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ABSTRACT

Federated multi-modality clustering (FedMMC) aims to cluster distributed multi-
modal data without compromising privacy. Existing approaches often rely on
contrastive learning (CL), but suffer from representation degeneration, arbitrary
modality missing, and computational imbalance. We propose Asynchronous
Federated Multi-modal Constrained Clustering (AFMCC), which tackles these
challenges through three key designs: (i) a Class-Correlation Matrix (CCM)
regularization to prevent CL degeneration and enhance cluster separability, (ii)
client-specific weighted aggregation to handle modality heterogeneity, and (iii)
a weighted asynchronous aggregation strategy to mitigate computational imbal-
ance and accelerate convergence. We further provide a theoretical analysis of
AFMCC through a particle dynamics lens. Extensive experiments on diverse
benchmarks demonstrate that AFMCC consistently outperforms state-of-the-art
FedMMC methods in clustering accuracy and efficiency, while preserving privacy.
We have released the source code and the dataset as supplementary material.

1 INTRODUCTION

Contrastive Learning (CL) is a self-supervised learning paradigm designed to learn high-quality data
representations through similarity modeling. Its core idea is as follows: in the absence of explicit
labels, sample pairs are divided into “positive pairs” and “negative pairs”. The model is then trained
to pull positive pairs closer while pushing negative pairs apart in the representation space. Over
the past few years, CL has achieved remarkable progress across domains such as computer vision,
natural language processing, and graph representation learning. Representative methods include
SimCLR (Chen et al., 2020), MoCo (He et al., 2020), and BYOL (Grill et al., 2020). By combining
effective data augmentation strategies with carefully designed contrastive loss functions, these ap-
proaches enable models to learn representations under unsupervised conditions that rival—or even
surpass—those obtained with supervised training. In the context of federated learning, contrastive
learning also demonstrates significant potential in the field of multimodal clustering: it not only
enhances representation learning under multi-modality data fusion but also demonstrates robustness
in scenarios with data heterogeneity and modality missingness (Chen et al., 2024).

Despite recent progress, applying CL to federated multimodal clustering remains non-trivial. Al-
though CL has demonstrated potential in this domain, it still suffers from degeneration issues. As
illustrated in Figure 1, CL often yields strong performance in the early stages of clustering but tends
to deteriorate as training progresses. In practice, the inherent randomness of optimization makes it
difficult to determine an appropriate stopping criterion, which substantially undermines clustering
quality. Furthermore, existing approaches fall short of fully addressing the heterogeneity inherent in
federated settings. For instance, FMCSC (Chen et al., 2024) partitions clients into single-modality
(with only one modality) and multi-modality (with all modalities) groups, and employs mutual in-
formation to mitigate model discrepancies across clients. While this design achieves encouraging
results, it is incapable of accommodating arbitrary missing-modality patterns (e.g., clients with two
modalities coexisting alongside those with three). In addition, real-world federated systems often
experience significant computational imbalance across clients. However, most current methods rely
on synchronous training, which exacerbates inefficiencies and leads to underutilization of available
resources.
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Figure 1: Visualization of the Degeneration Process. Left: two examples illustrating possible
degeneration at later clustering stages. Right: The t-SNE visualization results (Glorot et al., 2011)
illustrate the effect of our constraint analysis experiment on the BDGP dataset using FMCSC (see
Section 4.2). The visualization demonstrates a comparison between training with and without the
proposed constraints.

To address the above issues, we propose a series of solutions. To mitigate degeneration at later
training stages, we introduce a constraint mechanism that maps the feature space into a pseudo-
probability space and applies class-correlation matrices to regularize representations, effectively
alleviating degeneration. To handle modality missingness, we design a deep neural network frame-
work that leverages homogeneous models to process heterogeneous client data. For multimodal
clients, we simulate missing modalities and encourage reconstruction, thereby enabling modality-
deficient clients to extract representations enriched with full-modality information. To cope with
computational imbalance, we propose an asynchronous federated learning method that allows train-
ing to proceed asynchronously, it can significantly reduce training time under computational imbal-
ance.

By integrating these designs, we develop a unified framework termed Asynchronous Multimodal
Constrained Federated Clustering (AFMCC). As shown in Figure 2, clients interact with the
server and update local parameters after each round of training (details in Section 3.5). This frame-
work is capable of handling arbitrary patterns of missing modalities (one or multiple missing modal-
ities, provided at least one modality is present), as elaborated in Section 3.2. Furthermore, we ana-
lyze the degeneration phenomenon in contrastive learning from a particle-dynamics perspective, as
illustrated in Figure 1 and detailed in Section 3.3. We summarize our main contributions as follows:

• We provide a particle-dynamics perspective on degeneration in contrastive clustering.
Building upon prior assumptions, we introduce a global constraint based on Class-
Correlation Matrix (CCM) that effectively mitigates degeneration and enhances cluster
separability and balance.

• We propose a novel federated learning framework for multimodal clustering under missing-
modality conditions. The framework enables multimodal clients to assist clients with uni-
modal or incomplete modalities, yielding superior global clustering performance. Addi-
tionally, we propose an asynchronous model aggregation strategy that significantly reduces
training time under computational imbalance.

• We conduct both theoretical analyses and extensive experiments to demonstrate the effec-
tiveness of AFMCC, showing consistent performance improvements across diverse scenar-
ios.

2 RELATED WORKS

Deep Multi-modal Clustering. Traditional multi-modal clustering methods (e.g., subspace- or
spectral-based approaches) emphasize explicit consistency or complementarity across modalities
but are limited when handling high-dimensional, nonlinear representations. With the advent of deep
representation learning, many works employ autoencoders, contrastive learning, or prototype-based
methods to jointly learn cross-modal embeddings in low-dimensional spaces, achieving significant
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clustering improvements (Xu et al., 2021; 2022; Wen et al., 2021). A common strategy is to fuse
different modalities within a unified representation space. However, most approaches assume cen-
tralized data access or relatively complete modalities, limiting their applicability under privacy con-
straints or missing modalities.

Partially Observed Modalities. In real-world multimodal data, modality missingness is perva-
sive. Two mainstream strategies have emerged: (i) cross-modal generation or mapping, often via
generative or adversarial models, to reconstruct missing modalities and enable downstream tasks in
a shared embedding space; and (ii) modality-agnostic objectives that exploit available modalities
through shared subspaces or collaborative training (Xu et al., 2019; Wang et al., 2023; Wen et al.,
2024). While effective in centralized settings, these methods are difficult to transfer to federated en-
vironments, where privacy, communication cost, and inter-client distribution shifts pose additional
challenges.

Federated Clustering & Federated Multi-modal Learning. Federated learning (FL) primar-
ily addresses privacy-preserving training and communication efficiency. Recent extensions to
clustering—so-called federated clustering—aim to learn global cluster structures or prototypes with-
out exchanging raw data (Zhu et al., 2023; Che et al., 2023). Research on federated multimodal
learning is relatively scarce; existing work typically focuses on secure parameter aggregation or
cross-client representation alignment. However, few approaches jointly consider two practical chal-
lenges: (i) missing modalities and (ii) asynchronous updates under heterogeneous client resources.
This gap limits current methods when tackling partially observed, heterogeneous, imbalanced com-
puting resources and multimodal settings.

Contrastive Learning Pitfalls & Regularization. Contrastive learning has become a dominant
paradigm for unsupervised representation learning (e.g., SimCLR, MoCo, SwAV), but it suffers
from well-known degeneration issues, such as representation collapse, intra-/inter-class imbalance,
and biased estimates under small batches or scarce negatives (Jing et al., 2021). To mitigate these
problems, prior work incorporates prototype or cluster information, debiasing objectives, or en-
tropy/balancing regularization (Caron et al., 2020). Nevertheless, these strategies are primarily de-
signed for centralized or single-machine multimodal settings, and how to ensure both stability of
contrastive objectives and discriminability of clusters under federated, missing-modality, and asyn-
chronous conditions still under development.

Asynchrony & System Heterogeneity in FL. Clients in FL typically differ in computation,
bandwidth, and participation frequency, making synchronous aggregation inefficient and resource-
wasting. Asynchronous parameter servers, hierarchical aggregation, weighted delay compensation,
and calibration-based updates have been proposed to address these challenges (Xie et al., 2019;
Zheng et al., 2017). Yet most of these advances target supervised learning. When unsupervised con-
trastive or clustering objectives are involved, designing stable asynchronous aggregation, preserving
representation consistency while avoiding cumulative noise, remains an open problem.

3 METHOD

In this section, we present our proposed framework AFMCC. As illustrated in Figure 2, each client
consists of three main components: (i) a customized multi-modal autoencoder; (ii) a feature con-
straint module; (iii) a client-specific weighted aggregation mechanism. The central server stores and
updates the parameters of all participating clients.

3.1 PROBLEM DEFINITION

We consider a heterogeneous federated learning setting with U clients {C1, C2, . . . , CU}. Each
client has access to at most |Vall| modalities, denoted by Vall = {1, 2, . . . , |Vall|}. Client u pos-
sesses a subset Vu ⊆ Vall, where |Vu| ≤ |Vall|. Each client u owns a private dataset of N samples.
A sample contains |Vu| modalities, represented as: Xu =

{
{xv

ui : v ∈ Vu}
∣∣ i = 1, . . . , N

}
.

where xv
ui is the raw data of the v-th modality for sample i at client u. The goal is to cluster these

samples into K balanced groups. The latent feature dimension is fixed to d. For simplicity, unless
otherwise specified, we omit the client index u: e.g., xv

i ≡ xv
ui and V ≡ Vu. We denote cosine

similarity as sim(a, b) = a·b
∥a∥∥b∥ .
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Figure 2: The framework of AFMCC. Assume at most three modalities per client: the first client
possesses all three, while client i has only one. After pretraining, (1) clients download parameters
from others and aggregate them into new local models; (2) standard training proceeds locally; (3)
multi-modal clients simulate missing-modality settings to aid incomplete-modality clients; (4) up-
dated parameters are uploaded to the server. Steps (1)–(4) repeat until convergence.

3.2 MULTI-MODAL AUTOENCODER

Raw multimodal data often contains redundancy and noise. Self-supervised autoencoders, such as
classical autoencoders (Hinton & Salakhutdinov, 2006) and variational autoencoders (Kingma &
Welling, 2013), have shown strong capability in extracting compact latent features.

As shown in Figure 2, each client in AFMCC is equipped with a multi-modal autoencoder. The
collection of client models is denoted as {f1(·;w1), f2(·;w2), . . . , fU (·;wU )}, where fu(·;wu) is
the model of client u with parameters wu. The v-th multi-modal autoencoder consists of modality-
specific encoders and decoders: Ev(·;θv

1) and Dv(·;θv
2) for modality v, with learnable parameters

θv
1 and θv

2 . Encoders map raw data to latent representations: zv
i = Ev(xv

i ;θ
v
1). Given a modality

subset G = {g1, g2, . . . , g|G|} ⊆ V (determined by the training scenario, e.g., simulating missing
modalities; see Section 3.5), the fused feature is:

hi =
1

|G|
∑
v∈G

zv
i . (1)

Decoders reconstruct modality-specific data from hi: x̂v
i = Dv(hi;θ

v
2). The autoencoder is trained

by minimizing the reconstruction loss:

Lr =
1

N

∑
v∈V

N∑
i=1

∥xv
i − x̂v

i ∥22. (2)

To enhance discriminability, we further adopt a contrastive objective that maximizes similarity be-
tween positive pairs (defined by matrix A) while pushing apart negatives:

Ld = − 1

N

∑
v∈V

N∑
i=1

log
esim(hi,z

v
i )/τ∑

j ̸=i e
sim(hi,zv

j )/τ
. (3)

3.3 FEATURE CONSTRAINT METHOD

Contrastive learning (Chen et al., 2020; He et al., 2020; Grill et al., 2020) has attracted considerable
attention in recent years and achieved remarkable success in clustering. We analyze its mechanism
from two complementary perspectives.
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From a probabilistic perspective, the spatial distance (or similarity) between the features of two
samples can be directly linked to the probability that they form a positive pair: higher similarity
indicates a greater likelihood of being a positive pair. Contrastive learning operationalizes this by
treating multimodal features of the same sample as positive pairs and pulling them closer in the
feature space, while treating features from different samples as negative pairs and pushing them
apart. Through this process, the feature distance between samples with similar characteristics is
reduced, thereby increasing the model’s estimated probability of them being a positive pair, whereas
dissimilar samples exhibit larger distances and correspondingly lower probabilities.

From a particle dynamics perspective, all features can be viewed as particles. Contrastive learning
enforces attraction between particles of the same class and repulsion between those of different
classes. In the early stages of clustering, particles are randomly distributed; forces are roughly
isotropic, guiding each particle toward regions dominated by its class. However, once clusters form,
repulsion among different clusters becomes anisotropic. Shearing forces may arise across clusters,
splitting them apart and leading to Figure 1.

(a) Avoiding shear-induced splitting. (b) Projecting features into a pseudo-probability space.

Figure 3: A group of images.Figure 3a shows a scenario prone to shear-induced splitting, which
we aim to avoid, while the right image represents a more ideal situation.Figure 3b displays a 3-
dimensional feature space and a 3-dimensional pseudo-probability space.

To address this issue, we propose a feature constraint based on a class-correlation matrix. Sup-
pose the data are partitioned into K classes of equal size N/K. As shown in Figure 3b, we project
each feature into a pseudo-probability space using a learnable matrix W ∈ RK×d, and then define
the class-correlation matrix as:

pi = softmax(Whi), Q =
PP⊤

N/K
, (4)

where softmax(·) ensures that pi ∈ RK is a valid probability distribution. Collecting all pi, we
obtain a probability matrix P = [p1,p2, . . . ,pN ] ∈ RK×N , with Pij denoting the probability
that sample i belongs to class j. Then, Q ∈ RK×K captures correlations between class. Specifi-
cally, Qab = K

N

∑N
i=1 PaiPbi measures the degree of correlation between a-th class and b-th class.

Ideally, we want Q close to a target Qtgt. If Qtgt = IK , each class would be perfectly sep-
arated with no cross-class correlation, yielding maximally discriminative clusters. However, this
may over-constrain the representation, collapsing features into discrete points and discarding fine-
grained contrastive structure. Instead, we relax the target to: Qtgt = λIK + (1− λ) 1

K11⊤, Here, λ
serves as a flexibility coefficient: larger values of λ enforce tighter clusters, whereas smaller values
yield looser clusters. which preserves cluster separability while retaining sufficient flexibility for
intra-class variability. Finally, we impose the following constraint loss:

Lc = ∥Q−Qtgt∥22, (5)

which penalizes deviations of the empirical class-correlation matrix from the desired balanced struc-
ture. Intuitively, this constraint prevents shearing forces across clusters (see Figure 3a), thereby
alleviating the degradation of contrastive learning in multi-modal clustering.

3.4 CLIENT-SPECIFIC WEIGHTED AGGREGATION

To bridge the gap between heterogeneous client models and enable clients with missing modalities
to benefit from features of absent modalities—while also accommodating heterogeneous computa-
tional capacities—we propose an asynchronous client-specific weighted aggregation scheme.
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After each round of training, a client uploads its current model parameters to the server and down-
loads the parameters of other clients for local aggregation. The aggregated model then serves as the
initialization for the next training round.

Specifically, after training, each client uploads its local model parameters to the server and down-
loads other clients’ models. For each downloaded model, the client extracts modality-specific fea-
tures using all decoders and fuses them to obtain a feature set

{
{Zv

u : v ∈ Vu}
∣∣ u = 1, . . . , U

}
,

where Zv
u = [zv

u1, z
v
u2, . . . ,z

v
uN ], where zv

ui represents the feature extracted from the i-th local
sample using client u’s decoder. We define the matrix as H = [h1,h2, . . . ,hN ].

For each fused feature matrix, we compute a deviation score. The aggregation weight is then com-
puted as:

εu =
∑
v∈Vu

exp(∥Zv
u −H∥2) , wlocal =

U∑
u=1

εuwu∑U
i=1 εi

, (6)

where εu measures the alignment between features Zv and the fused representation H , and wlocal

is the aggregated model parameter assigned to the client.

3.5 ASYNCHRONOUS FEDERATED MULTI-MODAL CONSTRAINED CLUSTERING (AFMCC)

We now present the overall workflow of the proposed AFMCC framework, which is organized into
three phases: pretraining, parameter aggregation, and local training.

Pretraining phase. The framework begins with a designated client conducting local training to
obtain an initial model. Upon completion, the server disseminates the trained parameters to all other
clients, providing a common initialization for subsequent training.

Parameter aggregation phase. Each client periodically downloads the latest parameters from the
server and applies the weighting scheme defined in Eq. 6 to perform local aggregation. The aggre-
gated parameters replace the existing local ones, thereby serving as the basis for further training.
After each round of local updates, the client uploads its revised parameters to the server. Simultane-
ously, clients may also retrieve parameters from other participants and update their models through
the same weighted aggregation scheme. This iterative process continues until convergence, which
can be determined either by a fixed number of training rounds or by monitoring stability criteria (see
Fig. 2).

Local training phase. During local training, clients with multiple modalities are required to learn
not only from their full modality set Vi, but also to simulate clients with missing modalities. For
example, consider client i with modality set Vi and client j with Vj , where Vj ⊆ Vi. In this case,
client i must ensure satisfactory performance on both Vi and Vj . This is achieved by alternately
setting the fusion set G in Eq. 1 to Vi and Vj during training. Each client optimizes its model
independently using local data, guided by the objective function:

L = Lr + αLd + βLc, (7)

where Lr denotes the reconstruction loss (preserving cross-modality consistency), Ld represents the
discriminative loss (enhancing inter-class separability), and Lc corresponds to the contrastive con-
straint loss (facilitating the aggregation and separation of multi-modal features). Hyperparameters
α and β balance the relative contributions of these terms. Upon completion of local training, the
updated parameters are transmitted to the server.

In summary, after the initial pretraining, each client alternates between parameter aggregation and
local training. This iterative cycle continues until convergence, as defined by either a predetermined
number of epochs or the stabilization of evaluation metrics (see Fig. 2). The pseudocode of the
AFMCC procedure is provided in Algorithms 1 and 2.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We categorize clients into three types: F-clients (full-modality clients), which possess the union
of all available modalities; M-clients (multi-modality clients), which own a subset of modalities

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 AFMCC: Asynchronous Federated Multi-modal Constrained Clustering

1: ClientTrain(C1) ▷ Pretraining
2: for i = 2, 3, . . . , U do
3: wi ← w1

4: end for
5: for i = 1, 2, . . . , U do
6: async ClientTrain(Ci) ▷ Asynchronous local training for all clients
7: end for

Algorithm 2 ClientTrain: Local Training Procedure

1: while convergence not reached do
2: Download model parameters {w1, . . . ,wU} from the server
3: Compute aggregated global parameters wglobal via Eq. 6
4: wlocal ← wglobal ▷ Initialize local model with global parameters
5: for G in {A | A ⊆ V, A ̸= ∅} do
6: Perform δ gradient update steps on Eq. 7 using G as the modality set
7: end for
8: Upload local model parameters wlocal to the server
9: end while

with at least two present; and S-clients (single-modality clients), which contain only one modality.
Experiments are conducted on four benchmark multi-modal datasets: MNIST-USPS (Peng et al.,
2019), BDGP (Cai et al., 2012), Multi-Fashion (Xiao et al., 2017), and NUSWIDE (Chua et al.,
2009).

Baselines. We compare AFMCC against ten state-of-the-art methods, including HCP-IMSC (Li
et al., 2022), IMVC-CBG (Wang et al., 2022), DSIMVC (Tang & Liu, 2022), LSIMVC (Liu et al.,
2022), ProImp (Li et al., 2023), JPLTD (Lv et al., 2023), CPSPAN (Jiang et al., 2024), FedDMVC
(Chen et al., 2023), FCUIF (Ren et al., 2024), and FMCSC (Chen et al., 2024). Among them,
FedDMVC, FCUIF, and FMCSC are federated multi-modal clustering methods, while the others
are centralized incomplete multi-modal clustering approaches. For fair comparison, we concatenate
client-partitioned data and feed it into centralized methods. In this setting, data from multi-modal
clients are treated as complete, whereas data from single-modal clients are regarded as incomplete.

Implementation details. Each encoder follows the architecture Input–Fc512–Fc128–Fc20, and
each decoder is symmetric to its encoder. Unless otherwise specified, experiments involving
AFMCC are conducted on the BDGP dataset with an F/S = 1 : 1 client ratio. Default hyper-
parameters are summarized in Table 1, where d denotes the feature dimension, φ the number of
local gradient update steps, ξ the number of communication rounds, and τ, λ, α, β are fixed coeffi-
cients. Each experiment was independently repeated five times, and the average values were taken
to ensure the robustness of the results.

4.2 EXPERIMENTS AND ANALYSIS

Clustering results. Following the experimental protocol of FMCSC, Table 2 reports the quantitative
results under heterogeneous and mixed-modal scenarios. AFMCC consistently achieves superior
clustering performance compared to existing methods.As the proportion of S-clients increases, all
methods suffer a gradual decline in performance due to the lack of complete modality information.
Nonetheless, AFMCC maintains strong clustering accuracy and robustness across varying client
heterogeneity. These results highlight that AFMCC effectively balances privacy preservation and
clustering quality, making it well-suited for real-world federated multi-modal settings.

Complex clustering results. Table 3a presents the experimental results of AFMCC on the Multi-
Fashion dataset (Xiao et al., 2017) under more challenging heterogeneous scenarios. While alter-
native methods struggle to effectively address such complex settings, AFMCC consistently demon-
strates superior clustering performance. Notably, AFMCC achieves competitive results even in the
absence of F-clients (F/M/S = 0:1:1), underscoring both the robustness and broad applicability of
the proposed framework.
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Table 1: Default parameters. Unless otherwise specified, the following parameters are used in all
experiments.

Dataset d φ ξ τ λ α β
MNIST-USPS 20 5 50 0.5 0.3 0.10 0.01
BDGP 20 5 20 0.5 0.3 0.01 0.01
Multi-Fashion 20 5 200 0.5 0.3 1.00 0.01
NUSWIDE 20 5 300 0.5 0.1 1.00 0.01

Table 2: Clustering performance on heterogeneous multi-modal datasets. F/M/S indicates the ratio
of full-modality, multi-modal, and single-modal clients. ACC, NMI, and ARI denote clustering
accuracy, normalized mutual information, and adjusted Rand index. Best and second-best results
are marked in bold and underline, respectively.

Method F/S = 2:1 F/S = 1:1 F/S = 1:2
ACC NMI ARI ACC NMI ARI ACC NMI ARI

M
N

IS
T-

U
SP

S

HCP-IMSC 80.2±0.0 74.8±0.0 69.8±0.1 79.0±0.2 71.6±0.2 66.9±0.2 76.2±0.1 71.0±0.1 63.6±0.1
IMVC-CBG 46.6±0.1 40.3±0.2 22.2±0.4 38.9±0.1 35.3±0.3 14.9±0.2 37.3±0.6 31.7±0.4 10.6±0.2
DSIMVC 55.1±0.1 27.6±0.1 25.0±0.1 54.5±0.1 26.7±0.1 24.4±0.2 54.1±0.2 26.6±0.2 24.0±0.3
LSIMVC 59.3±0.2 55.2±0.9 38.2±1.7 52.7±0.4 46.5±0.2 25.8±0.5 41.8±0.4 37.1±0.4 14.2±0.5
ProImp 91.2±0.9 84.4±1.0 80.8±2.1 87.3±0.6 77.9±0.7 73.1±1.0 84.8±0.9 75.9±0.9 66.6±1.8
JPLTD 40.7±0.1 22.6±0.1 17.3±0.0 40.0±0.2 19.8±0.1 15.2±0.1 32.3±0.1 13.7±0.1 10.1±0.1
CPSPAN 79.5±2.5 77.3±2.0 70.7±2.2 76.5±2.7 73.7±2.1 66.6±3.0 74.6±3.6 74.5±3.3 64.5±3.5
FedDMVC 81.1±0.9 81.9±0.9 73.7±1.4 69.9±1.5 72.5±2.9 58.9±2.6 63.1±0.4 62.6±0.5 48.4±0.3
FCUIF 85.3±0.3 83.2±0.3 75.7±0.5 72.8±1.2 70.3±1.5 64.4±1.8 67.2±0.8 64.4±0.9 53.5±0.8
FMCSC 95.1±0.8 87.8±1.2 88.8±1.5 92.9±1.2 84.2±2.2 85.0±2.5 90.1±1.2 79.4±2.6 79.5±3.2
AFMCC 98.0±0.0 94.5±0.1 95.5±0.1 96.5±0.0 91.2±0.1 92.3±0.1 94.3±0.1 86.9±0.2 87.8±0.3

B
D

G
P

HCP-IMSC 93.1±0.0 81.9±0.0 83.6±0.0 89.8±0.0 73.4±0.1 76.4±0.0 89.5±0.0 72.5±0.1 76.7±0.0
IMVC-CBG 37.9±0.4 21.0±1.0 10.4±0.1 37.2±0.1 21.0±0.0 7.8±0.0 36.9±0.1 20.4±0.1 6.4±0.0
DSIMVC 92.5±0.4 81.7±0.8 84.9±0.9 89.5±2.0 76.5±2.0 77.8±2.2 86.1±3.3 70.0±3.9 76.6±3.4
LSIMVC 44.1±0.5 23.7±0.4 5.7±0.2 39.2±1.3 19.7±0.5 4.8±0.2 35.3±1.6 14.9±1.3 2.8±0.4
ProImp 91.6±0.3 82.4±3.8 80.0±0.9 90.4±1.5 76.2±0.5 79.3±1.6 75.6±0.5 52.3±2.0 44.6±1.8
JPLTD 56.5±0.2 41.3±0.1 31.7±0.0 49.4±0.1 33.3±0.0 18.5±0.0 51.0±0.2 34.1±0.1 21.5±0.0
CPSPAN 78.7±0.6 58.3±1.3 58.6±1.6 57.3±1.3 50.3±2.3 39.4±3.7 52.4±1.5 34.7±1.4 27.1±2.1
FedDMVC 92.0±0.1 80.2±0.2 84.7±0.1 91.5±0.5 77.1±0.4 80.3±0.7 82.2±0.2 63.4±0.3 61.9±0.3
FCUIF 93.8±0.1 82.2±0.1 85.1±0.1 90.3±0.2 75.2±0.3 78.4±0.3 85.7±0.2 67.5±0.3 63.2±0.2
FMCSC 94.5±0.8 83.9±1.2 86.8±1.5 91.9±1.2 77.3±2.2 81.0±2.5 90.0±1.2 73.3±2.6 76.8±3.2
AFMCC 95.7±0.4 87.2±2.4 89.7±2.0 93.9±0.2 82.3±1.0 85.4±1.0 90.7±0.6 75.3±1.9 78.3±2.3

M
ul

ti-
Fa

sh
io

n

HCP-IMSC 70.6±0.1 67.4±0.1 57.7±0.1 67.1±0.1 64.7±0.1 53.1±0.1 59.9±0.7 56.4±0.9 41.8±1.1
IMVC-CBG 46.3±0.0 49.4±0.0 26.3±0.0 43.2±0.1 42.7±0.1 19.2±0.1 38.9±0.2 39.4±0.3 13.5±0.4
DSIMVC 82.7±1.3 83.6±1.1 74.5±1.1 77.7±1.4 76.7±0.8 66.8±0.8 76.7±1.7 75.8±1.5 66.4±1.4
LSIMVC 51.1±0.5 49.9±0.1 31.5±0.5 50.2±0.6 52.2±0.1 35.2±0.1 49.9±0.2 48.6±0.0 28.2±0.0
ProImp 69.1±0.4 66.3±0.3 55.2±0.8 69.0±0.1 64.6±0.2 52.5±0.2 53.9±2.4 50.7±1.5 27.8±1.6
JPLTD 44.6±0.0 43.4±0.0 36.9±0.1 37.2±0.1 36.6±0.1 29.5±0.1 25.8±0.1 25.1±0.1 16.5±0.1
CPSPAN 64.1±1.2 71.4±1.3 55.8±1.5 61.6±2.0 69.7±1.3 54.4±1.8 59.3±2.0 68.0±1.8 53.3±1.9
FedDMVC 67.7±0.3 74.6±0.8 58.0±0.6 66.6±0.4 65.3±0.7 54.3±0.7 57.6±0.7 58.5±0.8 43.2±0.7
FCUIF 70.7±0.5 79.4±0.5 63.1±0.4 68.4±0.6 71.5±0.4 59.2±0.5 62.5±0.6 61.3±0.5 45.6±0.5
FMCSC 92.4±0.1 85.8±0.2 84.7±0.3 90.4±0.6 82.8±0.7 80.9±1.0 87.5±0.6 79.1±0.1 76.3±1.0
AFMCC 93.4±0.0 87.7±0.1 86.5±0.1 91.8±0.0 84.5±0.0 83.5±0.1 87.8±0.1 79.3±0.1 76.5±0.2

N
U

SW
ID

E

HCP-IMSC 36.1±0.0 8.5±0.0 6.7±0.0 35.3±0.1 8.2±0.0 6.3±0.0 31.3±0.0 6.0±0.1 4.7±0.1
IMVC-CBG 30.8±0.1 4.8±0.0 3.1±0.0 30.4±0.0 4.6±0.0 2.5±0.0 29.3±0.0 4.0±0.0 1.9±0.1
DSIMVC 51.1±1.3 25.3±0.8 23.4±0.8 50.6±0.8 22.2±0.7 20.4±0.6 46.7±0.5 18.3±0.6 16.0±0.4
LSIMVC 37.2±0.2 10.8±0.1 6.8±0.1 36.4±0.3 11.8±0.1 7.0±0.4 33.9±0.4 9.2±0.3 5.8±0.2
ProImp 38.4±0.1 11.1±0.0 8.3±0.1 37.1±0.4 10.5±0.1 7.6±0.2 34.3±0.7 8.0±0.0 6.1±0.0
JPLTD 53.0±0.2 25.9±0.2 23.7±0.1 51.5±0.5 22.5±1.0 21.5±0.8 50.0±0.2 19.4±0.1 14.1±0.1
CPSPAN 33.7±0.2 9.0±0.9 6.2±0.1 33.3±0.3 6.6±0.9 4.4±0.1 29.4±0.6 5.4±1.1 3.2±0.4
FedDMVC 41.7±0.2 14.4±0.1 12.3±0.1 37.5±0.7 9.8±0.9 7.8±0.5 32.6±0.2 5.8±0.2 4.3±0.2
FCUIF 45.2±0.3 15.0±0.3 14.1±0.2 40.2±0.5 10.0±0.6 9.2±0.5 38.2±0.4 9.6±0.3 8.2±0.3
FMCSC 56.1±0.2 26.3±0.5 23.9±0.4 52.7±0.2 23.0±0.3 21.8±0.4 50.8±0.9 20.1±0.7 18.8±0.8
AFMCC 58.5±0.5 28.7±0.2 27.6±0.9 54.5±0.1 23.6±0.1 22.3±0.1 51.7±0.9 20.3±1.0 18.9±0.8

Ablation studies. Component A denotes the contrastive learning loss, Component B denotes the
constraint loss, and Component C denotes the client-specific weighted aggregation. Table 3b inves-
tigates the influence of these three components on AFMCC. When Component A is removed, the
clustering accuracy drops drastically, indicating that contrastive learning is indispensable and serves
as one of the core elements of AFMCC. Removing Component B results in only a marginal accu-
racy decline, as the model does not yet suffer from severe degeneration, which is consistent with
our expectation. Eliminating Component C, i.e., replacing the client-specific weighted aggregation

8
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Table 3: Experimental results.

F/M/S ACC NMI ARI
1:1:1 91.8 85.1 83.6
0:1:1 87.1 89.5 75.6
1:1:0 96.2 92.4 92.0
(a) Complex clustering.

A B C ACC NMI ARI
✓ ✓ 55.5 25.5 29.9

✓ ✓ 93.0 83.5 80.8
✓ ✓ 83.4 64.9 64.8

(b) Ablation.

Step UC HC
200 90.58 91.06
800 81.65 90.01

(c) Constraint.

E/O ACC NMI ARI
2:1 93.3 84.1 81.1
3:1 91.9 81.2 78.8

(d) Asynchronous.

with a uniform aggregation (equal weights for all clients), leads to a notable accuracy decrease,
demonstrating the superiority of our aggregation strategy.

Parameter analysis. The experimental results are presented in Figure 4. illustrates the effects of α,
β, and λ on AFMCC. We observe that when α and β are set to relatively small values, the clustering
performance of the proposed AFMCC method degrades, which may be attributed to an overemphasis
on data reconstruction that hinders the extraction of common features. Conversely, when α and β
are set to large values, clustering performance also declines, likely due to an excessive focus on
view consistency that makes it difficult to disentangle the intrinsic feature space. In contrast, the
method exhibits insensitivity to variations in λ: within the range of 0.2 to 1, the clustering accuracy
fluctuates by no more than 0.8.

(a) ACC vs. α. (b) ACC vs. β. (c) ACC vs. λ.

Figure 4: Parameter analysis.

Asynchronous analysis. Table 3d presents the experimental results under computationally imbal-
anced settings. Here, E/O denotes the ratio of computing power between even-indexed clients and
odd-indexed clients, and the termination condition is defined as each odd-indexed client completing
10 training rounds. The results demonstrate that AFMCC effectively adapts to federated learning
scenarios with heterogeneous computational capabilities and can fully exploit the available client
resources.

Constraint analysis. To assess the effectiveness of our constraint mechanism, we extend FMCSC
by incorporating the constraint loss into its objective, i.e., employing Lpre + 0.01Lc(λ = 0.3),
where Lpre denotes the original loss function. Experiments are conducted on the BDGP dataset
with training steps set to 200 and 800, while other parameters follow the default settings in FMCSC
(Chen et al., 2024). The results are summarized in Table 3c, where “UC” indicates the absence
of the constraint loss and “HC” denotes the presence of it. In addition, Figure 1 illustrates the t-
SNE visualization (Glorot et al., 2011) of the learned embeddings. These findings verify that our
proposed constraint strategy effectively mitigates the degeneration problem commonly observed in
contrastive learning within multi-modal federated clustering.

5 CONCLUSION

We introduced AFMCC, an asynchronous multi-modal federated clustering framework addressing
modality missingness, heterogeneity, and straggler effects. By combining a CCM regularizer with
client-weighted aggregation, AFMCC achieves stability and avoids degeneration, supported by our
theoretical analysis. Experiments on four benchmarks show consistent gains, robustness to partial
modalities, and faster convergence under asynchrony. Limitations include hyperparameter sensitiv-
ity and fixed cluster number; future work will explore adaptive schedules, non-parametric clustering,
and stronger privacy guarantees.
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A ANALYZING CONTRASTIVE LEARNING FROM A PARTICLE
DYNAMICS PERSPECTIVE

A.1 SETUP AND ASSUMPTIONS

We adopt the following assumptions:

• Normalized embeddings. ∥hi∥ = ∥zv
j ∥ = 1, and similarity is measured by cosine simi-

larity: sim(a, b) = a⊤b.

• Temperature parameter. The temperature τ > 0 is fixed, and the learning rate is suffi-
ciently small so that optimization can be approximated by a gradient flow.

• Probability mapping and class-related matrix.

P =
[
pi

]N
i=1
∈ RK×N , Q =

PP⊤

N/K
∈ RK×K .

The target matrix is set to

Qtgt = λtgtIK + (1− λtgt)
1
K11⊤.
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A.2 FROM CONTRASTIVE LOSS TO POTENTIAL AND FORCES

When the sample size is sufficiently large, we can approximately view the contrastive loss as

Ld ≈ LCL = − 1

N

∑
v∈V

N∑
i=1

log
exp(h⊤

i z
v
i /τ)∑N

j=1 exp(h
⊤
i z

v
j /τ)

.

Define the similarity score as

svij =
h⊤
i z

v
j

τ
,

so that each sub-loss can be rewritten as

ℓvi = − log
es

v
ii∑

j e
svij

= −svii + log
∑
j

es
v
ij .

Taking derivatives with respect to svij , we obtain

∂ℓvi
∂svij

= πv
ij − 1{j = i},

where

πv
ij =

es
v
ij∑

k e
svik

,
∑
j

πv
ij = 1.

Intuitively, πv
ij represents the probability that anchor i regards sample j as a match in modality v.

Thus, the gradient equals the softmax probability minus the one-hot ground truth label—precisely
the standard form of cross-entropy.

Since svij =
1
τ h

⊤
i z

v
j , it follows that

∂svij
∂hi

= 1
τ z

v
j ,

∂svij
∂zv

j

= 1
τ hi.

Hence,

∇hiℓ
v
i =

∑
j

∂ℓvi
∂svij

∂svij
∂hi

=
1

τ

(∑
j

πv
ij z

v
j − zv

i

)
,

∇zv
j
ℓvi =

∂ℓvi
∂svij

∂svij
∂zv

j

=
1

τ

(
πv
ij − 1{j = i}

)
hi.

Summing over all modalities v and samples i, and dividing by N , the gradient of the total loss LCL

is

∇hiLCL = 1
Nτ

∑
v

(∑
j

πv
ij z

v
j − zv

i

)
, ∇zv

j
LCL = 1

Nτ

∑
i

(
πv
ij − 1{i = j}

)
hi.

Defining the “forces” as the negative gradients, we have

F
(CL,h)
i = 1

Nτ

∑
v

zv
i − 1

Nτ

∑
v

∑
j

πv
ij z

v
j ,

F
(CL,z,v)
j = 1

Nτ hj − 1
Nτ

∑
i

πv
ij hi.

Thus, the contrastive loss naturally decomposes into two components: an attractive force from pos-
itive pairs and a repulsive force from negative pairs.
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A.3 ELASTIC FORCES FROM CLASS-MATRIX CONSTRAINTS

Gradient derivation of the class-matrix constraint. Consider the constraint loss
LC =

∥∥Q−Qtgt

∥∥2
F
, (8)

with

Q =
K

N

N∑
i=1

pi(pi)
⊤, pi = softmax(ui), ui = Whi. (9)

Let A := Q−Qtgt. Using ∂∥A∥2F /∂A = 2A, we obtain
∂LC

∂Q
= 2A. (10)

A perturbation of a single probability vector pi 7→ pi + dpi induces

dQ =
K

N

(
dpi(pi)

⊤ + pi(dpi)
⊤). (11)

Thus the differential of the loss contributed is

dLC =
〈∂LC

∂Q
, dQ

〉
F
=

2K

N

(
Tr
(
(A)⊤dpi(pi)

⊤)+Tr
(
(A)⊤pi(dpi)

⊤))
=

2K

N

(
(dpi)

⊤Api + (dpi)
⊤(A)⊤pi

)
. (12)

Noting that A is symmetric (since Q and Qtgt are symmetric), the two terms are equal and we get

dLC =
4K

N
(dpi)

⊤Api. (13)

Hence the gradient with respect to the probability vector is
∂LC

∂pi
=

4K

N
Api (14)

To obtain the gradient with respect to the embedding hi, use the chain rule ∇hiLC =
(
∂pi

∂hi

)⊤ ∂LC

∂pi
.

For the softmax one has the Jacobian

J(p) :=
∂softmax(u)

∂u
= diag(p)− pp⊤, (15)

and ∂u/∂h = W . Therefore

∇hi
LC =

4K

N
(W )⊤J(pi) (Q−Qtgt)pi (16)

Finally, the corresponding “elastic force” (as defined in the text) is

F
(C,h)
i = −∇hiLC = −4K

N
(W )⊤J(pi) (Q−Qtgt)pi (17)

A.4 TOTAL DYNAMICS AND FORCE DECOMPOSITION

Under normalization, the actual dynamics are given by the tangential projection:

ẋ = ΠxF(x), Πx = I − xx⊤.

Let Ltot = LCL + γLC. The resulting dynamics can be expressed as

ḣi = Πhi

(
F

(CL,h)
i + γ F

(C,h)
i

)
, żv

j = Πzv
j

(
F

(CL,z,v)
j + γ F

(C,z,v)
j

)
.

Intuitively, we arrive at the three-way decomposition of forces:
F = Fattr︸ ︷︷ ︸

positive attraction

+ Frep︸︷︷︸
negative repulsion

+ Felas︸ ︷︷ ︸
elastic restoration from class constraints

.

Interpretation of the force decomposition. The total force F acting on each embedding can be
understood as the superposition of three distinct components, each of which arises from a different
term in the loss function and plays a complementary role in shaping the geometry of the learned
representation space.

14
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• Positive attraction (Fattr). This term originates from the contribution of positive pairs in
the contrastive loss. It acts as a pulling force that encourages embeddings of matched pairs
(e.g., across different modalities or augmentations of the same sample) to align closely in
the latent space. Mathematically, it corresponds to the gradient component −zv

i /τ , which
drives the anchor hi toward its positive counterpart zv

i . Without this term, the model would
fail to enforce semantic consistency across views.

• Negative repulsion (Frep). In contrast, this force is induced by the presence of negative
pairs. It prevents embeddings from collapsing by pushing different samples away from each
other. Concretely, it corresponds to the expectation over the softmax weights πv

ij , which
distribute repulsion strength according to similarity scores. This soft competition ensures
that negatives that are more easily confused with the anchor exert stronger repulsive forces,
thereby improving discriminability in the embedding space.

• Elastic restoration (Felas). Beyond pairwise attraction and repulsion, the class-matrix
constraint introduces a global regularization force. As derived in Eq. 16, this term acts like
an “elastic spring” that pulls the empirical class co-occurrence matrix Q toward the target
structure Qtgt. Geometrically, this enforces a balanced allocation of embeddings across
classes and prevents degenerate solutions such as class collapse. The force is mediated
by the Jacobian of the softmax, meaning that restoration strength adapts to the confidence
distribution of each sample’s predicted class.

Overall, this three-way decomposition highlights the particle-dynamics analogy: embeddings be-
have like particles subject to competing forces of attraction, repulsion, and elastic restoration. The
interplay of these forces stabilizes representation learning, ensuring both local consistency (via Fattr

and Frep) and global structure alignment (via Felas).

A.5 ANTI-COLLAPSE ENERGY GAP THEOREM

Theorem 1 (Anti-Collapse Energy Gap). Let λtgt ∈ (0, 1]. If all samples collapse in the sense that
p1 = · · · = pN = p, then

Q = K pp⊤, LC = ∥K pp⊤ −Qtgt∥2F .
In particular, unless p matches the target distribution exactly (so that Q = Qtgt), one has LC > 0.
On the other hand, there exist non-degenerate solutions such that LC = 0. Therefore, the fully
collapsed solution cannot be globally optimal.

A.6 LOCAL LINEARIZATION

In the neighborhood of an anchor point hi, the derivative of the softmax weight πv
ij with respect to

hi is
∂πv

ij

∂hi
=

1

τ
J(πv

i )(z
v
j ), J(π) = diag(π)− ππ⊤.

Substituting this yields the local Jacobian approximation:

Dḣi ≈ −
1

Nτ2

∑
v

(∑
j

πv
ijz

v
j z

v⊤
j −

(∑
j

πv
ijz

v
j

)(∑
j

πv
ijz

v
j

)⊤)
− γKi, (18)

where Ki denotes the Hessian of the class-constraint term with respect to hi. The first term includes
an additional rank-one correction −mm⊤ with m =

∑
j π

v
ijz

v
j .

A.7 STABILITY CONDITION FOR SHEAR-SPLITTING RESISTANCE

From Eq. 18, stability is determined by the maximum eigenvalue restricted to the tangent subspace.
We obtain the following result:
Proposition 1 (Shear-Splitting Resistance under Approximation). If for all i there exists a constant
cpos > 0 such that λmin(Σ

pos
i ) ≥ cpos, then whenever

γ κmin
i ≥ 1

Nτ2

(
λmax(Σ

neg
i )− cpos

)
,

15
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Table 4: The statistics of experimental datasets

Dataset Clients Sample Modality Class Dimension
MNIST-USPS 24 5000 2 10 [784,256]
BDGP 12 2500 2 5 [1750,79]
Multi-Fashion 48 10000 3 10 [784, 784, 784]
NUSWIDE 24 5000 5 5 [65, 226, 145, 74, 129]

Table 5: Number of parameters and runtime by AFMCC.

Dataset MNIST-USPS BDGP Multi-Fashion NUSWIDE
GPU Memory Usage 1090MiB 896MiB 2072MiB 902MiB
Runtime 7.6min 52.9s 2.0h 3.2h

the dynamics exhibit contraction along the tangent directions at anchor hi, thereby preventing shear
splitting.

Here Σneg
i =

∑
j π

v
ijz

v
j z

v⊤
j , Σpos

i denotes the contribution of positive samples, and κmin
i is the

minimum eigenvalue of Ki. It is important to note that this condition relies on the approximation
that the softmax distribution is close to one-hot, and it neglects higher-order terms arising from
derivatives of the projection operator.

A.8 DISCUSSION

The above condition demonstrates that the “stiffness” provided by class constraints, quantified by
γκmin

i , is sufficient to counteract the largest eigenvalue of the negative-sample tensor Σneg
i . Fur-

thermore, the explicit appearance of 1/τ2 indicates that lower temperatures require proportionally
larger values of γ to maintain stability.

B EXPERIMENTAL SETTINGS

B.1 DATASETS

We evaluate our method on four representative multi-modal benchmarks. MNIST-USPS (Peng et al.,
2019) is a classic handwritten digit dataset (0–9) with two image modalities: 5,000 paired samples,
where MNIST images are 28× 28 and USPS images are 16× 16. BDGP (Cai et al., 2012) contains
2,500 Drosophila embryo images, each represented by a 1750-dimensional visual feature vector
and a 79-dimensional textual description. Multi-Fashion (Xiao et al., 2017), following the three-
modal construction in (Cui et al., 2023), consists of 30,000 fashion product images, where each
sample corresponds to three style variations of the same category, yielding a three-modal dataset
with images of size 28 × 28. NUS-WIDE (Chua et al., 2009) is a large-scale web image dataset
providing multiple feature modalities, including a 65-D color histogram, 226-D block-wise color
moments, 145-D color correlogram, 74-D edge orientation histogram, and 129-D wavelet texture.
All high-dimensional features are flattened into one-dimensional vectors during preprocessing. For
consistency, we randomly sample 5,000 instances across datasets for experimental analysis.

B.2 SUPPLEMENTARY EXPERIMENTAL DETAILS

All models are implemented in PyTorch (Paszke et al., 2019) and trained on an NVIDIA RTX-4090
GPU. We use ReLU activations (Glorot et al., 2011) and the Adam optimizer. For all datasets, the
learning rate is fixed to 0.0003 with a batch size of 1024.
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B.3 COMPARISON METHODS

We compare our approach against nine state-of-the-art methods: HCP-IMSC (Li et al., 2022),
IMVC-CBG (Wang et al., 2022), DSIMVC (Tang & Liu, 2022), LSIMVC (Liu et al., 2022), ProImp
(Li et al., 2023), JPLTD (Lv et al., 2023), CPSPAN (Jiang et al., 2024), FedDMVC (Chen et al.,
2023), FCUIF (Ren et al., 2024), and FMCSC (Chen et al., 2024). Among them, FedDMVC,
FCUIF, and FMCSC are federated multi-modal clustering (FedMVC) approaches, while the oth-
ers are centralized incomplete multi-modal clustering methods.

For a fair comparison, we simplify the heterogeneous mixed-modal setting into a mixed-modal sce-
nario. Specifically, data distributed across clients are concatenated and treated as centralized input
(Figure 5). In this setup, samples from multi-modal clients are considered complete, whereas those
from single-modal clients are treated as incomplete. Importantly, the reported results reflect that our
method is evaluated under the heterogeneous mixed-modal scenario, while competing methods are
evaluated under the simplified mixed-modal setting.

Although existing approaches can sidestep heterogeneity by directly concatenating raw data, such
practices risk exposing sensitive information and may discourage data owners from participating.
In contrast, our method learns complementary clustering structures across clients without revealing
raw data, thereby offering stronger privacy guarantees alongside superior performance.

C ADDITIONAL EXPERIMENT RESULTS

(a) ACC vs. Samples per client. (b) ACC vs. Number of clients. (c) Privacy.

Figure 5: Attributes of Federated Learning.

Samples per client. We investigate the impact of varying the number of samples per client, as
shown in Figure 5a. Increasing the number of samples per client effectively enlarges the overall
training data, thereby enhancing the generalization capability of the model.

Number of clients. We further study the effect of varying the total number of clients, as illustrated
in Figure 5b. A clear performance degradation emerges when the number of clients exceeds 32,
which can be attributed to the insufficient number of samples per client.

Privacy. By design, AFMCC does not share any raw data between clients and the server. Only the
model parameters on each client are transmitted to the server. To further safeguard client privacy,
we adopt differential privacy (Abadi et al., 2016) by injecting noise into the parameters uploaded by
clients. Figure 5c illustrates the clustering accuracy of AFMCC under different privacy bounds ε.
We observe that AFMCC achieves both high performance and privacy when ε = 40.

D LARGE LANGUAGE MODELS

In the preparation of this manuscript, large language models (LLMs) were utilized to assist in lan-
guage refinement and grammatical consistency. Specifically, the models were employed for tasks
such as improving sentence fluency, ensuring adherence to academic style, and detecting possible
syntactic errors. It is important to note that the LLMs were not used to generate original research
content, ideas, or results. All scientific contributions, analyses, and interpretations presented in this
work are solely those of the authors.

The use of LLMs in this context is comparable to employing advanced proofreading tools: they
provide suggestions and corrections that enhance readability and clarity, while the final decisions
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on wording and phrasing remain with the authors. This approach helps maintain the scientific in-
tegrity of the work, while ensuring that the manuscript communicates effectively to an international
audience.

E REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. To this end, we will release the
complete source code and scripts used to train and evaluate our models as supplementary material,
along with datasets. The code will be made publicly available in an anonymized repository dur-
ing the review process and in a permanent repository upon publication. All datasets used in our
experiments, including any pre-processing steps, are described in detail in the Appendix and sup-
plementary material, ensuring that others can replicate our results. Hyperparameter settings, model
configurations, and evaluation protocols are documented in both the main paper and the supplemen-
tary material. Collectively, these efforts ensure that the claims and results presented in this paper
can be independently verified and reproduced.

F BROADER IMPACTS

Heterogeneous and hybrid modalities are common in real-world applications. Our method extends
FedMVC to asynchronous settings, enabling use in domains such as healthcare and IoT where
modalities and computational resources are often unevenly distributed. For example, hospitals in
developed regions may combine CT, X-ray, and EHR data, while rural clinics rely on a single source.
Similarly, smartphones can capture both audio and images, whereas simple recording devices pro-
vide only audio. Large organizations may train efficiently, while smaller ones face higher latency.
Beyond the well-recognized risks of federated learning, we do not anticipate additional negative
societal impacts from this work.

G LIMITATIONS

Our model shows strong performance under data heterogeneity, missing modalities, and unbalanced
client capacity. However, it assumes balanced class distributions, which may not hold in practice
where categories are often imbalanced. Future work will relax this assumption and adapt the frame-
work to more realistic settings.
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