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Deep learning virtual screening with active signature learning improves the
identification of small-molecule modulators of complex phenotypes
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Abstract
Phenotypic drug discovery holds promise for de-
veloping new medicines but is limited by through-
put and scalability. Current application of AI
to improve screening efficiency relied on single-
use models trained on a phenotype-specific high
throughput screen. We introduce a generalizable
deep learning framework leveraging omics data
to prioritize compounds for virtually any pheno-
type using a single model. We also developed a
novel closed-loop active signature learning pro-
cedure to optimize the omics signature associ-
ated with a target phenotype. We trained our
model on over 425,000 perturbation signatures
and validated it using a new 1.2M-cell transcrip-
tomics benchmark dataset profiling 88 perturba-
tions across 10 cell lines. Our approach outper-
formed published methods by 15-80% and led to
a 16-19X increase in productivity in two hematol-
ogy phenotypic discovery campaigns, providing
the first experimental validation that deep learning
and omics data can improve the productivity of
phenotypic discovery in a real-world setting. We
next demonstrated the ability of our active signa-
ture learning algorithm to refine hit compound pri-
oritization and gain mechanistic insights through
an integrative lab-in-the-loop framework. This
approach enables rational drug design targeting
complex phenotypes, ushering in a new era of
drug discovery.

1. Introduction
Despite steadily increasing spending in therapeutics R&D
over the past 20 years (Austin & Hayford, 2021), overall
clinical trial success rates have remained stagnant, with the
percentage of Phase 1 compounds reaching FDA approval
estimated to be between 7.9% and 13.8 (Wong et al., 2019;
Hay et al., 2014; Thomas et al., 2021). As a result, the R&D
expenditure of large pharmaceutical companies per newly
marketed drug has soared to $6.7B in recent years (Schuh-
macher et al., 2023). Although several causes have been
suggested (Scannell et al., 2012), a recurring culprit is the re-

ductionist target-centric drug discovery model (Zheng et al.,
2013; Kell, 2013; Moffat et al., 2017), which seeks to iden-
tify a single protein implicated in a disease process and then
to screen for compounds that bind that protein selectively.
Despite target-based discovery being the dominant paradigm
for the past 30 years of drug discovery, retrospective anal-
ysis shows that more than 65% of all approved medicines
were discovered via phenotypic observations, even during
years when the target-based model was most popular (Sadri,
2023). This suggests that shifting focus to improving the
efficiency of the phenotypic paradigm might help address
the decades-long productivity crisis in drug discovery.

The critical difference between phenotypic discovery and
the target-based approach is that while a target-based effort
focuses on modulating the activity of a single protein, the
phenotypic approach aims to modulate the behavior of an in
vitro or in vivo system that accurately models the disease
biology. However, there is an inherent tradeoff between the
complexity of an assay, therefore its clinical translatability,
and its scalability (Moffat et al., 2017). Given the lack of
methodologies to accurately predict the phenotypic activity
of the 1060 possible drug-like compounds, many phenotypic
discovery programs sacrifice complexity for scale and resort
to high-throughput screens (HTS) of millions of compounds
against simplistic phenotypes. This reductionist brute-force
bias has been identified as a critical inefficiency in drug
discovery (Scannell et al., 2012; Lowe, 2012). Higher-
resolution assays that measure complex information-rich
phenotypes in disease-relevant cellular systems, such as a
molecular signature of the disease process can enhance clin-
ical translation (Theodoris et al., 2021). These assays have
lower throughput and are more expensive. Without tools to
accurately prioritize compounds to screen, deploying these
more realistic, information-rich assays and models to bridge
the translational gap is unfeasible.

For over 25 years, virtual screening has been to improve
the productivity of target-based discovery by predicting the
binding of individual molecules to protein structures (Wal-
ters et al., 1998). Seeking to generalize this approach, sev-
eral groups have proposed frameworks to apply AI and ma-
chine learning to accelerate phenotypic discovery. The first
generation of AI tools to predict phenotypes were models
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designed to predict phenotypic activity from chemical struc-
tures directly trained on readouts from an initial HTS. This
approach has led to the discovery of novel antibiotics and
senolytics (Stokes et al., 2020; Liu et al., 2023; Wong et al.,
2023). While these models improve hit rates compared
to traditional brute-force screening methods, they necessi-
tate retraining with large datasets for each new phenotype
targeted.

To overcome this limitation, researchers have proposed
leveraging omics signatures as proxies for phenotypic out-
comes. In this setting, compounds are prioritized based on
the probability they will induce a gene expression profile
associated with the desired phenotype. An initial imple-
mentation of this approach showed promise for phenotypic
screening in mice (Zhu et al., 2021). However, whether
these predictions yield increased productivity compared to
traditional brute-force screening has not been systematically
evaluated. Furthermore, all current approaches to prioritize
compounds based on gene expression profiles use statistical
heuristics originally designed for other bioinformatics appli-
cations like gene set enrichment to rank compounds (Sub-
ramanian et al., 2017; Chan et al., 2019; He et al., 2023).
Finally, the success of omics-based prediction depends on
the input gene expression profile being sufficient to induce
the target phenotype. Current approaches infer gene expres-
sion signatures from correlative associations, which may
not translate to the in vitro assay used to model the disease.

Here, we introduce the first closed-loop framework for
omics-based prediction of complex phenotypes using ma-
chine learning and lab-in-the-loop feedback to improve the
productivity of phenotypic discovery. Rather than rank
compounds using statistical heuristics, we developed the
first deep learning architecture optimized to directly pre-
dict whether an input gene expression profile is likely to
be induced by any of a set of compounds, such as a library
of purchasable chemical matter. We then performed the
first comprehensive cross-tissue benchmark of compound
ranking algorithms enabled by a new 1.2M cell benchmark-
ing dataset comprising 88 chemical perturbations in 10 cell
lines, which demonstrated our neural network architecture
achieves state-of-the-art performance across contexts. We
then performed the first systematic evaluation of omics-
based predictions for two real-world phenotypic discovery
campaigns in hematology, demonstrating an order of magni-
tude increase in productivity compared to brute-force screen-
ing. We finally introduce the first closed-loop feedback
mechanism for omics-based phenotypic prediction by inte-
grating paired phenotypic and transcriptomic measurements
to refine our target input signature. We use this feedback
to characterize why the model works in some cases and
not others, and we show that our refined target signature
is twice as effective at prioritizing molecules that modu-
late the phenotype of interest. Collectively, our framework

enables greater productivity in phenotypic drug discovery,
empowering the use of more representative and translatable
phenotypes and cellular models.

2. Results
2.1. A closed-loop predictive framework to enable

phenotypic discovery using deep learning

To enable greater productivity in drug discovery using com-
plex clinically translatable phenotypic assays, we propose
a closed-loop framework to nominate compounds likely to
modulate a phenotype of interest (Figure 1). Step 1 of this
framework starts with the identification of a target omics sig-
nature from clinical datasets and calibrated to a phenotypic
assay. Due to the abundance of single-cell transcriptomics
data, we focus on transcriptional signatures, but this frame-
work could be applied to other omics modalities. In Step
2, a model trained on many observations of chemically in-
duced omics signatures is used to predict compounds that
will induce the desired omics signature and thereby is pre-
dicted to effect a change in phenotype. In Step 3, a limited
number of these compounds are screened experimentally
for phenotypic activity and hits are identified and validated.
These hits are the primary output and can be used for down-
stream development. In Step 4, we introduce a closed-loop
feedback mechanism using joint transcriptional and pheno-
typic measurements of hit and non-hit compounds from the
previous screen. This enables refinement of the input signa-
ture moving beyond associated changes in transcription post
hoc from observational data and identifying causal changes
in gene expression derived from perturbation experiments.
This also provides information about why some model pre-
dictions failed to validate and about the mechanisms by
which hit compounds induce a change in phenotype, which
enables downstream drug development.

The core of our phenotypic discovery framework is a deep
learning model to identify compounds predicted to induce
a change in transcriptional measurements linked to a clin-
ically relevant phenotype (Figure 1). We formalize this
task as a multiclass regression problem where the goal is to
predict the probability that each compound in a reference
library could induce each phenotype-associated signature.
To optimize a model capable of this task across contexts,
we selected the the Connectivity Map (CMap) as a training
data set (Subramanian et al., 2017). This data set comprises
mRNA perturbation signatures for 978 landmark genes fol-
lowing the treatment of a diversity of compounds (Figure 2).
We filtered the full CMap dataset to 425,242 transcriptional
signatures associated with 9,597 small molecules measured
at multiple doses and in numerous cell lines. Our trained
model, which we named DrugReflector, is an ensemble
of identical multi-layer perceptron (MLP) classifiers each
trained and validated on different sets of 3-fold replicate
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Deep learning virtual screening with active signature learning

Figure 1. A modular and generalizable framework to enable phenotypic discovery using omics-level deep learning models. (1) The first
step in this framework is to identify a target omics signature based on a combination of clinical data and/or data from an information-rich
clinically translatable phenotypic assay. (2) To identify compounds for screening, a deep learning model trained on perturbation signatures
(such as the LINCS Connectivity Map) predicts which compounds will likely induce the target signature. (3) A limited number of
compounds are then experimentally screened, compounds that induce the desired phenotype are identified, and hits are validated in
multiple donors. Validated hits are the output of this discovery stage and may be used for downstream pre-clinical development. (4) The
signature is iteratively refined by the lab-in-the-loop use of paired transcriptomic and phenotypic measurements, thus allowing better
understanding of the mechanisms by which chemical perturbations alter target phenotypes.

splits of the training dataset using focal loss (Lin et al.,
2017)

FocalLoss(pt) = �(1� pt)
� log(pt)

where pt is the probability of the true class and � is a tunable
focusing parameter to emphasize hard-to-classify labels,
aimed to increase the recall for compounds that may be
observed in only a few samples or have subtle differential
expression patterns.

To evaluate the performance of our model, we benchmarked
DrugReflector against four approaches to match gene sig-
natures to compounds, using top 1% compound recall as a
measure of performance. The recall score is 1 if the correct
compound label appears in the top 1% of all compounds
predicted by the model, else 0, when the transcriptional
signature of the compound is given to the model. This score

is then averaged across observations for that compound in
the dataset and then averaged across compounds. The com-
parison models include two classical baseline methods, a
k-nearest neighbor (kNN) classifier and a logistic regression
model. Additionally, we included two approaches that have
been used to match query gene signatures to CMap pertur-
bation signatures and for cell-type specific drug repurpos-
ing namely gene set enrichment analysis (GSEA; SigCom
LINCS implementation) and Dr. Insight (Evangelista et al.,
2022; Chan et al., 2019).

Our benchmarking covered three independent data sets
(Figure 2, Supplementary Figure 1). First, we evalu-
ated and compared our model on the CMap Touchstone
dataset, comprising 1000 compounds tested in 9 cell lines.
Our results show that DrugReflector outperformed all four
algorithms, surpassing Dr. Insight by 80% and GSEA by
15% (Figure 2c). Second, we compared the five algorithms
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on the sciPlex3 dataset of 188 compounds measured in
three CMap cancer cell lines (Srivatsan et al., 2020), where
DrugReflector again outperformed all algorithms and out-
performed Dr. Insight and GSEA by 39% and 51% on
average, respectively. Finally, to examine extendibility to
cell contexts not well-represented in LINCS, we generated a
new scRNA-seq dataset profiling 88 compounds from CMap
tested in each of 6 cancer cell lines and 4 primary cell lines,
resulting in 1,737 scRNA samples with a total of 1.26M
cells (Figure 2). The cancer cell lines are present in CMap,
but the primary cell lines are either absent in the dataset or
only available for a few compounds. Here, we again found
that DrugReflector outperformed all algorithms, achieving
an average 78% increase in recall compared with Dr. Insight
and a 27% increase compared with GSEA.

2.2. Developing a complex phenotypic assay with a high
clinical translatability

To demonstrate the potential of our framework to identify
phenotypically active compounds, we systematically applied
our framework to 2 different target phenotypes in human
hematopoiesis. Hematopoiesis is an essential developmental
process, and aberrant hematopoiesis can lead to numerous
proliferative disorders and cytopenias. In particular, we
focused our screens on modulating lineage commitment
in human CD34+ hematopoietic stem and progenitor cells
(HSPCs) because of their high clinical translatability. HSPC
transplantation treats various blood cancers and other hema-
tological disorders including severe anemias. In addition,
HSPCs can be used as a model system to study hematolog-
ical disorders, including rare disease. The hematopoietic
system is also an attractive choice due to an abundance of
public human scRNA data from healthy and diseased indi-
viduals that can be used to identify target gene signatures
associated with various hematopoietic processes.

As phenotypic targets, we aimed to modulate the differen-
tiation of the megakaryocyte and erythroid lineages. To
characterize the cell states involved with this process, we
analyzed a CITE-seq dataset we previously generated for a
NeurIPS Competition in 2022 (Burkhardt et al., 2022). This
joint single-cell RNA + surface protein CITE-seq dataset
profiles primary HSPCs from 4 healthy donors sampled
at 5 time points over a 10-day time course (Methods).
We measured the differentiation of major lineages of the
myeloid lineage at varying states at multiple time points,
enabling the comprehensive capture of the maturation pro-
cess. We identified progenitor and early lineage-committed
cell states, including cells at a range of stages of differ-
entiation along the megakaryocyte (Mk), erythroid (Ery),
eosinophil/basophil/mast (EBM), monocyte (Mono), and
neutrophil (Neu) lineage trajectories (Supplementary Fig-
ure 2), while observing consistency in cellular differentia-
tion across all four donors (Supplementary Figure 3).

To design a phenotypic assay to measure changes in lin-
eage differentiation, we combined the joint scRNA and
surface marker dataset with literature knowledge to iden-
tify surface markers that identify each lineage. To calibrate
our phenotypic assay and our reference single-cell dataset,
we confirmed that RNA-defined cell types expressed sur-
face markers consistent with our assay for both lineages
(Methods). This analysis enabled us to define a gating
strategy to identify each lineage (Supplementary Figure
4). For each lineage, we also identified positive control
compounds and established the assay’s dynamic range to
facilitate the identification of phenotypically active com-
pounds (Supplementary Figure 5, Methods).

To establish a hit threshold for each of the two cell-type
assays, we first filtered out compounds that lead to low cell
viability or in which we measured an insufficient number
of cells. We then calculated a significance cutoff relative
to DMSO treatment, considering the variation of DMSO
samples within and across plates (Methods). We considered
perturbations that induce the target population abundance at
6 standard deviations above DMSO as hits.

2.3. Deep learning-enabled phenotypic discovery to
induce megakaryopoiesis

To nominate compounds for screening in each lineage, we
identified cell state transitions associated with early differ-
entiation into megakaryocytes and erythrocyte progenitors.
We used that transition as input to our model to prioritize
compounds. To generate transition-associated signatures,
we derived a statistic with similar properties to the Z-score
representation of CMap Level 4 signatures used for model
training. While CMap’s Z-score quantifies differential ex-
pression effect size across plates of the L1000 assay, we
computed a v-score to estimate the standardized difference
in log-counts means between the two cell populations, ac-
counting for each population’s variance.

vscore(x, y) =
E(log(1 + y))� E(log(1 + x))p

V ar(log(1 + x)) + V ar(log(1 + y))

We input these v-scores to the model and ordered the top
compounds from the model’s output to assess their ability to
induce the phenotype of interest. For this study, we relied on
an inventory of 1,635 compounds from the CMap training
set available to us at the time of study initiation.

To generate predictions for the megakaryocyte lineage, we
focused on the bipotential megakaryocyte erythroid progen-
itor (MEP), the earliest cell state associated with lineage de-
cision giving rise to the erythroid (Ery) and megakaryocyte
(Mk) lineages (McDonald & Sullivan, 1993). We reasoned
that this was the optimal point to intervene in differentiation
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Figure 2. A deep learning approach to phenotypic virtual screening. (a) A schematic representation of the model training regime showing
the input and output for a single example from CMap. (b) UMAP embeddings of all cells from our benchmarking dataset of 1.2M
single-cell transcriptomes under perturbation of 88 compounds tested in 10 cell types in duplicate. Color denotes the compound mechanism
of action annotated by CMap. (c) A boxplot showing performance of each algorithm on each benchmarking dataset averaged across cell
lines. Error bars denote standard deviation across cell lines.

because transcriptional and metabolic changes in these cells
are associated with commitment to differentiation into either
lineage (Lu et al., 2018). We aimed to alter the MEP cells to
adopt a transcriptional state similar to the MPC population,
which are progenitors committed to differentiating towards
the Mk lineage. To define a differential expression statistic
for single-cell transcriptomics data with similar properties
to the z-scores used in the CMap training data, we derived a
v-score, short for variance-score (Methods). We calculated
v-scores from the MEP to MPC population and used these
v-scores as input to Drug Reflector to obtain a prioritized list
of compounds for screening. We confirmed that the 1,635
compounds in our inventory were a representative subset
of all compounds ranked by the model (Supplementary
Figure 6).

To experimentally determine which compounds induced our
target phenotype, we treated CD34+ cells with each model-

nominated compound under HSPC maintenance conditions
(CC100/TPO cytokines) (Methods). On day 7, we evaluated
the induction of CD41a+ CD71- CD42b+ Mk population by
flow cytometry. We tested 107 compounds with a rank less
than 1,000 prioritized by our model, and to compare to the
brute-force approach, we also tested a random selection of
96 compounds from the same compound inventory.

Among our 107 highly ranked DrugReflector-nominated
compounds, we identified 21 above our 6 standard devia-
tions hit threshold, resulting in a 19.6% hit rate (Figure 3).
2 compounds were highly active inducing more than a 4-
fold increase in Mk progenitors. By contrast, we identified
only 1 compound from our random selection that passed
our hit threshold, resulting in a 1.1% hit rate. These results
highlight that our deep learning model enriches the selection
of compounds that modulate cell state transitions of interest
greater than 19-fold compared to a traditional screening
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approach.

To confirm that these hits validated in multiple donors, we
re-tested 17 DR-nominated hit compounds in 2 additional
donors at the dose at which we observed maximal induction
of the Mk lineage. While 2 compounds did not pass our
viability or cell count criteria, 13 out of the remaining 15
hit compounds validated in both donors, demonstrating the
robustness in our assay and biological translation of our
chemical perturbations across different donors (Figure 3).

2.4. Deep learning-enabled phenotypic discovery to
induce erythropoiesis

Next, we sought to demonstrate the generalizability of our
framework by aiming to bias the MEP population towards
an alternative fate decision: erythroid progenitor cells. Like
our previous transition, we calculated v-scores between
the MEP and Ery erythroid progenitor population to derive
an input signature for our DrugReflector model. We then
obtained the top 96 compounds from our DR-nominated
compounds list and a new set of 96 random compounds for
screening.

To experimentally determine which compounds induced Ery
progenitors, we treated CD34+ cells with each of the model-
nominated compounds and with each of the randomly se-
lected compounds at two doses (1µM and 10µM), dropping
the 100nM dose because we observed that few compounds
were maximally active at that level. We again cultured and
treated donor-derived CD34+ HSPCs with each compound
over 7 days and measured Ery lineage abundance using flow
cytometry (Methods).

In our DR-nominated compound screen, after removing
samples failing our quality control filter, we observed 13 out
of 81 compounds passing our 6-standard deviation above
the DMSO hit cutoff, representing a 16% hit rate. In our
randomly selected compound set, we observed only 1 out
of 85 compounds inducing Ery progenitors above our cut-
off, representing a 1.2% hit rate (Figure 3). Again, our
transcriptomics-based compound prioritization significantly
increased our success rate in inducing the desired phenotype
(⇠16X). We evaluated how the identified hits performed
across additional donors as part of our cross-donor valida-
tion. Out of 10 compounds passing our quality control filter
in our validation experiment, 5 significantly increased Ery
progenitors in both donors, and 3 more did so in one of the
two. These results provide further support for the capacity
of our machine learning model to increase our phenotypic
hit rate across multiple experimental settings.

2.5. Closed-loop signature refinement in the
megakaryocyte lineage

A significant advantage of our phenotypic discovery frame-
work is the ability to pair transcriptional and phenotypic
measurements to better understand the underlying mech-
anisms governing the target phenotypic response. This
enables us to refine our input target signature based on
transcriptional differences between hits and non-hits and to
learn the changes in gene expression following compound
perturbation associated with changes in phenotype. To ex-
plore the utility of this approach, we performed a scRNA-
seq time course on 12 hits, 8 non-hits, a DMSO negative
control, and our positive control compound with samples
collected in duplicate at days 0, 1, 2, 5, and 7 for a to-
tal of 192 scRNA datasets. The non-hits were included to
explore why these compounds did not induce our target phe-
notype despite being prioritized by DrugReflector and to use
this information to refine our predictions. We also collected
paired phenotypic data on day 7 from the same samples used
for scRNA-seq. Across the scRNA samples, we recovered
145,157 cells with a median of 754 cells per condition. We
integrated this scRNA dataset with the original time course
using Harmony to facilitate comparison with the original
time course (Korsunsky et al., 2019). In our transcriptional
time course, we observed cells from all major expected cell
types. We also observed a strong correlation between the
abundance of Mk cells as determined by our scRNA-seq
and phenotypic measurements (Supplementary Figure 7).

Using our transcriptional validation, we first sought to un-
derstand why not all prioritized compounds from the DR
model were phenotypically active. We reasoned that one
cause could be compounds having a cell-type specific effect
in CD34+ cells that differs from the impact measured in the
CMap dataset. 43% of compounds in CMap were previously
reported to exhibit cell-type specific effects in the cancer
cell lines (Subramanian et al., 2017), and CD34+ HSPCs
were absent from the training data. To test this explicitly,
we calculated for each compound the distance between the
24-hour signatures in our follow-up experiment and the 10
most similar signatures for the same compound in LINCS
(Methods), providing an unbiased estimate of the similar-
ity between our observed perturbation signatures in CD34+
cells and signatures for the same compounds in CMap. We
found that, on average, CD34+ signatures of non-hit com-
pounds were 11% further from their closest neighbors in
CMap compared with hit compounds (Figure 4, p=0.037,
paired t-test). Although this distance to CMap can only
be calculated using L1000 landmark genes, most cell-type-
specific perturbation effects fall outside the landmark gene
set based on our benchmarking dataset (Supplementary
Figure 8). This suggests that developing strategies to map
transcriptional signatures associated with compounds into
new cell types and across all genes will likely improve vir-
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Figure 3. A deep learning approach to phenotypic virtual screening. (a) Result of experimental validation of compounds to induce Mk
differentiation measured with flow cytometry following a 7-day in vitro differentiation in the presence of each compound. Each dot is a
compound. The color is the dose at which the compound maximally induced Mk abundance. The grey dashed line denotes a fold-change
of 1 relative to DMSO, i.e. no change. The black dashed line represents the hit significance cutoff for Mk. (b) Same as for (a), but for the
Ery discovery campaign.

tual screening performance.

Next, we aimed to refine our signature to identify the gene
expression patterns sufficient to induce a change in phe-
notype. We hypothesized that only a subset of our initial
input signature was required to effect the change in phe-
notype, with the remainder comprising passenger genes,
noise, or potentially inhibitory feedback gene expression
signals. To test this hypothesis, we first performed DE anal-
ysis on the 24-hour gene expression counts summed across
all cells in each cell type, also called pseudobulk expression.
Here, we chose to use limma to calculate differential expres-
sion (Ritchie et al., 2015), enabling us to explicitly model
experimental covariates such as library and plate. However,
instead of using the compound perturbation label as the ex-
planatory variable, we used the 7-day fold-change variable
as the basis for DE (Methods). Because the fold-change
is a scalar variable, this implementation identifies genes
that are linearly associated with the induction of the Mk
lineage while controlling for various technical confound-
ing variables. We observed 672 landmark genes that are
significantly associated with Mk induction (adj. p < 0.01),
including genes previously implicated in Mk maturation,
like FLI1, GATA2, and NFE2 (Figure 4).

We next compared the differential expression score to the
original input v-score for each gene. We observed three
patterns: genes that are concordantly associated (n=366),
inversely associated (n=312), and unassociated with the
original input v-score (Figure 4). We asked whether the
concordantly associated genes could be used as a refined
input to our model. When filtering the input v-scores to
include only genes concordant between the target transition
and our transcriptional validation experiment, the median
rank of hit compounds improved significantly, from 1,060
to 375. To understand the significance of this shift, we
generated 10,000 random gene sets with the same size as
the concordant gene set as a background distribution. We
measured the median hit rank after filtering to each random
set. Concordant genes performed significantly better than

random gene sets by median hit rank (Figure 4, p=0.0026
paired t-test). These results confirm our hypothesis that only
part of our original input signature is necessary to priori-
tize hit compounds and offer a proof-of-concept strategy to
identify the essential component of the signature.

3. Discussion
Here, we performed phenotypic discovery campaigns across
two lineages of hematopoiesis using a state-of-the-art deep
learning classifier that enables the nomination of compounds
to induce cell phenotypes based on transcriptional signa-
tures. These discovery efforts are facilitated by a modular
and generalizable framework that links chemistry and pheno-
typic activity using omics-level data. We provide one imple-
mentation of this framework using transcriptional data that
achieves a 16-19X improvement in hit rate compared with
brute-force screening in head-to-head experiments. This
enables us to leverage existing datasets profiling cell states
across numerous tissues in health and disease contexts and
large perturbational databases like the LINCS CMap. In-
deed, the idea of matching compounds to transcriptomic sig-
natures has been suggested for several applications, focusing
primarily on drug repurposing. Our approach provides a less
biased and more efficient method to query disease biology,
providing the opportunity to find novel biology associated
with a given cellular process and link it to chemical struc-
ture. Furthermore, we can use feedback from assay results
to improve predictions and better understand disease biol-
ogy. Such lab-in-the-loop refinement is necessary to realize
the promise of AI-guided scientific discovery (Wang et al.,
2023).

A key feature of our paradigm is its modular nature and
the ability to optimize each component independently. For
example, identifying target signatures based on healthy and
diseased patient samples is a rapidly developing field, and
even the most recent methods focus on differential expres-
sion between cell states (He et al., 2023), as we do here.
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Figure 4. A deep learning approach to phenotypic virtual screening. (a) Result of experimental validation of compounds to induce Mk
differentiation measured with flow cytometry following a 7-day in vitro differentiation in the presence of each compound. Each dot is a
compound. The color is the dose at which the compound maximally induced Mk abundance. The grey dashed line denotes a fold-change
of 1 relative to DMSO, i.e. no change. The black dashed line represents the hit significance cutoff for Mk. (b) Same as for (a), but for the
Ery discovery campaign.

However, future work will likely leverage more advanced
strategies, such as identifying driver genes based on fate
mapping (Lange et al., 2022) or causal inference of regula-
tory relationships between genes (Kamimoto et al., 2023).

There is also a need for better training datasets. Although
it is the largest publicly available dataset of its kind, CMap
is fundamentally limited. The L1000 assay used in the
CMap is noisy (Qiu et al., 2020) and only measures 978
genes. During model development, we explored whether
using the inferred 11,350 for model training would improve
performance. Still, we found that it led to overfitting to
the training dataset and poor performance on the two test
datasets (Supplementary Figure 13). This leads us to ques-
tion the ability of models trained on CMap inferred genes
to predict transcriptomic signatures for compounds not in
CMap. Moreover, almost all the data is measured in cancer
cell lines, which we showed can fail to generalize to primary
cell types. To provide a better basis for prediction in our
discovery efforts, we are building a dataset of perturbation
signatures tailored to the therapeutic areas we focus on.

Considering the experimental screening and hit validation,
we applied a straightforward selection strategy by picking
the top-ranked compounds output by the model. How-
ever, further improvements in screening efficiency are likely
to arise from more sophisticated compound selection ap-
proaches. In reinforcement learning, acquisition functions
balance exploration and exploitation to identify a set of ac-
tions, such as compounds to test, to maximize a reward func-
tion, such as the hit rate. Although it may be challenging to
directly apply online learning algorithms to phenotypic drug
discovery due to the latency involved with doing rounds of
experiments, these concepts will likely lead to more efficient
screening.

Finally, methods to characterize the impact of experimental
perturbations on single-cell datasets are only a few years
old. Only recently have methods been proposed to learn

causal relationships between genes considering perturba-
tion data (Jiang et al., 2023). There is a vast opportunity
to improve these tools to learn causal dynamics. Integrat-
ing these approaches is likely to lead to better signature
refinement. Here, we took a straightforward approach using
linear regression with our hit phenotype, but more sophis-
ticated approaches are possible. For example, much as
linear driver genes are identified using trajectory inference
algorithms (Lange et al., 2022), we can imagine using dif-
ferential driver gene analysis to identify genes associated
with specific hit compounds.

This framework has broad utility for phenotypic discovery
across disease settings. Thanks to a surge in single-cell
datasets across diseases, it is possible to use existing single-
cell atlases to derive an initial target signature for dozens of
indications. Calibrating these initial signatures to the dataset
used in a phenotypic assay may be necessary but will likely
require less data than needed for the original atlas (Dann
et al., 2022). We anticipate that this paradigm will reduce
the need for brute force screening, enabling lower through-
put and higher translatable models such as patient-derived
organoids, tissues-on-a-chip, or even explants to drive more
productive drug discovery.
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SUPPLEMENT: Deep learning virtual screening with active signature 1 
learning improves the identification of small-molecule modulators of 2 
complex phenotypes 3 
 4 
Methods 5 
 6 
Data availability 7 
Transcriptomics data from the benchmarking dataset, the HSPC reference atlas, and the 8 
paired phenotypic and transcriptomic screen is planned to be made available in GEO under a 9 
Creative Commons license at the time of publication in an archival journal.  10 
 11 
Data availability 12 
Code to run the DrugReflector algorithm and to reproduce the major results of this manuscript 13 
is planned to be made available on GitHub under an open-access license at the time of 14 
publication in an archival journal. 15 
 16 
DrugReflector algorithm overview 17 
 18 
Model Architecture 19 
 20 
The DrugReflector classifier is an ensemble of three fully-connected neural networks 21 
implemented in PyTorch1. Each network has two hidden layers with the same structure but 22 
separate parameters. The input layer has 978 nodes (one for each landmark gene), and the 23 
output layer has 9,597 nodes (one for each target LINCS perturbation). The first hidden layer 24 
has 1,024 nodes, and the second has 2,048 nodes using rectified linear units (ReLU) to 25 
compute node activations. 26 
 27 
To generate predictions, we split the data into three folds based on replicate labels from CMap 28 
and trained this model architecture independently on each fold. The three models were then 29 
ensembled for inference. The final predicted class probabilities were the softmax probabilities 30 
of the average score over all three folds. To compute final ranks, we ranked the average score 31 
across all three models. Higher scores were ranked lower (i.e., closer to 0). 32 
 33 
Curating LINCS CMap into a training dataset 34 
 35 
The starting point for training was the LINCS CMap 2020 Level 4 dataset2, which we obtained 36 
from https://lincsportal.ccs.miami.edu/datasets/view/LDS-1611.  The level 4 dataset contains 37 
differential expression z-scores for each compound against all values measured on the same 38 
platen. We then filtered out observations according to quality control criteria. The criteria were 39 
as follows: 40 

1. Remove any diversity-oriented synthesis (DOS) compounds that are difficult to procure 41 
2. Remove any compounds with fewer than 5 observations in total 42 

https://lincsportal.ccs.miami.edu/datasets/view/LDS-1611


3. For each compound, remove any observations with a cosine similarity <0.12 to the 43 
closest replicate 44 

4. For each compound, select the most frequently recorded dose between 1µM and 20µM 45 
5. Keep only measurements recorded at 6-hour or 24 hours post-treatment 46 
6. After applying the first four filters, remove any compounds measured in fewer than 5 cell 47 

lines, more than 40 cell lines, or with fewer than 3 replicates. 48 
 49 
We next applied the following chemical filters: 50 

1. Molecular weight must be between 60 and 1,000 (inclusive) 51 
2. No more than 1 covalent motif (defined by SMARTS3) 52 
3. No more than 9 NIBR structure flags4 53 
4. Pass BRENK critieria5 54 
5. Must not match 30 SMARTS patterns (exact patterns not disclosed). 55 

 56 
Applying these filters, we retained 425,242 observations comprising 9,597 small molecules 57 
measured in 52 cell lines, with a median of 32 observations per compound and 751 58 
compounds measured more than 100 times. 59 
 60 
In addition, every transcriptional vector v is clipped to range [-2,2] such that is standard 61 
deviation after clipping equals 1. These gives a hybrid representation between a binarization of 62 
the data (up vs down regulation) and high-variance continuous values, while normalizing its 63 
scale. 64 
 65 
Model inputs 66 
 67 
The input to DrugReflector is a representation of a desired transition between two cellular 68 
states. While during training these are measured chemical perturbations (e.g. CMap data), 69 
these are differences in cell populations found in a clinical data set during model deployment 70 
(e.g. a single-cell atlas). Therefore, to obtain high performance, it is crucial to account for 71 
“domain shift” in the data, i.e. to make the clinical cell transitions look like the data the model 72 
was trained on.  For this reason, we used the same principles to construct the input 73 
representation from single-cell data during model deployment as LINCS does for perturbation 74 
effects: we represented gene log fold-changes in units of standard deviations of log 75 
expression. Whereas in LINCS, these standard deviations are obtained from other wells on the 76 
same plate, single-cell data enables us to measure gene standard deviations from other cells 77 
from the same state.  78 
 79 
Using these considerations, we defined the v-score for a gene measured in two states as  80 
follows: 81 
 82 

v-score(𝑥 → 𝑦) =
𝐸(𝑙𝑜𝑔(1 + 𝑦)) − 𝐸(𝑙𝑜𝑔(1 + 𝑥))

√𝑉𝑎𝑟(𝑙𝑜𝑔(1 + 𝑥)) + 𝑉𝑎𝑟(𝑙𝑜𝑔(1 + 𝑦))
 83 

 84 



where 𝑥 and 𝑦 are the transcript counts in each state, normalized to a fixed total count per cell.  85 
A pseudocount of 1 was added to each logarithm to avoid the singularity at 0. Similar to the 86 
training data, we clip the v-score vector to range [-2,2] such that it has standard deviation 1 87 
after clipping. This ensures the training and test data have similar scale. 88 
 89 
Unlike the t-score, the v-score does not depend on the number of cells in each group in 90 
theexpectation. As in LINCS level 4, differences are measured in units of standard deviation. A 91 
high v-score is obtained when genes have different mean log expression between the two 92 
states but relatively low standard deviation of log expression within them. 93 
 94 
Training regime 95 
The training data was divided randomly into three folds, with perturbation replicates balanced 96 
across the folds. Models were independently trained on two of three folds, and the resulting 97 
class scores were averaged to give the final class ranks. 98 
 99 
The models were trained using a focal loss function6 on the softmax probabilities, with a 100 
focusing parameter of 𝛾 = 2.To ensure robustness of the trained models, each hidden layer 101 
randomly zeroed some of its inputs with a fixed dropout probability of 0.64. We applied batch 102 
normalization7 during model training using momentum = 0.1. The learning rate was determined 103 
by a cosine annealing schedule with warm restarts8, with 20 epochs before the first restart, an 104 
initial learning rate of 0.0139, and a minimum learning rate of 0.00001. Each model was 105 
trained for a total of 50 epochs. 106 
 107 
The above dropout probability, initial learning rate, and time to first warm restart were 108 
determined via hyperparameter optimization using Optuna9. To evaluate a particular set of 109 
hyperparameters, we trained the parameterized model on two of the three folds, and measured 110 
recall of the held-out compound signatures in the third fold. The hyperparameters with highest 111 
average recall were used in training. A summary of the hyperparameter search is in Table 1. 112 
 113 
An overview of training is provided in Algorithm 1. 114 
 115 
Parameter Range tested Value selected 
Dropout (0.2, 0.8] 0.64 
Initial learning weight (1e-4,1e-1] 0.0139 
Weight Decay (1e-7,1e-1] 1e-5 
Time to first restart 10-50 20 

Table 1 – An overview of the hyperparameter search for DrugReflector. 116 
 117 
 118 
 119 
Algorithm 1: Training DrugReflector 
 Input: Training Data 𝐷𝑎𝑙𝑙  
 Hyperparameters: 
 Focal loss with 𝛾 =  2 
 Dropout with 𝑝 = 0.64 
 Batch normalization with momentum = 0.1 



 Warm restart cosine annealing with 𝑇0 = 20, 𝜂min = 1 × 10−5, and 𝜂 =  0.0139 
 Output: Trained Models ℳ𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = {ℳ0, ℳ1, ℳ2} 
 Let training data 𝐷all = {ℱ0, ℱ1, ℱ2} be split into 3 folds 
 Folds ℱ0, ℱ1, ℱ2 are balanced across perturbation replicates 
 for 𝑘 = 0 to 2 do 
  Training data 𝐷𝑡𝑟𝑎𝑖𝑛 ← 𝐷𝑎𝑙𝑙\ {𝐹𝑘, 𝐹(𝑘+1) % 3}  
  Train 𝑀𝑘 on 𝐷𝑡𝑟𝑎𝑖𝑛 for 50 epochs, with an early stop at 20 epochs 
 end for 

 120 
 121 
 122 
Model Benchmarking 123 
 124 
Curating the CMap Touchstone Dataset 125 
 126 
We filtered our curated CMap level 4 training data to the 9 cell lines of the CMap touchstone 127 
dataset: A375, A549, HA1E, HCC515, HEPG2, HT29, MCF7, PC3, and VCAP. We then 128 
selected 1,000 compounds that have samples in all 9 cell lines based on number of 129 
observations per cell line. For some compounds, there was a long tail in some cell lines, so we 130 
only considered the first 30 observations per compound per cell line. We then calculated the 131 
mean number of observations per cell line and took the top 1,000 compounds. For this set of 132 
1,000 compounds, we subsampled uniform random from each of the 9,000 combinations of 133 
cell line and compounds to generate a dataset of 9,000 samples. 134 
 135 
For this dataset, we benchmarked ensemble models and KNN differently to ensure we did not 136 
mix test and train data. 137 
 138 
DrugReflector and softmax regression are ensembles, each containing three models. Each 139 
model has a unique test fold in the curated CMap dataset, and is trained on the remaining two 140 
data folds. When we ran ensemble benchmarks for this dataset, we ran individual predictions 141 
absent in the data folds for each model. Then, we computed the recall per compound by cell 142 
line. If the rank of the query compound was in the top 1% of the output of the compound from 143 
the model, the recall was 1, else 0. We then averaged the recall across compounds for each 144 
cell line and averaged the recall across cell lines for each model for final ensemble 145 
performance. 146 
 147 
To benchmark k-nearest neighbors, we tested over each of the three folds and set the 148 
reference dataset to the other two folds. We computed the recall per compound by cell line, 149 
and then averaged the recall per model for final ensemble performance. 150 
 151 
For public methods, SigCom LINCS and Dr. Insight, we uniformly subsampled 500 152 
observations due to long runtimes. 153 
 154 
Curating the sciPlex3 Dataset 155 



We curated a public GEO (Gene Expression Omnibus) dataset GSE139944. This dataset tests 156 
small molecule inhibitors on A549, MCF7, and K562 cells. We downloaded the pre-processed 157 
version of the dataset and calculated v-scores as described above between each treatment 158 
condition and DMSO. The v-scores were used as input to each model. 159 
 160 
Generating and curating the Intervention Library Dataset 161 
Human cell lines 162 

A375, A549, HepG2, PC3, and HEK293T cell lines were purchased from the American Tissue 163 
Culture Collection. The human-embryonic kidney cell line, HA1E, was generously provided by 164 
the Cancer Cell Line Encyclopedia at the Broad Institute. Cells were cultured in either RPMI or 165 
DMEM with fetal bovine serum as per suppliers’ recommendations. Cells were seeded into 24-166 
well dishes and incubated for 24 hours at 37°C and then treated with compounds for 24 hours 167 
at a dose previously determined to be the maximum-tolerated dose for the six cell lines. Cells 168 
were harvested with 0.05% Trypsin and collected with serum-containing media. 169 

Human bronchial epithelial cells 170 

Normal human bronchial epithelial cells (HBEC) were obtained from Lonza from two healthy 171 
donors. Cells were thawed and grown in PneumaCult media for three days at 37°C, then 172 
plated in 24-well dishes for two days. Compounds were then added to cells in PneumaCult and 173 
incubated at 37°C for 24 hours. Cells were harvested with ACF Enzymatic Dissociation 174 
Solution for 7 minutes according to manufacturer’s protocol and collected with media. 175 

Human CD8+ cytotoxic T cells 176 

Peripheral blood mononuclear cells (PBMC) from two healthy donors were isolated from 177 
leukopaks using MACS Cell Separation kits from Miltenyi Biotec and frozen at 1e8 cells per 178 
vial. Cells were thawed and cells were isolated using the CD8+T Cell Isolation Kit from Miltenyi 179 
Biotec. T cells were grown in RPMI supplemented with FBS and IL-2; CD3/CD28 Dynabeads 180 
from LifeTechnologies were added to activate cells for 72 hours at 37°C. Beads were removed 181 
from culture by incubating on a magnet for 5 minutes. Cells were resuspended in media 182 
containing fresh IL-2 and plated in 96-well plates. Compounds were added at 2x concentration 183 
and incubated at 37°C for 24 hours. Cells were harvested by centrifuging for 5 minutes at 184 
300xG. 185 

Human CD34+ hematopoietic stem cells 186 

Mobilized human peripheral blood CD34+ cells from healthy donors were obtained from 187 
StemCell Technologies. Cells were thawed over PBS supplemented with 1% human serum 188 
albumin and incubated in StemSpan media containing CC100 and rhTPO at 37°C for 48 hours. 189 
Cells were resuspended in fresh media containing CC100 and rhTPO and plated in 96-well 190 
plates. Compounds were added at 2x concentration and incubated at 37°C for 24 hours. Cells 191 
were harvested by centrifuging for 5 minutes at 300xG. 192 

Human preadipocytes 193 



Preadipocytes from healthy, lean donors were obtained from Zen-Bio and thawed into 24-well 194 
plates in plating media. After incubation at 37°C for 24 hours, the media was changed to 195 
differentiation media and cells were incubated for 72 hours. Compounds were added to cells at 196 
a 2x concentration and then incubated at 37°C for 24 hours. Cells were harvested with 0.05% 197 
Trypsin and collected with serum-containing media. 198 

Single-cell library generation 199 

Harvested cells were washed with PBS and labeled with TotalSeq-B hashtag antibodies from 200 
BioLegend according to manufacturer’s protocol. Briefly, cells were incubated with 250ng of 201 
TotalSeq-B antibodies (hashtags 1-10) for 30 minutes at room temperature. Cells were washed 202 
with PBS a total of three times and then ten samples with different hashtags were pooled and 203 
counted on a Luna Cell Counter. Single-cell libraries were then prepared using the Chromium 204 
Single Cell 3’ Feature Barcoding Kit targeting 10,000 cells per library, according to 205 
manufacturer’s protocols (10x Genomics; CG000317 Rev B). 206 

Single-cell data preprocessing 207 
 208 
Hashed sequencing libraries were filtered to remove cells with too few or too many counts. 209 
Specifically, each cell was assigned a score of log(cell library size) - log(mean library size per 210 
cell), and cells with a score less than -0.5 or greater than 0.75 were removed. Cells with 211 
greater than 18% mitochondrial gene counts were also filtered out. Genes were removed if 212 
they were not expressed in at least 0.5% of cells for each plate of data. Finally, raw gene 213 
counts were normalized using scanpy.pp.normalize_total with the target parameter set to 1e6, 214 
and rescaled using scanpy.log1p. The hashed libraries were then demultiplexed using a 215 
multivariate Gaussian mixture model. 216 
 217 
Hashed sequencing libraries were filtered to include libraries ranging from 5,000 to 80,000 218 
counts, with less than 18% mitochondrial gene counts. 219 
 220 
Implementation of algorithms for benchmarking 221 
To compare DrugReflector to baseline algorithms (k-Nearest Neighbors, Logistic Regression) 222 
and published methods for prioritizing LINCS algorithms (SIGCOM, Dr. Insight), we calculated 223 
the top 1% recall for each algorithm across three datasets. 224 
 225 
To establish fair comparisons, DrugReflector and the baseline algorithms were trained on the 226 
same LINCS training dataset; they took in the same 978 landmark transcripts and predicted 227 
the same 9,597 compound labels. Published methods were given all transcripts in the dataset, 228 
and predictions were filtered to mutual compound labels. 229 
 230 
k-Nearest Neighbors (kNN) implementation 231 
To construct our model, we first balanced features for each compound signature in our curated 232 
LINCS training dataset. We scaled v-scores to target a standard deviation of 1, and then 233 
clipped values outside of [-2,2]. 234 
 235 



To make predictions, we used sklearn’s pairwise cosine similarity to compare our two datasets: 236 
the reference LINCS training dataset as input X and a benchmark test dataset as input Y. The 237 
output will contain all pairwise similarities between X and Y. Next, we wanted to group 238 
similarities by compound, as each compound has many signatures in our training dataset. For 239 
each observation in Y, our test dataset, we grouped all similarities with X by compound. We 240 
then took the average for each group to get a mean similarity for each unique compound. To 241 
interpret the similarity results, we ranked each compound by mean similarity for each test 242 
observation. Values of cosine similarity ranged from [-1,1], where values increase as similarity 243 
increases. To see if we successfully matched a compound label to a test observation, we 244 
checked to see if the label was within the lowest 100 ranked, most similar, compounds. 245 
 246 
Multinomial Logistic (Softmax) Regression Model 247 
To construct our model, we first partitioned the curated LINCS training dataset into three folds. 248 
These folds matched DrugReflector’s training folds. We trained each of three sklearn 249 
multiclass logistic regression models on a unique combination of two of three folds. All models 250 
had the same hyperparameters: a regularization penalty of L2, an inverse regularization 251 
strength of 1, no class weights, and a limited memory BFGS solver. 252 
 253 
To make predictions for a benchmark observation, each model computes probability estimates 254 
of compound classes. The resulting classes were ranked by probability, where lower rank 255 
indicates higher probability. Each model then contributed a vote to the ensemble rank; we took 256 
the mean rank across all three models. To finalize the ensemble rank, we ranked the mean 257 
rank. An observation is predicted successfully if the compound label is in the lowest 100 rank, 258 
highest probability, compounds. 259 
 260 
SigCom LINCS 261 
Public method SigCom LINCS is accessible by LoopBack API. It is hosted by the Ma’ayn 262 
Laboratory at https://maayanlab.cloud/sigcom-lincs/. 263 
 264 
To run predictions, we first identified all relevant compound signatures in the SigCom 265 
Database. Relevant signatures have a clearly identifiable compound that is predictable by 266 
DrugReflector and our baseline algorithms. Compound identifiers are maintained by the LINCS 267 
consortium. They start with a “BRD-” followed by 9 alphanumeric characters. We parse these 268 
identifiers from the “cmap_id” signature metadata field. 269 
 270 
Next, we prepared our benchmark data for signature search. For each observation, genes 271 
were sorted by v-score. The highest and lowest 250 gene values were passed into up and 272 
down entities of the API “ranktwosided” enrichment query. We requested the server maximum 273 
limit of 10,000 up and down chemical perturbation signatures. The server returned the score, 274 
z-sum, and rank of the top 10,000 mimicker and reverser signatures. 275 
 276 
To convert our signatures scores into compound ranks, we selected the signature with the 277 
maximum z-sum of each relevant compound. We then ranked compounds from low to high 278 



with increasing z-sum, increasing similarity. A benchmark observation is predicted successfully 279 
if the compound label of the observation is within the top 91 ranks. Note we threshold at 91, 280 
because there are only 8,701 relevant compound classes in SigCom from our 9,597 classes in 281 
our baseline algorithms. 282 
 283 
Dr. Insight 284 
Since publication, Dr. Insight has been removed from the CRAN repository, as the package is 285 
no longer maintained. We chose to include it because it was used in a recently published 286 
article describing a strategy for drug repurposing based on transcriptomics data10. We obtained 287 
an archived version of the software from https://cran.r-288 
project.org/src/contrib/Archive/DrInsight/DrInsight_0.1.2.tar.gz.  289 
 290 
This archival version matches signatures to an early CMap dataset comprising 6,100 291 
signatures of 1,309 compounds at varying concentrations on three cell lines: MCF7, PC3, and 292 
HL60. To run Dr. Insight, we used the following parameters. Repurposing unit = “drug”, 293 
connectivity = “positive”, and the CEG.threshold to 0.05. Because the Dr. Insight reference 294 
dataset only includes 1,309 compounds, we only reported results for the intersection in each 295 
dataset and the Dr. Insight reference. 296 
 297 
 298 
Generating a single-cell time course of hematopoiesis 299 
 300 
Generating CITE-seq data in human CD34+ cells 301 
Mobilized (Neupogen) peripheral blood CD34+ cells (mPB CD34+) were purchased from 302 
AllCells (vendor website). mPB34+ cryopreserved cells from four healthy donors were thawed 303 
and cultured in StemSpan SFEM supplemented with CC100 (Stem cell Technologies) and TPO 304 
(100ng/ml) at a density of 300K/ml. Cells were incubated at 37 ºC over a period of 12 days with 305 
media changes every 2- to 3 days. Cell collections were done across five time points over a 306 
ten-day period (Days 2, 3, 4, 7, and 10). On days of collection, cells were processed for CITE 307 
staining using Biolegend TotalSeq antibody cocktail protocol (TotalSeq-B Human Universal 308 
Cocktail, V1.0) with minor modifications. Labeled cells were processed for single cell RNA 309 
sequencing using the 10x Genomics Single Cell Gene Expression with Feature Barcoding 310 
technology. Libraries were prepared using the Chromium Single Cell 3’ Reagent Kit v3.1 (10x 311 
Genomics, 1000268), and sequenced on an Illumina NovaSeq 6000 platform, generating 312 
paired-end reads. Raw reads were demultiplexed using bcl2fastq (v2.20.0.422) and processed 313 
using Cell Ranger software (v5.0.1, 10x Genomics). Reads were aligned to the human 314 
reference genome (GRCh38) using STAR aligner (v2.7.0a).  315 
 316 
Developing a plate-based flow cytometry assay to measure multiple lineages in CD34+ 317 
differentiation 318 
 319 
Hematopoietic Stem Cell in vitro differentiation assay  320 

https://cran.r-project.org/src/contrib/Archive/DrInsight/DrInsight_0.1.2.tar.gz
https://cran.r-project.org/src/contrib/Archive/DrInsight/DrInsight_0.1.2.tar.gz
https://allcells.com/research-grade-tissue-products/mobilized-leukopak/
https://www.biolegend.com/en-gb/products/totalseq-b-human-universal-cocktail-v1dot0-20960
https://www.biolegend.com/en-gb/products/totalseq-b-human-universal-cocktail-v1dot0-20960


Dual-Mobilized (Neupogen and Mozobil) peripheral blood CD34+ cells were purchased from 321 
AllCells. Cryopreserved cells were thawed and cultured in flasks in StemSpan SFEM with TPO 322 
(100ng/ml) and 1x CC100 supplement (Stem Cell Technologies). On day 0 (48 hours post-thaw), 323 
cells were plated into 96-well plates in the same medium. Plating conditions were optimized for 324 
each lineage as follows: megakaryocyte lineage differentiation 60K/well in round bottom plates 325 
and erythroid differentiation 30K cells/well in flat bottom plates. Compound treatment was 326 
performed on days 0, 2, and 5 of culture. Cells were passaged at a ratio 1:4 on day 2, media 327 
was refreshed on day 5. On day 7, immunophenotype of differentiated cells was evaluated using 328 
flow cytometry. Compound treatment and media changes were performed using Integra 329 
Viaflo384.  330 
 331 
Compound treatment   332 
Compounds were purchased from Frontier Scientific compound management company at 10mM 333 
in DMSO and arrayed onto microplates at 0.1, 1, or 10mM in triplicate using Hamilton Microlab 334 
Star liquid handler and stored at -80°C. On day of treatment, compound plates were thawed at 335 
37°C for 10 minutes, diluted with IMDM (ThermoFisher), and then added to cells using Integra 336 
Viaflo384.  337 
 338 
Flow cytometry 339 
For megakaryocyte lineage experiments, on day 7 of differentiation, cultures were washed and 340 
incubated with antibodies (Supplemental table #) in Cell Staining Buffer (BioLegend, 420201). 341 
For erythroid lineage experiments, cells were fixed after antibody staining. Briefly, plates were 342 
washed with DPBS, and incubated in DPBS containing viability dye (1:1000), followed by wash 343 
with Cell Staining buffer and fixation with Cytofix Fixation buffer (BD Biosciences, 554655). All 344 
incubations were performed for 25 minutes at 4°C in the dark. Cells were then washed and 345 
resuspended in Cell Staining Buffer and analyzed on NovoCyte Quanteon flow cytometer 346 
(Agilent).   347 
 348 
Channel compensations were performed using single stained UltraComp beads (ThermoFisher, 349 
01-2222-41) or cells. All antibodies were purchased from BioLegend, eBiosciences, or 350 
Invitrogen. Titrations were performed to assess optimal antibody concentration. Flow cytometry 351 
data were analyzed using FlowJo (Tree Star). Viability was determined using either viability dye 352 
or FSC/SSC gate in FlowJo. The following antibody panels were used to define cell populations. 353 
Megakaryocytes: CD41a+ CD71- CD42b+, Early erythroid progenitors: CD41a- CD71+ CD36+ 354 
CD235a-, late erythroid progenitors: CD41a- CD71+ CD36+ CD235a+. 355 
 356 
Phenotypic data analysis and hit calling 357 
For each set of screening experiments targeting a lineage, this analysis was applied to identify 358 
which compounds were hits. For each plate in this set of experiments, the mean percent 359 
population of DMSO (N=8 wells) was calculated. This was the mean DMSO value. The percent 360 
population value of every well (N=96) was divided by the mean DMSO value. This was the 361 
normalized value. Across both experiments for each lineage (random compounds and 362 
predicted compounds), the normalized values of the DMSO wells were compiled and the mean 363 
and standard deviation were calculated. There were 128 DMSO wells in the erythroid lineage 364 
effort and 230 DMSO wells in the megakaryocyte lineage effort. The hit-calling cutoff was 365 



equal to the mean + 6 standard deviations. For a compound to be called a hit, the average of 366 
the normalized values across replicates needed to be greater than the cutoff.  367 
 368 
For hit validation experiments, significance was determined via a heteroscedastic one-way t-369 
test between normalized DMSO and test compound sample values.  370 
 371 
Paired transcriptomic and phenotypic measurements of Mk-inducing compounds 372 
 373 
Single cell sequencing with lipid-based time course of MK differentiation  374 
 375 
HSPCs were differentiated according to Mk assay conditions described above in the presence 376 
of test compounds. On days 1, 2, 5, and 7 of differentiation, samples were multiplexed 377 
(hashed) with cell multiplexing oligos (CMOs, 10X Genomics) according to manufacturer’s 378 
protocol. Briefly, cells were washed with Cell Staining Buffer (CSB, Biolegend), counted, and 379 
incubated with CMOs for 5 min at room temperature. After incubation, cells were washed with 380 
4% HSA (Grifols) three times. Libraries containing 12 samples each tagged with individual 381 
CMOs were pooled by combining approximately 100k cells from each well. Libraries were 382 
washed once in 4% HSA and counted, then resuspended in CSB at 1.2x10^6 cells/mL. Each 383 
test compound was sequenced in duplicate, where duplicates were spread across libraries. 384 
Each library contained a positive and negative control as well as both hit and non-hit 385 
compounds.  386 
 387 
Processing and integration of perturbational scRNA-seq dataset 388 
Single-cell RNA sequencing data from one CD34 donor treated at 1uM with each respective 389 
compound or DMSO was collected on Days 1, 2, 5, and 7, in biological duplicates, with paired 390 
flow cytometry readouts on Day 7. Libraries were prepared using the Chromium Single Cell 3’ 391 
Reagent Kit v3.1 (10x Genomics, 1000268), and sequenced on an Illumina NovaSeq 6000 392 
platform, generating paired-end reads. Raw reads were demultiplexed using bcl2fastq 393 
(v2.20.0.422) and processed using Cell Ranger software (v5.0.1, 10x Genomics). Reads were 394 
aligned to the human reference genome (GRCh38) using STAR aligner (v2.7.0a).  395 
 396 
Hashed sequencing libraries were filtered to include libraries ranging from 5,000 to 80,000 397 
counts, with less than 20% mitochondrial gene counts. Pre-filtered hashed libraries were then 398 
demultiplexed using a Gaussian mixture model and then filtered to singlets. Additional filtering 399 
was performed to remove cells with <2,500 or >60,000 counts, and cells with <1,600 or >9,000 400 
genes. Total counts per cell were normalized to 10,000 and natural log transformation was 401 
applied using functions from Scanpy (v1.9.3)11. To maintain a consistent embedding of 402 
hematopoiesis, we used SymphonyPy (v0.2.1)12 for reference mapping and label transfer 403 
between our reference time course CITE-seq dataset and the perturbation time course 404 
dataset. In brief, harmony was used to create a batch corrected PC space. The query dataset 405 
was then projected into the reference PC space and integrated in the reference’s harmony-406 
corrected PC space. Last, label transfer was conducted using SymphonyPy’s K-nearest 407 
neighbors (KNN) classifier, leveraging the shared latent space to transfer cell type annotations 408 
from the reference to the new dataset. The robustness of label transfer was validated by 409 
examining the weighted Mahalanobis distance of query cells to mapped reference clusters, the 410 



cosine similarity across highly variable genes between reference and query cell types, and 411 
expression of cell type markers in the query dataset labels achieved from label transfer. 412 
 413 
Differential abundance testing 414 
To test whether differences in cell type proportions in the perturbed samples relative to the 415 
control DMSO condition were due to random sampling, we used the python implementation of 416 
scProportionTest (v0.1.2)13. scPropotionTest uses a permutation testing framework, appropriate 417 
for high dimensional data where standard parametric assumptions may not be suitable. For each 418 
comparison, compound vs. DMSO, the proportion of each cell type was calculated. Combined 419 
cells for each group were then shuffled to randomize group labels while keeping group size 420 
constant and the proportions were recalculated. The process was repeated 1,000 times to 421 
generate a p-value for significance between the permuted groups. 422 
 423 
 424 
Using transcriptional readout to refine the Megakaryopoiesis signature 425 

Leveraging our single-cell time course experiment, we aimed to refine our understanding of the 426 
transcriptional changes necessary and sufficient to induce megakaryopoiesis, providing 427 
closed-loop feedback for the model. To this end, we first identified the transcriptional changes 428 
in our single-cell time course that were consistently associated with megakaryocyte induction.  429 
Using limma14, we regressed the pseudobulked gene expression of perturbed HSPCs from day 430 
1 of the scRNA-seq time course against change in megakaryocyte abundance as measured by 431 
flow cytometry at day 7. For each gene, the model fits the following equation: 432 

expr  =  𝛽0  +  𝛽1𝐹𝐶𝑚𝑘 + 𝛽2𝐼𝑙𝑖𝑏𝑟𝑎𝑟𝑦 433 

Where 𝛽0 is an intercept term, 𝛽1 quantifies the relationship between gene expression and the 434 
fold change 𝐹𝐶𝑚𝑘 of late megakaryocytes, and 𝛽2 corrects for library effects. Internally, limma 435 
estimates means and variances for each coefficient while correcting for differences in 436 
coverage and the inherent sparsity of transcriptomic data. 437 

For each gene, the model outputs an FDR-adjusted p-value indicating the significance of the 438 
correlation between that gene’s expression at day 1 and MK induction at day 7. We converted 439 
this p-value into a score by taking the negative base-10 logarithm and multiplying by the sign 440 
of the association (positive if the gene is correlated with fold change, and negative if it is 441 
anticorrelated). Genes with FDR-adjusted p-value <0.01 were considered significantly 442 
associated with phenotype. 443 

We divided the genes into three classes: 444 

• Concordant genes were significantly associated with phenotype in the same direction as 445 
indicated by the input v-score. 446 

• Discordant genes were significantly associated with the phenotype in the opposite 447 
direction as indicated by the input v-score. 448 



• The remaining genes had no significant association with phenotype. 449 

We hypothesized that the concordant genes drive model performance, whereas the discordant 450 
genes reduce it. To test this, we modified the input by setting all but the concordant genes to 451 
zero, or all but the discordant genes to zero, and measuring the impact on hit prioritization. We 452 
found that masking the input to only concordant genes improved the prioritization of 453 
megakaryocyte inducers as measured by flow cytometry, and performed better than masking 454 
to random sets of genes of the same size (Figure 5e). 455 

Because the compounds used to classify genes as concordant or discordant were the same as 456 
those used to test model performance, this strategy may bias the model in favor of these 457 
compounds. We therefore performed stratified 5-fold cross-validation to see whether signature 458 
refinement can improve recall of unseen hits. The procedure was as follows:  459 

1. We divided the profiled compounds randomly into five folds, dividing hits as evenly as 460 
possible. We designated one-fold as the test set and the remaining four as the training 461 
set.  462 

2. Using the training set only, we identified concordant and discordant genes as described 463 
above.  464 

3. We masked the input signature to concordant or discordant genes, ran the masked 465 
signature through DrugReflector, and recorded the rank of the test compounds.  466 

4. We repeated steps 2-3 four more times, designating each fold as the test set in turn.  467 
5. We repeated steps 1-4 ten times with different random seeds, and reported for each 468 

compound its mean cross-validation rank over all seeds.  469 

Concordance of known megakaryopoiesis markers with measured MK induction 470 
 471 
To better understand the action of hit compounds, we examined their effect on transcription 472 
factors involved in megakaryopoiesis, and on marker genes of MKs. We obtained a list of nine 473 
transcription factors and four MK marker genes from previous literature15,16 and examined their 474 
differential expression patterns in day 1 HSPCs from the transcriptional validation screen. We 475 
also used limma to model their association with MK abundance as described above.  476 
 477 
All nine of the transcription factors were significantly associated with megakaryocyte 478 
abundance (p<0.05) and showed significant differential expression in MK inducers, suggesting 479 
that our hit compounds bias HSPCs towards the megakaryocyte lineage at an early time point 480 
(Figure 5C). Only one of the MK markers was significantly associated with induction, which is 481 
unsurprising given that the sample consisted of HSPCs. In addition, all but two of these genes 482 
have positive score in the model input signature, showing that the signature captures at least 483 
some of the known biology. The two genes with negative score would be filtered out by 484 
signature refinement due to the disagreement between input v-score and observed association 485 
with MKs, as described in the previous section. 486 
 487 
 488 



Relating model performance to CD34-relevance 489 
 490 
To quantify the similarity between a compound’s effect in CD34 and in LINCS, we calculated 491 
for each compound the distance between 24-hour signatures in our experiment and the 10 492 
most similar signatures for the same compound in LINCS. We measured similarity using 493 
cosine distance over the 940 landmark genes that were shared between the two assays. 494 
Perturbational response in CD34s was represented by a vector of differential expression 495 
scores for each shared gene, defined as: 496 
 497 

DES  = − log(FDR pvalue) ∗ sign(FC).   498 

Response in LINCS was represented by the level 4 z-score vector.  499 
 500 
We observed that predicted hits (with MK fold change > 2 at day 7) tend to have smaller 501 
differences between CD34 and LINCS response than predicted non-hits. To assess the 502 
significance of this result, we performed a two-sample independent t-test comparing the mean 503 
10-NN LINCS similarities in hits to those in non-hits, yielding a p-value of 0.02. 504 
 505 
Calculating cell-type specific pseudobulked differential expression 506 
 507 
To reduce the noise in scRNA-seq we aggregated cells by summing counts across cells within 508 
a technical replicate of each cell type and day to form pseudobulks. Prior to differential 509 
expression test, we removed genes that were expressed by less than 0.5% of cells. We then 510 
analyzed the aggregated read counts using Limma, with perturbation condition as the main 511 
variable, technical replicate as covariate, and the DMSO condition as reference. We performed 512 
the differential expression test using Limma on each cell type and day independently to 513 
calculate the gene expression logged fold changes (logFC).  514 
  515 
Then, for each cell type and day, we performed principal component analysis on the logFC 516 
results of the perturbation conditions. 517 
 518 
 519 
Identifying GO terms associated with PC1 and PC2 520 
Using GSEAPy prerank17, we identified GO terms most strongly associated with the PC1 521 
loadings in the HSPC population at Day 1 using the GO Biological Process 2023 gene set. We 522 
sorted the term on their net enrichment score after filtering the results to terms where the Tag% 523 
was more than 0.4 and ranked. We repeated this process for each of PC1 and PC2. 524 
 525 
 526 
Calculating rolling-window expression of GO terms over infered pseudotime in the Mk lineage 527 
We inferred a unified developmental pseudotime for cells of the Mk lineage (HSPC, MEMP, 528 
MkP, and MPC) in all perturbation and day conditions, using the `dpt_pseudotime` function 529 
implemented in scanpy11 version 3.9.  530 
 531 



Using the Scanpy score gene function, we calculated a gene activity score for the GO terms of 532 
interest in each cell. To find general trends in the change of GO term scores across 533 
pseudotime, we performed smoothing for each perturbation by ordering the cells in pseudotime 534 
and averaging the scores in rolling windows of 600 cells. We also transformed the pseudotime 535 
values using the same rolling windows. 536 
 537 
 538 
Supplementary figures 539 
 540 
 541 
 542 
 543 
 544 
 545 
 546 

 547 
Supplementary Figure 1 – Results of full benchmarking. – Results of the benchmark split 548 
out by dataset and cell type. Continuous values in each cell denote the proportion of compounds 549 
recalled at or below the 1% of all compounds by each model in each cell line/dataset. 550 
  551 



 552 
 553 

 554 
 555 
Supplementary Figure 2 – Marker gene expression in HSPC atlas cell types. A dotplot 556 
showing the normalized expression of marker genes in each annotated cell state (y-axis). Genes 557 
are organized based on prior knowledge associated each gene with distinct cell states (x-axis).  558 
  559 



 560 

 561 
 562 
Supplementary Figure 3 – Consistent differentiation across time and donors. Comparison 563 
of cell type density across time points and donors using UMAP. No batch correction was 564 
performed on this dataset, aside from the selection of highly variable genes that are consistent 565 
across at least 2 donors. The UMAP embedding was calculated once, and then subsets were 566 
plotted on each subplot. 567 
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 569 
 570 
Supplementary Figure 4 – Gating strategy for flow cytometry analysis. HSPCs were 571 
differentiated in the presence of compounds as described in Methods and population abundance 572 
was quantified by flow cytometry on day 7. (a) For megakaryocyte differentiation, Angiogenesis 573 
Inhibitor was used as a positive control for CD41a+ CD71- CD42b+ late MK induction. BRD-574 
K68488863 represents a typic hit compound. (b) For erythroid differentiation, Sirolimus 10µM 575 
and EPO 2.5U/ml were used as positive controls for induction of CD41a-low, CD71+, CD36+, 576 
CD235a- early erythroid population. BRD-K04887706 represents a typical hit compound.  577 
 578 
 579 



 580 
Supplementary Figure 5 – Phenotypic assay schematic and controls. To validate the 581 
reproducibility of our assay, we measured the abundance of each lineage in negative and 582 
positive control conditions. Top, we show a cartoon schematic of our phenotypic assay, in which 583 
cells are dosed with compounds on days 0, 2, and 5. Flow cytometry readout is measured at 584 
Day 7 post-treatment. Below, we show the abundance of each target population in replicate 585 
samples of DMSO Vehicle negative control and under positive controls of a representative plate 586 
from our screen. For the Mk assay, angiogenesis inhibitor (BRD-K08502430) is the positive 587 
control. For the Ery assay, CTL 1 is sirolimus (BRD-K89626439) at 10µM and CTL 2 is 588 
erythropoietin (EPO) at 2.5 U/mL. 589 
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 594 
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 596 

 597 
Supplementary Figure 6 – Sampling of DrugReflector ranks covered by available 598 
compounds. We observed a representative sampling of compounds across ranks for both sets 599 
of virtual screens. The x-axis shows the rank output of the DrugReflector model. The y-axis 600 
shows the cumulative number of compounds at that rank or lower out of 1,635 compounds 601 
available in our inventory at the time of study initiation.  602 
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 606 

 607 
Supplementary Figure 7 – Abundance of cell types in scRNA and flow cytometry following 608 
7 days of chemical perturbation. Differential abundance in scRNA-defined populations aligns 609 
with phenotypic assay and confirms lineage-specific induction of the Mk population. Left, the 610 
fold-change in Mk was measured via flow cytometry for each compound. Right, the fold-change 611 
in the abundance of the various annotated cells in the scRNA data relative to DMSO. Asterisks 612 
denote significance from a permutation test with FDR correction using the Benjamini-Hochberg 613 
procedure (adj p value < 0.05). 614 
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 616 
Supplementary Figure 8  – Most cell-type specific DE genes are not in the landmark 617 
gene set. These heatmaps show the number of genes that are uniquely differentially 618 
expressed in each cell line for each compound perturbation in the Intervention Library dataset. 619 
Values above 1,000 are clipped to 1,000. The top heatmap shows the number of uniquely DE 620 
genes within the landmark gene list (n=978) and the bottom shows the number of uniquely DE 621 
genes for all non-landmark genes (n=32,598).    622 



 623 
 624 
 625 

 626 
 627 
Supplementary Figure 9 – Variation across chemical perturbations per cell type and time 628 
point. Cell type-specific variation in differential expression across cell types and time points. 629 
Pseudobulked gene expression was used as input to LIMMA to calculate differential expression 630 
per cell type and DMSO at each time point. Markers denote post-hoc annotated compound 631 
classes. 632 
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 634 
Supplementary Figure 10 – GO Term enrichment along PC1 and PC2 of Day 1 HSPC DE 635 
signatures. (a) Gene sets strongly associated with PC1 loading are enriched for antigen 636 
presentation and JAK/STAT signaling pathways associated with Mk induction, further 637 
supporting our conclusion that hit compounds induce bona fide megakaryopoiesis. (b) PC2 638 
genes are enriched for lipid and cholesterol biosynthesis, leading us to label the three 639 
compounds separated by PC2 as lipid-inducing compounds. 640 
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 642 
Supplementary Figure 11  Density of cells across pseudotime for each compound class 643 
and day. The x-axis is inferred pseudotime along the Mk lineage, and the y-axis is the density 644 
of cells at each point along pseudotime averaged across all samples per compound class. 645 

646 



 647 
Supplementary Figure 12 – Expression of genes in rolling windows normalized by 648 
pseudotime. Expression of genes associated with GO terms from main figure 6 ordered by 649 
pseudotime and aggregated across cells per compound class. Y-axis is the expression of each 650 
gene. Shaded area represents the standard deviation across compounds within each compound 651 
class. 652 
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 654 

 655 
Supplementary Figure 13 – Adding inferred genes in model training improves cross-656 
validation performance but worsens generalization to new datasets. DrugReflector was 657 
trained with the same hyperparameters as described for the final model changing only the 658 
number of input nodes to adjust for different feature sets of CMap. Recall on CMap, sciPlex3, 659 
and the Cellarity benchmarking dataset is shown. Error bars denote standard deviation across 660 
cell lines. 661 
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