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ABSTRACT

Humans interpret visual aspects of objects based on contexts. For example, a
banana appears brown when rotten and green when unripe. Previous studies focused
on language models’ grasp of typical object properties. We introduce WINOVIZ, a
text-only dataset with 1,380 examples of probing language models’ reasoning about
diverse visual properties under different contexts. Our task demands pragmatic and
visual knowledge reasoning. We also present multi-hop data, a more challenging
version requiring multi-step reasoning chains. Experimental findings include: a)
GPT-4 excels overall but struggles with multi-hop data. b) Large models perform
well in pragmatic reasoning but struggle with visual knowledge reasoning. c)
Vision-language models outperform language-only models.

1 INTRODUCTION

Language models (LMs) face challenges in developing intuitive reasoning and acquiring knowledge
from experience, similar to humans. Human knowledge acquisition from the visual world is effortless
but poses difficulties for LMs, as such knowledge is often not explicitly described in text. Over-
coming these challenges requires visual grounding, connecting language and visual information for
comprehension.

Previous studies have predominantly aimed at investigating language models in relation to object
prototypical visual properties such as color, shape, and affordance, and transferring such knowledge
from vision-language models (Norlund et al., 2021; Paik et al., 2021; Zhang et al., 2022; Li et al.,
2023b). In this work, we study language models’ reasoning ability on associations between objects
and their visual properties across different object states. The task requires a model to reason about
different states of an object where the object may exhibit different properties.

In this work, we investigate the divergent properties of an object and explore the reasoning abilities
of language models pertaining to object attributes. Annotators create a premise sentence portraying a
scene with a banana and two hypothesis sentences highlighting its visual properties as depicted in
Fig. 1. The goal is to choose a more plausible hypothesis, requiring comprehension of the banana’s
properties in different states. A more challenging multi-hop version replaces the visual attribute word
with another object word sharing a similar visual attribute.

Benchmarking zero-/few-shot performance includes text-only models like BERT Kenton & Toutanova
(2019), T5 Raffel et al. (2020); Chung et al. (2022), and GPT variants Brown et al. (2020), ranging
from 110 million to 175 billion parameters. Models incorporating visual information, such as
VL-BERT Su et al. (2019) and Oscar Li et al. (2020), are explored.

Key findings from experiments with the WINOVIZ benchmark include: a) GPT-4 performs effectively
but degrades on multi-hop data. b) Large models excel in pragmatic reasoning but face challenges in
visual knowledge reasoning. c) Vision-language models outperform language models.

2 THE WINOVIZ TASK

The WINOVIZ task entails the need for a model to deduce whether objects can demonstrate prototypi-
cal behaviors in various scenarios. More precisely, when provided with a natural language sentence
describing an object engaged in a particular behavior (premise sentence), the model must determine
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A man went to grab a quick breakfast before 
leaving, but saw that the only remaining banana 

was rotten.

The banana is brown.The banana is yellow.

Premise sentence

Hypothesis 1 Hypothesis 2

The banana is the 
color of a tree log.

The banana is the 
color of an egg yolk.

Multi-hop

Figure 1: The WINOVIZ Task and Dataset Collection. We investigate the divergent properties of
an object and explore the reasoning abilities of language models pertaining to object attributes (left).
We collect our data through crowdsourcing efforts. (right)

between two sentences presenting contrasting visual attributes of the object (hypothesis sentences).
Fig. 1 includes examples of our data and dataset collection (details are in the appendix)

Challenges. The WINOVIZ task assesses a machine’s reasoning ability about daily objects, focusing
on their varied properties. Models often struggle with visual knowledge related to common objects
due to limited explicit details in training text, attributed to reporting bias Norlund et al. (2021);
Jin et al. (2022). The task is challenging as it requires pragmatic reasoning and visual knowledge
reasoning, involving finding intended meanings in the text and reasoning about object properties. A
more challenging version, multi-hop data, requires multi-step reasoning chains.

3 EXPERIMENTS

We first describe the experimental setup used in our analysis and share experimental results.

Language Models. We experiment with 7 language models in total (Table 5). We include encoder-
only, encoder-decoder, decoder-only models. The sizes of LMs vary from 109M to 175B. We include
large LMs, GPT-3, GPT-3.5, and GPT-4 Brown et al. (2020); Ouyang et al. (2022); OpenAI (2023).

Vision-language Models. We experiment with a total of 5 vision-language models (see Table 5).
Our task involves understanding visual information about objects in various states, derived from
image-caption datasets. We investigate whether vision-language models surpass language models
in our task. For evaluation, we deliberately exclude image inputs and focus solely on the language
components of the models, using encoder-only models (VL-BERT Su et al. (2019) and Oscar Li
et al. (2020)), a decoder-only model (LLaVA-v1.5 Liu et al. (2023)), and a bi-encoder model (CLIP
‘clip-vit-large-patch14’Radford et al. (2021)).

Inference. In our analysis, we rely on zero-shot inference and few-shot in-context learning for
encoder-decoder, decoder-only models. Our prompt design for the zero-shot inference is as follows:

“You will be given a sentence, and two options. Output either Option 1 or Option 2, depending on
which option is more likely to be true given the sentence.” For the few-shot in-context learning,
we use 4 examples. We also adopt chain-of-thought prompting Wei et al. (2022) for the few-shot
inference. In addition to the encoder-decoder and decoder-only models, we explore encoder-only
models. Encoder-only models cannot do zero-shot inference for multi-choice tasks since it requires a
task-specific head for unseen tasks. Thus, we fine-tune the encoder-only models with SNLI Bowman
et al. (2015) and ANLI Nie et al. (2019) datasets and we use only ‘contradiction’ and ‘entailment’
labels in fine-tuning.

Evaluation Setup. We evaluate models with two different metrics: individual accuracy (Ind.) and
pair accuracy (Pair). Individual accuracy refers to accuracy on each individual question, while pair
accuracy refers to the accuracy on each pair of questions. In WINOVIZ, two premise sentences are
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Model Single-hop Multi-hop
Ind. Pair Ind. Pair

FLAN-T5-XXL 86.24 72.71 68.09 40.43
LLaMA2 73.28 48.85 52.84 20.45
LLaVA 79.47 59.63 56.82 17.05
GPT-3 84.17 69.24 58.5 22
GPT-3.5 86.58 75.62 58 20
GPT-4 90.25 81.19 72 45

Table 1: Results on WINOVIZ in a zero-shot manner. We evaluate large models using 0 examples
on both our single-hop and multi-hop datasets. We observe that these models performed well on the
single-hop data; however, their performance is significantly degraded on the multi-hop data.

Model Single-hop Multi-hop
Ind. Pair Ind. Pair

FLAN-T5 (0) 86.35 73.17 68.09 40.43
FLAN-T5 (4) 87.84 76.15 69.32 42.05
FLAN-T5 (4 CoT) 87.16 74.77 67.05 38.64
GPT-3.5 (0) 86.58 75.62 58 20
GPT-3.5 (4) 88.42 77.75 62.5 28.41
GPT-3.5 (4 CoT) 77.18 59.63 65.34 34.09

Table 2: Results on with 4-shot in-context learning. We use FLAN-T5-XXL and GPT-3.5 in this
analysis. Standard prompting marginally improves the performance of them, while chain-of-thought
prompting is beneficial for GPT-3.5 in the multi-hop task.

paired and they share the same set of hypothesis options. We measure the model’s performance based
on its ability to accurately predict both premise sentences. If the model’s prediction is correct for
only one of the premise sentences in the pair, we consider the prediction less robust.

3.1 ANALYSIS QUESTIONS

In our empirical analysis, we try to answer the following questions:

1. How good are large models on our task? When it comes to multi-hop data, how good are
they? (Section 3.2)

2. Do few-shot prompting and CoT prompting improve the results? (Section 3.3)
3. Which reasoning step between pragmatic reasoning and visual knowledge reasoning is main

bottleneck in our task? (Section 3.5)
4. Do vision-language models outperform language-model counterparts? (Section 3.2)

3.2 ZERO-SHOT RESULTS

We evaluate language models and vision-language models in a zero-shot way, without utilizing
any training data (Table 1). Overall, large models perform well on the single-hop data, but their
performance is significantly degraded on the multi-hop data. Among them, GPT-4 exhibits the best
overall performance on both single-hop and multi-hop tasks. Surprisingly, FLAN-T5-XXL, the
smallest model among the comparison, yields comparable results to larger models, including GPT-3.
Moreover, it outperforms GPT-3 and GPT-3.5 on the multi-hop dataset. LLaVA, built upon LLaMA2
and trained with image-caption datasets, shows noteworthy performance. As indicated in the table,
LLaVA surpasses LLaMA2 on both single-hop and multi-hop data, suggesting that image-caption
datasets enhance reasoning in our task.

3.3 FEW-SHOT RESULTS

Table 2 displays the results with 4 in-context examples for FLAN-T5-XXL and GPT-3.5. We conduct
tests using standard prompting and chain-of-thought prompting in this experiment. Initially, standard
prompting with 4 in-context examples marginally improves the performance of FLAN-T5 and GPT-
3.5 on both single-hop and multi-hop tasks. It’s surprising that chain-of-thought prompting appears
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Method Single-hop Multi-hop
Ind. Pair Ind. Pair

BERT-Large 67.31 39.44 54 16
VL-BERT-Large 69.61 42.88 56 18
Oscar-Large 72.93 50.22 64.5 32

Table 3: Results on WINOVIZ after NLI training. We train encoder-only models on NLI datasets
and choose an option by the highest probability of the ‘entailment’ class.

Model Pragmatic Visual Combined
FLAN-T5-XXL 93.04 82.91 79.75
LLaMA2 86.71 70.25 69.62
LLaVA 92.41 74.05 73.25
GPT-3.5 91.14 82.28 79.75
GPT-4 95.57 88.61 85.44

Table 4: Results on pragmatic reasoning, visual knowledge reasoning, and our original data
(combined). We study different types of reasoning in our data. We report individual accuracy.

to negatively impact the performance of GPT-3.5. However, it proves beneficial for GPT-3.5. in the
multi-hop task. We speculate that the effectiveness of chain-of-thought prompting increases when the
task is more challenging.

3.4 RESULTS OF ENCODER-ONLY MODELS

Encoder-only models cannot be applied to our task without fine-tuning. Thus, we fine-tune the
encoder-only models on natural language inference datasets instead. By doing this, our task is framed
into the NLI setup and choose an option by the highest probability of the ‘entailment’ class. We
fine-tune the encoder-only models with SNLI Bowman et al. (2015) and ANLI Nie et al. (2019)
datasets and we use only ‘contradiction’ and ‘entailment’ labels. Table 3 shows the results of encoder-
only models. VL-BERT and Oscar are BERT-based vision-language models, and they are trained on
image-caption datasets. In our experiments, we observe that the vision-language models consistently
surpass the BERT model on our dataset.

3.5 PRAGMATIC AND VISUAL KNOWLEDGE REASONING

We investigate whether models genuinely understand visual knowledge for our task. Our task requires
pragmatic reasoning and visual knowledge reasoning. We decouple our task into pragmatic reasoning
and visual knowledge reasoning and analyze which step is a bottleneck. Table 4 shows the results
on pragmatic reasoning (pragmatic), visual knowledge reasoning (visual), and our original data
(combined), utilizing the same subset. Firstly, results on pragmatic reasoning are better than others,
suggesting that large models do well on pragmatic reasoning. For example, GPT-4 achieves 95.57%
on pragmatic reasoning. Main bottleneck in our task is on visual knowledge reasoning; results on
visual knowledge reasoning are lower than those on pragmatic reasoning. When comparing LLaMA2
and LLaVA, LLaVA demonstrates superior abilities in both pragmatic reasoning and visual knowledge
reasoning. Interestingly, FLAN-T5-XXL performs comparably to a proprietary model, GPT-3.5, in
terms of pragmatic reasoning and visual reasoning.

4 CONCLUSION

Examining real-world object properties requires a visual understanding that language models lack. In
our study, we introduced a text-only WINOVIZ focused on question-answering tasks, comprising
1,380 examples exploring language models’ reasoning capabilities across various visual properties of
objects in diverse contexts. Our findings revealed that large language models demonstrate effective
performance overall but struggle particularly with the multi-hop version of our dataset. It became
apparent that the bottleneck in our task lies in the reasoning of visual knowledge. Vision-language
models surpass their language-only counterparts, although image-generation approaches prove
ineffective for our specific task. Future endeavors will delve into how to efficiently transfer visual
knowledge from images or captions.
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A APPENDIX

A.1 DATA COLLECTION

The data collection is broken down into three sections: (1) collecting candidate objects, (2) annotating
premise and hypothesis sentences, (3) verifying the quality of the annotated dataset, and (4) human
evaluation.

Object Collection. To begin with, we gather a collection of objects along with their potential
properties or attributes for constructing our data. These objects and attributes are obtained by scraping
information from reliable sources such as Memory Colors (Norlund et al., 2021), Visual Property
Norms (Hagström & Johansson, 2022), and McRae feature norms (McRae et al., 2005). Through this
process, we manage to collect a total of 800 unique objects and 302 unique attributes. However, it is
necessary to refine our dataset by filtering out attributes that are either too abstract or non-visual in
nature. To accomplish this, we employ specific heuristics to ensure the inclusion of only concrete and
visually relevant attributes. As a result of this filtering process, we successfully obtain a final dataset
comprising 775 objects and 156 attributes.

Dataset Annotation. We utilized Amazon Mechanical Turk Crowston (2012) for data annotation,
as depicted in Figure 1. The data annotation process involves several steps. Initially, annotators are
given an object, and are instructed to identify two properties for the object and corresponding visual
attributes for those properties. For example, for the object banana, the annotator may come up with
two properties ripe and rotten, which would have corresponding visual attributes yellow and brown,
respectively. After identifying a pair of object properties and visual attributes, they are tasked with
composing natural language sentences for each attribute and property. The properties are associated
with premise sentences, while the attributes were linked to hypothesis sentences.

Annotators were selected from a small pool of Mechanical Turkers that the authors had previously
worked with. The Turkers had to further pass a qualification task that tested their understanding of
the annotation task. The authors manually examined the annotations to ensure quality of the collected
data.

A.2 VERSIONS OF WINOVIZ

We now collect our WINOVIZ data. We also propose the multi-hop data, a more challenging version
of WINOVIZ, and a dataset for probing visual knowledge. For the multi-hop data, we create new
hypothesis options that require more intermediate steps while we simplify the premise sentences to
measure the ability of models about visual knowledge.

Multi-hop Data. To create a more challenging task, we introduce a multi-hop version of our data,
which requires more intermediate steps. The basic idea of the multi-hop data is to replace a visual
attribute word in hypotheses with another object word which has a similar visual attribute. This
requires one more reasoning step to find out the visual attribute. For example, one hypothesis option
is ‘The banana is yellow.’. Then ’yellow’ can be replaced with ‘the color of an egg yolk.’ So the
new hypothesis option for the multi-hop version is ’The banana is the color of an egg yolk.’ The
multi-hop version is more challenging since a model has to find out what color is an egg yolk. We
focus on color, shape, material on the multi-hop data and curate prototypical objects for each visual
property word. We get 200 samples for the multi-hop data.

Pragmatic Reasoning vs. Visual Knowledge Reasoning. Another important aspect of this work is
that models genuinely understand and know visual knowledge. Our task requires pragmatic reasoning,
the process of finding the intended meaning, and visual knowledge reasoning but models may fail in
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Model # Params Public VL model
BERT-Base 109M ✓ ✗
BERT-Large 335M ✓ ✗
VL-BERT-Large 335M ✓ ✓
Oscar-Large 335M ✓ ✓
CLIP-Large 427M ✓ ✓
FLAN-T5-XXL 11B ✓ ✗
InstructBLIP 11B ✓ ✓
LLaMA2 13B ✓ ✗
LLaVA 13B ✓ ✓
GPT-3 175B ✗ ✗
GPT-3.5 Unknown ✗ ✗
GPT-4 Unknown ✗ ✗

Table 5: A list of models used in the experiments: BERT Kenton & Toutanova (2019), CLIP Radford
et al. (2021), VL-BERT Su et al. (2019), Oscar Li et al. (2020), FLAN-T5 Chung et al. (2022),
InstructBLIP Dai et al. (2023), LLaMA2 Touvron et al. (2023), LLaVA Liu et al. (2023), GPT-
3 Brown et al. (2020); Ouyang et al. (2022), and GPT-4 OpenAI (2023). We use the ‘text-davinci-003’
API for GPT-3, ‘gpt-3.5-turbo-instruct’ for GPT-3.5, and ‘gpt-4-0314’ for GPT-4.

Model Ind. Pair

FLAN-T5-Base (No imgs) 67.89 40.37
CLIP-Large 64.67 36.46

FLAN-T5-XXL (No imgs) 86.24 72.71
FLAN-T5-XXL (Captions) 85.83 71.88

InstructBLIP 53.21 22.93

Table 6: Results on WINOVIZ with generated images. We use Stable Diffusion Rombach et al.
(2022) to generate 5 images per premise sentence. We adopt majority voting at inference time to
choose an option. FLAN-T5-Base (No imgs) refers to a model without any generated images, with a
size comparable to CLIP-Large. FLAN-T5-XXL (No imgs) refers to a model without any generated
images, while FLAN-T5-XXL (Captions) refers to a model with captions generated by BLIP2 on the
generated images. Instead of directly inputting images into FLAN-T5, we extract captions from the
generated images and use them as additional context. InstructBLIP uses generated images.

one of the reasoning steps. Thus, we decouple the premise sentence into pragmatic reasoning step
and visual knowledge reasoning step to analyze which step is a bottleneck. Pragmatic reasoning
involves finding the intended meaning and finding key phrases for the next step, visual knowledge
reasoning. For example, a model should first find ‘the banana is ripe’ given the premise sentence
in the pragmatic reasoning step (Figure 1). Given the simplified sentence, a model should choose a
better option, ‘the banana is yellow’, in the visual knowledge reasoning step. We obtain 160 samples
to study this (Section 3.5).

A.3 USING IMAGE GENERATION FOR WINOVIZ TASK.

Another approach for our task is to utilize image generation. We generate images based on premise
sentences and employ these generated images for our task. The generated images may contain useful
information that assists in identifying a correct hypothesis. We utilize an image generation approach,
Stable Diffusion Rombach et al. (2022), to generate images. We use the generated images to guide
the LMs inspired by imagination-guided text generation Zhu et al. (2022). Given the generated
images, there are three ways to use them. The first method involves using CLIP Radford et al. (2021)
on both the images and hypothesis sentences to identify a superior hypothesis option. Specifically,
we calculate the cosine similarity between the embedding of a generated image and the embedding
of a hypothesis option, selecting the hypothesis with a higher cosine similarity score. The second
approach is to generate captions for the generated images using a caption model. Since language
models cannot directly process images, we generate captions and utilize them as additional context for
the task. BLIP2 Li et al. (2023a) is employed for caption generation. The third strategy is to reframe
our task as a visual question-answering task and employ a vision-language model to identify a better
option. In this setup, we use InstructBLIP Dai et al. (2023). For image generation, we use Stable
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Figure 2: Examples of generated images. We generate images using Stable Diffusion Rombach
et al. (2022). In the second example, the bananas in both images are yellow, leading the model to
select the incorrect option. The generated image examples don’t assist in selecting a more plausible
hypothesis option.

Diffusion Rombach et al. (2022), generating 5 images per premise sentence. A better hypothesis
option is determined through majority voting.

Table 6 displays the outcomes related to image generation. The first approach utilizing CLIP
falls short compared to FLAN-T5-Base which is slightly smaller than CLIP-Large. In the second
approach involving BLIP2 captions, we opt for FLAN-T5-XXL as the benchmark, comparing one
scenario with no additional data and another incorporating captions from generated images. Our
experiment reveals a notable decline in performance when captions are employed. The third approach
significantly underperforms FLAN-T5-XXL by a large margin. These experiments collectively
indicate that generated images offer limited utility for our task. Furthermore, a manual assessment
of 100 generated images reveals that 66% of them do not contribute meaningfully to our objectives.
Examples of generated images with premise sentences are shown in Figure 2. In the figure, the
bananas in both images are yellow; the generated images do not provide any clues to choose a more
plausible option.

A.4 RELATED WORK

There are multiple perspectives on how our contributions relate to previous work, and we elaborate
on this in the subsequent sections.

Visual Knowledge Probing. Several attempts have been made to assess the reasoning ability of
language models regarding objects, primarily through natural language benchmarks (Norlund et al.,
2021; Hagström & Johansson, 2022; Paik et al., 2021; Zhang et al., 2022; Singh et al., 2022; Qasemi
et al., 2021). Norlund et al. (2021) introduced a task involving querying a multimodal model for visual
commonsense knowledge related to memory colors, which are the typical colors associated with well-
known objects. Hagström & Johansson (2022) expanded on this work by proposing visual property
norms as a measure of visual commonsense knowledge in both language models and multimodal
models. Paik et al. (2021) evaluated the color perception of language models using a color dataset
called CoDa, revealing that reporting bias negatively affects model performance and that multimodal
training can alleviate these effects. Zhang et al. (2022) confirmed these findings and extended the
evaluation to a wider range of visually salient properties. Similarly, Singh et al. (2022) evaluated
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Figure 3: The Interface of the qualification task. We provide 12 questions to find quality workers.

vision-language models on a visually accessible commonsense knowledge dataset. Liu et al. (2022)
explored spatial commonsense, the knowledge about spatial position and relationship between objects,
finding that image synthesis models are more capable of learning accurate and consistent spatial
knowledge than other models. Gu et al. (2022) proposed a probing dataset for physical knowledge
about everyday things. In contrast, we present a challenging dataset that probes the reasoning abilities
of language models regarding variant visual properties of objects under different context.

Vision-Language Modeling Recent advances in vision-language (VL) models have led to success
on vision-language tasks such as visual question answering, captioning, and grounding Antol et al.
(2015); Lin et al. (2014); Mao et al. (2016). Existing VL models jointly learn image and text
representations through cross-modal alignments including VL-BERT Su et al. (2019), LXMERT Tan
& Bansal (2019), Oscar Li et al. (2020). Recent approaches have introduced visual instruction tuning,
which involves fine-tuning a VL model using instruction-following data Liu et al. (2023).

While these VL models have shown significant improvement in VL tasks, the exploration of how to
transfer visual knowledge from VL modeling to language tasks remains underexplored. Vokeniza-
tion Tan & Bansal (2020) utilized token-level text-to-image retrieval to transfer visual knowledge to
language models. VidLanKD Tang et al. (2021) employd contrastive learning to train a teacher model
on video datasets and uses distillation approaches to transfer visual knowledge from the teacher to a
student model. CMKT Jin et al. (2022) investigated two types of knowledge transfer: text knowledge
transfer (e.g., captions) and visual knowledge transfer (e.g., images and captions). Their findings
demonstrate that such transfer can enhance performance on commonsense reasoning tasks.

A.5 ANNOTATION INTERFACES

We provide Turking interfaces: qualification task in Figure 3, and annotation task in Figures 4, 5, 6, 7.
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Figure 4: Interfaces of annotating visual contrast sets (parts 1 and 2).
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Figure 5: Interfaces of annotating visual contrast sets (part 3).
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Figure 6: Interfaces of converting contrast sets into sentence puzzles (parts 1 and 2).

13



Under review as a conference paper at ICLR 2024

Figure 7: Interfaces of converting contrast sets into sentence puzzles (part 3).
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