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ABSTRACT

In this paper, we propose an unsupervised learning principle that leverages the
neuro-inspired local plasticity and biophysiological characteristics of the brain
for the learning of spiking neural networks (SNNs) without labels. The learning
principle synergistically combines morphological features and biochemical phe-
nomena in the brain cortex, guiding networks to self-organize their connectivity
without global error backpropagation. The learning principle is based on two local
plasticity rules. One is latency-mediated spike timing-dependent plasticity, formu-
lated by combining the original STDP with axonal latency. The other is proximity
learning, mediated by the volume transmission of neurotransmitters among neu-
rons. We successfully applied these plasticity rules to a spiking model of the
avian auditory cortex and observed the self-organization of the network, which
results in the accurate localization of sound sources. After being trained using
interaural time difference (ITD)-encoded spike trains, the network converged to
synaptic connectivity resembling the famous Jeffress model. The performance
evaluation results presented demonstrate that the proposed learning principle en-
ables the SNN to localize sound sources with accuracy and resolution higher than
those achieved by supervised learning rules.

1 INTRODUCTION

Sound source localization (SSL) is a highly demanded task. Its diverse applications include auto-
matic speech recognition (ASR) (Dávila-Chacón et al. (2018)), hearing aids (Farmani et al. (2017);
Fejgin & Doclo (2023)), human-robot interaction (HRI) (Rascon & Meza (2017); Li et al. (2016)),
and event detection (Li et al. (2012); Bandi et al. (2012)). The intensive computational requirements
associated with these applications necessitate an efficient sound source localization. Given this sit-
uation, research on approaches using bio-inspired methods, instead of the traditional SSLs based on
digital signal processing (DSP), is actively pursued (Dávila-Chacón et al. (2018); Pan et al. (2021);
Glackin et al. (2010); Joo et al. (2024); Rahaman & Kim (2020)). A biological SSL, illustrated in
Fig. 4 in the Appendix, detects the location of the sound source using the sound input to both ears,
whose mechanism based on the Jeffress model (Fig. 4b) is well understood. The Jeffress model
(Jeffress (1948)) mimicking the biological SSL in the auditory cortex can be used as the basis for an
artificial SSL network to mitigate the computational burden of the traditional approaches.

A biological brain, which performs functions like SSL, can be considered a spiking neural network
(SNN), whose functional structure is formed by allowing its connectivity weights to be modified
by repeated spiking events. Spike timing-dependent plasticity (STDP) is an unsupervised learn-
ing mechanism in the biological brain that induces changes in long-term synaptic weights, thereby
facilitating the learning of neural networks. Due to its local nature, the learning rule is highly effi-
cient, requiring only the pre- and postsynaptic spike timings (Bi & Poo (1998); Zhang et al. (1998)),
which substantially reduce the computational burden and energy consumption. Using the STDP, the
network can properly configure its connectivity to accurately perform cognitive tasks. A series of
papers describe research results supporting the effects of the unsupervised STDP on establishing
meaningful network structures (Gilson et al. (2009)). By potentiating or depressing the synaptic
weights, STDP can influence the formation of network structures.
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The original STDP, an unsupervised local learning inspired by biological findings (Bi & Poo (1998);
Zhang et al. (1998); Hebb (2005)), offers several advantages, such as locality, energy efficiency, and
computational efficiency, as well as compatibility with neuromorphic hardware. However, unsuper-
vised STDP lacks the global error correction mechanism, which often results in unstable learning or
low accuracy (Zenke & Gerstner (2017)). Recent research indicates that using unsupervised STDP-
based models generally fails to achieve the high accuracy of supervised learning methods (Liu et al.
(2021)). Due to this limitation, studies have increasingly focused on supervised STDP that can pro-
vide guidance toward optimal states and introduce the global error correction (Liu et al. (2021); Wu
et al. (2008); Muleta & Kong (2025)). Many of these approaches incorporate the backpropagation
(BP)-based methods with teaching signals to enhance the performance (Wu et al. (2008); Araki &
Hattori (2023); Tavanaei & Maida (2019)). While the supervised STDP achieves higher accuracy,
this type of learning requires labeled datasets, demanding significant human efforts (Dong et al.
(2023); Garg et al. (2022)). Generating the teaching signals in the time domain introduces addi-
tional computational overhead (Araki & Hattori (2023)). Researchers have attempted to adapt BP
to SNNs. However, BP is inherently non-local, as it relies on computing the global error gradients.
Moreover, it requires excessive memory and computational resources because the error gradients
need to be stored, which contradicts the primary motivations for using SNNs, namely, high energy
efficiency and low-memory computation. Furthermore, BP is incompatible with SNNs due to the
non-differentiability of spiking dynamics. To mitigate these issues, the BP-based methods utilize
surrogate gradients to approximate the gradients, as the non-differentiable nature of SNNs prevents
direct gradient computation. The backpropagation through time (BPTT) (Werbos (2002)) can also
be applied, as the original BP cannot be directly applied in the time domain. However, these ap-
proaches cause significant computational overheads and(or) lead to suboptimal convergence (Goupy
et al. (2024)). Additionally, they lack biological plausibility and are incompatible with neuromor-
phic hardware. Given these limitations, the hitherto most effective approach for training SNNs with
their energy and computational efficiency maintained is to develop a new unsupervised local learning
rule based on neural behaviors that align more closely with the biological principles.

To achieve the goal above and pave the way toward brain-level efficiency in performing cognitive
tasks, this paper proposes a new unsupervised local plasticity principle, which enables an SNN to
perform required tasks with accuracy comparable to that of error-based backpropagation learning
without external supervision. The main contributions of our paper are as follows:

• Novel Unsupervised Plasticity Principle. We introduce a new unsupervised learning prin-
ciple, which is label-free and backward-path-free. Its unsupervised nature eliminates the
need for labeled dataset, while the absence of a backward path and global error propagation,
along with its local nature, substantially lowers computational costs.

• Bio-inspired Learning Mechanism. The proposed learning principle leverages realis-
tic neural behaviors, including spike-based synaptic plasticity, the axonal latency model,
and neurotransmitter volume transmission. Learning is driven by the timing of the spikes,
which makes it well-suited to SNNs.

• Synergistic Integration of the Biological Mechanisms. By combining the proposed
learning rules that exploits both neural connectivity and the biophysiological behavior of
neurochemical components synergistically, our SNN successfully replicated the efficient
learning of biological SSL. Ablation study confirms the synergistic effect of the proposed
rules.

• High-Performance Unsupervised learning. The paper demonstrates that the proposed
unsupervised learning principle achieves a record-high 100% accuracy with a human-level
resolution of one degree. Applying the proposed learning principle to SNN, we successfully
validated its feasibility.

2 RELATED WORKS

There are several bio-inspired SSL neural networks that exploit the Jeffress model-based architecture
(Glackin et al. (2010); Pan et al. (2021); Zhong et al. (2022); Gao et al. (2022)) (See Section A in the
Appendix for more information on the SSL and Jeffress model). The design in Glackin et al. (2010)
presented the learning of SSL, mimicking the mammalian sound localization process. Based on
the Jeffress model, the system has an architecture with delay elements as a surrogate for the axonal
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delay pathway and the output layer. Training of the network was done by modifying the connectivity
between the delay elements and the output layer using a supervised STDP with teaching signals.
Before training, the delay elements and the output neurons are fully connected. The training layer,
which delivers the teaching signal, connects each output neuron to a delay element. When a delay
element propagates spikes to output neurons, the neuron in the training layer connecting the delay
element and the output neuron relevant to the sound label provides spikes to that output neuron so
that it can generate spikes. As a result, the synapse between each output neuron and one delay
element will be potentiated by the STDP rule. Despite this complex training mechanism, the SSL
accuracy of the system is not high.

An SSL network with high accuracy was designed by adopting multiple copies of the Jeffress model
in parallel, followed by a recurrent SNN (RSNN) or a convolutional SNN (CSNN) (Pan et al.
(2021)). The network has phase-coding neurons that generate the phase-locked spikes from mul-
tiple pure tones. A pair of phase-coding neurons has one set of coincidence detection neurons in
each Jeffress architecture, resulting in the use of one model for processing one pure tone. The spike
patterns obtained from these neurons are used as inputs to the RSNN or the CSNN. As the 2D or
3D spiking pattern of the Jeffress models are fed to RSNN or CSNN, the system is computation-
ally costly; significantly larger than other SSL systems. In addition to its large size, it employs
BPTT with surrogate gradients as the training rule, which drastically increases the computation and
memory burden.

Research on building an SSL network by leveraging memristors has also been conducted. Zhong
et al. (2022) proposed a network with a single-layer fully-connected SNN composed of memristor-
based synapses whose learning is done by BPTT. An output neuron detecting the coincidence fires
when a pair of interaural time difference (ITD)-based voltage pulses coming through memristive
synapses overlap with each other. When the pulses arrive at a specific neuron simultaneously, the
perfectly overlapped voltage pulses generate the largest number of spikes. When they overlap less
due to the change in ITD, the number of spikes becomes lower. The resulting spike patterns of
the neurons are given to the single-layer fully-connected network that classifies the azimuth of the
sound source. Since the network is taught by BPTT, the learning requires heavy computation. An-
other design implemented an SSL using a memristor-based crossbar array (Gao et al. (2022)). The
network, consisting of a single or two fully connected layers, where each synaptic weight is stored
in two memristor cells, was used for the SSL. For the network learning, the backpropagation algo-
rithm with gradient descent was applied. Nonetheless, an external processor or computer receiving
the output of the memristor array to compute new weights to be updated after each mini-batch
is required. This introduces a heavy computational overhead, increased latency, and degrades the
learning efficiency. Furthermore, the dependency on external computation makes it less suitable for
on-chip applications.

3 SOUND LOCALIZATION SPIKING NEURAL NETWORK WITH PROPOSED
LEARNING RULES

3.1 OVERALL ARCHITECTURE

The architecture of sound localization SNN with initial connectivity among nucleus magnocellularis
(NM) and nucleus laminaris (NL) neurons before learning, which will self-organize by the proposed
plasticity rules to be described, is shown in Fig. 1a. It comprises the Jeffress model with NM-
NL neurons along with the long-term plasticity (LTP) governed by the proposed learning principle,
the short-term depression (STD) for more precise ITD processing (Kuba et al. (2002); Cook et al.
(2003); Anwar et al. (2017)). A bunch of inhibition (INH) neurons are included to support the
lateral inhibition. The superior olivary nuclei (SON) are used to compensate for the effect of ILD.
The inputs to the network are pairwise spike trains, each with ITD information provided to the NM
neurons on both sides, forming Jeffress model. The spike pair with ITD will propagate respectively
along the axonal pathways of the NM neurons on both sides and coincide at one NL neuron having
the index equal to the given ITD value, dubbed expected winner. The NL neuron that actually
spiked the most is called inferred winner, indicating the estimated location of the sound source. The
number of NL neurons in the network determines the sound localization resolution. For details, see
Section B and Kim et al. (2025). Using the Jeffress model with arbitrary connectivity as the initial
network for learning can be justified by biological evidence for the innate establishment of such a
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(a)

(b) (c)
Figure 1: (a) Spiking neural network architecture for sound source localization. (b) Synaptic con-
nectivity between the left and right NM neurons and two adjacent NL neurons. ∆m represents the
latency along the main axonal pathway, specifically between two adjacent axonal points, while ∆b1,
∆b2, and ∆b3 denote the latencies of the side and center axonal branches. (c) Synaptic current gen-
eration by volume transmission, which can evoke proximity learning.

network before birth (Knudsen & Knudsen (1986); Muir et al. (1989); Carr & Boudreau (1996)).
The synapses between NM and NL are made learnable by the proposed learning principle, and are
expected to self-organize toward the correct Jeffress model structure.

3.2 LATENCY-MEDIATED UNSUPERVISED STDP

In this section, a novel bio-inspired unsupervised learning rule, latency-mediated unsupervised
STDP (LM-STDP), to be used to let the network learn the sound position, is proposed as a means to
overcome the problems associated with supervised learning rules without performance degradation.
The proposed learning rule integrates the behavioral features of the original STDP with the structural
features of the auditory cortex. Combining these features enables the network to self-organize its
connectivity, allowing it to perform SSL without any supervision, such as teaching signals or labels,
and to evolve towards the Jeffress model from its initial connectivity.

The neuronal structure and its connectivity pattern play an important role in LM-STDP, as they
determine spike propagation timing, which directly affects the weight changes governed by the rule.
The axonal pathway of a neuron has a distinct propagation delay determined by structural features
such as the spacing between axonal branch points and the length of the branches. The delay can
influence the spike arrival time and, consequently, synaptic potentiation and depression, enabling
the formation of the network with task-specific connectivity. Fig. 1b shows a segment of the Jeffress
model network having connections among a few branch points in the NM neurons’ axonal pathway
and two NL neurons. NL neuron with index j, NLj , shown in the center-left in Fig. 1b, has three
synapses, SL1,j , SL2,j , and SL3,j , connected to three axonal points, i− 1, i, and i+1, respectively,
along the main axonal pathway of the left NM neuron, NML. These multiple synapses per NL
are intended to model the structure of the unlearned Jeffress model with a lot of viable synapses
after hatching or birth (Knudsen & Knudsen (1986); Muir et al. (1989); Morrongiello (1988)). Due
to the latency in spike propagation along the axonal pathway, a spike from the NM neuron will
arrive at axonal point i with a delay of ∆m relative to its arrival at point i − 1. As the axonal
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points are assumed to be located periodically with equal distance, the latency between consecutive
axonal points, ∆m, is uniform. The propagation delay of an axonal branch, ∆b, further differentiates
the arrival times of spikes at different synapses. The cumulative propagation delay ∆cum for each
synapse, assuming the spike passes the axonal point i− 1 at t = 0, can be described as

∆cum,SL1,j
= ∆b1, ∆cum,SL2,j

= ∆m +∆b2, ∆cum,SL3,j
= 2∆m +∆b3, (1)

where ∆b1 = ∆b3 due to their symmetric connectivity. The latency of the shorter branch, ∆b2, is
lower than those of the longer branches, ∆b1 and ∆b3. Noting that the main axonal pathway has the
unit-length latency shorter than that of the axonal branch due to myelination (Susuki (2010)), the
delay ∆m is much shorter than delays ∆b1, ∆b2, and ∆b3, by an order of magnitude. Due to the
significant latency difference between ∆m and others, the cumulative propagation delays result in
the inequality:

∆cum,SL2
< ∆cum,SL1

< ∆cum,SL3
. (2)

Note that, as the connectivity and the synaptic delay are identical for all NL neurons, Eq. 2 holds
for every j in Eq. 1. Consequently, NL neuron j receives a spike from the NM neuron through three
different synapses in the order of S2, S1, and S3.

The dynamics of the synaptic weight modification by LM-STDP can be described using eligibility
traces, which record the spiking history of pre- and postsynaptic neurons and determine their asso-
ciated amount of synaptic weight change at any given instance of time (Morrison et al. (2008)). The
dynamics of eligibility traces can be defined as

dxi

dt
= − xi

τ+
+

∑
tfi

A+δ(t− tfi )

dyj
dt

= − yj
τ−
−

∑
tfj

A−δ(t− tfj ),

(3)

where xi and yj represent the pre- and postsynaptic eligibility traces, respectively. tfi and tfj denote
spiking times at presynaptic axonal point i and postsynaptic NL neuron j, respectively. A+ and A−
refer to the scaling factors determining the magnitude of potentiation and depression, respectively.
τ+ and τ− are the time constants that govern the decay of xi and yj , respectively, defining the
learning window. δ(t− tf ) is the Dirac delta function that updates the eligibility traces at each spike
time, tf . With xi and yj , the long-term synaptic weight between presynaptic axonal point i and
postsynaptic NL neuron j, governed by LM-STDP (wLM−STDPij ), can be written as

wLM−STDPij
← wLM−STDPij

+ ηxi(t) at t = tfj (4a)

wLM−STDPij
← wLM−STDPij

+ ηyj(t) at t = tfi (4b)

where η is the learning rate. At presynaptic spike timing, tfi , xi increases as defined in Eq. 3 and
begins to decay exponentially. If a postsynaptic spike occurs before xi decays to zero, i.e., within
the learning window, the weight is potentiated at tfj based on the value of xi at that moment, as
described in Eq. 4a. In contrast, at postsynaptic spike timing, tfj , yj decreases to a negative value
due to a negative A− and gradually returns to zero. If a presynaptic spike happens during this period,
before yj reaches zero, the synaptic weight is weakened at tfi according to the value of yj at tfi , as
shown in Eq. 4b. Thus, a presynaptic spike before a postsynaptic spike strengthens the synapse,
and a presynaptic spike that follows a postsynaptic spike weakens it. To explicitly specify the name
of the synapse connected to the NL neuron, NLj , the synaptic weight can be notated in terms of
the synapse index. For example, the synaptic weight of SL2 connected to the jth NL neuron can be
denoted as wLM−STDPL2,j

instead of wLM−STDPij to help understanding.

With the structural characteristic of the network and the weight modification mechanism described
above, LM-STDP selects only one synapse among SL1,j , SL2,j , and SL3,j to be strengthened and
the others to be weakened. These synapses receive presynaptic spikes in the order of SL2,j , SL1,j ,
and SL3,j as defined by the order given in Eq. 2. Starting from an initial condition that the synaptic
weights are sufficiently small, the jth NL neuron, NLj , fires after receiving spikes from all three
synapses. Then, all three synapses are potentiated as defined in Eq. 3 and Eq. 4a because they re-
ceive presynaptic spikes before the postsynaptic spike. After several iterations, wLM−STDPL1,j

and
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wLM−STDPL2,j
will be increased enough to generate the spike of NLj earlier than the presynaptic

spike of SL3,j . When wLM−STDPL2,j
increases enough, the presynaptic spike at SL2,j alone can

cause a spike in NLj . Then, only SL2,j is strengthened, while the other synapses are all weakened.
By repeating the procedure above, only SL2,j , which receives the presynaptic spike first, will be
fully potentiated, while others are progressively depressed and eventually deleted, resulting in the
Jeffress model network connectivity. For further information and visual data, refer to Section C.

3.3 VOLUME TRANSMISSION-INDUCED PROXIMITY LEARNING

Along with the synaptic weight modification induced by the timing of the spikes described in the
previous section, another type of the weight modification induced by the firing of adjacent neurons
is proposed for accurate, efficient, and fast learning of the network. In a biological neural network,
presynaptic neurons transmit their spiking information to postsynaptic neurons by releasing chemi-
cals called neurotransmitters at synaptic clefts (Bear et al. (2016)). Since a synapse resides in a gap
between neurons in the fluid-filled extracellular area, the neurotransmitter chemicals emitted can
diffuse not only to the intended postsynaptic target neuron but also to adjacent neurons, which is
caused by a biophysiological phenomenon called volume transmission (Agnati et al. (2010); Taber
& Hurley (2014)). Local volume transmission occurs by the spillover of neurotransmitters from a
synaptic cleft after its release and by the movement up to nearby clefts through the fluid-filled extra-
cellular space. This behavior enables the membrane potentials of adjacent postsynaptic neurons to
be increased along with that of the intended postsynaptic neuron.

To include the effect of this biophysiological phenomenon, we propose a neuronal proximity learn-
ing caused by the volume transmission, called volume transmission-induced proximity learning (VT-
PL). The mechanism is illustrated in Fig. 1c. When an excitatory synapse connected to NLj is
activated by a traveling spike, it releases neurotransmitters into the extracellular space. While most
neurotransmitters are delivered to the target neuron (NLj), inducing synaptic current Idirect,j(t) to
NLj , a portion of neurotransmitters diffuses around the volume transmission region and may reach
adjacent neurons, inducing accordingly scaled synaptic currents, εIdirect,j(t), to both NLj−1 and
NLj+1. These currents are defined as volume transmission-induced synaptic currents. As a result,
from the viewpoint of a specific NL neuron, NLj , the synaptic current induced by collective vol-
ume transmission, Iindirect,j(t), received from the synapses connected to NLj−1 and NLj+1 can
be written as

Iindirect,j(t) = ε(Idirect,j−1(t) + Idirect,j+1(t)) (5)

where Idirect,j−1(t) and Idirect,j+1(t) represent the excitatory synaptic currents supplied to NLj−1

and NLj+1 by associated synapses, respectively. ε indicates the ratio between the synaptic current
to the target neuron and the scaled current to an adjacent neuron. The mathematical formalization of
Idirect(t) and Iindirect(t) can be found in Section B. As a result, the volume transmission-induced
synaptic current can help increase the membrane potential of a postsynaptic neuron by repeated
firing of neighboring presynaptic neurons. This interesting behavior will result in a higher firing
probability of NL neurons than would otherwise be the case, thereby facilitating the efficacy of
plasticity. This fact implies that it can enable adjacent NL neurons to have a higher chance of
firing even when they have weak wired connections to the axonal pathway of NM neurons. The
increased number of spikes will allow additional weight change by STDP. The portion of the synaptic
modification by this phenomenon is similar to Eq. 4 and can be written as

wV T−PLij ← wV T−PL + ηxi(t) at t = tfj (6a)

wV T−PLij
← wV T−PL + ηyj(t) at t = tfi (6b)

where η is the learning rate. This type of learning enables gradual and coordinated convergence
among NL neurons, resulting in a more stable and robust learning process within the network, as
supported by the evaluation results described in Section 4.

4 PERFORMANCE EVALUATION

To verify network behavior and performance, the SSL network with a pair of NM neurons, a pair
of SON neurons, 181 NL neurons, and 181 INH neurons was designed and simulated. For the
lateral inhibition, inhibitory synapses were connected to six neighboring NL neurons from each
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(a) (b) (c)
Figure 2: Migration of synaptic weights and training accuracy during learning with initial weights of
0.5 nA: (a) synaptic weights connected to NL−90, and (b) NL0. (c) SSL accuracy during learning.
wL1, wL2, wL3, wR1, wR2, and wR3 indicate the weights of synapses SL1, SL2, SL3, SR1, SR2, and
SR3, respectively.

INH neuron. The azimuth range of the sound source location that the system can detect is from
−90◦ to 90◦, where the 0-degree angle indicates the center direction, and the negative indexing of
degrees refers to the left side. The system can distinguish the direction of the sound source with a
1-degree resolution by having 181 NL neurons that respond to input from each degree in the given
azimuth range. Pairs of spikes with ITD information were used as inputs in the learning phase.
Each epoch consists of presenting a total of 181 spike pairs in a random order, where each pair has
an ITD corresponding to each NL neuron, which ensures that every NL neuron has opportunity to
be the expected winner and change the synaptic weights connected to it. The implementation and
simulation were performed by Brian2 (Goodman & Brette (2009)), an SNN simulator written in
Python. The parameter values used in the simulation are listed in Table 3 in Section D.

4.1 PERFORMANCE OF PROPOSED LEARNING PRINCIPLE

To investigate the learning process in detail, both synaptic weight changes and overall network
accuracy have been analyzed during training. Fig. 2 illustrates the migration of synaptic weight
values connected to selected NL neurons during the learning process of 30 epochs and the change
in the accuracy of the network. The initial weights defined in amperes are uniformly set to 0.5
nA. Fig. 2a and Fig. 2b depicts the synaptic weight changes of all six synapses (SL1, SL2, SL3,
SR1, SR2, and SR3) in Fig. 1b connected to a single NL neuron. They indicate that the weights
of synapses SL2 and SR2 increase continuously throughout the learning process until they reach a
maximum value of 0.7 nA, while the other four synaptic weights eventually decrease to zero. After
a maximum of 30 epochs of learning, the synaptic weight values are saturated at either the minimum
or maximum. To assess the performance of the proposed SSL network, the accuracy was measured
by observing which NL neuron fired when a single pair of spikes having a particular ITD was given.
It was considered “correct” only when the inferred winner was identical to the expected winner.
With uniform initial weights of 0.5 nA, the accuracy was measured 50 trials. Fig. 2c illustrates
the resulting accuracy averaged over 50 trials at each epoch. Note that the inset shows a magnified
view of the accuracy from the third to fifteenth epoch. The accuracy of the model exhibits a steep
increase in the first few epochs, followed by a gradual convergence to 100%. This rapid learning
occurs because wL2 and wR2, key synaptic weights in constructing the final network, increase fast
during the initial epochs, as seen in Fig. 2a and Fig. 2b. As a result, the training accuracy reaches
99% after only four epochs and 100% after eleven epochs. The slow convergence after the fourth
epoch is due to the gradual decrease of the synaptic weights, wL1, wL3, wR1, and wR3, connected
to each NL neuron. The results demonstrate that the network, employing the proposed learning
principle, efficiently learns the crucial structural features of the network and successfully attains
sound localization ability.

The inference accuracy of SSL was also measured with more realistic input patterns to evaluate the
performance of the network after learning. To consider more realistic environment of SSL, a pair of
one-second-long input spike trains with both ITD and ILD at various firing rates and from different
angles was presented to NM neurons. The firing rate of the spike trains, ranging from 1 to 500
spikes/sec, was considered to see the effect of sound intensity change. The accuracy before learning
was, at best, 10% only for the centered input and 0% for all off-centered inputs. After the training
with the proposed learning principle, the network achieved 100% accuracy for SSL, successfully
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(a)

(b)
Figure 3: Distribution of synaptic weights during training (a) only with LM-STDP and (b) both with
LM-STDP and VT-PL.

converging to a configuration that enables accurate one-degree resolution. This result indicates that
integration of LM-STDP and VT-PL is capable of guiding SNNs to construct the optimal network.

4.2 ABLATION STUDY

Table 1: Ablation study of learning principles.

Sound source location
0◦ 45◦ 88◦

Before Training 6% 0% 0%

+ LM-STDP 82% 82% 80%

+ LM-STDP
+ VT-PL (ours) 100% 100% 100%

We conduct ablation study on the proposed
learning rules. Fig. 3 shows the role of VT-PL
in network formation during the training pro-
cess. It presents the weight distribution before
and during the learning phase, with LM-STDP
only and with both LM-STPD and VT-PL. The
initial weight has been set to be 0.5 nA in both
cases. Since the weight pairs (wL1, wR1), (wL2,
wR2), and (wL3, wR3) have similar changes, as
seen in Fig. 2a and Fig. 2b, they are grouped
together in the histograms presented in Fig. 3. When both LM-STDP and VT-PL are applied, the
synaptic weights evolve properly throughout the learning phase, leading to the formation of network
architecture for effective SSL. This can be seen in the third and fourth column of Fig. 3b, where
only wL2 and wR2 reach their maximum values, while the others decrease to near-zero values after
20 epochs, and wL1, wL3, wR1, and wR3 finish converging to zero after 40 epochs. In contrast,
Fig. 3a illustrates the case with LM-STDP only. During the learning process, synaptic weights wL1,
wL3, wR1, and wR3 decrease, but slowly compared to Fig. 3b. Moreover, even after 20 epochs,
many synapses in all three groups still have intermediate weight values between 0.2 and 0.65 nA,
which is illustrated in the third and fourth figure of Fig. 3a. In addition, there is almost no change
in the weight profile between the third and fourth figure for the weight range from 0.5 to 0.65 nA,
which indicates that no more learning is performed after 20th epoch. Table 1 describes the SSL
accuracy before learning, after learning only with LM-STDP, and after learning with both plasticity
rules. Note that the accuracy is averaged across different input sound intensities. Because of these
“unlearned” synapses, some NL neurons fail to fire, leading to a degradation in accuracy from 100%
to around 80%. In summary, the network trained only with LM-STDP fails to eliminate all unnec-
essary connections which demonstrate that both LM-STDP and VT-PL are essential for guiding a
complete synaptic reorganization, allowing the network to configure its connectivity to achieve high
accuracy for the given task.

4.3 COMPARISON TO OTHER SSL SYSTEMS

The performance summary of the proposed and various conventional SSL networks is provided in
Table 2 (Full version of Table 2 can be found in Section E). The proposed network has an identical
or wider azimuth range compared to others, excluding Pan et al. (2021), and achieves the highest
accuracy with the highest resolution. Compared to the computationally heavy network in Pan et al.
(2021), the proposed network achieves higher resolution and accuracy with a significantly reduced
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Table 2: Comparison of SLL Systems (Abridged ver.)

Network Learning rule Supervised Azimuth
range Resolution Accuracy

Pan et al. (2021) BPTT with
surrogate gradient !

±90◦ 5◦ 75.9%

±180◦ 5◦ 100%1

Glackin et al. (2010) Supervised
STDP ! ±60◦

5◦ 70.63%2

/ 90.65%3

2.5◦ 78.64%2

/ 91.82%3

Zhong et al. (2022) BPTT ! ±90◦ [15◦, 30◦] 96%

Gao et al. (2022) Gradient descent ! ±90◦ [5◦, 15◦]
12.5◦

/ 5.7◦4

This work LM-STDP
+ VT-PL % ±90◦ 1◦ 100%

network size. Unlike the network in Glackin et al. (2010), which utilizes a supervised learning
method requiring labeled data, the proposed network relieves the burden by exploiting unsupervised
learning. It also achieves higher accuracy with a higher resolution and a wider azimuth range while
using a smaller network. Furthermore, it outperforms memristor-based SSL systems presented in
Zhong et al. (2022) and Gao et al. (2022) in terms of resolution and accuracy. In conclusion, the SNN
trained by the proposed unsupervised learning principle achieves highest accuracy and resolution,
even though it was compared to the networks trained with the supervised learning rules.

5 CONCLUSION

In this paper, leveraging local plasticity and biochemical characteristics, we propose a novel
unsupervised learning principle composed of latency-mediated unsupervised STDP and volume
transmission-induced proximity learning for self-organizing SNNs. These unsupervised local plas-
ticity mechanisms leverage the geometric aspects of neural connectivity and the biophysiological
behavior of biochemical components, combining their effects synergistically to achieve the goal
of optimally self-organizing SNNs, thereby accurately fulfilling required tasks without relying on
global error backpropagation. By applying these plasticity rules, the sound source localization net-
work successfully evolved into an architecture analogous to the Jeffress model. After a maximum of
30 epochs of learning, all learnable synaptic weights converged to either their minimum or maximum
values, indicating that the network selectively potentiates task-relevant synapses while nullifying the
others. The proposed SSL network achieves one-degree resolution and 100% accuracy within a re-
alistic azimuth and ITD range. These results indicate that the proposed learning principle effectively
replicates biological synaptic plasticity and self-organization, purely through neuro-inspired unsu-
pervised learning.
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A SOUND SOURCE LOCALIZATION

(a) (b)
Figure 4: (a) Illustration of sound source localization (SSL) task. (b) Jeffress model.

Sound source localization (SSL) is a task determining the localization of a sound source. Fig. 4a
describes SSL task. Jeffress model shown in Fig. 4b illustrates the avian SSL mechanism. The NM
neuron on each side receives spikes from the cochlea. Each NL neuron functions as a coincidence
detector by integrating spikes from the ipsilateral and contralateral NMs. The axonal pathway from
each NM neuron, stretching across the entire network, causes a propagation delay to each NL neu-
ron. The architecture enables NL neurons to receive coincident spikes from both sides under specific
ITD conditions. For example, when the sound source is located straight ahead, the sound will reach
both NM neurons simultaneously and let the NL neuron at the center fire more than the others. When
the sound source deviates from the straight-ahead direction, the sound arrives at both NM neurons at
different times, creating an ITD. Then, the NM spikes generated by the earlier sound start propagat-
ing earlier along the delay line, resulting in the firing of the NL neuron at an off-centered position.
In this way, the NL neurons in the Jeffress model can identify the locations of sound sources.

B MODELING DETAILS OF THE NEURON AND SYNAPSE

The STD employed in each synapse among NM and NL neurons helps the NL neuron to have a
relatively constant spiking rate regardless of the sound intensity. It also minimizes the NL neurons’
spiking rate, making the network more energy efficient. The lateral inhibition applied among NL
neurons through INH neurons prevents neighboring NL neurons from firing after one neuron fires.
It helps distinguish a single inferred winner from the others. Each INH neuron receives excitatory
current from the associated NL neuron and supplies inhibitory current to neighboring NL neurons.
SON neurons connected with respective NM neurons will inhibit NM neurons from firing to main-
tain their firing rate relatively constant and, more importantly, to reduce the disturbance by the ILD.

In our sound source localization network, shown in Fig. 1a, the synapses connecting NM-NL have
a major role, in which the long-term weights are governed by the proposed learning principle, de-
scribed in Section 3. On top of it, STD plasticity is also involved to provide an advantage of accurate
ITD processing (Kim et al. (2025)). The STD employed in each synapse among NM and NL neu-
rons helps the NL neuron to have a relatively constant spiking rate regardless of the sound intensity.
It also minimizes the NL neurons’ spiking rate, making the network more energy efficient. The STD
part of the synapse can be described as

dwSTD(t)

dt
= − 1

0.0613
wSTD(t) + z(t)−

∑
k

δ(t− tk)(1−D)wSTD(t−k ) (7a)

dz(t)

dt
= − 1

0.040
wSTD(t) +

1

0.040
(7b)

where tk indicates the timing of presynaptic spikes and z(t) is an internal variable in a pair of
first-order ODEs governing the short-term plasticity behavior (Kim et al. (2025)). Note that the
measurement data from the rat was used to get the coefficients in Eq. 7 to use the biological STD
data (Jia et al. (2004)). The resulting total effective synaptic weight, considering the LTP and STD
simultaneously, can be written as

Weff (t) = wLTP (t)wSTD(t). (8)
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In this equation, wLTP (t) indicates the long-term weight modifications governed by LM-STDP and
VT-PL as given in Eq. 4 and Eq. 6, respectively. Note that wLTP (t) in our network is not a
linear summation of wLM−STDP (t) and wV T−PL(t) because these effects are combined as excita-
tory synaptic currents and the inhibitory synaptic current is also involved to form the total synaptic
current, as will be seen below. wSTD(t) is given by Eq. 7.

The alpha synaptic current model (Weisstein; De Schutter (2009)), describing the biological excita-
tory postsynaptic current (EPSC), was employed to accurately model the synaptic current dynamics
in the network. The alpha synaptic current supplied to the jth NL neuron directly from its own
synapses can be described as

Idirect,j(t) =
∑
i

∑
p

u(t− ti,p)Weff (t
−
i,p) ·

(
t− ti,p
τα

)
e1−

t−ti,p
τα , (9)

where Idirect,j(t) denotes the direct synaptic current to the jth NL neuron. ti,p is the pth presynap-
tic spike timing, the time when spike arrives at axonal point i. The first sigma over i represents the
summation of all the axonal points with synaptic connections to the jth NL neuron. The volume
transmission-induced indirect synaptic current, Iindirect,j(t), shown in Eq. 5 can be similarly writ-
ten to the expression in Eq. 9, resulting in the total excitatory synaptic current to NLj , Iexc,j(t),
written as

Iexc,j(t) = Idirect,j(t) + Iindirect,j(t). (10)

On top of the excitatory synaptic current, the lateral inhibition supplies the inhibitory synaptic cur-
rent to NL neurons. The lateral inhibition applied among NL neurons through INH neurons prevents
neighboring NL neurons from firing after one neuron fires. It helps distinguish a single inferred win-
ner from the others. Each INH neuron receives excitatory current from the associated NL neuron
and supplies inhibitory current to neighboring NL neurons. SON neurons connected with respective
NM neurons will inhibit NM neurons from firing to maintain their firing rate relatively constant and,
more importantly, to reduce the disturbance by the ILD. The amount of inhibitory synaptic current
that the jth NL neuron receives can be written as

Iinh,j(t) = Winh

∑
s

u(t− ts,j) ·
(
t− ts,j
τα

)
e1−

t−ts,j
τα , (11)

where ts,j indicates the sth spike timing of the jth inhibitory neuron, which is the presynaptic spike
at the inhibitory synapse, and Winh represents the fixed weight of the inhibitory synapse. The total
synaptic current to jth NL neuron is then defined as the sum of the excitatory and inhibitory synaptic
currents as

Itotal,j(t) = Iexc,j(t) + Iinh,j(t), (12)

where Iexc,j(t) and Iinh,j(t) represent the total excitatory and inhibitory synaptic currents, as de-
fined in Eq. 10 and Eq. 11, respectively.

For implementing the biological neuron in the proposed neural network, the LIF neuron model
(Gerstner et al. (2014)) is used for all the neurons in the network. By the LIF model, the membrane
potential of a neuron is defined as

τm
dVm(t)

dt
= −(Vm(t)− Vrest) +RmItotal(t), (13)

where Vm is the membrane potential, τm (= RmCm) is the membrane time constant, Itotal(t) is
the total input synaptic current defined in Eq. 12, and Vrest is the resting potential. Whenever the
membrane potential reaches the threshold voltage, Vth, the neuron fires, and the membrane potential
resets to the reset voltage, Vreset, during the refractory period.

The learning behavior of a few NL neurons adjacent to each other in the network, based on the
proposed plasticity principle, is depicted in Fig. 5 by simulated waveforms of the synaptic current,
membrane potential, and weight migration of the six synapses connected to each NL neuron. The
waveforms show the synaptic current and membrane potential of NL neuron indexes 0 and 1, as
well as the weight value of the synapses connected to each of them when a single spike pair having
ITD=0 ms is given, letting NL0 be the expected winner. The first column shows the waveforms
of NL0, where the spikes from NM neurons coincide, and the second column shows those of the
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(a) (b) (c)

(d) (e) (f)
Figure 5: Weight modification by LM-STDP and VT-PL when ITD=0 ms. (a) and (d) synaptic
currents to NL0 and NL1. (b) and (e) membrane potentials of NL0 and NL1. (c) and (f) synaptic
weights connected to NL0 and NL1. The first row shows waveforms of NL0 and the second row
shows NL1.

neighboring neuron, NL1. As three spike pairs coincide at NL0, it receives excitatory synaptic
currents of high amplitudes three times through the synapses, as illustrated in Fig. 5a. Note that
each peak indicates the coincidence of a spike pair from the left and right NM neurons, and as there
are three pairs of synapses connected to one NL neuron, three peaks of Idirect,j(t) occur in Fig.
5a. Due to this synaptic current having a high amplitude, the membrane potential of NL0 increases
rapidly and reaches the threshold, as shown in Fig. 5b. As the first synaptic current pair arrives
before 0.72 ms, causing the postsynaptic spike at NL0, the weights of these two synapses, wL2,0

and wR2,0, increase, and the weights of the other synapses decrease, as depicted in Fig. 5c. The
volume transmission-induced synaptic current Iindirect,j(t) is also visible in Fig. 5a and Fig. 5d,
with small peaks other than three high peaks in Fig. 5a and additional small peaks other than six
peaks in Fig. 5d. In NL1, although the membrane potential increases to near Vth with the help
of VT-PL, it fails to fire because of the inhibitory synaptic current caused by the spike of NL0, as
shown in Fig. 5e. The long-term synaptic weights, wLTP (t), of the synapses connected to NL1 did
not change in Fig. 5f, as the postsynaptic spike did not occur in Fig. 5e.

C WEIGHT UPDATE IN LM-STDP

Figure 6: Timing sequence of pre- and postsynaptic spikes at synapses SL1,j , SL2,j , and SL3,j

around the jth NL neuron, NLj .

As seen in Fig. 1a, each NL neuron receives three synaptic inputs from an NM neuron, following
the connectivity in Fig. 1b. Given that there are two NM neurons, one on each side, three pairs of
synaptic currents delivered through three pairs of synapses will coincide at the expected winner. As
depicted in Fig. 6, when the initial synaptic weight values are small, the expected winner will fire
only after receiving all three pairs of spikes. As the synaptic weights increase, even the first spike
pair can deliver enough synaptic current for the expected winner to fire. By the LM-STDP rule,
only the pair of synapses transmitting the earliest spikes will be potentiated, while others will be
weakened. In addition, the volume transmission described in Fig. 1c enables the proximity learning
mechanism, facilitating and coordinating stable and robust network learning. By combining these
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mechanisms, the proposed learning principle successfully guides the entire network to strengthen
the correct synapses and weaken the others, thereby forming the connectivity of the Jeffress model.

D NETWORK PARAMETERS

Table 3: Parameter values for network simulation.

Parameter Value
Membrane resting potential −70 mV
Membrane reset potential −75 mV
Firing threshold −50 mV
Refractory period 0.5 ms
Membrane resistance of the NM neuron 40 MΩ
Membrane capacitance of the NM neuron 60 pF
Membrane resistance of the SON neuron 40 MΩ
Membrane capacitance of the SON neuron 60 pF
Membrane resistance of the NL neuron 40 MΩ
Membrane capacitance of the NL neuron 0.1 pF
Membrane resistance of the inhibition neuron 40 MΩ
Membrane capacitance of the inhibition neuron 0.25 pF
Unit axon delay (∆) 2 us
STDP weight increase factor (A+) 0.85 nA
STDP weight decrease factor (A−) −0.6824 nA
Time constant for the STDP curve at ∆t > 0 (τ+) 2 ms
Time constant for the STDP curve at ∆t < 0 (τ−) 2 ms
Learning rate (η) 0.5
Ratio of Iindirect to Idirect (ε) 0.2
Depression rate (D) 0.40506
Time constant for the recovery of STD (τSTD1) 16.4 ms
Time constant for the recovery of STD (τSTD2) 2469.7 ms
Time constant for the alpha synaptic current (τα) 0.001-0.5 ms
Initial long-term synaptic weight (wLTP ) 0.5 nA
Final long-term synaptic weight (wLTP ) 0-0.7 nA

E COMPARISON OF SSL SYSTEMS

Table 4: Comparison of SLL Systems (Full ver.)

Network Modeling
strategy

Learning
rule Supervised Input

stimulus
Max.

ITD (ms)
Frequency
range (Hz)

Pan et al. (2021) Biological
model

BPTT with
surrogate
gradient

! Speech [±0.31,
±1.88] [200, 800]

Glackin et al. (2010) Biological
model

Supervised
STDP !

Recorded
pure tone ±0.5 [600, 1,600]

Zhong et al. (2022) ANN with
memristors BPTT !

Paired
pulse ±0.0005 N/A

Gao et al. (2022)
ANN with
memristive

array

Gradient
descent !

Recorded
sound
pulse

N/A N/A

Ours Biological
model

LM-STDP
+ VT-PL %

Paired
pure tone ±0.72 [1, 500]
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Table 4: Comparison of SLL Systems (Full ver.) (cont.)

Network Frequency
range (Hz)

Azimuth
range

# of
neurons

# of
synapses Resolution Accuracy

Pan et al. (2021) [200, 800]
±90◦ 27,176

/ 39,1765
>1,715,200
/ 754,580 5◦

75.9%

±180◦ 100%1

Glackin et al. (2010) [600, 1,600] ±60◦
525 7,665 5◦ 70.63%2

/ 90.65%3

1,029 27,321 2.5◦ 78.64%2

/ 91.82%3

Zhong et al. (2022) N/A ±90◦ 35 250 [15, 30◦] 96%

Gao et al. (2022) N/A ±90◦ 67 / 261 420
/ 10,550 [5◦, 15◦]

12.5◦

/ 5.7◦4

Ours [1, 500] ±90◦ 366 2,3596

/ 1,6357 1◦ 100%

1Four microphones are used for sound capturing
2Accuracy based on spikes within ±5◦ of the target azimuth angle
3Accuracy based on spikes within ±10◦ of the target azimuth angle
4The Angle deviation (angular difference between inference result and sound source position) in RMS using

single-/two-layer networks
5Neurons in RSNN and CSNN, respectively
6Number of synapses before learning
7Number of synapses after learning
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