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ABSTRACT

Generative models have achieved groundbreaking performance in restoration
tasks and inverse problems, producing results that are often indistinguishable from
real data. Yet these models are also known to produce hallucinations, or artifacts
that are not present in the original input, raising concerns about the uncertainty
of the models’ predictions. In this paper we study this phenomenon, employ-
ing information-theory tools to reveal a fundamental tradeoff between perception
and uncertainty. Our mathematical analysis shows that as perceptual quality in-
creases, so does the uncertainty of a restoration algorithm as quantified by error
entropy. We derive and illustrate the behavior of the uncertainty-perception func-
tion, showcasing both local and global bounds that define the the feasible region
of the tradeoff. Furthermore, we revisit a well-known relation between estimation
distortion and uncertainty and generalize its scope to include perception quality,
thereby shedding new light on the well-established perception-distortion tradeoff.
Our work offers a principled analysis of uncertainty, highlighting its interplay with
perception and the limitations of generative models in restoration tasks.

1 INTRODUCTION

Generative artificial intelligence (AI) has revolutionized the field inverse problems in recent years.
Deep learning models have achieved unprecedented performance in restoration tasks, producing
results that are often indistinguishable from real data across various tasks such as image denoising,
super-resolution, and inpainting, pushing the boundaries of what was previously attainable. Their
ability to infer missing information and restore corrupted data has far-reaching implications in a
variety of fields, including medical imaging, computer vision, and signal processing.

While powerful, generative models are susceptible to a phenomenon known as ”hallucinations”,
characterized by the generation of highly detailed realistic content that appears authentic but deviates
from the original input data, hindering applications where faithfulness is crucial. The underlying
cause of hallucination lies in the ill-posed nature of restoration problems, where multiple possible
solutions can explain the observed measurements, leading to uncertainty in the estimation process.
Interestingly, the severity of hallucination appears to be correlated with the perceptual quality of
the generative model. Despite this observation, a rigorous theoretical framework linking perception
(Blau & Michaeli, 2018) and uncertainty remains elusive. This raises a fundamental question:

Can one design an AI model that achieves both high perceptual quality and low uncertainty?

In this paper, we address the question above and demonstrate that the two objectives are inherently
at odds with each other, establishing a tradeoff between uncertainty and perception. Our main con-
tribution are as follows: (i) We introduce the uncertainty-perception (UP) function, grounded in
information-theoretic principles, to prove the existence of an inherent tradeoff between uncertainty
and perception that holds true for any underlying data distribution, inverse problem or restoration
model (Theorem 1). (ii) Employing Rényi divergence as a measure of perception, we derive prop-
erties the UP function, giving rise to the uncertainty-perception plane that categorizes algorithms
into three distinct performance domains (Theorem 3). (iii) We establish a relationship between un-
certainty and distortion, showing that the uncertainty-perception tradeoff implies the well-known
distortion-perception tradeoff (Theorem 4). To support our theoretical findings, we provide a nu-
merical illustration of the tradeoff in established algorithms for single image super-resolution. Thus,
developers should acknowledge this tradeoff when designing restoration algorithms in practice, pri-
oritizing either high perceptual quality or low uncertainty to align with specific requirements.

1



Under review as a conference paper at ICLR 2024

2 RELATED WORK

Uncertainty Quantification Uncertainty quantification techniques can be broadly categorized into
two main paradigms: Bayesian estimation and frequentist approaches. The Bayesian paradigm de-
fines uncertainty by assuming a distribution over the model parameters and/or activation functions.
The most prevalent approach is Bayesian neural networks (MacKay, 1992; Valentin Jospin et al.,
2020; Izmailov et al., 2020), which are stochastic models trained using Bayesian inference. To im-
prove efficiency, approximation methods have been developed, including Monte Carlo dropout (Gal
& Ghahramani, 2016; Gal et al., 2017a), stochastic gradient Markov chain Monte Carlo (Salimans
et al., 2015; Chen et al., 2014), Laplacian approximations (Ritter et al., 2018) and variational in-
ference (Blundell et al., 2015; Louizos & Welling, 2017; Posch et al., 2019). Alternative Bayesian
techniques encompass deep Gaussian processes (Damianou & Lawrence, 2013), deep ensembles
(Ashukha et al., 2020; Hu et al., 2019), and deep Bayesian active learning (Gal et al., 2017b). Abdar
et al. (2021) provides an extensive review of Bayesian uncertainty quantification.

In contrast to Bayesian methods, frequentist approaches operate under the assumption of fixed model
parameters with no underlying distribution. Examples of such distribution-free techniques are model
ensembles (Lakshminarayanan et al., 2017; Pearce et al., 2018), bootstrap (Kim et al., 2020; Alaa &
Van Der Schaar, 2020), interval regression (Pearce et al., 2018; Kivaranovic et al., 2020; Wu et al.,
2021) and quantile regression (Gasthaus et al., 2019; Romano et al., 2019).

An emerging approach in recent years is conformal prediction (Angelopoulos & Bates, 2021; Shafer
& Vovk, 2008), which leverages a labeled calibration dataset to convert point estimates into predic-
tion regions. Conformal methods are versatile, require no retraining, are computationally efficient,
and provide coverage guarantees in finite samples (Lei et al., 2018). These works include con-
formalized quantile regression (Romano et al., 2019; Sesia & Candès, 2020; Angelopoulos et al.,
2022b), conformal risk control (Angelopoulos et al., 2022a; Bates et al., 2021; Angelopoulos et al.,
2021), and semantic uncertainty intervals for generative adversarial networks (Sankaranarayanan
et al., 2022). Kutiel et al. (2023) introduces the notion of conformal prediction masks, interpretable
image masks with rigorous statistical guarantees for image restoration, highlighting regions of high
uncertainty in the recovered images. Please see (Sun, 2022) for an extensive survey of distribution-
free conformal prediction methods. A recent approach (Belhasin et al., 2023) introduces a principal
uncertainty quantification method for image restoration that considers spatial relationships within
the image to derive uncertainty intervals that are guaranteed to include the true unseen image with
a user-defined confidence probabilities. While the above studies offer a variety of approaches for
quantifying uncertainty, a rigours analysis of the relationship between uncertainty and perception
remains underexplored, particularly in the context of inverse problems.

Perception Quantification Perceptual quality in restoration tasks encompasses how humans per-
ceive the output, considering visual fidelity, similarity to the original, and absence of artifacts. While
traditional metrics like PSNR and SSIM (Wang et al., 2004) capture basic similarity, they miss finer
details and higher-level structures. Learned metrics like LPIPS (Zhang et al., 2018), VGG-loss (Si-
monyan & Zisserman, 2014), and DISTS (Ding et al., 2020) offer improvements but still operate on
pixel or patch level, potentially overlooking holistic aspects. Recently, researchers have leveraged
image-level embeddings from large vision models like DINO (Caron et al., 2021) and CLIP (Rad-
ford et al., 2021) to capture high-level similarity. In this study, we adopt a mathematical definition
of perceptual quality based on the divergence between probability density functions, as proposed by
Blau & Michaeli (2018) and further explored by Hepburn et al. (2021).

The Distortion-Perception Tradeoff The most relevant study to our research is the work on the
distortion-uncertainty tradeoff (Blau & Michaeli, 2018) and its follow-ups (Freirich et al., 2021;
Blau & Michaeli, 2019; Blau et al., 2018). Blau & Michaeli (2018) established a convex tradeoff
between perceptual quality and distortion in image restoration, applicable to any distortion measure
and distribution. When using Mean Squared Error (MSE), they found that perfect perceptual quality
can be obtained at the expense of no more than 3dB in peak signal-to-noise ratio. Freirich et al.
(2021) extends this, providing closed-form expressions for the tradeoff when MSE distortion and the
Wasserstein-2 perception distance are considered. In this setting, optimal estimators can be obtained
by simply interpolating between the results of minimum MSE estimators and perfect-perceptual
estimators. Thus, our works complements these studies by analyzing the relation of uncertainty to
perception and distortion and providing a new perspective on the distortion-perception tradeoff.
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3 PRELIMINARIES

To make the paper self-contained, we provide a brief overview of essential definitions and funda-
mental results that stand in the center of our study. Let X , Y and Z be continuous random variables
with probability density functions pX(x), pY (y) and pZ(z) respectively, defined over a space Ω.
Definition 1 (Entropy). The differential entropy of X , whose support is a set Sx, is defined by

h(X) , −
∫
SX

pX(x) log pX(x)dx.

Definition 2 (Rényi Entropy). The Rényi entropy of order r ≥ 0 of X is defined by

hr(X) ,
1

1− r
ln

∫
prX(x)dx.

The above quantity generalizes various notions of entropy, including Hartley entropy, collision en-
tropy, and min-entropy. In particular, for r = 1 we have

h1(X) , lim
r→1

hr(X) = h(X).

Definition 3 (Entropy Power). Let be h(X) be the differential entropy of X ∈ Rd. Then, the
entropy Power of X is given by

N(X) ,
1

2πe
e

2
dh(X).

Definition 4 (Divergence). A statistical divergence is any function Dv : Ω × Ω → R+ which
satisfies the following conditions for all p, q ∈ Ω:

1. Dv(p, q) ≥ 0. 2. Dv(p, q) = 0 iff p = q almost everywhere.
Definition 5 (Rényi Divergence). The Rényi divergence of order r ≥ 0 between pX and pY is

Dr(X,Y ) ,
1

r − 1
ln

∫
prX(x)p1−r

Y (x)dx.

The above establishes a spectrum of divergence measures, generalising the Kullback–Leibler diver-
gence as D1(X,Y ) = DKL(X,Y ).
Definition 6 (Conditioning). Consider the joint probability pXY and the conditional probabilities
pX|Y (x|y) and pZ|Y (z|y). The conditional differential entropy of X ∈ Rd given Y is defined as

h(X|Y ) , −
∫
SXY

pXY (x, y) log pX|Y (x|y)dxdy = Ey∼pY [h(X|Y = y)]

where SXY is the support set of pXY . Then, the conditional entropy power of X given Y is

N(X|Y ) =
1

2πe
e

2
dh(X|Y ).

Similarly, the conditional divergence between X and Z given Y is defined as

Dv(X,Z
∣∣Y ) , Ey∼pY [Dv(X|Y = y, Z|Y = y)] .

For example, the conditional Rényi divergence is given by

Dr(X,Z
∣∣Y ) ,

∫ (
1

r − 1
ln

∫
prX|Y (x|y)p1−r

Z|Y (x|y)dx

)
pY dy.

For the remainder of this paper, we assume that the aforementioned quantities, which involve inte-
grals, are well-defined and finite. In Table 1, we provide closed-form expressions for a number of
the above quantities associated with the multivariate Gaussian distribution. Below, we present two
important results that are used throughout our derivations.
Lemma 1 (Maximum Entropy Principle (Cover, 1999)). Let X ∈ Rd be a continuous random
variable with zero mean and covariance Σx. Define XG ∼ N (0,Σx) to be a Gaussian random
variable, independent of X , with the identical covariance matrix ΣxG

= Σx. Then,

h(X) ≤ h(XG),

N(X) ≤ N(XG) = |Σx|1/d .
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Table 1: Formulas for Multivariate Gaussian Distribution
Distribution Quantity Closed-Form Expression

X ∼ N (µx,Σx) h(X) 1
2 ln{(2πe)d |Σx|}.

X ∼ N (µx,Σx) N(X) |Σx|1/n .
X ∼ N (µx,Σx) h 1

2
(X) 1

2 ln{(8π)d |Σx|}.

X ∼ N (µx,Σx),
Y ∼ N (µy,Σy)

D1/2(X,Y ) 1
4 (µx − µy)T

(
Σx+Σy

2

)−1

(µx − µy) + ln

( ∣∣∣Σx+Σy
2

∣∣∣√
|Σx||Σy|

)
.

Lemma 2 (Entropy power inequality (Madiman et al., 2017)). Let X and Y be independent con-
tinuous random variables. Then, the following inequality holds

N(X) +N(Y ) ≤ N(X + Y ),

where equality holds iff X and Y are multivariate Gaussian random variables with proportional
covariance matrices. Equivalently, let Xg and Yg be defined as independent, isotropic multivariate
Gaussian random variables satisfying h(Xg) = h(X) and h(Yg) = h(Y ). Then,

h(X) + h(Y ) = h(Xg) + h(Yg) = h(Xg + Yg) ≤ h(X + Y ).

4 THE UNCERTAINTY-PERCEPTION TRADEOFF

4.1 PROBLEM FORMULATION

We consider the problem of recovering a random vector X ∈ Rd from its observations, represented
by another random vector Y = M(X) ∈ Rd′ where M : Rd → Rd′ is a non-invertible measure-
ment function. This problem translates to building an estimator X̂(Y ) which induces a conditional
distribution measure pX̂|Y on Rd. We rely on the following mild assumptions:

Assumption 1 (Loss of Information). The problem is ill-posed so X cannot be perfectly recovered
from Y . Namely, pX|Y (·|y) is not a delta function for almost every y.

Assumption 2 (Markovian Process). The estimation process is a Markov chainX → Y → X̂ , such
that X̂ is independent of X given Y .

Assumption 3 (Unbiasedness). X̂ is an unbiased estimator of X , implying E(X̂) = E(X).

Assumptions 1 and 2 are standard in the field of inverse problems (Blau & Michaeli, 2018; Freirich
et al., 2021). The first arises from the non-invertibility of the observation process, while the second
implies the estimator efficiently extracts all relevant information about X from Y , as access to the
true signal is unavailable. Assumption 3 is made without loss of generality as the chosen uncertainty
measure, defined later, exhibits translation-invariance and thus is unaffected by bias.

We are interested in studying estimators X̂(Y ) with respect to two performance criteria: uncer-
tainty and perception. For perceptual quality, we adopt a similar approach to the mathematical
definition proposed by Blau & Michaeli (2018) and measure perception by a conditional divergence
Dv(X, X̂

∣∣Y ). Using the abstract measure Unc(X̂|Y ) to represent the uncertainty of an estimator X̂
given the information in Y , we formulate the following uncertainty-perception (UP) function:

U(P ) , min
pX̂|Y

{
Unc(X̂|Y ) : Dv(X, X̂

∣∣Y ) ≤ P
}
. (1)

In words, U(P ) is the minimal uncertainty that can be attained by an estimator with perception
quality of at least P , given the information in the measurements Y .

There exist diverse approaches to define and quantify uncertainty (Gawlikowski et al., 2023; Abdar
et al., 2021). In this paper, we focus on a fundamental information-theoretic approach, relying on
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Figure 1: The uncertainty-perception tradeoff for the setting of example 1.

the concept of entropy that measures the statistical dispersion of a random variable. Intuitively, an
uncertainty quantity should be non-negative Unc(X̂|Y ) ≥ 0, yet, the differential entropy may be
negative. Therefore, entropy power offers a more natural measure of uncertainty, leading to:

U(P ) , min
pX̂|Y

{
N(X̂ −X|Y ) : Dv(X, X̂

∣∣Y ) ≤ P
}
. (2)

The chosen objective extracts the information content of the error signals rather than simply their
energy (second order statistics), compared with distortion measures. Furthermore, for a fixed per-
ception index P , the minimization above promotes concentrated errors, yielding robust predictions.

We remark that an alternative formulation may be

Ũ(P ) , min
pX̂|Y

{
N(X̂ −X) : Dv(X, X̂) ≤ P

}
. (3)

However, we highlight that the objective function satisfies N(X̂ − X|Y ) ≤ N(X̂ − X) where
equality holds if and only if the error E = X̂−X is independent of Y . Thus, it may overestimate the
uncertainty in the error. While further investigation is warranted, we hypothesize that the behavior
of function (3) mirrors that of the tradeoff function (2), which we examine in the following section.

4.2 THE UNCERTAINTY-PERCEPTION PLANE

Thus far, we have formulated the uncertainty-perception function and explained its underlying ra-
tionale. We now proceed to derive its fundamental properties to establish the uncertainty-perception
tradeoff. To demonstrate the nature of this function, we begin with an illustrative example.
Example 1. Consider Y = X + W where X ∼ N (0, 1) and W ∼ N (0, σ2) are independent.
Let the perception measure be the symmetric KL divergence and assume stochastic estimators of the
form X̂ = E [X|Y ] + Z where Z ∼ N (0, σ2

z) is independent of Y . As derived in Appendix A, the
uncertainty-perception function admits a closed form expression in this case, given by

U(P ) = N(X|Y )
[
1 +

(
P + 1−

√
(P + 1)2 − 1

)2 ]
, where N(X|Y ) = σ2/(1 + σ2).

The above example suggests a structure for uncertainty-perception function U(P ), which inherently
relies on N(X|Y ). As shown in Figure 1, the minimal attainable uncertainty increases as the per-
ception quality improves, clearly demonstrating the tradeoff. Yet, the precise form of the tradeoff is
dictated in general by the underlying distributions of X and Y , along with the specific divergence
measure Dv(·, ·) employed. Fortunately, the following theorem establishes overarching properties
of the uncertainty-perception function, U(P ), that hold irrespective of these specific distributions
and divergence measures.
Theorem 1. The uncertainty-perception function U(P ) displays the following properties

1. Quasi-linearity (monotonically non-increasing and continuous):

min
(
U(P1), U(P2)

)
≤ U

(
λP1 + (1− λ)P2

)
≤ max

(
U(P1), U(P2)

)
. (4)
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2. Boundlessness:
N(X|Y ) ≤ U(P ) ≤ 2N(XG|Y ). (5)

where XG is as defined in Lemma (1). Here N(X|Y ) represents the inherent uncertainty of the
problem and N(XG|Y ) is its upper bound that depends on the deviation of X from Gaussianity.

The aforementioned theorem establishes the existence of a tradeoff between perceptual quality and
uncertainty for any divergence measure, underlying data distributions, inverse problem or restoration
model. The tradeoff is fundamentally related to N(X|Y ), uncertainty arising from the information
loss during the observation process (Assumption 1). The upper bound depends onN(X|Y ) as it can
be expressed as

N(XG|Y ) = N(X|Y )e
2
dDKL(X,XG|Y ). (6)

This equation shows that as X approaches Gaussianity, N(X|Y ) approaches N(XG|Y ). However,
concurrently, it implies in general higher values of N(X|Y ) due to Lemma 1. The significance of
this finding lies in the surprising fact that for multivariate Gaussian distributions, perfect perceptual
quality can be attained at the cost of twice the inherent uncertainty of the problem. This extends to
any distribution of X when d is sufficiently large so e

2
dDKL(X,XG|Y ) ≈ 1.

While Theorem 1 outlines important characteristics of the uncertainty-perception function, further
insights require additional assumptions. The theorem below addresses the optimization process for
a fixed perceptual index P .

Theorem 2. Assume Dv(X, X̂
∣∣Y ) is convex in its second argument. Then, for any P ≥ 0, the

minimum is attained on the boundary where Dv(X, X̂
∣∣Y ) = P .

The above result is promising as it suggests that the optimization process can be confined to the
constraint set’s boundary, facilitating the optimization task. We continue by adopting a specific
divergence function. Given that our minimization objective involves entropy, Rényi divergence
emerges as a natural choice for our perception measure. Specifically, for r = 1/2, we arrive at:

U(P ) = min
pX̂|Y

{
N(X̂ −X|Y ) : D1/2(X, X̂

∣∣Y ) ≤ P
}
. (7)

Rényi divergence plays a critical role in the proofs of Bayesian estimators and numerous information
theory calculations (Van Erven & Harremos, 2014). It is directly related to Rényi entropy, which
generalizes various notions of entropy, including Hartley entropy, Shannon entropy, collision en-
tropy, and min-entropy. Moreover, while we set r = 1/2 to facilitate our derivations, it is important
to note that all orders r ∈ (0, 1) are equivalent (Van Erven & Harremos, 2014), since

r

t

1− t
1− r

Dt(·, ·) ≤ Dr(·, ·) ≤ Dt(·, ·), ∀ 0 < r ≤ t < 1. (8)

Consequently, analyzing the specific formulation provided by (7) may yield valuable insights appli-
cable to a wide range of divergence measures. The next theorem provide bounds for the tradeoff.
Theorem 3. The uncertainty-perception function is confined to the following region

η(P ) ·N(X|Y ) ≤ U(P ) ≤ η(P ) ·N(XG|Y )

where 1 ≤ η(P ) ≤ 2 is a convex function w.r.t the perception index and is given by

η(P ) =
(

2e
2P
d −

√
(2e

2P
d − 1)2 − 1

)
.

It is noteworthy that Theorem 3 holds true regardless of the underlying distributions of X and Y ,
thereby providing a universal characterization of the tradeoff as a function of perception. Further-
more, as depicted in Figure 2, Theorem 3 gives rise to the uncertainty-perception plane, which
divides the space into three distinct regions:

1. Impossible region, where no estimator can reach.
2. Optimal region, encompassing all estimators that are optimal according to (7).
3. Suboptimal region of estimators which exhibit overly high uncertainty.
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Figure 2: The uncertainty-perception plane.

The existence of an impossible region highlights the uncertainty-perception tradeoff, proving no
estimator can achieve both high perception and low uncertainty simultaneously. Furthermore, the
uncertainty-perception plane may provide a valuable tool for evaluating estimator performance and
identifying opportunities for improvement. Estimators residing in the suboptimal region can poten-
tially be optimized to achieve lower uncertainty without sacrificing perceptual quality. It is important
to note that some suboptimal estimators may also exist within the optimal region. In addition, we
conjecture that the general form of the tradeoff, given by the inequality in Theorem 3, remains valid
for different divergence measures, with the specific form of η(P ) capturing the nuances of each
measure. For instance, if we consider the Hellinger distance as our perception measure, we obtain
the same inequality but with η(P ) defined for 0 ≤ P ≤ 1 as

ηHel(P ) =
2

(1− P )4/d
−

√(
2

(1− P )4/d
− 1

)2

− 1. (9)

Next, we emphasize the dependency of the tradeoff on dimension of the random variable. To that
end, we consider η(P ) as a function of dimension for a fixed perceptual quality, denoted as η(d;P ).
As shown in Fig. 3, η(d;P ) exhibits a rapid incline as d increases, and the increment is more pro-
nounced for higher perception qualities. This observation suggests that in high-dimensional settings,
the uncertainty-perception tradeoff becomes more severe, implying that any marginal improvement
in perception for an algorithm is accompanied by a dramatic increase in uncertainty.
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Figure 3: Impact of dimensionality on the uncertainty-perception tradeoff.
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Lastly, while the uncertainty-perception tradeoff arises from theory, it has immediate practical im-
plications. Knowing that high perceptual quality and low uncertainty cannot coexist, developers
should prioritize one over the other based on specific application requirements.

4.3 THE DISTORTION-PERCEPTION TRADEOFF

Having established the uncertainty-perception tradeoff and its characteristics, we now boraden our
analysis to estimation distortion, particularly the mean squared-error (MSE). A well-known result
estimation theory states that for any random variable X and any estimator X̂ given side information
Y , the following holds true (Cover, 1999):

E
[
||X̂ −X||2

]
≥ 1

2πe
e2h(X|Y ). (10)

This inequality, related to the uncertainty principle, serves as a fundamental limit to the minimal
MSE achieved by any estimator. However, it does not consider the estimation uncertainty of X̂ as
the right hand side is independent of X̂ . Thus, we extend the above in the following theorem.

Theorem 4. For any random variable X , observation Y and unbiased estimator X̂ , it holds that

1

d
E
[
||X̂ −X||2

]
≥ N

(
X̂ −X

∣∣Y ) .
Notice that for any estimator X̂ , the inequality N(X̂ −X|Y ) ≥ N(X|Y ) holds true, implying that

1

d
E[‖X̂ −X‖2|Y ] ≥ N(X|Y ) =

1

2πe
e

2
dh(X|Y ). (11)

This result aligns with equation (10), demonstrating that Theorem 4 serves as a generalization of in-
equality (10), incorporating the uncertainty associated with estimation. Furthermore, by considering
the estimator X̂ as a function of the perception index P , we can derive the next corollary.
Corollary 1. Define the distortion-perception function as

D(P ) , min
pX̂|Y

{1

d
E
[
||X̂ −X||2

]
: Dv(X, X̂

∣∣Y ) ≤ P
}
.

Then, for any perceptual index P , we have D(P ) ≥ U(P ).

Thus, when utilizing MSE as a measure of distortion, the uncertainty-perception tradeoff induces a
distortion-perception tradeoff (Blau & Michaeli, 2018), offering a novel interpretation of the latter.
This insight underlines the fundamental connection between uncertainty, distortion, and perception.

5 NUMERICAL ILLUSTRATION

We experimentally illustrates the uncertainty-perception tradeoff and its connection to MSE distor-
tion in the context of super-resolution (SR) on the BSD100 dataset (Martin et al., 2001), following
previous works (Freirich et al., 2021; Blau & Michaeli, 2018). We compare various SR algorithms,
including bicubic, EDSR (Lim et al., 2017), ESRGAN (Wang et al., 2018), SinGAN (Shaham et al.,
2019), SANGAN (Kligvasser & Michaeli, 2021), DIP (Ulyanov et al., 2018), SRResNet/SRGAN
variants (Ledig et al., 2017), EnhanceNet (Sajjadi et al., 2017), and LDMs with parameter β ∈ [0, 1]
(Rombach et al., 2022), where β = 0 recovers DDIM (Ho et al., 2020) and β = 1 recovers DDPM
(Song et al., 2020).

Estimating high-dimensional statistics poses challenges and is susceptible to error (Laparra et al.,
2020). To address this, we treat images as stationary random sources and extract 9 × 9 patches
for our calculations. We employ kernel density estimation for Rényi divergence and compute it via
empirical expectations. Additionally, we use the Kozachenko-Leonenko estimator based on nearest
neighbor distances to calculate the patch sample differential entropy (Kozachenko & Leonenko,
1987; Delattre & Fournier, 2017; Beirlant et al., 1997; Marin-Franch & Foster, 2012).

Figure 4 (left) shows the aforementioned SR methods in the uncertainty-perception plane. An
unattainable blank region in the lower left corner signifies the tradeoff: no model achieves both
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Figure 4: Evaluation of SR algorithms on (left) the uncertainty-distortion plane and (right) on the
uncertainty-distortion plane.
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Figure 5: Visual comparison of algorithms on the uncertainty-perception plane, with uncertainty
(U), perception (P), and MSE distortion (D) measures shown. Algorithms are ordered from low to
high uncertainty (left to right), with an accompanying increase in perceptual quality.

low uncertainty and high perceptual quality. We observe an anti-correlation near this region; mod-
est improvements in perceptual quality lead to dramatic increases in uncertainty, further suggesting
a tradeoff that intensifies in high-dimension (d = 243). To confirm the relationship between un-
certainty and distortion, we plot the same algorithms on the uncertainty-distortion plane. Figure 4
(right) clearly demonstrates on the right that any increase in uncertainty leads to a significant rise
in distortion, reinforcing our observations from the previous section. Finally, Figure 5 depicts the
outputs of several algorithms lying across the uncertainty-perception plane.

6 CONCLUSION

In this study, we formulated and established the uncertainty-perception tradeoff in restoration tasks
based on information-theory tools. Namely, achieving high perceptual quality entails high uncer-
tainty levels. We provided a comprehensive characterization of this tradeoff for Rényi divergence,
revealing its quasi-linear nature and its pivotal dependence on dimensionality. We presented the
uncertainty-perception plane which partitions the space and thus provides an effective tool for as-
sessing estimator performance and identifying areas of improvement. By establishing a direct link
between uncertainty and MSE distortion, we have offered a fresh interpretation of the well-known
uncertainty-distortion tradeoff. Thus, our work highlights the fundamental interplay between uncer-
tainty, distortion, and perception. Lastly, exploring the role of information rate within the tradeoff
presents a promising direction for future research.
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A DERIVATION OF EXAMPLE 1

Since X̂ = E [X|Y ] + Z, then X̂|Y ∼ N (E [X|Y ] , σ2
z). Moreover, X|Y ∼ N (E [X|Y ] , σ2

q )

where σ2
q = σ2

1+σ2 . Thus, the conditional error entropy is given by N(X̂ − X|Y ) = σ2
q + σ2

z and

the symmetric KL divergence is DSKL(X, X̂
∣∣Y ) =

σ2
q+σ2

z

2σzσq
− 1, leading the following problem

U(P ) = min
σz

{
σ2
q + σ2

z :
σ2
q + σ2

z

2σzσq
− 1 ≤ P

}
. (12)

Therefore, we seek the minimal value of σz that satisfies the constraint. Note that the minimal value
is attained at the boundary of the constraint set, where the inequality becomes an equality

σ2
q + σ2

z

2σzσq
− 1 = P ⇒ σ2

z − 2σq(P + 1)σz + σ2
q = 0. (13)
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The solution to the aforementioned quadratic problem is σ∗z = σq

(
P + 1−

√
(P + 1)2 − 1

)
. Sub-

stituting the later into the objective function, we obtain

U(P ) = σ2
q

[
1 +

(
P + 1−

√
(P + 1)2 − 1

)2 ]
. (14)

Finally, the entropy power of an univariate Gaussian distribution equals its variance σ2
q = N(X|Y ).

B PROOF OF THEOREM 1

First, the constraint C(P ) , {X̂ : Dv(X, X̂
∣∣Y ) ≤ P} defines a compact set which is continuous

in P . Hence, by the Maximum Theorem (Cover, 1999), U(P ) is continuous. In addition, U(P ) is
the minimal error entropy power obtained over a constraint set whose size does not decrease with
P , thus, U(P ) is non-increasing in P . Any continuous non-increasing function is quasi-linear. For
the lower bound consider the case where P =∞, leading to the following unconstrained problem

U(∞) , min
pX̂|Y

N(X̂ −X|Y ). (15)

For any P ≥ 0 it holds that U(∞) ≤ U(P ), and by Lemma 2 we have

N(X|Y ) + min
pX̂|Y

N(X̂|Y ) ≤ U(∞). (16)

Since minpX̂|Y
N(X̂|Y ) ≥ 0 we obtain

∀P ≥ 0 : N(X|Y ) ≤ U(P ). (17)

Next, we have U(P ) ≤ U(0) = N(X̂0 −X|Y ) where pX̂0|Y = pX|Y . Define V , X̂0 −X , then

Σv|y = Σx̂|y + Σx|y = 2Σx|y where we use that X and X̂ are independent given Y . Thus,

U(0) = N(V |Y ) ≤ N(VG|Y ) =
∣∣Σv|y∣∣1/d =

∣∣2Σx|y
∣∣1/d = 2

∣∣Σx|y∣∣1/d = 2N(XG|Y ), (18)

where the first inequality is due to Lemma 1. Finally, for any P ≥ 0 it holds that U(P ) ≤ U(0)
which implies U(0) ≤ 2N(XG|Y ), completing the proof.

C PROOF OF THEOREM 2

AssumingDv(X, X̂
∣∣Y ) is convex in its second argument, the constraint represent a compact, convex

set. Moreover, h(X̂ − X|Y ) is strictly-concave w.r.t pX̂|Y as a composition of a linear function
(convolution) with a strictly-concave function (entropy). Therefore, we minimize a log-concave
function over a convex domain and thus the global minimum is attained on the set boundary where
Dv(X, X̂

∣∣Y ) = P .

D PROOF OF THEOREM 3

We begin with applying Lemma 1 and Lemma 2 to bound the objective function as follows

N(X̂g|Y ) +N(Xg|Y ) = N(X̂g −Xg|Y ) ≤ N(X̂ −X|Y ) ≤ N(X̂G −XG|Y ). (19)

Note that the bounds are tight as the upper bound is attained when X̂|Y and X|Y are multivariate
Gaussian random variables, while the lower bound is attained if we further assume they are isotropic.
Thus, we can bound the uncertainty-perception function as follows

Ug(P ) ≤ U(P ) ≤ UG(P ) (20)

where we define

Ug(P ) , min
pX̂g|Y

{
N(X̂g|Y ) +N(Xg|Y ) : D1/2(Xg, X̂g

∣∣Y ) ≤ P
}
,

UG(P ) , min
pX̂G|Y

{
N(X̂G −XG|Y ) : D1/2(XG, X̂G

∣∣Y ) ≤ P
}
.

(21)
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The above quantities can be expressed in closed form. We start with minimization problem of the
upper bound which can be written as

UG(P ) = min
pX̂G|Y

{ 1

2πe
e

2
dE[h(XG−XG|Y=y)] : E

[
D1/2(XG, X̂G

∣∣Y = y)
]
≤ P

}
, (22)

where the expectation is over y ∼ Y . Substituting the expressions for h(XG − XG|Y = y) and
D1/2(XG, X̂G

∣∣Y = y), we get

UG(P ) = min
{Σx̂|y}

{
1

2πe
e

2
dE
[

1
2 log

{
(2πe)d|Σx̂|y+Σx|y|

}]
: E

log

∣∣(Σx̂|y + Σx|y
)
/2
∣∣√∣∣Σx̂|y∣∣ ∣∣Σx|y∣∣
 ≤ P}.

(23)
Notice the optimization is with respect to the covariance matrices {Σx̂|y}. Simplifying the above,
we can equivalently solve the following minimization

min
{Σx̂|y}

E
[
log
∣∣Σx̂|y + Σx|y

∣∣] s.t. E

log

∣∣(Σx̂|y + Σx|y
)
/2
∣∣√∣∣Σx̂|y∣∣ ∣∣Σx|y∣∣
 ≤ P. (24)

The solution of a constrained optimization problem can be found by minizmiation the Lagrangian

L
(
{Σx̂|y}, λ

)
, E

[
log
∣∣Σx̂|y + Σx|y

∣∣]+ λ

E

log

∣∣(Σx̂|y + Σx|y
)
/2
∣∣√∣∣Σx̂|y∣∣ ∣∣Σx|y∣∣
− P

 . (25)

Since expectation is a linear operation and using that P = E [P ], we rewrite the above as

L
(
{Σx̂|y}, λ

)
= E

log
∣∣Σx̂|y + Σx|y

∣∣+ λ

log

∣∣(Σx̂|y + Σx|y
)
/2
∣∣√∣∣Σx̂|y∣∣ ∣∣Σx|y∣∣ − P

 . (26)

The expression within the expectation can be written as

log
∣∣Σx̂|y + Σx|y

∣∣+ λ

(
log
∣∣(Σx̂|y + Σx|y

)
/2
∣∣− 1

2
log
∣∣Σx̂|y∣∣− 1

2
log
∣∣Σx|y∣∣− P) . (27)

Next, according to KKT conditions the solutions should satisfy ∂L
∂Σx̂|y

= 0. Using the linearity of
the expectation and differentiating (27) w.r.t Σx̂|y we obtain(

Σx̂|y + Σx|y
)−1

+ λ

((
Σx̂|y + Σx|y

)−1 − 1

2
Σ−1
x̂|y

)
= 0 (28)

Multiplying both sides by
(
Σx̂|y + Σx|y

)
, we have

I + λI − λ

2
I − λ

2
Σx|yΣ−1

x̂|y = 0

⇒ (1 +
λ

2
)I =

λ

2
Σx|yΣ−1

x̂|y

⇒ (λ+ 2)Σx̂|y = λΣx|y

⇒ Σx̂|y =
λ

λ+ 2
Σx|y.

(29)

Define γ = λ
λ+2 , so Σx̂|y = γΣx|y . Substituting the latter into the constraint we get

log
∣∣(γΣx|y + Σx|y

)
/2
∣∣− 1

2
log
∣∣γΣx|y

∣∣− 1

2
log
∣∣Σx|y∣∣ = P

⇒ n log
1 + γ

2
− n

2
log γ = P

⇒ (1 + γ)2

4γ
= e

2
dP

⇒ γ2 + 2γ + 1 = 4γe
2
dP

⇒ γ(P ) = 2e
2
dP − 1−

√
(2e

2
dP − 1)2 − 1.

(30)
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Thus, we obtain that
UG(P ) = η(P ) ·N(XG|Y ) (31)

where
η(P ) = γ(P ) + 1 = 2e

2
dP −

√
(2e

2
dP − 1)2 − 1. (32)

Notice that η(0) = 2, while limP→∞ η(P ) = 1, so 1 ≤ η(P ) ≤ 2. Following similar steps where
we replace Σx̂|y and Σx|y with N(X̂|Y ) and N(X|Y ) respectively, we derive

Ug(P ) = η(P ) ·N(X|Y ). (33)

E PROOF OF THEOREM 4

Define E , X̂ −X . Then,

1

d
E
[
||X̂ −X||2

]
=
(a)

E
[

1

d
E
[
||X̂ −X||2

∣∣Y ]] = E
[

1

d
E
[
||E||2

∣∣Y ]] = E
[

1

d
E
[
ETE

∣∣Y ]]
= E

[
1

d
Tr
(
E
[
EET

∣∣Y ])] = E
[

1

d
Tr
(
Σε|y

)]
≥
(b)

E
[∣∣Σε|y∣∣1/d] = E

[∣∣Σx̂|y + Σx|y
∣∣1/d]

≥
(c)

E
[

1

2πe
e

2
dh(X̂−X|Y=y)

]
≥
(d)

1

2πe
e

2
dE[h(X̂−X|Y=y)] =

1

2πe
e

2
dh(X̂−X|Y ) = N

(
X̂ −X

∣∣Y ) ,
where (a) is by the law of total expectation, (b) is due to the inequality of arithmetic and geometric
means, (c) follows Lemma 1, and (d) is according to Jensen’s inequality.
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