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Abstract
Multimodal Sentiment Analysis (MSA) focuses on leveraging mul-
timodal signals for understanding human sentiment. Most of the
existing works rely on superficial information, neglecting the incor-
poration of contextual world knowledge (e.g., background informa-
tion derived from but beyond the given image and text pairs), thereby
restricting their ability to achieve better multimodal sentiment anal-
ysis (MSA). In this paper, we propose a plug-in framework named
WisdoM , to leverage the contextual world knowledge induced
from the large vision-language models (LVLMs) for enhanced MSA.
WisdoM utilizes LVLMs to comprehensively analyze both images
and corresponding texts, simultaneously generating pertinent context.
Besides, to reduce the noise in the context, we design a training-
free contextual fusion mechanism. We evaluate our WisdoM in both
the aspect-level and sentence-level MSA tasks on the Twitter2015,
Twitter2017, and MSED datasets. Experiments on three MSA bench-
marks upon several advanced LVLMs, show that our approach brings
consistent and significant improvements (up to +6.3% F1 score).
Code is available at https://github.com/DreamMr/WisdoM.
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1 Introduction
Sentiment analysis (SA) aims to identify the polarity of human sen-
timent [8, 33, 46]. With the prevalence of social networks, people
express their sentiments using not only plain text, but also other
modalities of data (e.g., images). Predicting the sentiments using
only text data is challenging since the texts are often short and in-
formal on social networks (such as Twitter), while the associated
images can provide valuable complementary information. There-
fore, it is beneficial to combine multiple modalities for accurate
sentiment classification, and multimodal sentiment analysis (MSA)
has attracted much attention in recent years [32, 44]. Recent studies
improve MSA by carefully designing various strategies, which can
be categorized into four types: 1) disentangled representation learn-
ing [16, 48], 2) attention-based cross-modal interactions [20, 49, 60],
3) fusion mechanisms [13, 15, 54], and 4) well-designed auxiliary
tasks [27, 28, 48].

Despite their empirical success, the above studies only consider
the superficial information1 between image and text (see the case
“Aleppo” in Fig. 1), and sometimes it is difficult to predict the true
polarity without their background world knowledge (“Aleppo has
been severely affected by the ongoing Syrian Civil War...” induced
from the large vision-language models). This raises the following
question:

Could world knowledge boost MSA?
Take the test case in Fig. 1 as an example, given a comparative
image at different periods alongside a sentence, it is required to
answer the question: What’s the sentiment polarity of “Aleppo”?
We employ the current state-of-the-art (SOTA) MSA model [60] as
the backbone. As expected, even the SOTA model gives the wrong

1only reflects the surface or literal information without considering their deep (e.g.,
historical and cultural) meaning.

https://github.com/DreamMr/WisdoM
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Aleppo, once a 
thriving and historic 
city, has been 
severely affected by 
the ongoing Syrian 
Civil War…

The sentiment is negative.

LVLM

MSA model

RT @ AHedengren :
# Aleppo before and
after.”

Give you a sentence and image, you can provide historical 
context, important events, and relevant background 
information related to sentence and image.

Contextual Fusion

sentence image context

Context Generation

Contextual Fusion

prompt template

Figure 1: The simple schematic of our method. The sentiment po-
larity of Aleppo is negative, which is difficult to predict directly
using existing methods while our WisdoM predicts correctly
via incorporating context generated by the world knowledge-rich
LVLMs.

prediction (i.e., “neutral” rather than the groundtruth– “negative”)
due to the lack of deeper knowledge of “Aleppo” (which is a city
in Syria, in conjunction with the image, we might infer that the
difference between the before and after of this city is caused by the
Syrian war). Therefore, employing world knowledge is essential.

This motivates us to propose a plug-and-play framework termed
WisdoM to utilize the contextual world knowledge (simply in-
duced from the large vision-language models) to complement the
existing text-image pair with only superficial information. In par-
ticular, our method consists of three main stages: 1 Prompt
Templates Generation, 2 Context Generation, and 3 Con-
textual Fusion. In stage 1, we ask language models (e.g., Chat-
GPT2) to generate prompt templates (See the Prompt Template
“ Give you a sentence and image, you can ... ” in Fig. 1) which are
used to construct instructions for stage 2. Then, we employ the
advanced large vision-language model (LVLM, e.g., LLaVA [30])
in stage 2 to generate the contextual information (See the Con-
text “ Aleppo, ... ongoing Syrian Civil War... ” in Fig. 1) based on
the provided image and sentence. Note that, we refer to this contex-
tual informations as context. Since the derived context often contains
some noise, we further introduce a novel, training-free Contextual
Fusion mechanism in stage 3. This mechanism selectively integrates
world knowledge by identifying hard samples and fusing them with

2https://chat.openai.com

context, thereby enhancing the model’s effectiveness in MSA, par-
ticularly on the hard samples that current models may fail.

We validate our WisdoM on several benchmarks, including Twit-
ter2015, Twitter2017 [52] and MSED [18] over several models:
LLaVA-v1.5 [29], MMICL [57], Qwen-VL [3], AoM [60], and
ALMT [56]. The results across diverse granularities of MSA tasks
consistently demonstrate that our approach has substantial improve-
ments (on average +2.2% in terms of F1 score) over the state-of-the-
art approaches.

To summarize, our main contributions are:

• We propose a plug-in framework WisdoM , which leverages
LVLM to generate explicit contextual world knowledge, to
enhance multimodal sentiment analysis.

• To achieve wise knowledge fusion, we introduce a novel
contextual fusion mechanism to mitigate the impact of noise
in the context.

• We conduct extensive analyses and provide some insights on
when and why our method works.

2 Related Work
2.1 Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA), diverging from conven-
tional text-based approaches [17], incorporates diverse modalities
(e.g., image) to enhance sentiment classification accuracy [38]. Nu-
merous advanced models have been proposed, covering different
levels of granularity, such as sentence and aspect:
Sentence-Level MSA. Zhao et al. [58] explore image-text correla-
tions in movie reviews. Li et al. [25] propose a ConvTransformer,
blending Transformer [39] and CNN technologies for sentiment anal-
ysis. Das and Singh [7] propose a multi-stage multimodal method
for the Assamese language, leveraging both text and images. Zhang
et al. [56] present an advanced model, ALMT, enhancing multimodal
analysis focusing on language-guided features to handle irrelevant
or conflicting data across different modalities.
Aspect-Level MSA. Yu and Jiang [52] introduce TomBERT, an
aspect-oriented multimodal BERT model using annotated tweet
datasets. Khan and Fu [21] propose a two-stream model combin-
ing an object-aware transformer with non-autoregressive genera-
tion [9, 47] for image translation. Zhou et al. [60] present AoM, an
aspect-oriented network aimed at reducing distractions in complex
image-text interactions.

Although existing approaches relying on sophisticated techniques
have achieved remarkable performance in MSA, their limitation
lies in relying on superficial information, without incorporating
contextual world knowledge.

2.2 Large Vision-Language Models
Large Vision-Language Models (LVLMs) are becoming a fundamen-
tal tool for solving general tasks [1, 4, 6, 11, 24, 30, 40, 51, 57, 61].
Liu et al. [29] introduce LLaVA, integrating the CLIP ViT-L/14 vi-
sual encoder [10] with Vicuna large language model via a projection
matrix and two-stage instruction tuning. Zhao et al. [57] propose
MMICL to improve LVLMs handling of multi-modal prompts from
model and data perspectives. Bai et al. [3] introduce Qwen-VL which
is designed to perceive and understand both texts and images.

https://chat.openai.com
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Here, we leverage LVLMs to enhance multimodal sentiment anal-
ysis by generating relevant world knowledge. Additionally, we intro-
duce a new training-free module named Contextual Fusion, designed
to minimize noise in the context.

2.3 Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) improves Large Language
Models (LLMs) by adding retrieved text, enhancing performance
in knowledge-based tasks [12, 14]. Traditional RAG [23], or Naive
RAG, helps in generation but struggles with inconsistent retrieval
quality, inaccurate responses, and integrating retrieved context. Ad-
vanced methods like DSP [22] enhance context interaction between
LLMs and retrieval models, and PKG [31] enables LLMs to access
pertinent information for complex tasks without training.

The working mechanism of our WisdoM is similar to RAG, but
different in the following aspects: ① WisdoM utilizes LVLM to
generate world knowledge to provide coherent and accurate context
rather than retrieval, ② WisdoM incorporates a contextual fusion
mechanism to diminish noise within the context. For additional
experimental analysis and discussion, please refer to § 4.4.3.

3 Methodology
3.1 Preliminary
We first describe the notation of the MSA, then review two typical
frameworks for modelling the MSA tasks, where we experiment
with our schema upon them: task-specific framework [56, 60] and
general-purpose framework [3, 29, 57].
Notation. Let M be a set of multimodal samples. Each sample
𝑚𝑖 ∈ M consists of a sentence 𝑠𝑖 and image 𝑣𝑖 . For aspect-level
MSA tasks, there are several aspects 𝑎𝑖 which is a subsequence
of 𝑠𝑖 , i.e., 𝑎𝑖 ∈ 𝑠𝑖 . We denote 𝑓 (·) as the sentiment classifier. The
output of 𝑓 (·) is the sentiment polarity 𝑦𝑖 ∈ {negative, neutral,
positive}, with corresponding predicted probability denoted as 𝑃𝑖 =
{𝑝𝑛𝑒𝑔

𝑖
, 𝑝𝑛𝑒𝑢

𝑖
, 𝑝

𝑝𝑜𝑠

𝑖
}.

Task-Specific Framework. For aspect-level MSA tasks, the goal is
to predict the sentiment polarity 𝑦𝑖 and probability 𝑃𝑖 for the specific
aspect 𝑎𝑖 conditioned on the (𝑣𝑖 , 𝑠𝑖 ), i.e., (𝑦𝑖 , 𝑃𝑖 ) = 𝑓 (𝑣𝑖 , 𝑠𝑖 , 𝑎𝑖 ). For
sentence-level MSA tasks, the 𝑦𝑖 and 𝑃𝑖 are predicted by sentence 𝑠𝑖
alongside the image 𝑣𝑖 , i.e., (𝑦𝑖 , 𝑃𝑖 ) = 𝑓 (𝑣𝑖 , 𝑠𝑖 ).
General-Purpose Framework. To verify that our WisdoM works
well on arbitrary architectures, we also apply WisdoM to general-
purpose LVLMs. We follow Wang et al. [45] to construct the task
instructions 𝐼𝑎𝑠𝑝𝑒𝑐𝑡 and 𝐼𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 for each task to elicit its ability to
the corresponding task. The task instructions are presented as single-
choice questions with well-formatted options (shown in Table 1).
For each choice of a question, we compute the likelihood 𝑃𝑖 that
LVLM generates the content of this choice based on the given ques-
tion. The choice with the highest probability is then selected as the
prediction 𝑦𝑖 . The LVLMs can be seen as a sentiment classifier 𝑓 (·).
Thus, the aspect-level task and sentence-level task can be formulated
as (𝑦𝑖 , 𝑃𝑖 ) = 𝑓 (𝐼𝑎𝑠𝑝𝑒𝑐𝑡 , 𝑣𝑖 , 𝑠𝑖 , 𝑎𝑖 ) and (𝑦𝑖 , 𝑃𝑖 ) = 𝑓 (𝐼𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 , 𝑣𝑖 , 𝑠𝑖 )
respectively.

3.2 WisdoM
In this part, we first provide a comprehensive overview of our
method, and then introduce it in detail.

Table 1: Template of task instruction. NOTE: “[sentence]” and
“[aspect]” are placeholders meant to be replaced with specific
sentence and aspect from the dataset.

Aspect-Level Taks Instruction 𝐼𝑎𝑠𝑝𝑒𝑐𝑡

Sentence: [sentence] Use the image as a visual aids to help you
answer the question. What is the sentiment polarity of the aspect
[aspect] in this sentence?
A). positive
B). neutral
C). negative
Answer with the option’s letter from the given choices directly.

Sentence-Level Taks Instruction 𝐼𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

Sentence: [sentence] Use the image as a visual aids to help you
answer the question. Given the sentence and image, what is the
sentiment conveyed?
A). positive
B). neutral
C). negative
Answer with the option’s letter from the given choices directly.

3.2.1 Overview. Fig. 2 illustrates the overview of our method
following three stages. In the 1 Prompt Templates Generation,
we use large language models, particularly ChatGPT, to provide
prompt templates. These prompt templates are fed into the LVLM
with sentence 𝑠𝑖 and image 𝑣𝑖 to generate context, also called the 2

Context Generation. During 3 Contextual Fusion, we first compute
the confidence, determining if the sample is uncertain (referred to as
a hard sample). For hard samples, we fuse the predicted probability
𝑃𝑖 with 𝑃𝑖 which is obtained by incorporating context. Otherwise,
we use 𝑃𝑖 as the final prediction.

3.2.2 Stage 1: Prompt Templates Generation. The main pur-
pose of this stage is to design the prompt templates used to generate
the context, so that the LVLM can better understand our intention
and thus provide a more comprehensive contextual world knowledge.
Inspired by [19, 59], we ask ChatGPT to provide the appropriate
prompt templates. The prompt templates provided by ChatGPT
consider world knowledge from different perspectives, including
historical, social, cultural, etc. We insert a “Sentence: [x]” at the end
of the prompt template to place the input sentence 𝑠𝑖 . The example
of prompt templates are shown in Supp. A.4.

3.2.3 Stage 2: Context Generation. In the context generation
stage, prompt templates in 1 are used to generate context that
explicitly incorporates world knowledge based on given the image
𝑣𝑖 and sentence 𝑠𝑖 by LVLMs [30, 51]. Specifically, we construct
instruction by replacing the “[x]” in the prompt template with the
sentence 𝑠𝑖 . In addition, different LVLMs require a special token to
indicate where the image 𝑣𝑖 is inserted. Taking LLaVA [30] as an
example, we insert a special token “<image>” at the beginning of
the instruction.

3.2.4 Stage 3: Contextual Fusion. We use the sentence-level
task as an example. After obtaining the context, we can intuitively
use predicted sentiment polarity𝑦𝑖 obtained by incorporating context,
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Provide prompts or templates 
that can make you provide more 
world knowledge about image 
and corresponding sentence…

1. Describe the image, and provide any accompanying text. You can analyze ...

2. Give you an image and text, you can provide historical context, important … 
3. Share an image and related text, and you can provide an interpretation of …

Stage 1: Prompt Templates Generation

Stage 2: Context Generation

The two images highlight the devastating impact of the war on the city and 
its residents. Aleppo, once a thriving and historic city, has been severely 
affected by the ongoing Syrian Civil War. The conflict has led to the 
destruction of infrastructure, displacement of residents, and loss of life… 

LVLMGive you an image and sentence, you
can provide historical context,
important... Sentence: “ R T @
AHedengren : # Aleppo before and
after.”

Stage 3: Contextual Fusion

Sentence: “RT @ AHedengren : # 
Aleppo before and after.”

Sentence: “RT @ AHedengren : # 
Aleppo before and after.” Context:
“The two images highlights the
devastating impact of the war …”

MSA
model

Negative: 0.4
Neutral: 0.5
Positive: 0.1

Negative: 0.7
Neutral: 0.2
Positive: 0.1

Negative: 0.5
Neutral: 0.4
Positive: 0.1

Prompt templates

Context

MSA
model

Contextual 
Fusion

Figure 2: Detailed illustration of our proposed schema WisdoM with a running example. 1 Using ChatGPT to provide prompt
templates. 2 We then prompt LVLMs to generate context using the prompt templates with image and sentence. 3 A training-free
mechanism Contextual Fusion mitigates the noise in the context.

i.e., (𝑦𝑖 , 𝑃𝑖 ) = 𝑓 (𝑣𝑖 , 𝑠𝑖 , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡). However, the context may contain
irrelevant information that could disturb performance. Therefore, we
first determine hard samples and then fuse the 𝑃𝑖 and 𝑃𝑖 in the hard
sample.
Determining the Hard Samples. Inspired by Zhang et al. [55], we
find that the ambiguous hard sample is commonly found around
boundary areas of the sentiment polarity (e.g., the boundary areas
of negative and neutral). Therefore, given a sample 𝑚𝑖 , we only
consider the difference 𝛿𝑖 between the highest and the second highest
probabilities to determine whether it is a hard sample:

𝛿𝑖 = 𝑃𝑚𝑎𝑥
𝑖 − 𝑃𝑠𝑒𝑐𝑖 , (1)

where 𝑃𝑚𝑎𝑥
𝑖

and 𝑃𝑠𝑒𝑐
𝑖

represent the highest and second highest prob-
abilities respectively. Then, we denote uncertain threshold 𝛼 to select
samples that do not exceed 𝛼 as hard, i.e., Vℎ𝑎𝑟𝑑 = {𝑚𝑖 |𝛿𝑖 ≤ 𝛼}.
Fusion with Context. Inspired by [26, 35], we take the convex
combinations of 𝑃𝑖 and 𝑃𝑖 to obtain the final prediction 𝑃𝑖 for hard
sample𝑚𝑖 ∈ Vℎ𝑎𝑟𝑑 :

𝑃𝑖 = 𝑃𝑖 + 𝛽 · (𝑃𝑖 − 𝑃𝑖 ), (2)

where 𝛽 is an interpolation coefficient. Intuitively, (𝑃𝑖−𝑃𝑖 ) represents
the information incorporated by context. 𝛽 is used to control the
proportion of information introduced in context. When 𝛽 → 0, the
effect brought by context is completely ignored and vice versa. Note
that, we use (𝑦𝑖 , 𝑃𝑖 ) as the final prediction when 𝑚𝑖 ∉ Vℎ𝑎𝑟𝑑 . We
study the impact of 𝛼 and 𝛽 in § 4.2.

4 Experiments
In this section, we apply WisdoM to aspect-level and sentence-level
MSA tasks to verify its effectiveness and conduct extensive analysis
to better understand the proposed method.

4.1 Experimental Settings
4.1.1 Datasets. For aspect-level tasks, our two benchmark datasets
are Twitter2015 and Twitter2017 [52]. Twitter2015 and Twitter2017
are comprised of multimodal tweets, where each tweet incorporates
textual content, an accompanying image, aspects contained within
the tweet, and the sentiment associated with each aspect. Each as-
pect is assigned a label from the predefined set {negative, neutral,
positive}. For sentence-level tasks, we evaluate our WisdoM on
MSED [18] dataset, containing 9,190 text-image pairs. We show the
statistics of Twitter2015, Twitter2017 and MSED in Supp. A.1.

4.1.2 Models. To demonstrate WisdoM generalizes across ar-
chitectures and sizes, we conduct experiments on several models,
including MMICL (14B) [57], LLaVA-v1.5 (13B) [29], Qwen-VL
(9.6B) [3], ALMT (112.5M) [56], AoM (105M) [60]. The detailed
model cards can be found in Supp. A.2.

4.1.3 Implement Details. In stage 1, we utilize ChatGPT to gen-
erate the prompt templates corresponding to different types of world
knowledge, executing this process only once. For Twitter2015 and
Twitter2017 datasets, we employ the historical prompt template (see
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(a) LLaVA-v1.5 w/ WisdoM (b) Qwen-VL w/ WisdoM

(c) MMICL w/ WisdoM (d) AoM w/ WisdoM

Figure 3: F1 score on Twitter2015 dev set with different hyper
parameters upon several models. The condition 𝛽 = 0 implies
that the context is completely ignored.

Supp. A.4) to generate context. For MSED dataset, the scientific
prompt template is utilized for context generation.

4.1.4 Evaluation Metrics. For aspect-level tasks, we use Accu-
racy (Acc.) and macro-F1 (Mac-F1) following the previous stud-
ies [20, 21, 28, 60]. For the sentence-level task, we adopt precision,
recall, and macro-F1 (Mac-F1) as evaluation metrics. Following
previous work [20], we also perform the paired t-test using scipy3

to test the significance of the difference between our WisdoM and
baseline, with a default significant level of 0.05. To avoid large vari-
ances in the final results due to differences in context, we set the
temperature to 0.2 for LVLM in stage 2. Additionally, we conduct
each experiment five times and report the average of 5 runs for all
our experimental results.

4.2 Hyper-parameter Selection
In stage 3, Contextual fusion has two major hyper-parameters in-
terpolation coefficient 𝛽 and uncertain threshold 𝛼 . To investigate
whether our approach is robust to different hyper-parameters, we
employ grid search to study the effect of hyper-parameters on Twit-
ter2015 dev set. As shown in Fig. 3, we find that: 1) although the
performance varies with hyper-parameters, the extreme values of
the results are not significant. 2) 𝛼 and 𝛽 values within the range
of [0.3, 0.6] demonstrate strong performance among various mod-
els. 3) Excessive values of 𝛽 result in performance degradation. We
conjecture that this decline may be caused by introducing excessive
noise within the context. To reduce the redundant adjustment with
hyper-parameters, we set 𝛼 = 0.3 and select the optimal value of 𝛽
on the dev set for evaluation.

3https://www.scipy.org/

Table 2: Comparison of our method (upon several advanced mod-
els) with existing works on Twitter2015 and 2017 benchmarks.
The highest results are highlighted in bold, and * indicates the
reproduced results. ± are standard deviations across five runs.

Method Twitter2015 Twitter2017

Acc. Mac-F1 Acc. Mac-F1
Res-MGAN [21] 71.7 63.9 66.4 63.0
Res-BERT+BL [21] 75.0 69.2 69.2 66.5
mPBERT(CLS) [21] 75.8 71.1 68.8 67.1
ESAFN [53] 73.4 67.4 67.8 64.2
TomBERT [52] 77.2 71.8 70.3 68.0
CapTrBERT [21] 77.9 73.9 72.3 70.2
JML [20] 78.7 - 72.7 -
VLP-MABSA [28] 78.6 73.8 73.8 71.8
CMMT [49] 77.9 - 73.8 -
MMICL [57]* 76.0 72.7 74.1 74.0

-w/ WisdoM 77.3±0.1 74.2±0.2 75.7±0.1 75.7±0.1
LLaVA-v1.5 [29]* 77.9 74.3 74.6 74.3

-w/ WisdoM 78.9±0.3 75.6±0.3 75.6±0.4 75.3±0.3
Qwen-VL [3]* 75.0 70.0 71.9 71.2

-w/ WisdoM 76.2±0.1 71.3±0.2 73.8±0.2 72.8±0.3
AoM [60]* 80.0 75.2 75.9 74.5

-w/ WisdoM 81.5±0.1 78.1±0.2 77.6±0.4 76.8±0.2

4.3 Main Results
4.3.1 Results of Aspect-Level MSA Task. We compare against
advanced aspect-level MSA methods on Twitter2015 and Twit-
ter2017, and report the results on Table 2. We show that our WisdoM
achieves consistent and significant improvement on four models
across two datasets. The WisdoM brings max 2.9% and 2.3% F1-
gains on Twitter2015 and Twitter2017 respectively, showing that our
method has a clear advantage. Besides, we perform the paired t-test
to assess the significance of the improvements made by our WisdoM
over the baseline. The results demonstrate that our improvement is
statistically significant with 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05.

4.3.2 Results of Sentence-Level MSA Task. As shown in
Table 3, notably, our WisdoM upon Qwen-VL achieves the new
SOTA F1 score: 91.8%, outperforming Qwen-VL (89.4%), LLaVA-
v1.5 (88.8%), MMICL (86.2%) and ALMT (83.7%), consistently.
The most significant improvement is achieved on ALMT (112.5M),
where we bring an encouragingly 6.3% F1 gain, suggesting that
contextual world knowledge is particularly crucial for small mod-
els in MSA. Besides, our WisdoM is statistically significant with
𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05 when comparing with baseline.

4.4 Ablation Study
4.4.1 Impact of different modules. To better understand the
role of each module in our WisdoM, Table 4 presents the ablation
results of the gradual addition of different components. Compared
with the baselines (MMICL and LLaVA-v1.5), only adding context
results in a slight performance degradation (-0.3% average F1 score),
while with the help of our proposed Context Fusion mechanism, we
achieve a consistent and significant improvement (+1.8% average
F1 score). Through (error) case studies in Supp. C, we find that
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Table 3: Performance of applying our WisdoM to advanced mod-
els on MSED benchmark, with reference results from existing
works. The best results are bolded, and the * denotes the repro-
duced results. ± are standard deviations across five runs.

Method MSED
Precision Recall Mac-F1

DCNN [18] 59.3 53.0 51.2
BiLSTM [18] 78.4 78.8 78.6
DCNN+AlexNet [18] 71.0 70.1 70.3
DCNN+ResNet [18] 74.7 74.7 74.6
BiLSTM+AlexNet [18] 78.7 79.2 78.9
BiLSTM+ResNet [18] 75.9 75.3 75.3
BERT+AlexNet [18] 83.2 83.1 83.2
Multimodal Transformer [18] 83.6 83.5 83.5
ALMT [56]* 83.7 84.0 83.7

-w/ WisdoM 89.9±0.7 90.1±0.9 90.0±0.8
MMICL [57]* 86.2 86.6 86.2

-w/ WisdoM 89.9±0.3 88.2±0.4 88.9±0.3
LLaVA-v1.5 [29]* 89.0 88.8 88.8

-w/ WisdoM 90.6±0.1 90.4±0.3 90.5±0.2
Qwen-VL [3]* 90.5 88.9 89.4

-w/ WisdoM 91.8±0.2 91.7±0.2 91.8±0.2

Table 4: Ablation study of context and its wise fusion module.
“CF” denotes our Contextual Fusion. We first only incorporate
“context” and subsequently introduce the “contextual fusion”
module.

Method Twitter2017 MSED Avg.
Acc. Mac-F1 Recall Mac-F1

MMICL
Baseline 74.1 74.1 85.9 86.2 80.1

+ context 72.6 (-1.5) 74.4 (+0.3) 87.6 (+1.7) 86.8 (+0.6) 80.4
+ CF 75.7 (+1.6) 75.7 (+1.6) 89.1 (+3.2) 88.9 (+2.7) 82.4

LLaVA-v1.5
Baseline 74.6 74.3 89.1 88.8 81.7

+ context 73.7 (-0.9) 73.5 (-0.8) 87.8 (-1.3) 87.7 (-1.1) 80.7
+ CF 75.6 (+1.0) 75.3 (+1.0) 90.6 (+1.5) 90.5 (+1.7) 83.0

containing irrelevant information in the original context leads to
bad performance, showing the necessity of further context fusion
mechanism.

4.4.2 How does hand-crafted prompt template differ from
LLM-generated in stage 1? To compare human-crafted prompt
template and LLM-generated prompt template, we employ three
human annotators and ChatGPT to provide prompt templates respec-
tively. We provide the same meta-prompt (“Please provide prompt
template that large vision-language model can generate the his-
torical knowledge based on the image and sentence.”) for human
annotators and ChatGPT to generate prompt templates. The details
of prompt templates can be seen in Supp. A.6. As shown in Table 5,
the results show that LLM-generated consistently outperformed

Table 5: Comparison between hand-crafted templates and LLM-
generated templates on Twitter2015 and Twitter2017. We report
the results of hand-crafted and LLM-generated averaged across
3 separate prompts.

Model Type
Twitter2015 Twitter2017

Acc. Mac-F1 Acc. Mac-F1

MMICL
Hand-crafted 77.2 74.0 75.4 75.3

LLM-generated 77.3 74.6 75.8 75.7

LLaVA-v1.5
Hand-crafted 78.3 75.4 74.8 74.9

LLM-generated 79.6 76.2 75.3 75.2

Qwen-VL
Hand-crafted 77.4 73.1 73.0 72.1

LLM-generated 77.4 73.2 73.3 72.5

AoM
Hand-crafted 81.2 77.9 77.0 76.3

LLM-generated 81.9 78.6 77.2 76.6

Table 6: Comparative results of context generated by Naive RAG,
PKG, and our stage 2. We incorporate the contexts on LLaVA-
v1.5 directly.

Method Twitter2015 Twitter2017

Acc. Mac-F1 Acc. Mac-F1
Naive RAG 75.1 71.0 71.9 70.7
PKG 76.2 72.4 72.8 71.5
Our Context 76.3 72.7 73.7 73.5

hand-crafted across various metrics. Furthermore, the standard de-
viation for hand-crafted templates is 1.1, compared to only 0.3 for
LLM-generated templates. We find that templates provided by hu-
man annotators directly seek historical insights from image and
text, while templates generated by ChatGPT offer deeper analysis,
reflecting important events, significance and background informa-
tion.

4.4.3 How does context generation in stage 2 compare to
that retrieved by RAG-based methods? To further analyse the
effect of context, we compare our context generated in stage 2 with
the document retrieved by Naive RAG [23] and knowledge generated
by PKG [31], collectively termed as “context” for simplicity. The
assessment focuses on the context’s pertinence to a given image 𝑣
and sentence 𝑠, alongside its applicability in MSA tasks. We employ
the LLM-based metric, i.e., LLM-as-a-Judge [5] to quantify the
quality of context. Specifically, we craft a prompt for GPT-4V [36]
to compare our context with that provided by Naive RAG and PKG.
The detailed experimental settings can be found in Supp. A.7. As
shown in Fig. 4, our context significantly beats the Naive RAG
and PKG counterparts, demonstrating its superiority. We provide
examples of context provided by different methods in Supp. C.1.
Besides analyzing the contexts’ pertinence of different methods,
we report their downstream performance on MSA tasks in Table 6.
Clearly, the MSA performance with our context is the best. The
results above illustrate that our method can provide more precise
context, thus bringing better MSA performance.
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Figure 4: Comparative winning rates of Our Context v.s. RAG-based methods on Twitter2015 and Twitter2017 benchmarks. We can
see that our contexts are better than the knowledge provided by (Naive) RAG and PKG.

Table 7: Ablation study of different fusion strategies. “JS” de-
notes Jensen-Shannon divergence. “CF” denotes our Contextual
Fusion.

Method Twitter2015 Avg.Acc. Mac-F1
AoM 80.0 75.2 77.6

-w/ Average 80.3 (+0.3) 70.7 (-4.5) 75.5 (-2.1)
-w/ Max 80.6 (+0.6) 76.8 (+1.6) 78.7 (+1.1)
-w/ JS 80.8 (+0.8) 77.4 (+2.2) 79.1 (+1.5)
-w/ CXMI 79.7 (-0.3) 75.7 (+0.5) 77.7 (+0.1)
-w/ CF 81.5 (+1.5) 78.1 (+2.9) 79.8 (+2.2)

MMICL 76.0 72.7 74.4
-w/ Average 75.5 (-0.5) 72.3 (-0.4) 73.9 (-0.5)
-w/ Max 75.4 (-0.6) 72.2 (-0.5) 73.8 (-0.6)
-w/ JS 77.1 (+1.1) 73.9 (+1.2) 75.5 (+1.1)
-w/ CXMI 76.3 (+0.3) 73.4 (+0.7) 74.8 (+0.4)
-w/ CF 77.3 (+1.3) 74.2 (+1.5) 75.8 (+1.4)

4.4.4 How does the Contextual Fusion module compare
to other fusion strategies? In Table 7, we explore different fu-
sion strategies, including 𝑚𝑒𝑎𝑛(𝑃𝑖 , 𝑃𝑖 ) (“Average”), 𝑚𝑎𝑥 (𝑃𝑖 , 𝑃𝑖 )
(“Max”), Jensen-Shannon divergence [34] (“JS”), conditional cross-
mutual information 𝑓𝑐𝑥𝑚𝑖 [43] (“CXMI”), and our Context Fusion
(“CF”). For JS, we calculate the JS divergence of 𝑃𝑖 with the uniform
distribution to serve as the fusion weight, i.e., 𝛽. As for CXMI, if
𝑓𝑐𝑥𝑚𝑖 > 1.14, we adopt (𝑦𝑖 , 𝑃𝑖 ) as our ultimate prediction, otherwise,
we use (𝑦𝑖 , 𝑃𝑖 ) as the final prediction. The results show that our Con-
textual Fusion module performs the best among all competitive
alternatives, confirming its effectiveness.

4.5 Scalability of WisdoM
Our plug-in method is data- and model-agnostic, and therefore, it
is expected to be highly scalable. Here we scale our WisdoM up to
different model sizes and data volumes.

4.5.1 Performance on Different Model Sizes. We experiment
with scaling the model size to see if there are ramifications when
operating at a larger scale. Fig. 5 (a) reveals that the performance
increases as the LVLM size increases. In addition, we find that as

4In preliminary study, we grid-searched values ranging from 0.5 to 2.0, and 1.1 performs
best on the dev set, thus leaving as our default setting.

the size of the model increased, the performance gains became
more pronounced.

4.5.2 Performance on different Data Volumes. We conduct ex-
periments on different ratios of training data to verify the robustness
of WisdoM. As shown in Fig. 5 (b), we find that our WisdoM can
consistently bring improvement, even in scenarios with extremely
limited training data.

+0.9 +1.4 +1.0 +1.3

+1.0

+1.3

(a) Model scaling (b) Data scaling

+5.6

Figure 5: Performance of scaling WisdoM on Twitter2015 with
different a) model sizes and b) data scales.

4.6 Exploring Contexts Derived from Various
LVLMs

To explore the relationship between context and LVLMs capabil-
ity, we conduct experiments on AoM using contexts derived from
mPLUG-Owl2 [51] (8.2B) and LLaVA-v1.5 (13B). As depicted in
Table 8, the results show that the stronger the capability of LVLMs,
the more accurate and helpful the generated context is for MSA.

Table 8: Comparison of contexts derived from different LVLMs.
“Context𝑚” and “Context𝐿” represent the context derived from
mPlUG-Owl2 and LLaVA-v1.5 respectively.

Method Twitter2015 Twitter2017

Acc. Mac-F1 Acc. Mac-F1
mPLUG-Owl2 76.8 72.3 74.2 73.0
LLaVA-v1.5 77.9 74.3 74.6 74.3
AoM 80.0 75.2 75.9 74.5

-w/ Context𝑚 81.2 77.8 76.4 75.2
-w/ Context𝐿 81.5 78.1 77.6 76.8
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Figure 6: Effects of different types of world knowledge on Politi-
cian Twitter Dataset. We analyse the effect of different types of
world knowledge by applying WisdoM to AoM. NOTE: “base-
line” represents AoM which retrains on Politician Twitter train-
ing set.

Figure 7: Comparison of context (𝑆𝑐→𝑝 ) and input’s (𝑆𝑖→𝑝 ) cor-
relation to the final prediction across layers in LLaVA-v1.5 on
Twitter2015. High score means a strong correlation with final
decision-making.

(a) AoM (b) LLaVA-v1.5

Figure 8: Visualizing of error rate for hard samples (𝛿 ≤ 0.3) on
Twitter2015 benchmark.

4.7 When and Why Does Our Method Work?
To better understand when and why our method works, we conduct
extensive analysis to provide the following insights:

World Knowledge Enhances MSA, while Domain-related Knowl-
edge is more Helpful. For better understanding the effects of differ-
ent types of world knowledge, we conduct experiment with AoM
on the Politician Twitter dataset [50], covering 8 perspectives of
world knowledge (the prompt templates can be found in Supp. A.4).
The Politician Twitter dataset is derived from the Twitter2015 and
Twitter2017 datasets, segregating all multimodal tweets that mention
politicians like Barack Obama, Donald Trump, and Hillary Clinton
into the test set, and randomly distributing the remaining tweets into
training and dev set. The detailed statistics of the Politician dataset
is shown in Supp. A.1. It is notable that we retrain the AoM on the
Politician Twitter dataset to avoid data leakage. Fig. 6 shows that 1)
nearly all types of extra knowledge enhance the MSA performance,
2) political knowledge significantly enhances MSA on Politician
Twitter dataset (brings 3.48% improvements on F1 score).
Context is Dominant for Prediction. To draw a clearer picture of the
information flow for MSA, we calculate 𝑆𝑐→𝑝 and 𝑆𝑖→𝑝 to represent
the mean significance of information flow [37, 41] from context
(c) and original input (i) to the prediction labels (p) respectively
(detailed in Supp. A.8). Fig. 7 reveals that the significance of the
information flow from context to the prediction label is remarkably
higher than its input counterpart, suggesting that context outweighs
image and sentence when making the final prediction.
WisdoM Effectively Reduces the Uncertainty of Hard Samples. To
further explore how our WisdoM affects the hard samples, we visu-
alize the error rate within high entropy in Fig. 8. After integrating
WisdoM, the error rate is significantly decreased compared with the
baseline (AoM and LLaVA-v1.5), demonstrating that our WisdoM
effectively reduces the uncertainty of hard samples and improves
performance. We hypothesize that part of such eliminated informa-
tion may be multimodal hallucination [42], while another part may
be due to the model’s inherent knowledge gaps [2]. Both aspects
will be investigated in our future work.

5 Conclusion
In this paper, we propose a simple yet effective plug-in framework
WisdoM to enhance the ability of multimodal sentiment analysis.
Our WisdoM contains three stages: Prompt Templates Generation,
Context Generation, and Contextual Fusion. We empirically demon-
strated the effectiveness and universality of the WisdoM on several
widely-used benchmarks. From the results, we mainly conclude that:
(1) World knowledge can improve MSA, and domain-related knowl-
edge can be very beneficial; (2) A more precise context is more
helpful for MSA; (3) World knowledge is particularly desirable for
hard samples. In the future, we will develop adaptive mechanisms to
dynamically integrate world knowledge into MSA models.

LIMITATIONS
Our work has potential limitations. We use LVLMs to generate con-
text, but this can lead to hallucinations and incorrect MSA model
results. Additionally, our WisdoM relies on LVLMs’ internal world
knowledge, which requires periodic updates over time. In future
work, we aim to investigate adaptive mechanisms for dynamic inte-
gration of world knowledge into MSA models.
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