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ABSTRACT

Adaptive gradient methods based on exponential moving averages, such as Adam
and RMSprop, are widely used for deep learning. However, it is known that they
do not converge unless choosing hyperparameters in a problem-dependent man-
ner. There have been many attempts to fix their convergence (e.g., AMSGrad),
but they require an impractical assumption that the stochastic gradient is uni-
formly bounded. In this paper, we propose a new adaptive gradient method named
ADOPT, which achieves the optimal convergence rate of O(1/

√
T ) with any hy-

perparameter choice without the bounded stochastic gradient assumption. ADOPT
addresses the non-convergence issue of Adam by removing the current gradient
from the second moment estimate and changing the order of the momentum calcu-
lation and the scaling operation by the second moment estimate. We also conduct
intensive numerical experiments, and verify that our ADOPT achieves competitive
or even better results compared to Adam and its variants across a wide range of
tasks, including image classification, generative modeling, natural language pro-
cessing, and deep reinforcement learning.

1 INTRODUCTION

Stochastic optimization algorithms, such as stochastic gradient descent (SGD), play a central role in
deep learning. In particular, adaptive gradient methods based on exponential moving averages are
widely used in practice. Despite the empirical success, it is known that some of the most popular
algorithms, including Adam (Kingma & Ba, 2014) and RMSprop (Hinton et al., 2012), do not
converge in theory. For example, Reddi et al. (2018) show that Adam and RMSprop fail to converge
to a correct solution in a simple example where the objective function at time t is given as:

ft (θ) =

{
Cθ, for t mod 3 = 1

−θ, otherwise,
(1)

where C > 2 and θ ∈ [−1, 1]. In this online optimization setting, Adam and RMSprop with spe-
cific hyperparameters converge to a wrong solution (i.e., θ = 1) instead of the true solution (i.e.,
θ = −1). There have been several attempts to fix the non-convergent behavior of Adam (Reddi
et al., 2018; Zou et al., 2019). For example, AMSGrad (Reddi et al., 2018) ensures the conver-
gence for online convex optimization by making slight modifications to the Adam algorithm. Sub-
sequent studies (Chen et al., 2019; Zhou et al., 2018) show that AMSGrad also converges to a
stationary point for smooth nonconvex stochastic optimization problems. However, the convergence
proofs rely on the assumption that the stochastic gradient is uniformly bounded. This assumption
is stronger than the one used for the analysis of vanilla SGD (Ghadimi & Lan, 2013; Bertsekas &
Tsitsiklis, 2000; Khaled & Richtárik, 2023), and is often violated in practice. For example, when
Gaussian noise is used in the gradient estimation (e.g., the reparameterization trick in variational
autoencoders (Kingma & Welling, 2014)), the stochastic gradient is no longer bounded.

Concurrently, Zhou et al. (2019) analyze the cause of non-convergence in Adam and RMSprop
in the problem described in Eq. (1) from the perspective of the correlation between the current
gradient and the second moment estimate based on the exponential moving average. Specifically,
they show that the issue can be resolved by excluding the gradient of the most recent n steps from
the calculation of the second moment estimate, where n is a hyperparameter that is equal to or larger
than 1. They extend the analysis to the case where momentum is incorporated, as in Adam, and
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propose AdaShift, which calculates momentum using only the gradient of the most recent n steps to
ensure that momentum is uncorrelated with the second moment estimate. However, their theoretical
analysis is limited to a single online convex problem described in Eq. (1), and the convergence of
AdaShift for general nonconvex problems is unclear. Moreover, this approach involves a trade-off
in the choice of n: when n is small, momentum has limited information about past gradients, and
when n is large, the second moment estimate has limited information about recent gradients.

More recently, some works have demonstrated that Adam can converge by choosing the hyperpa-
rameters in a problem-dependent manner (Shi et al., 2020; Zhang et al., 2022; Wang et al., 2022;
Li et al., 2023). However, tuning the hyperparameters for each specific problem is troublesome;
hence developing algorithms with the problem-independent convergence guarantee is still important
to safely apply adaptive gradient methods to general machine learning problems.

In this paper, we propose an alternative approach to addressing the non-convergence issue of Adam
without encountering trade-offs in hyperparameters or relying on strong assumptions such as the
bounded stochastic gradient assumption. To derive our algorithm, we first examine the case without
momentum, analyzing the convergence bound of RMSprop for general smooth nonconvex opti-
mization problems. Through this analysis, we uncover the fundamental cause of divergence, which
stems from the correlation between the second moment estimate and the current gradient. This
finding aligns with the results demonstrated by Zhou et al. (2019) for online convex optimization.
To resolve the divergence problem, we introduce slight modifications to the RMSprop algorithm
that eliminate the correlation. Subsequently, we extend our findings to the case where momen-
tum is incorporated, as in Adam, and discover that the Adam-style momentum also contributes to
non-convergence. Although AdaShift addresses this issue by removing past gradients from momen-
tum, it introduces a trade-off as previously described. However, we propose a modification that
overcomes this trade-off by changing the order of the momentum calculation and the scaling op-
eration using the second moment estimate. With this small adjustment, we successfully eliminate
the non-convergence problem of Adam without relying on a specific hyperparameter choice and the
bounded stochastic gradient assumption. We provide theoretical evidence demonstrating that our
derived algorithm, named ADaptive gradient method with the OPTimal convergence rate (ADOPT),
can achieve convergence with the optimal rate of O(1/

√
T ) for smooth nonconvex optimization.

In our experiments, we begin by assessing the performance of ADOPT in a toy example where Adam
typically fails to converge. This toy example is an extension of the one presented in Eq. (1) by Reddi
et al. (2018), but we consider a scenario where the bounded stochastic gradient assumption does not
hold. Our results demonstrate that ADOPT rapidly converges to the solution, while Adam fails to
converge, and AMSGrad exhibits slow convergence due to the violation of the assumption. Next,
we conduct an experiment using a simple multi-layer perceptron on the MNIST classification task to
evaluate the performance of ADOPT in nonconvex optimization. Our findings indicate that ADOPT
outperforms existing adaptive gradient methods, including Adam, AMSGrad, and AdaShift. Fi-
nally, we evaluate the performance of ADOPT in various practical applications, such as ImageNet
classification using modern neural networks (SwinTransformer), training of deep generative models
(NVAE), fine-tuning of language models (LLaMA), and deep reinforcement learning for continu-
ous control. Our empirical results demonstrate that ADOPT achieves competitive or even superior
results over existing algorithms (e.g., Adam) in these practical applications.

2 PRELIMINARY

2.1 PROBLEM DEFINITION

We consider the minimization of the objective function f : RD → R with respect to the parameter
θ ∈ RD. In this context, we focus on first-order stochastic optimization methods, where only the
stochastic gradient g is accessible. As the objective f can be nonconvex, the goal is to find a sta-
tionary point where ∇f (θ) = 0 (Blair, 1985; Vavasis, 1995). In order to analyze the convergence
behavior of stochastic optimization algorithms, we adopt the following assumptions commonly em-
ployed in the literature1 (Ghadimi & Lan, 2013; Zou et al., 2019; Défossez et al., 2022):
Assumption 1. The objective function f(θ) is lower-bounded, i.e., f(θ) ≥ finf > −∞ for all θ.

1Note that Assumption 4 is often relaxed to an assumption that the variance (instead of the second moment)
of the stochastic gradient is uniformly bounded, but we adopt Assumption 4 for the simplicity of our proofs.
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Assumption 2. The stochastic gradient gt is an unbiased estimator of the objective f(θt−1), i.e.,
E[gt] = ∇f(θt−1) for all t ≥ 1.
Assumption 3. The objective function is L-smooth on Θ, i.e., there exists a constant L > 0 such
that ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all x,y ∈ Θ.
Assumption 4. The stochastic gradient has a finite second moment, i.e., there exists a constant
G > 0 such that E[∥gt∥2] ≤ G2.

In the literature on convergence analysis, it is common to analyze the convergence rate of
mint{E[∥∇f(θt))∥2]}, where θt represents the parameter value after t parameter updates.

For the analysis of adaptive gradient methods (e.g., Adam and AMSGrad), many of previous
works (Chen et al., 2019; Zhou et al., 2018; Défossez et al., 2022) make an additional assumption
that the stochastic gradient gt is uniformly bounded:
Assumption 5. The stochastic gradient is uniformly upper-bounded, i.e., there exists a constant
G > 0 such that ∥gt∥ ≤ G.

Note that when Assumption 5 holds, Assumption 4 is automatically satisfied. Therefore, Assump-
tion 5 is a stronger assumption compared to Assumption 4. When we omit Assumption 5, it be-
comes challenging to analyze mint{E[∥∇f(θt))∥2]} for adaptive gradient methods. As a result,
the analysis often considers mint{E[∥∇f(θt))∥4/3]3/2} instead. In this paper, we focus on ana-
lyzing mint{E[∥∇f(θt))∥4/3]3/2}, because one of our motivations is to address the omission of
Assumption 5.

2.2 REVIEW OF STOCHASTIC OPTIMIZATION ALGORITHMS FOR NONCONVEX OBJECTIVES

The convergence of the vanilla SGD have been studied extensively in previous works. For smooth
nonconvex functions, Ghadimi & Lan (2013) showed that SGD with a constant learning rate con-
verges with an O(1/

√
T ) rate by setting αt = α = Θ(1/

√
T ), where αt is a learning rate at the

t-th step, and T is a total number of parameter updates. This convergence rate is known to be min-
imax optimal up to a constant (Drori & Shamir, 2020). For the diminishing learning rate scheme,
the convergence bound of O(log T/

√
T ) is well-known for αt = α/

√
t (Ghadimi & Lan, 2013).

Recently, Wang et al. (2021) have proved that SGD with αt = α/
√
t can also achieve the optimal

rate O(1/
√
T ) by additionally assuming that the objective f is upper-bounded.

While the vanilla SGD is still one of the most popular choices for stochastic optimization, adaptive
gradient methods are dominantly used especially for deep learning. In adaptive gradient methods,
the parameter θ is updated additionally using the second moment estimate vt in the following form:

θt = θt−1 − αt
gt√

vt + ϵ2
, (2)

where ϵ is a small constant, the division between vectors is applied in an element-wise manner, and
the addition between a vector a and a scalar b is defined as (a+ b)i := ai + b. In AdaGrad (Duchi
et al., 2011), vt is defined as v0 = 0 and vt = vt−1 + gt ⊙ gt. In RMSprop (Hinton et al., 2012),
an exponential moving average is substituted for the simple summation, i.e., vt = β2vt−1 + (1 −
β2)gt ⊙ gt, where 0 ≤ β2 < 1. Adam (Kingma & Ba, 2014) uses momentum in addition to the
second moment estimate to accelerate the convergence as follows:{

mt = β1mt−1 + (1− β1) gt,
θt = θt−1 − αt

mt√
vt+ϵ2

, (3)

where m0 = 0. Here, we omit the bias correction technique used in the original paper for clarity.
Unfortunately, RMSprop and Adam are not guaranteed to converge even in a simple convex opti-
mization problem as demonstrated by Reddi et al. (2018), whereas AdaGrad with a constant learning
rate is known to converge with anO(log T/

√
T ) rate under Assupmtions 1-4 for smooth nonconvex

cases (Li & Orabona, 2019; Ward et al., 2020; Zou et al., 2018; Chen et al., 2019; Défossez et al.,
2022). Although the convergence of Adam can be assured by choosing the hyperparameters (i.e., β1

and β2) in a problem-dependent manner (Shi et al., 2020; Zhang et al., 2022; Wang et al., 2022; Li
et al., 2023), it is difficult to know the proper hyperparameters for each problem before training. To
fix the non-convergence of Adam without depending on a hyperparameter choice, some researchers
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have proposed variants of Adam. Reddi et al. (2018) proposed AMSGrad, which substitute ṽt for
v in Eq. (3), where ṽ0 = 0 and ṽt = max {ṽt−1,vt}. The idea behind AMSGrad is that the
scaling factor

√
ṽt + ϵ2 should be non-decreasing to ensure the convergence. After Reddi et al.

(2018) originally proved the convergence of AMSGrad for online convex optimization, Chen et al.
(2019) showed that AMSGrad with αt = α/

√
t converges with O(log T/

√
T ) for nonconvex set-

tings. Zhou et al. (2018) also analyzed the convergence of AMSGrad for nonconvex optimization,
and derived the convergence rate of O(1/

√
T ) for a constant learning rate of αt = α = Θ(1/

√
T ).

However, their results depend on Assumption 5, which is often violated in practice. For example,
variational autoencoders (Kingma & Welling, 2014) and diffusion models (Ho et al., 2020) are typ-
ical examples in which Assumption 5 does not hold because they utilize unbounded Gaussian noise
in the gradient estimation. The cause of requirement for Assumption 5 is the max operation in the
definition of ṽt. Since the max operation is convex, E[ṽt] ≤ maxt{E[vt]} does not hold; hence
Assumption 5 is required to upper-bound E[ṽt] in their proofs. Zhou et al. (2019) also tried to fix
the non-convergent behavior of Adam. Their proposed AdaShift uses vt−n instead of vt for the
second moment estimate, and calculate the momentum using the latest n gradients as follows: mt =

∑n−1
k=0 βk

1 gt−k∑n−1
k=0 βk

1

,

θt = θt−1 − αt
mt√

vt−n+ϵ2
.

(4)

In the original paper, some additional techniques (e.g., the block-wise adaptive learning rate) are
used, but we omit them for clarity here. Though they give theoretical analysis for a single online
convex example, any convergence bounds are not provided for nonconvex cases. More detailed
discussion on related works is provided in Appendix A.

3 CAUSE OF NON-CONVERGENCE OF ADAM AND HOW TO FIX IT

In this section, to derive an algorithm that can converge with any hyperparameter choice without
the bounded stochastic gradient assumption, we analyze the cause of non-convergence of Adam,
and discuss how it can be eliminated. To start from a simple case, we first analyze the case without
momentum. Subsequently, we extend it to the case with momentum and provide a way to fix the
convergence issue of Adam.

3.1 CASE WITHOUT MOMENTUM

We first analyze the convergence of RMSprop, which corresponds to the no-momentum case of
Adam when we omit the bias correction. For RMSprop, we derive the following convergence bound.
Theorem 1. Under Assumptions 1, 2, 3, and 4, the following holds for the RMSprop with a constant
learning rate αt = α:

min
t=1,...,T

{
E
[
∥∇f(θt−1))∥4/3

]3/2}
≤ 2
√(

1− βT
2

)
G2 + ϵ2

(
f (θ0)− finf

αT
+

C

T
log

(
1 +

(
1− βT

2

)
G2

ϵ2

)
− C log β2

)
, (5)

where C = αDL
2(1−β2)

+ 2DG√
1−β2

.

Sketch of proof. By Assumption 3, the following holds:

E [f (θt)] ≤ E [f (θt−1)]− αE
[
∇f (θt−1)

⊤
(

gt√
vt + ϵ2

)]
+

α2L

2
E

[∥∥∥∥ gt√
vt + ϵ2

∥∥∥∥2
]

(6)

Applying Lemmas 7 and 9 in the appendix to this, the following inequality is derived:

E [f (θt)] ≤ E [f (θt−1)] −
α

2
E
[
∇f (θt−1)

⊤
(

gt√
ṽt + ϵ2

)]
+

(
α2L

2
+ 2αG

√
1 − β2

)
E
[∥∥∥∥ gt√

vt + ϵ2

∥∥∥∥2] (7)

≤ E [f (θt−1)] −
α

2

E
[
∥∇f (θt−1)∥4/3

]3/2
√(

1 − βT
2

)
G2 + ϵ2

+

(
α2L

2
+ 2αG

√
1 − β2

)
E
[∥∥∥∥ gt√

vt + ϵ2

∥∥∥∥2] , (8)
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where ṽt = β2vt−1 + (1 − β2)E[gt ⊙ gt]. Telescoping this for t = 1, . . . , T and rearranging the
terms, we have

T∑
t=1

E
[
∥∇f (θt−1)∥4/3

]3/2
≤ 2
√(

1− βT
2

)
G2 + ϵ2

(
f (θ0)− finf

α
+ C log

(
1 +

(
1− βT

2

)
G2

ϵ2

)
− CT log β2

)
, (9)

where the last inequality holds due to Assumption 1 and Lemma 8. Therefore, the bound in Eq. (5)
is derived using the following fact:

min
t=1,...,T

{
E
[
∥∇f(θt−1))∥4/3

]3/2}
≤

∑T
t=1 E

[
∥∇f (θt−1)∥4/3

]3/2
T

. (10)

A detailed proof is provided in the appendix. When the learning rate α is chosen so that α =
Θ(1/

√
T ), the first and second terms on the right hand side of Eq. (5) converge with O(1/

√
T ) and

O(1/T ) rates, respectively. However, the last term includes a constant factor in terms of T , which
represents the non-convergent behavior of RMSprop in the smooth nonconvex setting. More pre-
cisely, RMSprop is guaranteed to converge only to a bounded region around a stationary point, and
the size of the bounded region depends on the hyperparameter β2 and the problem-dependent factors
D, G, and L. Therefore, we need to choose β2 dependently on each problem to make the bounded
region adequately small. Basically, the size of the bounded region can be made small by setting β2

to a value close to 1, but how close to 1 it should be relies on the problem-dependent factors, which
cannot be observed in advance. This result is consistent with recent results of convergence analyses
of Adam and RMSprop (Shi et al., 2020; Zhang et al., 2022).

As can be seen from Eqs. (6) and (7), the constant term in Eq. (5) is derived from the second term
of Eq. (6). Because gt and vt are not statistically independent, this term is first decomposed into
the second and third terms of Eq. (7) by using Lemma 7. After the decomposition, gt and ṽt is
now conditionally independent given g0, . . . , gt−1, so Eq. (8) is derived using the following fact in
Lemma 9:

E
[

gt√
ṽt + ϵ2

]
= E

[
∇f (θt−1)√

ṽt + ϵ2

]
. (11)

In other words, if the second moment estimate is designed to be conditionally independent to gt,
the constant term in the convergence bound will be removed, because the second term of Eq. (6)
can be directly lower-bounded by a quantity propotional to E[∥∇f(θt))∥4/3]3/2 as in Lemma 9. A
simple way to achieve the conditional independence is to substitute vt−1 for vt as a second moment
estimate, because vt−1 does not have information about gt. This solution is similar to AdaShift, in
which vt−n is substituted for vt as described in Eq. (4). In fact, the modified version of RMSprop
is identical to AdaShift with n = 1 and β1 = 0 except for the additional techniques (e.g., the
block-wise adaptive learning rate).

3.2 CASE WITH MOMENTUM

As we have described, RMSprop can be modified to be convergent by removing the current gradient
gt from the second moment estimate vt. However, when we combine adaptive gradient methods
with momentum like Adam, the convergence analysis becomes more complicated. Unfortunately,
when Adam-style momentum in Eq. (3) is applied, the algorithm does not converge in general
even when using vt−1 as a second moment estimate instead of vt. This is because the momentum
mt contains all history of the past gradients g0, . . . , gt; hence the second moment estimate always
correlates with mt. AdaShift prevents this problem by calculating the momentum mt only using the
latest n gradients as described in Eq. (4). In that case, the momentum mt and the second moment
estimate vt−n are conditionally independent, so the convergence can be retained. However, this
approach has a trade-off in the choice of n. When n is small, mt has little information about the
past gradients; when n is large, vt−n only has access to the gradient information in the distant past.
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Algorithm 1 ADOPT algorithm
Require: Learning rate {αt}, initial parameter θ0
Require: Exponential decay rate 0 ≤ β1 < 1, 0 ≤ β2 ≤ 1, small constant ϵ ≥ 0
m0 ← 0,v0 ← 1
for t = 1 to T do
mt ← β1 ·mt−1 + (1− β1)

gt√
vt−1+ϵ2

θt ← θt−1 − αtmt

vt ← β2 · vt−1 + (1− β2) gt ⊙ gt
end for
return {θt}Tt=1

To remove this trade-off, instead of truncating the momentum to the latest n steps, we propose to
use momentum of the following form:{

mt = β1mt−1 + (1− β1)
gt√

vt−1+ϵ2
,

θt = θt−1 − αtmt,
(12)

The main difference to the Adam-style momentum in Eq. (3) is the order of momentum calculation
and the scaling operation by

√
vt−1 + ϵ2. In Eq. (3), the scaling operation is performed after the

momentum calculation, whereas in Eq. (12), the scaling operation is first applied to the current
gradient gt in advance to the momentum calculation. In this case, the second moment estimate vt−1

is only used to scale the current gradient gt, so the convergence can be guaranteed. A more detailed
convergence analysis is provided in Section 4.

4 ADOPT: ADAPTIVE GRADIENT METHOD WITH THE OPTIMAL
CONVERGENCE RATE

Based on the analysis in the previous section, we propose a new adaptive gradient method named
ADOPT (ADaptive gradient method with the OPTimal convergence rate). The entire procedure
is summarized in Algorithm 4. In ADOPT, to ensure the convergence, we use vt−1 as a second
moment estimate instead of vt, and the scaling operation by

√
vt−1 + ϵ2 is applied not to the mo-

mentum mt but to the current gradient gt. To prevent the initial scaling factor
√
v0 + ϵ2 from being

too small, we initialize v0 with 1 instead of 0. By this modification, ADOPT can converge with the
optimal rate O(1/

√
T ) for the smooth nonconvex optimization as follows:

Theorem 2. Under Assumptions 1, 2, 3, and 4, the following holds for the ADOPT algorithm with
a constant learning rate αt = α:

min
t=1,...,T

{
E
[
∥∇f(θt−1))∥4/3

]3/2}
≤ C1 (T )

(
f (θ0) − finf

αT
+ αC2

(
1 −

1

T log β2

log

(
βT
2 + ϵ2

1 + ϵ2

)))
, (13)

where C1 (T ) =
√
max

{
G2 + (1−G2)βT

2 , 1
}
+ ϵ2, C2 = (1+β1)G

2L
2(1−β1)ϵ2

.

The detailed proof and related lemmas are provided in the appendix. When we choose the learning
rate so that α = Θ(1/

√
T ), the right hind side of Eq. (13) converges with an O(1/

√
T ) rate. We

also provide the convergence bound for the case of diminishing learning rate (i.e., αt = α/
√
t) in

the appendix, which is closer to practical situations. In that case, ADOPT also converges with the
optimal rate of O(1/

√
T ).

5 EXPERIMENTS

In the experiments, we first validate our ADOPT algorithm using a simple toy example in which
Adam is known to fail to converge, and confirm our theoretical findings through numerical simu-
lation. Secondly, we run an experiment of training a simple multi-layer perceptron (MLP) for the
MNIST dataset to verify the effectiveness of our ADOPT for nonconvex optimization problems.
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k = 10

k = 50

Adam AMSGrad ADOPT

Figure 1: Performance comparison between Adam, AMSGrad and ADOPT in a simple univariate
convex optimization problem. The plots show transitions of the parameter value, which should
converge to the solution θ = −1.

Finally, we evaluate our ADOPT in a wide range of practical applications, including image clas-
sification, natural language processing (NLP) tasks, generative modeling, and deep reinforcement
learning. Detailed experimental settings are described in the appendix.

Toy problem: We consider a convex optimization problem with an objective f(θ) = θ for θ ∈
[−1, 1]. It is obvious that a solution for the problem is θ = −1. Through the optimization, we only
have access to the stochastic objective ft as follows:

ft (θ) =

{
k2θ, with probability 1/k

−kθ, with probability 1− 1/k
, (14)

where k ≥ 1. Because E[ft(θ)] = f(θ) holds, the stochastic gradient gt = ∇ft(θ) is an unbiased
estimator of the true gradient ∇f regardless of the choice of k, satisfying Assumption 2. This
problem is equivalent, except for scaling, to the stochastic optimization version of Eq. (1) provided
by Reddi et al. (2018) as a case where Adam (and RMSprop) with specific hyperparameters fail to
converge. The constant k controls the magnitude of gradient noise. When k = 1, it corresponds to
the noiseless case where ft = f with probability 1. As k gets large, stochastic gradient becomes
noisy, making G in Assumptions 4 or 5 large. Therefore, the optimization will be more difficult when
k becomes larger. In the experiment, we set k = 10 or 50, and compare the robustness of Adam,
AMSGrad, and ADOPT for various hyperparameter settings by changing β2 from 0.1 ∼ 0.999. We
set β1 = 0.9 for all the algorithms, which is a common choice in practice. We set the learning rate
to αt = 0.01/

√
1 + 0.01t. The parameter θ is initialized to 0 for all cases.

The result is shown in Figure 5. It can be seen that, when k = 10, Adam fails to converge except
for β2 = 0.999 while AMSGrad and ADOPT rapidly converge to the correct solution, i.e., θ = −1.
In a more extreme case where k = 50, Adam fails to converge even with β2 very close to 1. This
aligns with Theorem 1, since, when the gradient noise is large (i.e., G is large), the bounded region
of the convergence bound also gets large, leading to divergence of Adam. Moreover, when k = 50,
it is observed that the convergence of AMSGrad also becomes much slower than ADOPT. In fact,
this phenomenon is also consistent with theory. In this problem setting, the second moment E[g2t ] is
O(k3), while the squared norm of the stochastic gradient g2t isO(k4). Since the convergence bound
of AMSGrad depends on the uniform bound of the stochastic gradient in Assumption 5, instead
of the second moment in Assumption 4, its convergence also deteriorates with the order of g2t .
Compared to AMSGrad, ADOPT only depends on the second moment bound for its convergence, so
it converges much faster than AMSGrad even in such an extreme setting, although the convergence
speed depends on the choice of hyperparameters.

7



Under review as a conference paper at ICLR 2024

Figure 3: Accuracy for training data (left) and test data(right) in MNIST classification. The error
bars show the 95% confidence intervals of three trials.

Figure 2: Ablation study of algorithmic
changes between Adam and ADOPT.
”DE” and CO denote ”decorrelation”
and ”change of order”, respectively.

We also perform ablation study on how the two algo-
rithmic changes from Adam to ADOPT affect the con-
vergence. The differences between Adam and ADOPT
are (1) decorrelation between the second moment esti-
mate and the current gradient, and (2) change of order
of momentum calculation and scaling operation by the
second moment estimate. In this experiment, we re-
move each algorithmic change from ADOPT, and com-
pare the result in the toy example. We set k = 50, and
(β1, β2) = (0.9, 0.999), since it is a common hyperpa-
rameter choice. The result is shown in Figure 2. It can
be observed that ADOPT fails to converge with the ex-
ception of either algorithmic change. Therefore, applying
both changes is essential to overcome the non-convergent
issue of Adam, which also aligns with theory.

These results correspond to the theoretical findings, showing the superiority of ADOPT to Adam
and AMSGrad in terms of the convergence speed and its robustness to hyperparameter choices.

MNIST classification: To investigate the performance on nonconvex optimization, we compare
ADOPT with Adam, AMSGrad and AdaShift, on the MNIST classification using an MLP with a
single hidden layer. The number of hidden units is set to 784. We set the learning rate to αt = α/

√
t,

and α is tuned in the range of {1, 10−1, 10−2, 10−3}. We apply weight decay of 1×10−4 to prevent
over-fitting, and run 10K iterations of parameter updates. Figure 3 shows the learning curves of
training and test accuracy. We observe our ADOPT performs slightly better than the others in terms
of the convergence speed and the final performance. Thanks to the way of the momentum calculation
in Eq. (12), ADOPT works better than AdaShift especially in the early phase of training.

ImageNet classification: We perform ImageNet classification using SwinTransformer (Liu et al.,
2021) to confirm that our ADOPT works well for modern vision Transformers. We follow the official
training recipe of Swin Transformer-tiny provided by Torchvision2, and fix the training settings
except for the optimizer choice. We use AdamW (Loshchilov & Hutter, 2019) as a baseline because
it is set as the default official optimizer. We also compare with AMSGrad as another way to fix the
divergence issue of Adam. Since AdamW uses decoupled weight decay, we also apply it to the other
optimizers for fair comparison. We report the top-1 accuracy at T

3 , 2
3T and T epochs in Tables 1,

where T is the total number of training epochs. We observe that ADOPT outperforms AdamW and
AMSGrad throughout the training in terms of the test accuracy, demonstrating the effectiveness of
ADOPT for this setting.

Generative modeling: We train NVAE (Vahdat & Kautz, 2020) for MNIST using our ADOPT. In
the official implementation of NVAE, Adamax (Kingma & Ba, 2014), an infinite-norm variant of
Adam, is used as an optimizer, so we use Adamax as a baseline method. We use the exactly the same

2https://github.com/pytorch/vision/tree/main/references/classification
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Table 1: Top-1 accuracy (%) of SwinTransformer
on ImageNet.

Epoch 200 300

AdamW 79.29± 0.05 81.26± 0.04
AMSGrad 78.91± 0.03 81.17± 0.03
ADOPT 79.62± 0.03 81.50± 0.04

Table 2: Negative log-likelihood of NVAEs for
MNIST.

Epoch 200 300

Adamax 80.19± 0.08 79.41± 0.07
ADOPT 79.02± 0.10 78.88± 0.09

Figure 4: Performance comparison between
Adam and ADOPT in reinforcement learning.

setting of the official implementation except that the learning rate for ADOPT is set to 2×10−4 since
the default value 0.01 is too large for ADOPT. We report the negative log-likelihood for test data on
Table 2. It is observed that the model trained with ADOPT shows the better likelihood.

Finetuning of large language models: We finetune the pretrained LLaMA-7B on 52K instruction-
following data provided by Stanford Alpaca and compare the performance between the default opti-
mizer (Adam,) and our ADOPT under the exactly same experimental setting. For evaluation, we use
Multi-task Language Understanding (MMLU) Benchmark (Hendrycks et al., 2021), which is widely
used to assess the performance of large language models. The MMLU score for LLaMA-7B without
finetuning is 35.1. After fine-tuned via instruction-following using the baseline implementation with
Adam, the score improves to 41.2. When we substitute ADOPT for Adam, the score even improves
to 42.13. The detailed score comparison for each task is summarized in Figure 5 in the appendix.

Deep reinforcement learning: Lastly, we train reinforcement learning (RL) agents using the proxi-
mal policy optimization (PPO) with ADOPT for the optimizer. As a benchmark, we use a continuous
control tasks of HalfCheetah on MuJoCo simulator. For comparison to ADOPT, Adam is used as a
baseline optimizer. We follow the hyperparameter settings recommended by Stable-Baselines3 (Raf-
fin et al., 2021), and just change the choice of an optimizer. The result is shown in Figure 4. It can
be observed that ADOPT shows competitive or even better performance than Adam.

6 LIMITATIONS

One of the limitations of our analysis is that it still relies on the assumption that the second mo-
ment of stochastic gradient is uniformly bounded (i.e., Assumption 4). Although this assumption is
weaker than the bounded stochastic gradient assumption (i.e., Assumption 5), it would be more de-
sirable to relax it to an assumption that the variance of the stochastic gradient is uniformly bounded,
which is often adopted in the analysis of the vanilla SGD (Ghadimi & Lan, 2013). Extending our
result to weaker assumptions is an important direction of future work.

7 CONCLUSION

In this paper, we demystified the fundamental cause of divergence of adaptive gradient methods
based on the exponential moving average, such as Adam and RMSprop, in general smooth non-
convex optimization problems, and demonstrate a way to fix the issue, proposing a new optimizer
named ADOPT. Not only does ADOPT converge with the optimal rate without depending on a hy-
perparameter choice in theory, but ADOPT demonstrates competitive or even better results in the
pracital applications, including ImageNet classification, generative modeling, finetuning of language
models, and deep reinforcement learning. We expect that this work will serve as a bridge between
theory and practice in the research of adaptive gradient methods. Since our ADOPT can be safely
applied to many machine learning problems without careful tuning of hyperparameters, it can be
expected to improve the training stability and the model performance in practice by substituting it
for the existing adaptive gradien methods (e.g., Adam and RMSprop).
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