}. \quad (8)$$

329
 330 Analogously to the forward pass, the backward pass requires solving an additional linear system.
 331 We use conjugate gradients (CG) to solve Eq. 8. whose convergence is guaranteed near feasibility
 332 (see Appendix L for details). For runtime efficiency, we implement the CG solver on the GPU.
 333 Algorithm 2 outlines the backward process of the projection module.

334 335 336 5 EVALUATION

337 In this section, we evaluate our method’s structural accuracy and physical validity through a series
 338 of experiments. We conduct quantitative results on six protein-complex benchmarks using standard
 339 evaluation metrics (Sec. 5.2). We also provide qualitative visualizations that compare protein struc-
 340 tures and demonstrate the physical validity (Sec. 5.3). Furthermore, we analyze the convergence
 341 speed and wall-clock runtime of our approach (Sec. 5.4). Finally, we conduct an ablation study to
 342 isolate the impact of our Gauss-Seidel projection (Sec. 5.5).

343 344 345 5.1 IMPLEMENTATION DETAILS

346 With the differentiable Gauss-Seidel projection module in place, we finetune a pre-trained all-atom
 347 diffusion network specifically for 2-step sampling. During finetuning, we retain the original noise
 348 parameterization and denoising objective. At inference time, we use the inference-time sampling
 349 schedule of Protenix-Mini (Team et al., 2025). A Gauss-Seidel projection is applied to the model’s
 350 output to guarantee a physically valid final structure. Appendix I provides pseudo-code and com-
 351 plete algorithms for both training and inference with our projection module. We implement the
 352 differentiable Gauss-Seidel projection on the GPU using the WARP library (Macklin et al., 2024).
 353 In the forward pass, constraints are partitioned into batches with no shared atoms, allowing them to
 354 be processed in parallel. Coordinate updates are accumulated with atomic operations. We use $T=20$
 355 sweeps. The backward pass solves the adjoint linear system with a conjugate gradient solver fully
 356 on GPU, parallelizing per-constraint operations with atomic accumulation. We set the tolerance
 357 to $\varepsilon=10^{-4}$ and the maximal number of iterations to 1000. The projection module integrates with
 358 PyTorch as a custom autograd layer, avoiding the overhead costs of host-device copies and context
 359 switching. For training, we finetune Boltz-1 (Wohlwend et al., 2024) from open-source pretrained
 360 weights on the RCSB dataset (Burley et al., 2022) ($\sim 180,000$ structures) using 8 NVIDIA H100
 361 GPUs over two weeks. All evaluations are conducted on NVIDIA A6000 GPUs. For baselines and
 362 evaluation protocol, see Appendix N for details.

363 364 5.2 QUANTITATIVE RESULTS

365 Table 1 and 2 summarize the comparison across six protein-complex benchmarks. Among all meth-
 366 ods, ours uses the fewest denoising steps (2 steps). It achieves state-of-the-art accuracy in the few-
 367 step regime: Compared to Protenix-Mini (5 steps), our model improves complex- and interface-level
 368 LDDT across all benchmarks. Compared to 200-step baselines, the accuracy of our method is com-
 369 petitive; on CASP15 and PoseBusters, ours outperforms Boltz-1 and Protenix on multiple metrics
 370 while approaching Boltz-2, which requires 100 times more sampling. The largest gains appear in
 371 Lig-Prot LDDT, where our method leads on CASP15 and TEST and remains close to the best on
 372 PoseBusters, consistent with the projection module’s focus on atom-level geometry.

373 For physical validity, our approach is unequivocally best: it achieves 100% validity across all bench-
 374 marks. Methods that do not enforce validity (Boltz-1, Protenix, Protenix-Mini) show frequent
 375 clashes and physical errors, whereas steering-based methods (Boltz-1-Steering, Boltz-2) improve
 376 but still admit failures because validity is used as guidance rather than a constraint. These non-
 377 physical outcomes limit downstream usability, whereas our predictions satisfy validity and preserve
 high structural accuracy with only two denoising steps.

378
 379
 380
 381
 382
 Table 1: **Quantitative results on 6 datasets (Part I).** Our method uses only 2 denoising steps
 yet always guarantees physical validity and achieves competitive structural accuracy compared
 to baselines. Dark green cells denote the best results among the few-step methods, while light
 green cells denote the best results among the 200-step methods. **We also include the results of Al-**
phaFold3 (Abramson et al., 2024) for references.

	Metric	# Denoise Steps	Complex LDDT	Prot-Prot iLDDT	Lig-Prot iLDDT	DockQ > 0.23	Mean LDDT-PLI	L-RMSD < 2 Å	Physical Validity
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 CASP15	AlphaFold3	200	0.63±0.07	0.49±0.14	0.49±0.11	0.67±0.33	0.36±0.23	0.30±0.26	0.67±0.06
	Boltz-1	200	0.62±0.07	0.52±0.05	0.53±0.07	0.73±0.27	0.41±0.17	0.20±0.22	0.62±0.03
	Protenix	200	0.63±0.06	0.63±0.08	0.49±0.07	0.56±0.30	0.41±0.18	0.22±0.18	0.56±0.03
	Boltz-1-Steering	200	0.62±0.07	0.50±0.05	0.59±0.07	0.71±0.29	0.40±0.19	0.16±0.22	1.00±0.00
	Boltz-2	200	0.65±0.07	0.49±0.07	0.60±0.08	0.73±0.27	0.52±0.19	0.33±0.24	1.00±0.00
	Protenix-Mini	10	0.60±0.06	0.30±0.04	0.44±0.05	0.40±0.20	0.45±0.17	0.45±0.25	0.47±0.07
	Protenix-Mini	5	0.60±0.06	0.34±0.04	0.58±0.06	0.50±0.36	0.38±0.19	0.27±0.28	0.44±0.06
	Ours	2	0.62±0.07	0.37±0.06	0.64±0.06	0.71±0.29	0.29±0.16	0.31±0.28	1.00±0.00
	AlphaFold3	200	0.82±0.01	0.57±0.02	0.53±0.04	0.70±0.06	0.61±0.05	0.57±0.07	0.61±0.02
	Boltz-1	200	0.80±0.01	0.54±0.01	0.48±0.03	0.69±0.06	0.58±0.06	0.56±0.06	0.44±0.02
Test	Protenix	200	0.79±0.01	0.53±0.01	0.38±0.02	0.68±0.06	0.47±0.05	0.42±0.05	0.46±0.02
	Boltz-1-Steering	200	0.80±0.01	0.53±0.01	0.51±0.03	0.67±0.06	0.58±0.05	0.55±0.06	0.99±0.00
	Boltz-2	200	0.82±0.01	0.58±0.01	0.56±0.03	0.72±0.06	0.64±0.05	0.60±0.06	1.00±0.00
	Protenix-Mini	10	0.73±0.02	0.41±0.01	0.37±0.02	0.55±0.06	0.46±0.05	0.39±0.06	0.40±0.02
	Protenix-Mini	5	0.72±0.02	0.41±0.01	0.35±0.02	0.55±0.06	0.43±0.05	0.36±0.05	0.38±0.02
PoseBusters	Ours	2	0.79±0.02	0.52±0.01	0.57±0.04	0.64±0.06	0.46±0.05	0.42±0.06	1.00±0.00
	AlphaFold3	200	0.92±0.01	0.86±0.01	0.70±0.01	0.61±0.09	0.72±0.04	0.64±0.06	0.45±0.03
	Boltz-1	200	0.92±0.01	0.85±0.01	0.67±0.01	0.60±0.10	0.69±0.04	0.62±0.05	0.21±0.01
	Protenix	200	0.92±0.01	0.87±0.00	0.72±0.01	0.63±0.11	0.74±0.04	0.67±0.05	0.37±0.03
	Boltz-1-Steering	200	0.92±0.01	0.85±0.01	0.68±0.01	0.59±0.10	0.69±0.039	0.63±0.05	0.94±0.02
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	Boltz-2	200	0.94±0.01	0.95±0.01	0.79±0.01	0.66±0.10	0.81±0.03	0.79±0.04	0.87±0.02
	Protenix-Mini	10	0.90±0.01	0.55±0.07	0.71±0.01	0.59±0.11	0.72±0.04	0.67±0.05	0.27±0.03
	Protenix-Mini	5	0.90±0.01	0.57±0.07	0.70±0.01	0.60±0.10	0.71±0.04	0.63±0.05	0.21±0.03
	Ours	2	0.92±0.01	0.85±0.01	0.69±0.01	0.58±0.10	0.68±0.05	0.61±0.07	1.00±0.00

5.3 QUALITATIVE RESULTS

Fig. 4 and 9 (in Appendix A) present qualitative comparisons, showing that our approach consistently yields physically valid structures while preserving high accuracy. For PDB 7Y9A (with an N-acetyl-D-glucosamine ligand), which is used to assess ligand–protein interface quality, all baselines produce severe ligand–protein atom clashes, whereas our method eliminates these violations. For PDB 7XYO (557 residues with extensive secondary structure), which is used to evaluate large, structured assemblies, Boltz-1, Boltz-1-Steering, and Protenix show inter-chain collisions. Protenix-Mini avoids clashes but introduces large distortion, particularly in the second coiled segment. In contrast, our method produces clash-free structures while maintaining structural accuracy. Additional examples are provided in Appendix A.

5.4 ANALYSIS

Analysis on Convergence Speed. We compare the convergence speed of our Gauss-Seidel projection against gradient descent guidance (Boltz-1-Steering). We add Gaussian noise to the ground truth coordinates of PDB 8X51 with four levels ($\sigma \in \{160, 120, 80, 40\}$) and run the same diffusion module, with either gradient descent guidance or Gauss-Seidel projection to enforce physical validity. We visualize the potential energy versus the number of update iterations in Fig. 5 (left). Gauss-Seidel projection reduces the physics potential rapidly and converges within 20 iterations for all noise levels. In contrast, gradient descent exhibits oscillations and long tails, requiring far more iterations to achieve a comparable reduction. This gap reflects the algorithms: Gauss-Seidel projection is of quasi-second order and thus converges faster than first-order gradient descent.

Wall-clock Runtime Comparison. To assess practical speed, we measured the wall-clock inference time (including diffusion and physical validity enforcement) on CASP15. The results, binned by atom count, are shown in Fig. 5 (right). Our 2-step predictor with Gauss-Seidel projection is consistently the fastest. It achieves a median speedup of $\sim 9.4 \times$ over the 200-step Boltz-1 baseline and

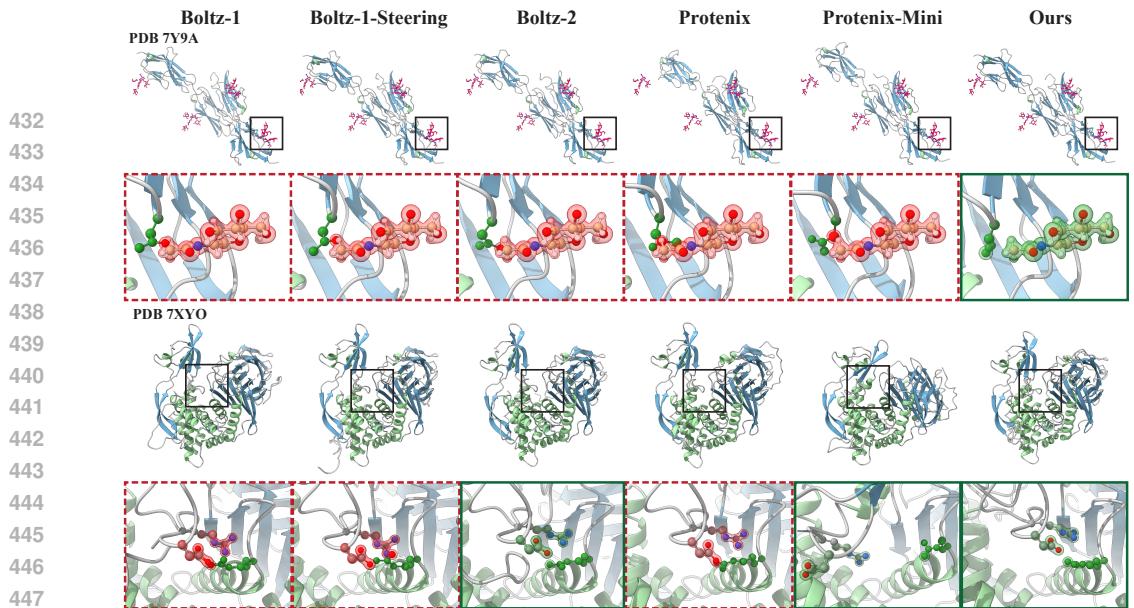


Figure 4: **Qualitative comparison with baseline methods.** The red color highlights physically invalid predictions, such as atomic clashes. Our approach consistently guarantees physical validity. The first example demonstrates a ligand-protein steric clash, where the ligand atoms physically penetrate the receptor surface. This corresponds to constraint 1 (Steric Clash) in Fig. 11. The second example demonstrates an inter-chain overlap, where atoms from Chain A and Chain B occupy the same space. This corresponds to constraint 6 (Overlapping Chains) in Fig. 11.

~9.5× over Protenix. Compared with Protenix-mini with 5 denoising steps, our method achieves ~2.3× speedup. Compared with Boltz-1-Steering, the speedup is 23–46×. The gains stem from the reduction in denoising steps and our GPU implementation of the projection module.

5.5 ABLATION STUDY

To isolate the impact of our differentiable Gauss-Seidel (GS) projection, we conduct an ablation study on CASP15 using the 200-step Boltz-1 model as a reference. We compare four 2-step sampling variants, presented in the order reported in the inset table: (i) a vanilla 2-step sampler with no mechanism for physical validity; (ii) adding gradient descent (GD) guidance at inference; (iii) adding GS projection at inference (only as a post-processing) without fine-tuning; (iv) finetuning with GS projection and also applying it at inference (our full method).

Moving from the 200-step baseline to a 2-step sampler without guidance reduces both accuracy and physical validity. Adding gradient descent guidance at inference improves validity but fails to recover the structural accuracy. Using Gauss-Seidel only as post-processing guarantees validity, but at the cost of slightly degrading the accuracy. Our full setting closes the gap to the 200-step baseline with two denoising steps and is physically valid. These results show that while Gauss-Seidel projection is necessary to enforce validity, making it differentiable is critical for high structural accuracy in the few-step regime.

6 CONCLUSION

In this work, we propose a differentiable Gauss-Seidel projection module that enforces physical validity during both training and inference for all-atom biomolecular interaction modeling. Framed as a constrained optimization, the module projects the coordinates produced by the diffusion module to configurations without violating physical validity. Finetuning the diffusion module with this projection achieves physically valid and structurally accurate outputs with only 2-step denoising, delivering ~10× faster inference than baselines while maintaining competitive accuracy.

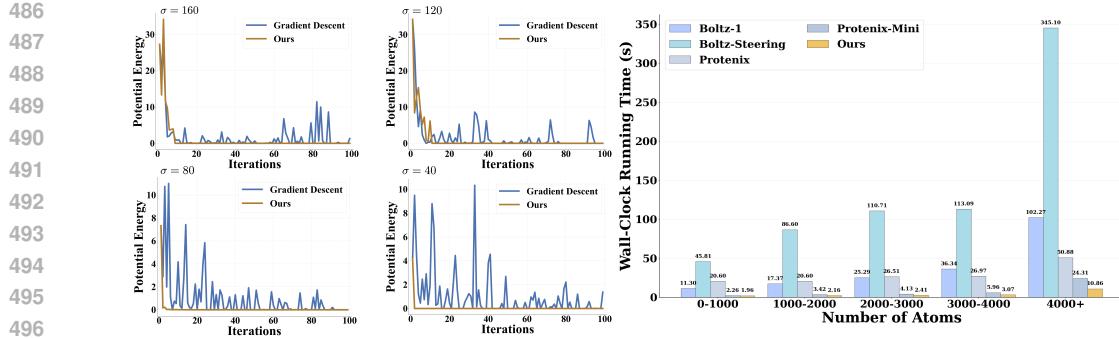


Figure 5: **Convergence and runtime.** Left: Potential energy vs. iteration on PDB 8X51 under four noise levels ($\sigma \in \{160, 120, 80, 40\}$). Gauss-Seidel projection (orange) converges to tolerance within 20 iterations; gradient descent guidance (blue) oscillates and decays slowly. Right: Wall-clock inference time by atom-count bin on CASP15. Ours is $\sim 10\times$ faster than 200-step baselines and $\sim 2.3\times$ faster than Protenix-Mini, while maintaining validity. Runtime includes diffusion and validity module; measured on the same hardware.

Table 2: **Quantitative results on 6 datasets (Part II).** Dark green cells denote the best results among the few-step methods. Light green cells denote the best results among the 200-step methods.

Method \ Metric	# Denoise Steps	Complex LDDT	Prot-Prot iLDDT	DNA-Prot iLDDT	RNA-Prot iLDDT	Physical Validity
AF3-AB	Boltz-1	200	0.80 \pm 0.02	0.10 \pm 0.01	—	0.00 \pm 0.00
	Protenix	200	0.79 \pm 0.03	0.17 \pm 0.01	—	0.00 \pm 0.00
	Boltz-1-Steering	200	0.79 \pm 0.03	0.20 \pm 0.02	—	0.90 \pm 0.02
	Boltz-2	200	0.87 \pm 0.03	0.60 \pm 0.02	—	0.92 \pm 0.02
	Protenix-Mini	10	0.75 \pm 0.03	0.11 \pm 0.01	—	0.00 \pm 0.00
	Protenix-Mini	5	0.75 \pm 0.03	0.09 \pm 0.01	—	0.00 \pm 0.00
dsDNA	Ours	2	0.79 \pm 0.03	0.12 \pm 0.01	—	1.00 \pm 0.00
	Boltz-1	200	0.85 \pm 0.04	—	0.76 \pm 0.02	0.03 \pm 0.01
	Protenix	200	0.86 \pm 0.04	—	0.78 \pm 0.02	0.06 \pm 0.01
	Boltz-1-Steering	200	0.85 \pm 0.04	—	0.77 \pm 0.02	1.00 \pm 0.00
	Boltz-2	200	0.94 \pm 0.02	—	0.89 \pm 0.01	1.00 \pm 0.00
	Protenix-Mini	10	0.82 \pm 0.05	—	0.70 \pm 0.02	0.00 \pm 0.00
RNA-Protein	Protenix-Mini	5	0.81 \pm 0.05	—	0.69 \pm 0.02	0.18 \pm 0.03
	Ours	2	0.78 \pm 0.04	—	0.70 \pm 0.02	1.00 \pm 0.00
	Boltz-1	200	0.74 \pm 0.05	—	—	0.00 \pm 0.00
	Protenix	200	0.75 \pm 0.05	—	—	0.02 \pm 0.03
	Boltz-1-Steering	200	0.73 \pm 0.05	—	—	0.96 \pm 0.01
	Boltz-2	200	0.73 \pm 0.03	—	—	0.96 \pm 0.02
Protenix-Mini	Protenix-Mini	10	0.73 \pm 0.06	—	—	0.00 \pm 0.00
	Protenix-Mini	5	0.72 \pm 0.06	—	—	0.05 \pm 0.04
	Ours	2	0.73 \pm 0.05	—	—	1.00 \pm 0.00

Limitations and Future Work. While our projection module substantially reduces the number of denoising steps, single-step inference remains out of reach. Future work will focus on achieving it by combining our projection module with one-step diffusion training techniques.

Reproducibility Statement. To ensure the reproducibility of our work, we provide detailed experimental settings in Sec. 5.1, the pseudocode for the Forward Solver and Backward Pass of the Gauss-Seidel projection module in Sec. 4.2 and Sec. 4.3, the pseudocode for training and inference algorithms in Appendix I, the details on the baselines and the evaluation protocol in Appendix N, and the complete formulations of the physical validity constraints in Appendix M.

540 REFERENCES
541

542 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
543 Ronneberger, Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, Sebastian W. Bodenstein,
544 David A. Evans, Chia-Chun Hung, Michael O'Neill, David Reiman, Kathryn Tunyasuvunakool,
545 Zachary Wu, Akvilé Žemgulyté, Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex Bridg-
546 land, Alexey Cherepanov, Miles Congreve, Alexander I. Cowen-Rivers, Andrew Cowie, Michael
547 Figurnov, Fabian B. Fuchs, Hannah Gladman, Rishabh Jain, Yousuf A. Khan, Caroline M. R. Low,
548 Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh, Adrian Stecula, Ashok Thillaisun-
549 daram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal Zielinski, Augustin Žídek, Vic-
550 tor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and John M. Jumper. Accurate
551 structure prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500,
552 2024. doi: 10.1038/s41586-024-07487-w.

553 Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
554 Lee, Jue Wang, Qian Cong, Lisa N. Kinch, R. Dustin Schaeffer, Claudia Millán, Hahnbeom Park,
555 Carson Adams, Caleb R. Glassman, Andy DeGiovanni, Jose H. Pereira, Andria V. Rodrigues,
556 Alberdina A. van Dijk, Ana C. Ebrecht, Diederik J. Opperman, Theo Sagmeister, Christoph
557 Buhlheller, Tea Pavkov-Keller, Manoj K. Rathinaswamy, Udit Dalwadi, Calvin K. Yip, John E.
558 Burke, K. Christopher Garcia, Nick V. Grishin, Paul D. Adams, Randy J. Read, and David Baker.
559 Accurate prediction of protein structures and interactions using a three-track neural network. *Sci-
560 ence*, 373(6557):871–876, 2021. doi: 10.1126/science.abb8754.

561 Jan Bender, Matthias Müller, Miguel A. Otaduy, Matthias Teschner, and Miles Macklin. A survey
562 on position-based simulation methods in computer graphics. *Comput. Graph. Forum*, 33(6):228–
563 251, September 2014. doi: 10.1111/cgf.12346.

564 Marco Biasini, Tobias Schmidt, Stefan Bienert, Valerio Mariani, Gabriel Studer, Jürgen Haas,
565 Niklaus Johner, Andreas Daniel Schenk, Ansgar Philippse, and Torsten Schwede. Openstructure:
566 an integrated software framework for computational structural biology. *Biological crystallogra-
567 phy*, 69(5):701–709, 2013.

568 Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and
569 Arnaud Doucet. Riemannian score-based generative modelling. In *Proceedings of the 36th Inter-
570 national Conference on Neural Information Processing Systems*, 2022.

572 Stephen P. Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press,
573 2004. ISBN 978-0521833783. doi: 10.1017/CBO9780511804441.

574 Robert Bridson, Ronald Fedkiw, and John Anderson. Robust treatment of collisions, contact and
575 friction for cloth animation. *ACM Trans. Graph.*, 21(3):594–603, July 2002. doi: 10.1145/
576 566654.566623.

578 T. Burczyński, J.H. Kane, and C. Balakrishna. Comparison of shape design sensitivity analysis
579 formulations via material derivative-adjoint variable and implicit differentiation techniques for 3-
580 d and 2-d curved boundary element. *Computer Methods in Applied Mechanics and Engineering*,
581 142(1):89–109, 1997. doi: [https://doi.org/10.1016/S0045-7825\(96\)01123-1](https://doi.org/10.1016/S0045-7825(96)01123-1).

582 Stephen K Burley, Charmi Bhikadiya, Chunxiao Bi, Sebastian Bittrich, Li Chen, Gregg V Crichlow,
583 Jose M Duarte, Shuchismita Dutta, Maryam Fayazi, Zukang Feng, et al. Rcsb protein data
584 bank: Celebrating 50 years of the pdb with new tools for understanding and visualizing biological
585 macromolecules in 3d. *Protein Science*, 31(1):187–208, 2022.

587 Martin Buttenschoen, Garrett M. Morris, and Charlotte M. Deane. PoseBusters: AI-based dock-
588 ing methods fail to generate physically valid poses or generalise to novel sequences. *Chemical
589 Science*, 15:3130–3139, 2024. doi: 10.1039/D3SC04185A.

590 Anka He Chen, Ziheng Liu, Yin Yang, and Cem Yuksel. Vertex block descent. *ACM Transactions
591 on Graphics (TOG)*, 43(4):1–16, 2024.

593 Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models
594 on differentiable rewards, 2024. URL <https://arxiv.org/abs/2309.17400>.

594 Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi S. Jaakkola. Diffdock:
 595 Diffusion steps, twists, and turns for molecular docking. In *Proceedings of the 11th International*
 596 *Conference on Learning Representations*, 2023.

597 Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. In *Proceedings*
 598 *of the 35th International Conference on Neural Information Processing Systems*, 2021.

600 Ahmed A. Elhag, Yuyang Wang, Joshua M. Susskind, and Miguel Angel Bautista. Manifold dif-
 601 fusion fields. In *Proceedings of the 12th International Conference on Learning Representations*,
 602 2024.

603 Richard Evans, Michael O'Neill, Alexander Pritzel, Natasha Antropova, Andrew Senior, Tim Green,
 604 Augustin Žídek, Russ Bates, Sam Blackwell, Jason Yim, Olaf Ronneberger, Sebastian Boden-
 605 stein, Michal Zielinski, Alex Bridgland, Anna Potapenko, Andrew Cowie, Kathryn Tunyasuvu-
 606 nako, Rishabh Jain, Ellen Clancy, Pushmeet Kohli, John Jumper, and Demis Hassabis. Protein
 607 complex prediction with alphafold-multimer. *bioRxiv*, 2022. doi: 10.1101/2021.10.04.463034.

608 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
 609 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
 610 fine-tuning text-to-image diffusion models, 2023. URL <https://arxiv.org/abs/2305.16381>.

611 Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspan. Efficient
 612 simulation of inextensible cloth. *ACM Trans. Graph.*, 26(3):49–es, July 2007. doi: 10.1145/1276377.1276438.

613 Gene H Golub and Charles F Van Loan. *Matrix computations*. JHU press, 2013.

614 Chengyue Gong, Xinshi Chen, Yuxuan Zhang, Yuxuan Song, Hao Zhou, and Wenzhi Xiao.
 615 Proteinix-mini: Efficient structure predictor via compact architecture, few-step diffusion and
 616 switchable plm, 2025.

617 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Proceed-
 618 ings of the 34th International Conference on Neural Information Processing Systems*, 2020.

619 Scott A Hollingsworth and Ron O Dror. Molecular dynamics simulation for all. *Neuron*, 99(6):
 620 1129–1143, 2018.

621 John M. Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
 622 neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridg-
 623 land, Clemens Meyer, Simon A A Kohl, Andy Ballard, Andrew Cowie, Bernardino Romera-
 624 Paredes, Stanislav Nikolov, Rishabh Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
 625 Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Se-
 626 bastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
 627 meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
 628 *Nature*, 596:583–589, 2021. doi: 10.1038/s41586-021-03819-2.

629 Kresten Lindorff-Larsen, Stefano Piana, Ron O Dror, and David E Shaw. How fast-folding proteins
 630 fold. *Science*, 334(6055):517–520, 2011.

631 Jingjing Lyu, Shuangye Wang, Trent E Baliaus, and et al. Ultra-large library docking for discovering
 632 new chemotypes. *Nature*, 566(7743):224–229, 2019.

633 Wenzhi Ma, Zhenyu Liu, Jincai Yang, Chan Lu, Hanyu Zhang, and Wenzhi Xiao. From dataset
 634 curation to unified evaluation: Revisiting structure prediction benchmarks with pxmeter. *bioRxiv*,
 635 2025. doi: 10.1101/2025.07.17.664878.

636 Miles Macklin and Matthias Müller. Xpbd: Position-based simulation of compliant constrained
 637 dynamics. In *Proceedings of the 9th International Conference on Motion in Games*, pp. 49–54.
 638 ACM, 2016.

639 Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. Unified particle physics
 640 for real-time applications. *ACM Trans. Graph.*, 33(4), July 2014. doi: 10.1145/2601097.2601152.

648 Miles Macklin, Nicolas Capens, Zeshun Zong, Pingchuan Ma, Peter Yichen Chen, and Gergely Klar.
 649 Warp: Differentiable spatial computing for python. In *ACM SIGGRAPH 2024 Courses*, 2024.
 650

651 Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position based dynam-
 652 ics. In *Journal of Visual Communication and Image Representation*, volume 18, pp. 109–118.
 653 Elsevier, 2007.

654 Saro Passaro, Gabriele Corso, Jeremy Wohlwend, Mateo Reveiz, Stephan Thaler, Vignesh Ram
 655 Somnath, Noah Getz, Tally Portnoi, Julien Roy, Hannes Stark, David Kwabi-Addo, Dominique
 656 Beaini, Tommi Jaakkola, and Regina Barzilay. Boltz-2: Towards accurate and efficient binding
 657 affinity prediction. *bioRxiv*, 2025. doi: 10.1101/2025.06.14.659707.
 658

659 Allen Z. Ren, Justin Lidard, Lars L. Ankile, Anthony Simeonov, Pukit Agrawal, Anirudha Majum-
 660 dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
 661 tion, 2024. URL <https://arxiv.org/abs/2409.00588>.

662 Jean-Paul Ryckaert, Giovanni Ciccotti, and Herman J.C Berendsen. Numerical integration of
 663 the cartesian equations of motion of a system with constraints: molecular dynamics of n-
 664 alkanes. *Journal of Computational Physics*, 23(3):327–341, 1977. doi: [https://doi.org/10.1016/0021-9991\(77\)90098-5](https://doi.org/10.1016/0021-9991(77)90098-5).
 665

666 Yousef Saad. *Iterative methods for sparse linear systems*. SIAM, 2003.

667 Timothy Sauer. *Numerical analysis*. Addison-Wesley Publishing Company, 2011. ISBN 978-
 668 0321818768.

669 Andrew W Senior, Richard Evans, John Jumper, and et al. Improved protein structure prediction
 670 using potentials from deep learning. *Nature*, 577(7792):706–710, 2020a.

671 Andrew W. Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green,
 672 Chongli Qin, Augustin Zídek, Alexander W. R. Nelson, Alex Bridgland, Helge Penedones, Stig
 673 Petersen, Karen Simonyan, Sam Crossan, Pushmeet Kohli, David T. Jones, David Silver, Koray
 674 Kavukcuoglu, and Demis Hassabis. Improved protein structure prediction using potentials from
 675 deep learning. *Nature*, 577:706–710, 2020b. doi: 10.1038/s41586-019-1923-7.

676 Martin Servin, Claude Lacoursiere, and Niklas Melin. Interactive simulation of elastic deformable
 677 materials. In *Proceedings of SIGRAD Conference*, 2006.

678 Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
 679 Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
 680 models. In *Proceedings of the 42nd International Conference on Machine Learning*, 2025.

681 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 682 Poole. Score-based generative modeling through stochastic differential equations. In *Proceedings
 683 of the 9th International Conference on Learning Representations*, 2021.

684 Andrew M. Stuart and Anthony R. Humphries. *Dynamical Systems and Numerical Analysis*. Cam-
 685 bridge University Press, 1996. ISBN 978-0521496728. doi: 10.1017/S001309150001957X.

686 ByteDance AML AI4Science Team, Xinshi Chen, Yuxuan Zhang, Chan Lu, Wenzhi Ma, Jiaqi Guan,
 687 Chengyue Gong, Jincai Yang, Hanyu Zhang, Ke Zhang, Shenghao Wu, Kuangqi Zhou, Yanping
 688 Yang, Zhenyu Liu, Lan Wang, Bo Shi, Shaochen Shi, and Wenzhi Xiao. Protenix - advancing
 689 structure prediction through a comprehensive alphafold3 reproduction. *bioRxiv*, 2025. doi: 10.
 690 1101/2025.01.08.631967.

691 Brian L. Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and
 692 Tommi Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
 693 scaffolding problem. In *Proceedings of the 11th International Conference on Representation
 694 Learning*, 2023.

695 Richard S Varga. Iterative analysis. *New Jersey*, 322:24, 1962.

702 Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E.
703 Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M.
704 Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham
705 Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile
706 Mathieu, Sergey Ovchinnikov, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung
707 Baek, and David Baker. De novo design of protein structure and function with rfdiffusion. *Nature*,
708 620(7976):1089–1100, 2023. doi: 10.1038/s41586-023-06415-8.

709 Jeremy Wohlwend, Gabriele Corso, Saro Passaro, Mateo Reveiz, Ken Leidal, Wojtek Swiderski,
710 Tally Portnoi, Itamar Chinn, Jacob Silterra, Tommi Jaakkola, and Regina Barzilay. Boltz-1 de-
711 mocratizing biomolecular interaction modeling. *bioRxiv*, 2024. doi: 10.1101/2024.11.19.624167.
712

713 Stephen J Wright. Coordinate descent algorithms. *Mathematical programming*, 151(1):3–34, 2015.

714 Zhuo Xiao, Ping Jiang, Mingjie Zhou, Junzi Zhang, Zijian Huang, and Jianfeng Yang. Diffppo:
715 Reinforcement learning fine-tuning of diffusion models for text-to-image generation. In *2024
716 International Conference on Neuromorphic Computing (ICNC)*, pp. 1–5, 2024. doi: 10.1109/
717 ICNC64304.2024.10987802.

718 Fuzhen Zhang. *The Schur Complement and Its Applications*, volume 4 of *Numerical Methods and
719 Algorithms*. Springer, 2005. ISBN 978-0387242712. doi: 10.1007/b105056.

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756
757
758
Table 3: **TM-score on 6 datasets.** Dark green cells denote the best results among the few-step
759 methods. Light green cells denote the best results among the 200-step methods.

759 Method \ Dataset	760 CASP15	761 Test	762 PoseBusters	763 AB3-AB	764 dsDNA	765 RNA
766 Boltz-1	0.47±0.07	0.83±0.01	0.90±0.03	0.62±0.06	0.89±0.05	0.85±0.09
767 Protenix	0.48±0.08	0.82±0.02	0.90±0.03	0.62±0.07	0.89±0.05	0.82±0.09
768 Boltz-1-Steering	0.47±0.08	0.82±0.02	0.90±0.02	0.62±0.07	0.90±0.05	0.82±0.10
769 Boltz-2	0.50±0.08	0.85±0.02	0.91±0.03	0.72±0.07	0.93±0.05	0.88±0.09
770 Protenix-Mini (10-step)	0.47±0.07	0.75±0.02	0.89±0.02	0.62±0.06	0.85±0.07	0.80±0.10
771 Protenix-Mini (5-step)	0.47±0.08	0.75±0.02	0.89±0.03	0.62±0.06	0.85±0.07	0.80±0.10
772 Ours	0.47±0.07	0.81±0.02	0.90±0.03	0.61±0.07	0.89±0.05	0.82±0.09

770 A ADDITIONAL QUALITATIVE RESULTS

771 Fig. 9 shows more qualitative comparisons with baselines. We also visualize full protein structures
772 predicted by our method and compare them with the ground truth from six datasets, shown in Fig. 10.
773 The results demonstrate that our model accurately predicts physically valid structures.
774

775 B MORE EVALUATION METRICS

776 We compare TM-scores for all six datasets across all methods. The results are reported in Table 3.
777 Notably, our approach achieves state-of-the-art TM-scores among few-step methods.
778

779 C UNIQUENESS OF THE GAUSS-SEIDEL SOLUTION

780 The Gauss-Seidel scheme guarantees uniqueness for linearized subproblems. Theoretically, while
781 ordering and initialization govern the convergence speed of the Gauss-Seidel scheme, they do not
782 influence the solution’s uniqueness (Golub & Van Loan, 2013).

783 We investigated this empirically on the PoseBusters dataset by performing five independent projec-
784 tion runs for each denoised structure. The computed pairwise RMSD among outputs was $0.0000 \pm 0.0000 \text{ \AA}$. This confirms that, in practice, the projection module behaves as a stable mapping,
785 reliably converging to a numerically identical solution.
786

787 D PRACTICAL CHOICE OF α AND ITS SENSITIVITY OF CONVERGENCE

788 To assess how the parameter α influences the convergence of the Gauss-Seidel projection, we con-
789 ducted an ablation study on the protein PDB 7WUY, evaluating both convergence behavior and
790 predicted accuracy across six values ($\alpha \in \{10^{-2}, \dots, 10^{-7}\}$). As illustrated in Fig. 6, we moni-
791 tored the potential energy after each iteration and observed two distinct behaviors: For large α
792 ($10^{-2}, 10^{-3}, 10^{-4}$), it fails to converge to a physically valid configuration. While the potential
793 energy decreases initially, it exhibits persistent oscillations rather than converging to zero. This in-
794 dicates that the constraint penalties are not enforced strongly enough to resolve physical violations.
795 For small α ($\leq 10^{-5}$), at $\alpha=10^{-5}$, the energy oscillates transiently before eventually converging to
796 zero, confirming that all constraints are resolved. For smaller values ($\alpha=10^{-6}, 10^{-7}$), the projection
797 consistently and rapidly converges to a valid state (zero potential energy), demonstrating fast and
798 stable constraint satisfaction. These results confirm that selecting $\alpha \leq 10^{-6}$ is critical for ensuring
799 the projection reliably maps to a physically valid configuration.
800

801 E COMPARISONS WITH DIFFERENT DENOISING STEP BUDGETS

802 We conducted experiments comparing Boltz-1, Boltz-2, and our method (built on Boltz-1) across
803 denoising step budgets of 2, 5, 10, and 200 on the CASP15 dataset. As shown in Fig. 7, our method
804

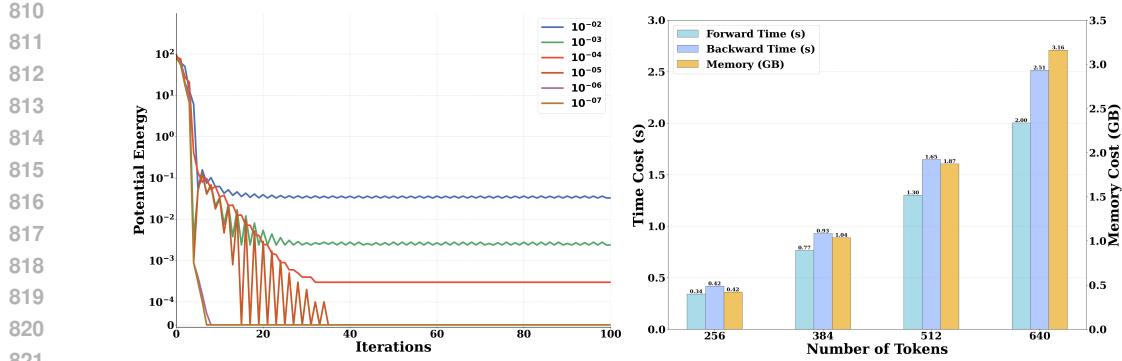


Figure 6: **Convergence and computational cost analysis of the Gauss-Seidel projection module.** Left: Potential energy plotted over iterations for α values ranging from 10^{-2} to 10^{-7} . Large values ($>10^{-5}$) result in persistent oscillations without full convergence. An intermediate value ($\alpha=10^{-5}$) exhibits transient oscillations before reaching zero potential, while smaller values ($10^{-6}, 10^{-7}$) ensure rapid and stable convergence, indicating robust constraint satisfaction. Right: Computational benchmarks showing forward/backward time costs and additional memory overhead across varying token counts (256, 384, 512, and 640).

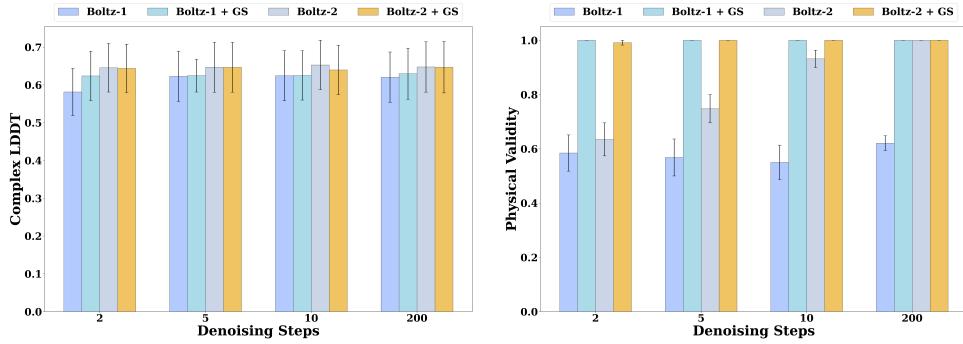


Figure 7: **Comparison of Boltz-1, Boltz-2, and our method across 2-, 5-, 10-, and 200-step budgets.** Our method consistently outperforms the Boltz-1 baseline while maintaining strong physical validity. Although Boltz-2 achieves higher Complex-LDDT scores, integrating our module into the Boltz-2 preserves this accuracy while significantly boosting physical validity at low step budgets.

demonstrates consistent improvement over the Boltz-1 baseline, outperforming it in terms of both structural accuracy (Complex-LDDT) and physical validity across all step budgets.

We acknowledge that our current implementation does not surpass the performance of Boltz-2. We attribute this to the underlying base model: our method is fine-tuned using the Boltz-1 architecture, weights, and dataset. In contrast, Boltz-2 benefits from significant architectural advancements (e.g., the affinity prediction module) and a much larger training dataset particularly focused on protein complex interactions. This advantage is evident in the interface metrics where Boltz-2 dominates.

However, our Gauss-Seidel projection module is theoretically agnostic to the base model. To validate this potential without the computational cost of full fine-tuning, we applied our module as a post-processing step on top of Boltz-2. Results in Fig. 7 show that this hybrid approach effectively ensures 100% physical validity: it resolves invalid outputs observed in Boltz-2 at low step counts (<10) while maintaining the high structural accuracy of the original model. We thus treat our method as a general-purpose physical validity enforcement module that can be flexibly integrated into various diffusion-based structure prediction frameworks.

F COMPUTATIONAL COST OF THE GAUSS-SEIDEL PROJECTION MODULE

We systematically evaluated the computational overhead of incorporating the Gauss-Seidel projection module during both training and inference. To provide a canonical measure of input complexity,

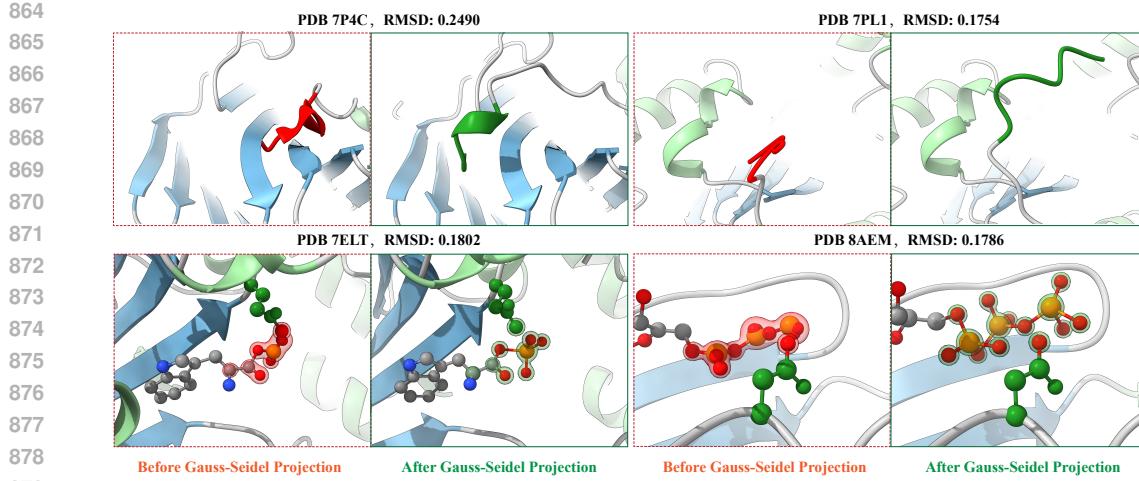


Figure 8: **Visualization of structural corrections by Guass-Seidel projection.** The projection effectively resolves steric violations and restores physically valid geometries. We showcase four representative cases from the PoseBusters dataset. PDB 7P4C: A distorted α -helix clashing with a neighboring strand is corrected. PDB 7PL1: A self-entangled coil is disentangled, resolving clashes. PDB 7ELT: Ligand-sidechain interactions and invalid internal ligand geometries are resolved. PDB 8AEM: Ligand-related collisions are removed. For each case, RMSD values were computed to quantify the structural refinement.

we benchmarked the module on the CASP15 dataset, binning samples by token count (256, 384, 512, and 640). We reported the forward and backward wall-clock runtimes and additional memory usage on an NVIDIA A100 GPU.

As illustrated in Fig. 6, both forward and backward passes are completed within a matter of seconds, and the additional memory overhead remains below 3.5 GB, even for the largest token bins. This high efficiency is achieved through our specialized implementation, which leverages custom CUDA kernels optimized for both the forward and backward processes.

G CLARIFICATION ON DOCKING-RELATED METRIC COMPUTATION

In our primary evaluation, we calculated docking-related metrics ($\text{DockQ} > 0.23$, Mean LDDT-PLI, and $\text{L-RMSD} < 2\text{\AA}$) using OpenStructure (Biasini et al., 2013), strictly adhering to the protocol defined in the original Boltz-1 paper (Wohlwend et al., 2024). We attribute the discrepancies between our reported values and those in the Protenix technical report (Team et al., 2025) to their use of a different evaluation tool, PXMeter (Ma et al., 2025). To investigate this, we performed an evaluation of the $\text{L-RMSD} < 2\text{\AA}$ metric using PXMeter on the PoseBusters dataset for all methods (detailed in Table 4). This re-evaluation confirmed two key points: 1) The re-calculated performance of the Protenix baseline aligns closely with the figures in their original report, validating the source of the numerical difference. 2) While the absolute values depending on the tool used, the *relative ranking* among the baselines remains unchanged. These results indicate that our comparative analysis is informative.

Table 4: **L-RMSD < 2 \AA on the PoseBusters dataset computed by PXMeter (Ma et al., 2025).** Dark green cells denote the best results among the few-step methods. Light green cells denote the best results among the 200-step methods.

Dataset \ Method	AlphaFold3	Boltz-1	Protenix	Boltz-1-steering	Boltz-2	Protenix-Mini 10-step	Protenix-Mini 5-step	Ours
PoseBusters	0.75 ± 0.07	0.69 ± 0.07	0.78 ± 0.06	0.71 ± 0.07	0.90 ± 0.04	0.75 ± 0.06	0.70 ± 0.07	0.68 ± 0.07

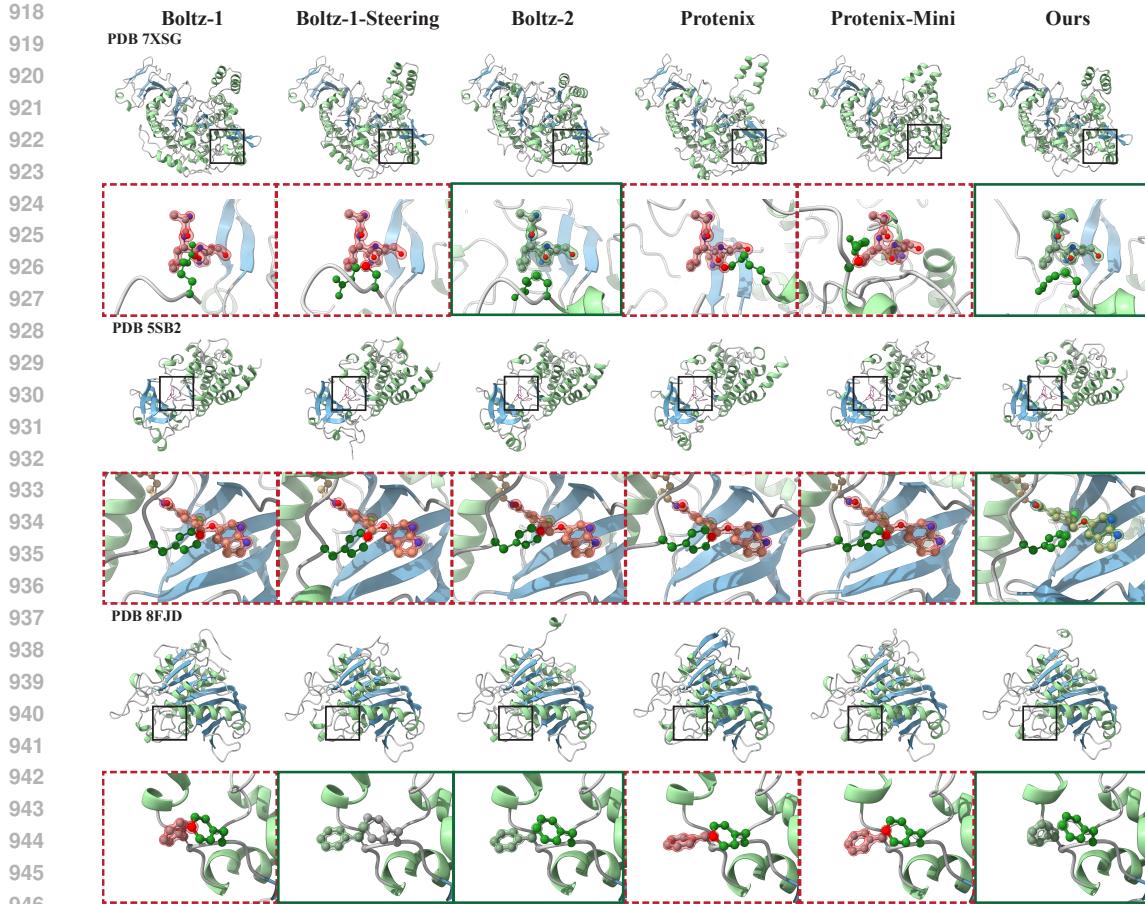


Figure 9: Additional qualitative comparisons. The red color highlights physically invalid structural predictions, such as side chain clashes (PDB 7XSG and PDB 8FJD) and ligand-related clashes (PDB 5SB2). Our approach consistently enforces physical validity.

H ANALYSIS OF STRUCTURAL PERTURBATIONS INTRODUCED BY GAUSS-SEIDE PROJECTION

We quantified the structural changes introduced by Gauss-Seidel projection by computing the RMSD between pre- and post-projection structures on the PoseBusters dataset. The observed average RMSD was $0.1865 \pm 0.0219 \text{ \AA}$, confirming that the projection step introduces atomic position changes sufficient to enforce physical validity. Fig. 8 visualizes four representative cases where noticeable improvements occurred. For PDB 7P4C, the projection restored a distorted α -helix that was originally clashing with a neighboring strand. In PDB 7PL1, a self-entanglement within a coil region was successfully disentangled. Similarly, for PDB 7ELT and PDB 8AEM, the module resolved ligand-sidechain and intra-ligand steric clashes. These examples demonstrate that the Gauss-Seidel projection effectively enforces physical validity while preserving the structural prediction of the generative model.

I TRAINING AND INFERENCE ALGORITHMS

We provide pseudo-code for the training and inference algorithms of our model, shown in Algorithms 3 and 4. The values of hyperparameters shown in both algorithms follow (Gong et al., 2025).

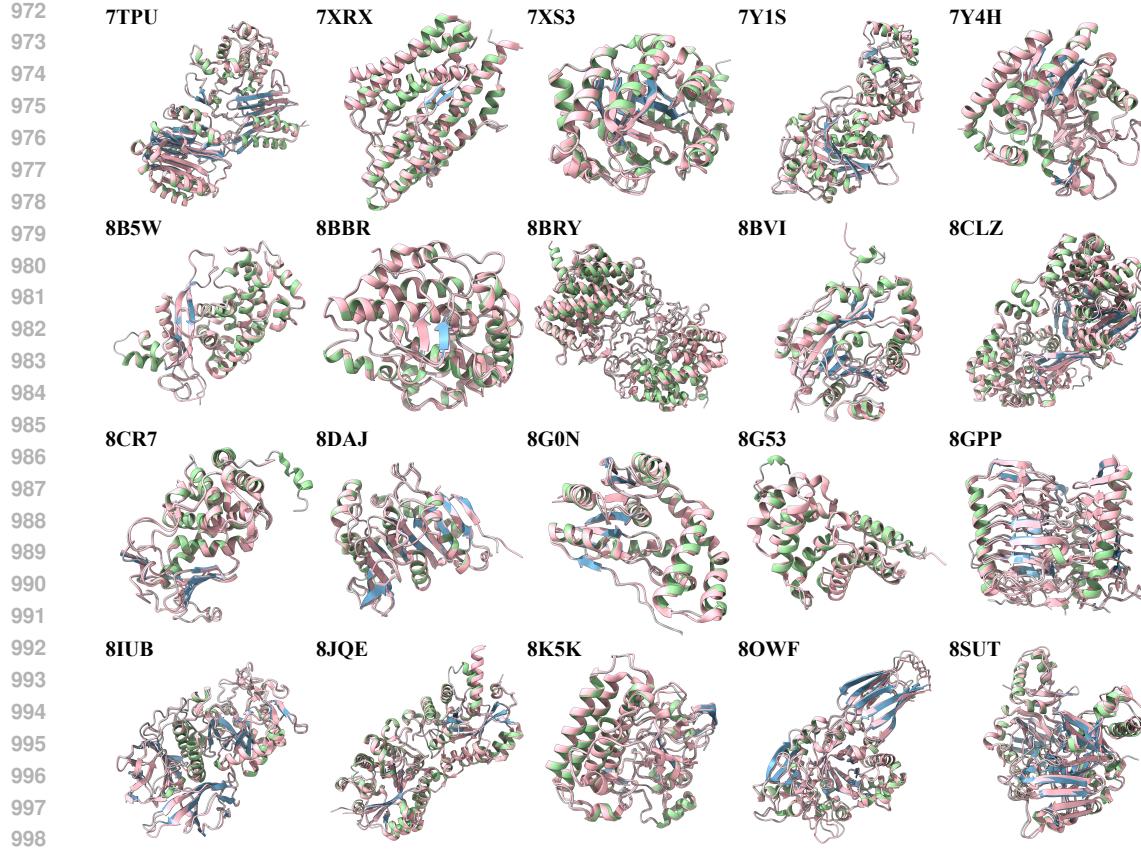


Figure 10: **Visual comparison with the ground truth.** We visualize our predicted protein structures together with their corresponding ground truth (pink colored) across a diverse set of PDB entries. Each protein’s name is indicated in the top-left corner. Our method shows consistently close agreement with the ground truth, capturing the overall structural features with high fidelity.

J PROOF FOR THE CONVERGENCE OF LINEARIZATION

Theorem J.1 Consider the nonlinear coupled system

$$\begin{aligned} (\mathbf{x} - \hat{\mathbf{x}}) - \nabla \mathbf{C}(\mathbf{x})^\top \boldsymbol{\lambda}(\mathbf{x}) &= \mathbf{0}, & \boldsymbol{\alpha} > \mathbf{0}, \\ \mathbf{C}(\mathbf{x}) + \boldsymbol{\alpha} \boldsymbol{\lambda}(\mathbf{x}) &= \mathbf{0}, \end{aligned}$$

where $\mathbf{C} : \mathbb{R}^{N \times 3} \rightarrow \mathbb{R}^m$ is twice continuously differentiable. Let the linearized iteration be

$$\begin{bmatrix} \mathbf{I} & -\nabla \mathbf{C}(\mathbf{x}^{(n)})^\top \\ \nabla \mathbf{C}(\mathbf{x}^{(n)}) & \boldsymbol{\alpha} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x} \\ \Delta \boldsymbol{\lambda} \end{bmatrix} = - \begin{bmatrix} \mathbf{0} \\ \mathbf{C}(\mathbf{x}^{(n)}) + \boldsymbol{\alpha} \boldsymbol{\lambda}^{(n)} \end{bmatrix}, \quad (9)$$

with updates $\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} + \Delta \mathbf{x}$ and $\boldsymbol{\lambda}^{(n+1)} = \boldsymbol{\lambda}^{(n)} + \Delta \boldsymbol{\lambda}$, and initial values $\mathbf{x}^{(0)} = \hat{\mathbf{x}}$, $\boldsymbol{\lambda}^{(0)} = \mathbf{0}$.

Then the linearized iterates $(\mathbf{x}^{(n)}, \boldsymbol{\lambda}^{(n)})$ converge to a solution $(\mathbf{x}^*, \boldsymbol{\lambda}^*)$ of the nonlinear system.

Proof. Define

$$\mathbf{g}(\mathbf{x}, \boldsymbol{\lambda}) = (\mathbf{x} - \hat{\mathbf{x}}) - \nabla \mathbf{C}(\mathbf{x})^\top \boldsymbol{\lambda}, \quad \mathbf{h}(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{C}(\mathbf{x}) + \boldsymbol{\alpha} \boldsymbol{\lambda},$$

so that the update of Eq. 9 is equivalent to solving the nonlinear system $\{\mathbf{g} = \mathbf{0}, \mathbf{h} = \mathbf{0}\}$. Linearizing this system at a given point $(\mathbf{x}^{(i)}, \boldsymbol{\lambda}^{(i)})$ yields the Newton subproblem

$$\begin{bmatrix} \mathbf{K} & -\nabla \mathbf{C}(\mathbf{x}^{(i)})^\top \\ \nabla \mathbf{C}(\mathbf{x}^{(i)}) & \boldsymbol{\alpha} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x} \\ \Delta \boldsymbol{\lambda} \end{bmatrix} = - \begin{bmatrix} \mathbf{g}(\mathbf{x}^{(i)}, \boldsymbol{\lambda}^{(i)}) \\ \mathbf{h}(\mathbf{x}^{(i)}, \boldsymbol{\lambda}^{(i)}) \end{bmatrix},$$

1026 **Algorithm 3** Training with Gauss-Seidel Projection

1027

1028 **Require:** Training dataset consisting of feature-coordinate pairs, $\mathcal{D} = \{(f^*, \mathbf{x}^{\text{target}})\}$, optimizer \mathcal{O} ,
1029 number of epochs E , number of cycles N_{cycle} , noise c_0 , noise scale λ

1030 1: **for** epoch = 1, ..., E **do**

1031 2: **for** each batch $(\{f^*\}, \{\mathbf{x}^{\text{target}}\}) \in \mathcal{D}$ **do**

1032 3: $\{s_i^{\text{inputs}}\} \leftarrow \text{ATOM_ATTENTION_ENCODER}(\{f^*\})$

1033 4: Initialize $\{s_i\}, \{z_{ij}\}$ from $\{s_i^{\text{inputs}}\}$

1034 5: **for** $c \in [1, \dots, N_{\text{cycle}}]$ **do**

1035 6: $\{z_{ij}\} \leftarrow \text{MSA_MODULE}(\{f_S^{\text{msa}}\}, \{z_{ij}\}, \{s_i^{\text{inputs}}\})$

1036 7: $\{s_i\}, \{z_{ij}\} \leftarrow \text{PAIRFORMER_MODULE}(\{s_i\}, \{z_{ij}\})$

1037 8: **end for**

1038 9: Sample noise: $\xi \sim \mathcal{N}(\mathbf{0}, I_{N \times 3})$

1039 10: Construct noisy input: $\mathbf{x}^{\text{noisy}} = c_0 \cdot \mathbf{x}^{\text{target}} + \lambda \cdot \xi$

1040 11: $\{\hat{\mathbf{x}}\} = \text{DIFFUSION_MODULE}(\{\mathbf{x}^{\text{noisy}}\}, c_0, \{f^*\}, \{s_i^{\text{inputs}}\}, \{s_i\}, \{z_{ij}\})$

1041 12: $\{\mathbf{x}^{\text{pred}}\} = \text{GAUSS-SEIDEL_PROJECTION_MODULE}(\{\hat{\mathbf{x}}\})$

1042 13: Compute loss: $\{\mathcal{L}\} = \text{DIFFUSION_LOSS}(\{\mathbf{x}^{\text{pred}}\}, \{\mathbf{x}^{\text{target}}\})$

1043 14: $\mathcal{O}.\text{zero_grad}()$

1044 15: Backpropagate: $\mathcal{L}.\text{backward}()$

1045 16: Update parameters: $\mathcal{O}.\text{step}()$

1046 17: **end for**

1047 18: **end for**

1048

1049 **Algorithm 4** Inference with Gauss-Seidel Projection

1050

1051 **Require:** Feature $\{f^*\}$, number of cycles N_{cycle} , noise schedule $[c_0, c_1, c_2]$, γ_0 , γ_{\min} , noise scale λ ,
1052 step scale η

1053 1: $\{s_i^{\text{inputs}}\} \leftarrow \text{ATOM_ATTENTION_ENCODER}(\{f^*\})$

1054 2: Initialize $\{s_i\}, \{z_{ij}\}$ from $\{s_i^{\text{inputs}}\}$

1055 3: **for** $c \in [1, \dots, N_{\text{cycle}}]$ **do**

1056 4: $\{z_{ij}\} \leftarrow \text{MSA_MODULE}(\{f_S^{\text{msa}}\}, \{z_{ij}\}, \{s_i^{\text{inputs}}\})$

1057 5: $\{s_i\}, \{z_{ij}\} \leftarrow \text{PAIRFORMER_MODULE}(\{s_i\}, \{z_{ij}\})$

1058 6: **end for**

1059 7: $\mathbf{x} \sim c_0 \cdot \mathcal{N}(\mathbf{0}, I_{N \times 3})$

1060 8: **for** $c_\tau \in [c_1, c_2]$ **do** ▷ 2-step diffusion

1061 9: $\{\mathbf{x}\} \leftarrow \text{CENTRE_RANDOM_AUGMENTATION}(\{\mathbf{x}\})$

1062 10: $\gamma = \gamma_0$ if $c_\tau > \gamma_{\min}$ else 0

1063 11: $\hat{t} = c_{\tau-1}(\gamma + 1)$

1064 12: $\xi = \lambda \sqrt{\hat{t}^2 - c_{\tau-1}^2} \cdot \mathcal{N}(\mathbf{0}, I_{N \times 3})$

1065 13: $\mathbf{x}^{\text{noisy}} = \mathbf{x} + \xi$

1066 14: $\{\mathbf{x}^{\text{denoised}}\} = \text{DIFFUSION_MODULE}(\{\mathbf{x}^{\text{noisy}}\}, \hat{t}, \{f^*\}, \{s_i^{\text{inputs}}\}, \{s_i\}, \{z_{ij}\})$

1067 15: $\delta = (\mathbf{x} - \mathbf{x}^{\text{denoised}})/\hat{t}$

1068 16: $dt = c_\tau - \hat{t}$

1069 17: $\hat{\mathbf{x}} = \mathbf{x}^{\text{noisy}} + \eta \cdot dt \cdot \delta$

1070 18: $\mathbf{x} \leftarrow \hat{\mathbf{x}}$

1071 19: **end for**

1072 20: $\{\mathbf{x}_{\text{proj}}\} = \text{GAUSS-SEIDEL_PROJECTION_MODULE}(\{\hat{\mathbf{x}}\})$

1073 21: **return** $\{\mathbf{x}_{\text{proj}}\}$

1074

1075

1076

1077 with $\mathbf{K} = \mathbf{I} - \sum_j \lambda_j \nabla^2 \mathbf{C}_j(\mathbf{x}^{(i)})$. We thus solve, at each iteration, a linear system obtained by
1078 Newton linearization of the coupled equations. By Newton's local convergence theorem (Sauer,
1079 2011), the iterates converge quadratically given the Jacobian at the solution $(\mathbf{x}^*, \boldsymbol{\lambda}^*)$ is non-singular
and the initialization lies in its basin of attraction. Taking the Schur complement (Zhang, 2005) with

1080 respect to $\alpha \succ 0$ shows that the non-singularity of the Jacobian is equivalent to the invertibility of
 1081

$$1082 \mathbf{S} = \left(\mathbf{I} - \sum_j \lambda_j^* \nabla^2 \mathbf{C}_j(\mathbf{x}^*) \right) - (-\nabla \mathbf{C}(\mathbf{x}^*)^\top) \alpha^{-1} \nabla \mathbf{C}(\mathbf{x}^*).$$

$$1083$$

1084 For sufficiently small yet positive definite α , the term $\nabla \mathbf{C}(\mathbf{x}^*)^\top \alpha^{-1} \nabla \mathbf{C}(\mathbf{x}^*)$ dominates and \mathbf{S} be-
 1085 comes strictly positive definite under standard regularity (full row rank of $\nabla \mathbf{C}$ at \mathbf{x}^*), hence invert-
 1086 ible. Consequently, the Jacobian is non-singular at the solution, and Newton's method is guaranteed
 1087 to converge locally. In practice, the predictor's output $\mathbf{x}^{(0)} = \hat{\mathbf{x}}$ is close to \mathbf{x}^* , so the initialization
 1088 within the convergence neighborhood.

1089 We then introduce two controlled approximations to avoid forming the Hessian terms in \mathbf{K} . First,
 1090 we replace \mathbf{K} by the identity \mathbf{I} (i.e., a quasi-Newton approximation), which omits the Hessian terms
 1091 and introduces a local error of order $O(\|\Delta \mathbf{x}\|^2)$ while retaining a positive-definite \mathbf{S} . This does not
 1092 affect the global error or the solution of the fixed-point iteration (Macklin & Müller, 2016). Second,
 1093 we note that $\mathbf{g}(\mathbf{x}^{(0)}, \boldsymbol{\lambda}^{(0)}) = \mathbf{0}$ and that $\mathbf{g}(\mathbf{x}^{(i)}, \boldsymbol{\lambda}^{(i)})$ remains small when constraint gradients vary
 1094 slowly; accordingly, we set $\mathbf{g}(\mathbf{x}^{(i)}, \boldsymbol{\lambda}^{(i)}) \approx \mathbf{0}$ (Goldenthal et al., 2007; Macklin & Müller, 2016).
 1095 Under these approximations, the linear subproblem reduces to Eq. 9.

1097 K PROOF FOR THE CONVERGENCE AND CONSTRAINT SATISFACTION OF 1098 GAUSS-SEIDEL PROJECTION

1100 **Theorem K.1** *Consider the linear system*

$$1102 (\nabla \mathbf{C}(\mathbf{x}^{(n)}) \nabla \mathbf{C}(\mathbf{x}^{(n)})^\top + \alpha) \Delta \boldsymbol{\lambda} = -\mathbf{C}(\mathbf{x}^{(n)}) - \alpha \boldsymbol{\lambda}^{(n)}, \quad \alpha > 0, \quad (10)$$

$$1103$$

1104 with each Gauss-Seidel update

$$1105 \Delta \boldsymbol{\lambda}_j = \frac{-\mathbf{C}_j(\mathbf{x}^{(n)}) - \alpha_j \boldsymbol{\lambda}_j^{(n)}}{\nabla \mathbf{C}_j(\mathbf{x}^{(n)}) \nabla \mathbf{C}_j(\mathbf{x}^{(n)})^\top + \alpha_j}, \quad j = 1, \dots, m, \quad (11)$$

$$1106$$

$$1107$$

1108 at the n -th Gauss-Seidel sweep. After a sufficient number of Gauss-Seidel sweeps and for sufficiently
 1109 small α , the iterates converge in a quasi-second-order manner to the unique solution $\Delta \boldsymbol{\lambda}^*$. More-
 1110 over, each individual update monotonically reduces the residual error and requires only $O(1)$ work,
 1111 so a full sweep over all m constraints costs $O(m)$.

1112 *Proof.* Define

$$1114 \mathbf{A} = \nabla \mathbf{C}(\mathbf{x}^{(n)}) \nabla \mathbf{C}(\mathbf{x}^{(n)})^\top + \alpha, \quad \mathbf{b} = -\mathbf{C}(\mathbf{x}^{(n)}) - \alpha \boldsymbol{\lambda}^{(n)}.$$

$$1115$$

1116 The solution of Eq. 10 corresponds exactly to the minimizer of the quadratic optimization problem:

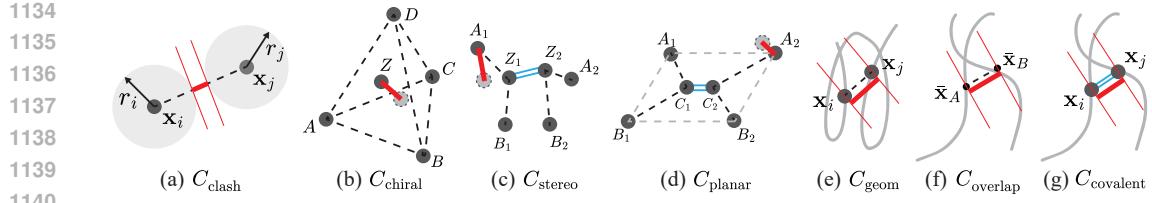
$$1117 \min_{\Delta \boldsymbol{\lambda}} f(\Delta \boldsymbol{\lambda}) = \frac{1}{2} \Delta \boldsymbol{\lambda}^\top \mathbf{A} \Delta \boldsymbol{\lambda} - \mathbf{b}^\top \Delta \boldsymbol{\lambda}. \quad (12)$$

$$1118$$

1119 With $\alpha \succ 0$, \mathbf{A} is symmetric positive definite (SPD). Hence, Eq. 12 is convex, and Eq. 10 has a
 1120 unique solution.

1121 A cyclic Gauss-Seidel sweep on Eq. 10 is exactly cyclic coordinate descent on Eq. 12: each update
 1122 minimizes f w.r.t. a single coordinate $\Delta \lambda_j$ while holding the others fixed, yielding the closed form in
 1123 Eq. 11. Because f is strongly convex and quadratic, each coordinate step strictly decreases f unless
 1124 already optimal, and the sequence $\{f(\Delta \boldsymbol{\lambda}^{(k)})\}$ is monotonically decreasing. For SPD systems, both
 1125 classical matrix-splitting analysis and coordinate-descent theory guarantee linear convergence of
 1126 cyclic Gauss-Seidel to the unique minimizer (Varga, 1962; Saad, 2003; Wright, 2015). In particular,
 1127 there exists $\rho \in (0, 1)$ such that $\|\Delta \boldsymbol{\lambda}^{(k)} - \Delta \boldsymbol{\lambda}^*\|_{\mathbf{A}} \leq \rho^k \|\Delta \boldsymbol{\lambda}^{(0)} - \Delta \boldsymbol{\lambda}^*\|_{\mathbf{A}}$. Each coordinate update
 1128 accesses only the atoms affected by the current constraint, so it is $O(1)$. A full sweep is thus $O(m)$.

1129 The proof of Theorem J.1 shows that Eq. 10 is a quasi-Newton approximation of the first-order
 1130 optimality condition Eq. 3. Hence, the convergence speed of the Gauss-Seidel projection is of
 1131 quasi-second order. With a strict physical tolerance and sufficiently small penalty parameter α , the
 1132 final iterate satisfies the optimality conditions of the penalized projection, meaning that in practice it
 1133 realizes a hard-constrained projection (all constraints are strictly satisfied) (Boyd & Vandenberghe,
 2004).



1141 **Figure 11: Visualization of the physical constraints used in our framework.** Red highlights
1142 indicate the structural or geometric elements subject to constraints, such as spatial arrangements
1143 and interatomic distances, while blue highlights denote double bonds or covalent linkages between
1144 atoms.

L PROOF FOR THE CONVERGENCE OF CONJUGATE GRADIENT

1145
1146
1147
1148 **Theorem L.1** Consider the adjoint system

$$(\mathbf{H}(\mathbf{x}_{\text{proj}}) + \mathbf{I})^\top \mathbf{z} = \left(\frac{\partial L}{\partial \mathbf{x}_{\text{proj}}} \right)^\top, \quad (13)$$

1149 where

$$\mathbf{H}(\mathbf{x}) = \sum_{j=1}^m \alpha_j^{-1} \left(\nabla \mathbf{C}_j(\mathbf{x}) \nabla \mathbf{C}_j(\mathbf{x})^\top + \mathbf{C}_j(\mathbf{x}) \nabla^2 \mathbf{C}_j(\mathbf{x}) \right). \quad (14)$$

1150 Near feasibility, the conjugate gradient method converges when applied to this system.

1151 *Proof.* At the projected point \mathbf{x}_{proj} , we have $\mathbf{C}(\mathbf{x}_{\text{proj}}) = 0$. Hence the second-order small term
1152 $\mathbf{C}_j(\mathbf{x}_{\text{proj}}) \nabla^2 \mathbf{C}_j(\mathbf{x}_{\text{proj}})$ vanish, and

$$\mathbf{H}(\mathbf{x}_{\text{proj}}) = \sum_{j=1}^m \alpha_j^{-1} \nabla \mathbf{C}_j(\mathbf{x}_{\text{proj}}) \nabla \mathbf{C}_j(\mathbf{x}_{\text{proj}})^\top.$$

1153 This matrix is SPD, and so is $\mathbf{H}(\mathbf{x}_{\text{proj}}) + \mathbf{I}$. The conjugate gradient method is guaranteed to con-
1154 verge for any linear system with a SPD coefficient matrix (Sauer, 2011), and its convergence rate is
1155 governed by the condition number of the matrix. Since the coefficient matrix contains the identity \mathbf{I} ,
1156 the condition number is bounded below by the size of \mathbf{I} , i.e., m , which ensures that the convergence
1157 of conjugate gradient remains stable in the neighborhood of feasibility.

M DETAILED FORMULATION OF PHYSICAL VALIDITY CONSTRAINTS

1158 Below we present the formalization of each of the physical constraints following Boltz-1-
1159 Steering (Wohlwend et al., 2024), which are visualized in Fig. 11.

1160 **(a) Steric Clash.** To prevent steric clashes, we impose a constraint on the distance between atoms
1161 in distinct, non-bonded chains, requiring it to be greater than 0.725 times the sum of their Van der
1162 Waals radii:

$$C_{\text{clash}}(\mathbf{x}) = \sum_{(i,j) \in S_{\text{cross chains}}} \max \left(0.725(r_i + r_j) - \|\mathbf{x}_i - \mathbf{x}_j\|, 0 \right), \quad (15)$$

1163 where r_i denotes the Van der Waals radius of atom i .

1164 **(b) Tetrahedral Atom Chirality.** For a chiral center Z with four substituents ordered by Cahn-
1165 Ingold-Prelog (CIP) priority as A, B, C, D , the center is designated R if the bonds $(Z - A, Z -$
1166 $B, Z - C)$ form a right-handed system, and S if they form a left-handed system. To ensure that the
1167 predicted molecular conformers maintain the correct chirality, we define the constraint based on the
1168 improper torsion angles (X_1, X_2, X_3, Z) :

$$C_{\text{chiral}}(\mathbf{x}) = \sum_{(i,j,k,l) \in S_R \text{ chiral sets}} \max \left(\frac{\pi}{6} - \text{DihedralAngle}(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k, \mathbf{x}_l), 0 \right) + \sum_{(i,j,k,l) \in S_S \text{ chiral sets}} \max \left(\frac{\pi}{6} + \text{DihedralAngle}(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k, \mathbf{x}_l), 0 \right). \quad (16)$$

(c) **Bond Stereochemistry.** For a double bond $Z_1 = Z_2$, where Z_1 has substituents A_1, B_1 and Z_2 has substituents A_2, B_2 arranged in decreasing Cahn-Ingold-Prelog (CIP) priority, the double bond is said to have E stereochemistry if the higher-priority atoms A_1 and A_2 lie on opposite sides of the bond, and Z stereochemistry otherwise. To ensure that the predicted molecular conformers maintain the correct stereochemistry, we define the constraint based on the torsion angles (A_1, Z_1, Z_2, A_2) and (B_1, Z_1, Z_2, B_2) :

$$C_{\text{stereo}}(\mathbf{x}) = \sum_{(i,j,k,l) \in S_E \text{ stereo sets}} \max\left(\frac{5\pi}{6} - \text{DihedralAngle}(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k, \mathbf{x}_l), 0\right) + \sum_{(i,j,k,l) \in S_Z \text{ stereo sets}} \max\left(\text{DihedralAngle}(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k, \mathbf{x}_l) - \frac{\pi}{6}, 0\right). \quad (17)$$

(d) **Planar Double Bonds.** For planar double bonds $C_1 = C_2$ between carbon atoms, where C_1 has substituents A_1, B_1 and C_2 has substituents A_2, B_2 , we define a flat-bottom constraint based on the improper torsion angles (A_1, B_1, C_2, C_1) and (A_2, B_2, C_1, C_2) to enforce planarity of the double bond:

$$C_{\text{planar}}(\mathbf{x}) = \sum_{(i,j,k,l) \in S_{\text{trigonal planar sets}}} \max\left(\text{DihedralAngle}(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k, \mathbf{x}_l) - \frac{\pi}{12}, 0\right). \quad (18)$$

(e) **Internal Geometry.** To ensure that the model generates ligand conformers with physically realistic distance geometry, we define a flat-bottomed constraint based on the bounds matrices generated by the RDKit package:

$$C_{\text{geom}}(\mathbf{x}) = \sum_{(i,j) \in S_{\text{bonds}}} \max(\|\mathbf{x}_i - \mathbf{x}_j\| - 1.2U_{ij}, 0) + \max(0.8L_{ij} - \|\mathbf{x}_i - \mathbf{x}_j\|, 0) + \sum_{(i,j) \in S_{\text{angles}}} \max(\|\mathbf{x}_i - \mathbf{x}_j\| - 1.2U_{ij}, 0) + \max(0.8L_{ij} - \|\mathbf{x}_i - \mathbf{x}_j\|, 0) + \sum_{(i,j) \notin S_{\text{bonds}} \cup S_{\text{angles}}} \max(\|\mathbf{x}_i - \mathbf{x}_j\| - 1.2U_{ij}, 0) + \max(0.8L_{ij} - \|\mathbf{x}_i - \mathbf{x}_j\|, 0), \quad (19)$$

where L and $U \in \mathbb{R}^{N \times N}$ denote the lower and upper bounds matrices. For a pair of atoms (i, j) , $L_{i,j}$ gives the lower distance bound and $U_{i,j}$ gives the upper distance bound (Buttenschoen et al., 2024).

(f) **Overlapping Chains.** To prevent overlapping chains, we define a constraint based on the distance between the centroids of symmetric chains with more than one atom:

$$C_{\text{overlap}}(\mathbf{x}) = \sum_{(A,B) \in S_{\text{symmetric chains}}} \max\left(1.0 - \|\bar{\mathbf{x}}_A - \bar{\mathbf{x}}_B\|, 0\right), \quad (20)$$

where $\bar{\mathbf{x}}_A$ is the centroid of chain A .

(g) **Covalently Bonded Chains.** To ensure the model respects covalently bonded chains, we define a constraint to enforce that covalently bonded atoms between separate chains are within 2 Å:

$$C_{\text{covalent}}(\mathbf{x}) = \sum_{(i,j) \in S_{\text{covalent bonds}}} \max\left(\|\mathbf{x}_i - \mathbf{x}_j\| - 2, 0\right). \quad (21)$$

N DETAILS ON BASELINES AND EVALUATION PROTOCOL

We compare our method against strong baselines: Boltz-1 (the original model) (Wohlwend et al., 2024), Boltz-1-Steering (Boltz-1 with FK-steering at inference), Boltz-2 (the updated Boltz model) (Passaro et al., 2025), Protenix (Team et al., 2025) and Protenix-Mini (Gong et al., 2025). All baselines use 200-step diffusion sampling, whereas Protenix-Mini uses a 5-step sampling. We evaluate our method and all baselines on six benchmarks: CASP15, Test, PoseBusters, AF3-AB, dsDNA,

1242 and RNA-Protein. CASP15 and Test (from Boltz-1 (Wohlwend et al., 2024)) cover diverse assem-
 1243 blies, including protein complexes, nucleic acids, and small molecules. PoseBusters (Buttenschoen
 1244 et al., 2024) focuses on protein-ligand modeling. AF3-AB (released with AlphaFold3 (Abramson
 1245 et al., 2024)) contains protein-antibody complexes. dsDNA (Ma et al., 2025) contains entries with
 1246 two DNA chains and one protein chain. RNA-Protein (Ma et al., 2025) contains entries consisting
 1247 of one RNA chain and one protein chain.

1248 We compare our method with baselines using standard evaluation metrics, including Complex
 1249 LDDT, Prot-Prot LDDT, Lig-Prot LDDT, DNA-Prot LDDT, RNA-Prot LDDT, DockQ > 0.23 , Mean
 1250 LDDT+PLI, L-RMSD $< 2 \text{ \AA}$, and Physical Validity. Complex LDDT measures the overall geometric
 1251 accuracy throughout the complex, while Prot-Prot LDDT, Lig-Prot LDDT, DNA-Prot LDDT, and
 1252 RNA-Prot LDDT focus specifically on the quality of protein-protein, protein-ligand, protein-DNA,
 1253 and protein-RNA interfaces, respectively. The average DockQ success rate (DockQ > 0.23), defined
 1254 as the proportion of predictions with DockQ > 0.23 , measures the fraction of cases where good
 1255 protein-protein interactions are correctly predicted. The average protein-ligand interface LDDT
 1256 (Mean LDDT+PLI) combines structural accuracy (LDDT) with protein-ligand interaction scores
 1257 (PLI) to provide a balanced assessment of both geometry and intermolecular contacts. L-RMSD
 1258 is defined as the proportion of ligands with a pocket-aligned RMSD below 2 \AA , a widely adopted
 1259 measure of molecular docking accuracy. Finally, Physical Validity checks whether the predicted
 1260 structures obey fundamental physical constraints, including steric clash, tetrahedral atomic chirality,
 1261 bond stereochemistry, planar double bonds, internal geometry, overlay chains, and covalently
 1262 bound chains. All evaluation metrics follow those used in Boltz-1 (Wohlwend et al., 2024) and
 1263 Protenix (Team et al., 2025).

O THE USE OF LARGE LANGUAGE MODELS (LLMs)

1264 Consistent with the conference policy on LLM usage, we used LLMs solely for language polishing
 1265 and improving the clarity of presentation. In particular:

- 1266 • **Scope of use.** LLMs were used for language polishing (rephrasing sentences, tightening transitions, standardizing terminology). They were *not* used for research ideation, experimental design, data analysis, derivations, algorithmic contributions, code or figure generation, literature search/screening, or drafting technical content beyond author-provided prose.
- 1267 • **Authorship and responsibility.** All scientific claims, methods, proofs, experiments, and conclusions are authored by the listed authors. We carefully reviewed and verified any text edited with LLM assistance. The authors accept full responsibility for the contents of the paper, including any edited passages, and for ensuring the absence of plagiarism or fabricated material.
- 1268 • **Attribution and citations.** All references and technical statements were selected, verified, and cited by the authors; LLMs were not used to generate or suggest citations.
- 1269 • **Data and privacy.** No proprietary, confidential, or personally identifiable information was provided to LLM tools.

1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295