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Abstract

Preference-based Pure Exploration (PrePEx) aims to identify with a given confi-
dence level the set of Pareto optimal arms in a vector-valued (aka multi-objective)
bandit, where the reward vectors are ordered via a (given) preference cone C.
Though PrePEx and its variants are well-studied, there does not exist a computa-
tionally efficient algorithm that can optimally track the existing lower bound (Shukla
and Basu, 2024) for arbitrary preference cones. We successfully fill this gap by
efficiently solving the minimisation and maximisation problems in the lower bound.
First, we derive three structural properties of the lower bound that yield a com-
putationally tractable reduction of the minimisation problem. Then, we deploy a
Frank-Wolfe optimiser to accelerate the maximisation problem in the lower bound.
Together, these techniques solve the maxmin optimisation problem in O(KL2)
time for a bandit instance with K arms and L dimensional reward, which is a
significant acceleration over the literature. We further prove that our proposed
PrePEx algorithm, FraPPE, asymptotically achieves the optimal sample complex-
ity. Finally, we perform numerical experiments across synthetic and real datasets
demonstrating that FraPPE achieves the lowest sample complexities to identify
the exact Pareto set among the existing algorithms.

1 Introduction
Randomised experiments are at the core of statistically sound evaluation and selection of public
policies (Banerjee et al., 2020), clinical trials (Altman and Dore, 1990), material discovery (Raccuglia
et al., 2016), and advertising strategies (Kohavi and Longbotham, 2015). They allocate a set of
participants to different available choices, observe corresponding outcomes, and choose the optimal
one with statistical significance. As these static and randomised experimental designs demand high
number of samples, it has invoked a rich line of research in adaptive experiment design (Hu and
Rosenberger, 2006; Foster et al., 2021), also known as active (sequential) testing (Yu et al., 2006;
Naghshvar and Javidi, 2013; Kossen et al., 2021) or pure exploration problem (Even-Dar et al.,
2006; Bubeck et al., 2009; Carlsson et al., 2024). Pure exploration problems sequentially allocate
participants to different available choices while looking into past allocations and outcomes. The aim
is to leverage the previous information gain and structure of the experiments and observations to
identify the optimal choice with as few number of interactions as possible. Even in this age of data,
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pure exploration draws significant attention in diverse settings, such as material design (Gopakumar
et al., 2018), clinical trials (Villar et al., 2018), medical treatments (Murphy, 2005), where each
observation involves a human participant or is costly due to the involved experimental infrastructure.

In this paper, we focus on multi-armed bandit formulation of pure exploration (Thompson, 1933;
Lattimore and Szepesvári, 2020), which is a theoretically-sound and popular framework for sequential
decision-making under uncertainty, and the archetypal setup of Reinforcement Learning (RL) (Sutton
et al., 1998). In bandits, a learner encounters an instance of K decisions (or arms). At each time step
t, a learner chooses one of these K-arms At, and obtains a noisy feedback Rt (or reward or outcome)
from the reward distribution corresponding to that arm, i.e. νAt . Note that each reward distribution
has a fixed mean µa, which is unknown to the learner. The goal of the learner is to adaptively select
the arms in order to identify the arm with the highest mean reward with a statistical confidence level
and the least number of interactions. This is popularly known as the fixed-confidence Best Arm
Identification (BAI) problem (Jamieson and Nowak, 2014; Garivier and Kaufmann, 2016; Soare et al.,
2014; Degenne et al., 2020; Wang et al., 2021), which is a special case of pure exploration.

PrePEx: Motivation. The classical BAI and pure exploration literature, like most of the traditional
RL literature, focuses on scalar reward, i.e. a single or scalarised objective. But this does not reflect
the reality as often decisions have multiple and often conflicting outcomes (Gopakumar et al., 2018;
Wei et al., 2023), and we might need to consider all of them before selecting the ‘optimal’ one. For
example, in clinical trial, the goal is not only to choose the most effective dosage of a drug but
also to ensure it is below a certain toxicity level (Réda et al., 2020). Another example is a phase II
vaccine clinical trial, known as COV-BOOST (Munro et al., 2021), that measures the immunogenicity
indicators (e.g. cellular response, anti-spike IgG and NT50) of different Covid-19 vaccines while
applied as a booster (third dose). It is hard for a computer scientist to design a scalarised reward out
of these indicators (known as the reward design problem), and different experts might have different
preferences over them. Even in high-data regimes, proper reward modelling has emerged as a hard
problem in Reinforcement Learning under Human Feedback (RLHF) literature (Scheid et al., 2024).

These evidences motivates us to study a multi-objective (aka vector-valued) bandit problem, where
the reward feedback at every step is an L-dimensional vector corresponding to L-objectives of the
learner. Additionally, the learner has access to a set of incomplete preferences over these objectives
that together form a preference cone C (Jahn et al., 2009; Löhne, 2011). For example, polyhedral
cones, positive orthant cone (RL

+), and customised asymmetric cones are used in aircraft design
optimisation (Mavrotas, 2009), portfolio optimization balancing return, risk, and liquidity (Ehrgott,
2005), and climate policy optimization with multiple national goals (Keeney and Raiffa, 1993),
respectively. In these cases, there might not exist an optimal arm but a set of Pareto optimal arms
P∗ ⊆ {1, . . . ,K} (Drugan and Nowe, 2013; Auer et al., 2016).

Given the preference cone C and sampling access to the bandit instance, the learner aims to exactly
identify the whole Pareto optimal set of arms with a confidence level at least 1 − δ ∈ [0, 1) while
hoping to use as less samples as possible. This problem is known as the Preference-based Pure
Exploration (PrePEx) (Shukla and Basu, 2024), or Pareto set identification (Auer et al., 2016) or
vector optimisation with bandit feedback (Ararat and Tekin, 2023).

PrePEx: Related Works. There are mainly three types of algorithms proposed for PrePEx: suc-
cessive arm elimination, lower bound tracking, and posterior sampling-based. Successive arm
elimination algorithms use allocations to collect samples from arms and eliminate them one by
one when enough evidence regarding their suboptimality is gathered (Auer et al., 2016; Ararat and
Tekin, 2023; Korkmaz et al., 2023; Karagözlü et al., 2024). But all of them can identify only an
approximation of the Pareto optimal set. The same limitation applies for confidence bound based
algorithms (Kone et al., 2023a). In contrast, the lower bound tracking algorithms first derive a lower
bound on the number of samples required to solve PrePEx as a max-min optimisation problem. Then
following the Track-and-Stop framework (Kaufmann et al., 2016), at every step, these algorithms
plug in the empirical estimates of means of the objectives (obtained via previous samples) in the
lower bound optimisation problem and obtains a candidate allocation policy. The allocation leads
to a choice of the arm at every step till the algorithm is confident enough to identify the correct set
of arms. But this optimisation problem is challenging, and only recently, Shukla and Basu (2024)
proposed an explicit lower bound for any arbitrary preference cone. Since their lower bound contains
optimisation over a non-convex set, they construct a convex hull of the non-convex variables and use
it to propose a Track-and-Stop algorithm, PreTS. But it is computationally infeasible to run PreTS for
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Methods Computational Complexity1 Preference Cone Beyond Gaussian

Crepon et al. (2024) O
(
KL+1L3

)
Positive orthant ✗

Kone et al. (2024) O
(
K2Lmin{K,L}

)
Positive orthant ✗

Shukla and Basu (2024) Intractable Arbitrary cone
FraPPE (This paper) O (KLmin{K,L}) Arbitrary cone

Table 1: Comparison of asymptotically optimal algorithms for solving PrePEx.

the benchmarks in the literature. Crepon et al. (2024) focuses only on the right-orthant as the cone
and propose a specific optimization method by adding and removing points from the Pareto set. Still,
it is computationally inefficient (O(KL) runtime) to run it on existing benchmarks (Kone et al., 2024).
The complexity of this optimisation problem has motivated Kone et al. (2024) to avoid it and propose
a posterior sampling-based algorithm. Further discussion on related works is in Appendix A.1.

Contributions. We affirmatively address (Table 1) an extension of the open problem (Crepon et al.,
2024): Can we design a computationally efficient (polynomial in both K and L) and statistically
optimal PrePEx algorithms beyond Gaussian rewards and independent objectives, and for arbitrary
preference cones?

(1) Tractable Optimisation: We leverage the structure of the PrePEx problem to reduce the in-
tractable sup− inf − inf − inf optimisation problem in the existing lower bound to a tractable
max−min−min−min problem. This shows the redundancy of the convex hull approach of PreTS
and solve the inner minimisation problems in O(KLmin{K,L}) time. In practice, K ≫ L, and
thus, this is a significant improvement over the existing optimisation-based (Crepon et al., 2024)
algorithms exhibiting O(KL) computational complexity. (2) Asymptotically Optimal and Efficient
Algorithm: We further leverage the Frank-Wolfe algorithm (Wang et al., 2021) to solve the outer
maximisation problem for exponential family distributions and a relaxed stopping criterion to propose
FraPPE. We prove a non-asymptotic sample complexity upper bound for FraPPE and shows it to
be asymptotically optimal as δ → 0. (3) Empirical Performance Gain: We conduct numerical
experiments across synthetic datasets with varying correlations between objectives and a real-life
dataset (COV-BOOST). The results show that FraPPE enjoys the lowest empirical stopping time
(∼5-6X lower) and the lowest empirical error uniformly over time among all the baselines.

In brief, we propose the first computationally efficient and asymptotically optimal algorithm, FraPPE,
that works for arbitrary preference cones and exponential family distributions while achieving the
lowest sample complexity and probability of error for identifying the exact set of Pareto optimal arms.

2 Problem Formulation: Preference-based Pure Exploration (PrePEx)

First, we formally state the preference based pure exploration problem under the fixed-confidence
setting and elaborate the relevant notations.

Notations. For any n ∈ N, [n] denotes the set {1, 2, . . . , n}. zℓ refers to the ℓth component of a
vector z. We use ∥ · ∥p to denote the ℓp-norm of a vector. vect(A) is the vectorized version of matrix
A. ∆K represents the simplex on [K] and DKL (P ∥ Q) refers to the KL-divergence between two
absolutely continuous distributions P and Q. ch {X} means convex hull of a set X .

Problem Formulation. In PrePEx, we deal with a multi-objective bandit problem. A bandit
environment consists of K arms and each arm yields L-dimensional reward corresponding to the L
objectives. Specifically, each arm a ∈ [K] has a reward distribution νa over RL with unknown mean
µa ∈ RL. Thus, a bandit environment is represented by the vectors of mean rewards {µi}Ki=1, or
alternatively, a matrix M ∈ RL×K such that its ath column is µa.

At each time t ∈ N, the learner pulls an arm At ∈ [K] and observes an L-dimensional reward
vector Rt sampled from νAt

. In the simplest setting of pure exploration, i.e. Best Arm Identification
(BAI), we have L = 1 and the learner focuses on finding the best arm, i.e. the arm with highest
mean (Garivier and Kaufmann, 2016). In more general settings with L = 1, the learner aims to find
a policy π ∈ ∆K indicating the proportion to choose the arms to maximize the expected reward
obtained from the environment (Carlsson et al., 2024).

1We ommit the complexity of calculating Pareto set, i.e. O(K(logK)max{1,L−2}), as it is same for every
method (Kung et al., 1975).
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Pareto Optimality and Preference Cones. Since we have mean vectors (L > 1), we need a set of
preferences over the objectives to compare the means rewards of arms or policies. Thus, following
the vector optimization literature (Jahn et al., 2009; Löhne, 2011; Ararat and Tekin, 2023), we assume
that the learner has access to an ordering cone C.

Definition 1 (Ordering Cone). A set C ⊆ RL is a cone if v ∈ C implies that αv ∈ C for all α ≥ 0. A
solid cone has a non-empty interior, i.e. int(C) ̸= ∅. A pointed cone contains the origin. A closed
convex cone that is both pointed and solid is called an ordering cone (aka a proper cone).

Following PrePEx literature (Ararat and Tekin, 2023; Karagözlü et al., 2024; Shukla and Basu, 2024),
we focus on the polyhedral ordering cone that induces a set of partial orders on vectors in RL.

Definition 2 (Polyhedral Ordering Cone). A cone C is a polyhedral ordering cone if C ≜ {x ∈
RL |Wx ≥ 0}, where W ∈ RK×L with row-transposes W⊤

i representing rays spanning the cone.

W is called the half-space representation of C. An example of polyhedral cone is Cπ/4 ≜
{(r cos θ, r sin θ) ∈ R2 | r ≥ 0 ∧ θ ∈ [0, π/4]}, i.e., all the 2-dimensional vectors that makes
an angle less than π/4 with the x-axis. The commonly used cone in the Pareto set identification
literature (Kone et al., 2023a,b; Crepon et al., 2024) is the positive orthant RL

+, i.e. Cπ/2.

To avoid any redundancy (Ararat and Tekin, 2023; Shukla and Basu, 2024), we assume that W is
full row-rank and normalized, i.e. ∥Wi∥2 = 1. Hereafter, we call them preference cones, and the
vectors in the cone as the preferences. For simplicity, in this paper, we consider that the preferences
are normalised, i.e. z ∈ C ∩ B(1) ≜ C̄. We now define the partial orders w.r.t. a preference cone C̄.

Definition 3 (Partial Order). For every µ,µ′ ∈ RL,µ ⪯C̄ µ′ if µ ∈ µ′ + C̄ and µ ≺C̄ µ′ if
µ ∈ µ′ + int(C̄). Alternatively, µ ⪯C̄ µ′ is equivalent to z⊤(µ − µ′) ≤ 0,∀z ∈ C̄+. Here, C̄+ is
the dual cone of C̄.

The partial order induced by C̄ induces further order over the set of arms [K]. Specifically, given any
two arms i, j ∈ [K]: (i) arm j weakly dominates arm i iff µi ⪯C̄ µj , (ii) arm j dominates arm i iff
µi ≺C̄\{0} µj , (iii) arm j strongly dominates arm i iff µi ≺C̄ µj .

Definition 4 (Pareto Optimal Set and Policies). An arm i ∈ [K] is Pareto optimal if it is not
dominated by any other arm w.r.t. the cone C̄. The Pareto optimal set P∗ is the set of all Pareto
optimal arms. The set of Pareto optimal policies (also known as Pareto front) ΠP ⊂ ∆K is the set of
non-dominated distributions having support on subsets of Pareto optimal arms.

In Figure 1, we show the Pareto optimal arms for the SNW dataset withK = 256 and L = 2 (Zuluaga
et al., 2012a). For the preference cone Cπ/2, the blue points represent the mean rewards of the Pareto
optimal arms, whereas for C2π/3, the Pareto optimal arms correspond to green points (the blue and
red lines show respective Pareto fronts). This shows how preference cones affect Pareto optimality.
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Figure 1: Effect of preference cones on
Pareto optimal arms in SNW dataset.

Generally, PrePEx aims to identify all the distributions
over the arms, i.e. the policies π ∈ ∆K , lying on the
Pareto optimal policy set. Given a preference cone C̄
and the bandit instance M , a learner can solve a vector
optimization problem to exactly identify a policy on the
Pareto front, i.e. a policy whose mean reward is non-
dominated by any other policy w.r.t. C̄. Mathematically,
a policy π⋆ belongs to the Pareto front ΠP if

π⋆ ∈ argmaxπ∈∆K
Mπ with respect to C̄ . (1)

In PrePEx, we address the problem in Equation (1),
when the mean matrix M is unknown a priori but
bounded, i.e. ∥M∥∞,∞ ∈ [−Mmax,Mmax]. We de-
note all such instances byM. Our goal is to exactly

identify with as few samples as possible, all the policies lying on the Pareto front using the L-
dimensional reward feedback from the arms pulled.

Definition 5 ((1−δ)-correct PrePEx). An algorithm for Preference-based Pure Exploration (PrePEx)
is said to be (1− δ) correct if with probability at least 1− δ, it returns the Pareto front ΠP.
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Lower Bound. Shukla and Basu (2024) quantify the minimum number of samples that an (1− δ)-
correct PrePEx algorithm requires to identify the Pareto front as an optimisation problem.
Theorem 1 (Lower Bound (Shukla and Basu, 2024)). Given a bandit model M ∈M, a preference
cone C̄, and a confidence level δ ∈ (0, 1), the expected stopping time of any (1− δ)-correct PrePEx
algorithm, to identify the Pareto optimal policy set is E[τδ] ≥ TM,C̄ log

(
1

2.4δ

)
, where the expectation

is taken over the stochasticity of both the algorithm and the bandit instance. Here, TM,C̄ is called the
characteristic time and is expressed as(
TM,C̄

)−1
≜ sup

ω∈∆K

inf
π∈∆K\{π⋆},π⋆∈ΠP(M,C̄)

inf
M̃∈∂Λ(M)

inf
z∈C̄

∑K

k=1
ωkDKL

(
z⊤Mk

∥∥∥ z⊤M̃k

)
. (2)

Here, ∂Λ (M) ≜
⋃

π∈∆K\{π⋆}
π⋆∈ΠP(M,C̄)

{
M̃ ∈M \ {M} : ∃ z ∈ C̄+, ⟨vect

(
z(π − π⋆)⊤

)
, vect

(
M̃
)
⟩ = 0

}
.

The lower bound tests how hard it is to distinguish a given instance M and another instance M̃ ∈
M \ {M} in the direction of a preference z ∈ C̄+ that makes them the most indistinguishable.
M̃ is called an alternative instance and the set of alternative instances Λ (M) is called the Alt-set.
Specifically, Alt-set consists of all such instances inM which has at least one Pareto optimal policy
different than that of M . We aim to find out the allocation ω that allows us to maximise their
KL-divergences and render them as distinguishable as possible.

From Lower Bound to Optimal Algorithms. A common approach to design asymptotically optimal
pure exploration algorithms (e.g. Track-and-Stop (Kaufmann et al., 2016)) is to solve the sup− inf
optimisation problem (Eq. (2)) at every step with empirical estimates of the means M obtained
through bandit interaction, and stop only when one is confident about correctness. In this context, we
derive three structural observations regarding the optimisation problem and Alt-set that allows us to
design the first efficient and asymptotically optimal PrePEx algorithm for generic preference cones.

3 Structural Reduction of the Optimisation Problem

We observe that the optimisation problem in the lower bound (Equation (2)) is a combination of three
inf and one sup problems. It is easy to observe that since ∆K and C̄+ are convex and compact sets.
Thus, the optimisation problem reduces to

max
ω∈∆K

infπ∈∆K\{π⋆}
π⋆∈ΠP(M,C̄)

inf
M̃∈∂Λ(M)

min
z∈C̄+

K∑
k=1

ωkDKL

(
z⊤Mk

∥∥∥ z⊤M̃k

)
︸ ︷︷ ︸

≜f(ω,π⋆,π|M)

. (3)

The outer maximisation problem with respect to ω, called allocation, is a linear programming (LP)
problem solvable by any off-the-shelf LP-solver (e.g. CPLEX (Manual, 1987), HIGHS (Huangfu and
Hall, 2018)), if all the inner inf problems can be reduced to min problems. The inner minimisation
problem with respect to the preference z can be solved using an off-the-shelf conic programming
solver (e.g. CVXOPT (Vandenberghe, 2010), CLARABEL (Towsley et al., 2022)). In the following
sections, we further reduce the two inf problems into min problems.

3.1 Structure of the Pareto Optimal Policy Set

We first observe that the inf problem over the set of Pareto optimal policies ΠP and the complementary
set of any other policies ∆K \ {π⋆

i } is costly as the sets are continuous and possibly non-convex. It
leaves two possibilities: (a) optimising over the convex hull of ΠP or (b) reducing the optimisation
problem to a tractable smaller set. Constructing the convex hull is computationally expensive and
might lead to a looser minimum. Thus, we aim to reduce the inf problem to a well-behaved subset of
ΠP. First, we observe that ΠP is a compact set consisting of stationary policies from ∆K . Secondly,
we prove that ΠP is spanned by p pure policies corresponding to the p Pareto optimal arms.
Theorem 2 (Basis of ΠP). Pareto optimal policy set ΠP is spanned by p pure policies corresponding
to p Pareto optimal arms, i.e. {π⋆

i }
p
i=1. Here, π⋆

i is the pure policy with support on only arm i.

Detailed proof is in Appendix B.1. Thus, ΠP has finite number of extreme points. Given ΠP is
compact and f(ω,π⋆,π|M) is continuous in π⋆, infπ⋆∈ΠP is equal to minπ⋆∈{π⋆

i }
p
i=1

(Fact 7). Now,
we define the notion of neighbouring pure policies.
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Definition 6 (Neighbouring Pure Policies). πj ∈ {πi}Ki=1 is a neighbouring pure policy of
π⋆ ∈ {π⋆

i }
p
i=1 if any mixed policy (distribution over actions) with support Supp (π) = {i, j}

is not dominated by any other policy. Formally, nbd (π⋆
i ) ≜ {πj ∈ {πk}Kk=1 \ {π⋆

i } : ∀π ∈
∆K ,πij with Supp (πij) = {i, j}, M⊤πij ⪯̸C̄ M

⊤π}.

By Carathéodory’s theorem (Leonard and Lewis, 2015), any Pareto optimal pure policy can have up
to min{K,L} such neighbouring pure policies. For example, neighbouring pure policies of any +
Pareto optimal arm in Figure 1 are the + arms connected by the Pareto front (blue line). We also
observe that since SNW dataset2 has two objectives, each pure Pareto optimal policy (or arm) has
two neighbouring pure policies (or arms). With this structure, we obtain that infπ∈ΠP\{π⋆

i } is equal
to minπ∈nbd(π⋆

i )
as f(ω,π⋆,π|M) is continuous in π and the minimum is achieved at one of the

extreme points of the polyhedra. Thus, the optimisation problem in Equation (3) reduces to

max
ω∈∆K

minπj∈nbd(π⋆
i )

π⋆
i ∈{π⋆

i }
p
i=1

inf
M̃∈∂̄Λ(M)

min
z∈C̄+

K∑
k=1

ωkDKL

(
z⊤Mk

∥∥∥ z⊤M̃k

)
︸ ︷︷ ︸

≜fij(ω|M)

, (4)

while ∂̄Λ(M) ≜
⋃

πj∈nbd(π⋆
i )

π⋆
i ∈{π⋆

i }
p
i=1

{
M̃ ∈M \ {M} : ∃ z ∈ C̄+, ⟨vect

(
z(πj − π⋆

i )
⊤) , vect(M̃)⟩ = 0

}
is a subset of the Alt-set ∂Λ(M) considered in Equation (2). Thus, these observations together yield
a significant reduction in the complexity of the inf problem over the set of Pareto optimal policies
and their neighbours to O(Kmin{K,L}) evaluation problems of fij(ω|M).
Remark 1 (Connection to Construction of Alt-set by Crepon et al. (2024)). Crepon et al. (2024)
optimise the f(ω,π⋆,π,M) by constructing a function from the Pareto set to [L] that computes
the minimum cost of adding and removing any Pareto optimal point of M . This is a combinatorial
mapping with O(KL) realisations. We accelerate it significantly by leveraging the structure of ΠP

and evaluate O(Kmin{K,L}) functions of Pareto optimal points and their neighbours.

3.2 Structure of the Alternative Set

Now, the only demanding optimisation problem left is finding the infimum over the
Alternative instance M̃ in the reduced Alt-set ∂̄Λ(M). We observe that for each
Pareto optimal pure policy π⋆

i and its neighbouring pure policy πj , Λij(M) ≜{
M̃ ∈M \ {M} : ∃ z ∈ C̄+, ⟨vect

(
z(πj − π⋆

i )
⊤) , vect(M̃)⟩ = 0

}
is a convex set. Hence, the

reduced Alt-set ∂̄Λ(M) is a union of O(Kmin{K,L}) convex sets {Λij(M)}i,j .

This observation removes the need of constructing a convex hull around the original Alt-set defined
by Shukla and Basu (2024), and searching for the infimum in it. This procedure is prohibitively
expensive. But reducing the Alt-set to a union of convex sets completely eliminates this step and we
can reduce the optimisation problem (Fact 8) further:

max
ω∈∆K

minπj∈nbd(π⋆
i )

π⋆
i ∈{π⋆

i }
p
i=1

min
M̃∈Λ̄ij(M)

min
z∈C̄

K∑
k=1

ωkDKL

(
z⊤Mk

∥∥∥ z⊤M̃k

)
, (5)

+ z
y

45°

135°

Figure 2: Preference & polar cones.

Since both the innermost minimisation problems are over con-
vex sets, the minimisation problem in the lower bound can be
solved using O(Kmin{K,L}) calls to a convex optimisation
oracle. For well-behaved distributions, e.g. multi-variate Gaus-
sians, we have closed form solutions and can avoid the min-
imisation over the Alternative instances M̃ (Appendix B.3).
Remark 2 (Connection to Pure Exploration with Multiple
Answers). The idea of constructing Alt-set as a union of convex
sets was first introduced by Degenne and Koolen (2019) for
pure exploration with multiple correct answers and further
elaborated in (Wang et al., 2021).

2SNW dataset (K = 206, L = 2) is derived from the domain of computational hardware design, specifically
concerning the optimization of sorting network configurations (Zuluaga et al., 2012b).
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3.3 Structure of the Alternative Instance and Polar Cone

Though we have a tractable max-min optimization problem at hand, the elegant structure of the
preference cones allow us to reduce the computational complexity further.

Proposition 1 (Polar Cone Representation of Alternative Instances). For all M ∈ M and given
π⋆

i ∈ ΠP and πj ∈ nbd(π⋆
i ), the set of Alternative instances takes the explicit form Λij(M) =

{M̃ ∈M \ {M} : ∃y ∈ bd(C̄◦) such that M̃πj = M̃π⋆
i + y} where y are defined with the polar

cone of C̄+, i.e. C̄◦ ≜ {y ∈ RL s.t. ⟨z,y⟩ ≤ 0 ,∀z ∈ C̄+}.

Proposition 1 shows that though an Alternative instance is a K × L-dimensional matrix, it can be
represented by anL-dimensional vector y at the boundary of the polar cone. We illustrate the geometry
of this transformation in Figure 2. If an off-the-shelf convex optimiser is used to minimise over
Alternative instances and the optimiser is not dimension-free (e.g. mirror descent (Beck and Teboulle,
2003), Vaidya’s algorithm (Vaidya, 1996)), then this transformation reduces the computational
expense significantly (For most of the real data, K ≫ L). For multivariate Gaussians with covariance
matrix Σ, we derive the closed form of the polar vector corresponding to the Alternative instance (ref.
Lemma 4). Please refer to Appendix B.2 for detailed proof.

4 Algorithm Design: Frugal and Fast PrePEx with Frank-Wolfe

Enabled by the structural reductions in Section 3, we are now ready to describe the FraPPE algorithm,
which is the first computationally efficient, optimisation-driven algorithm for exact detection of the
Pareto optimal set. We begin by stating the required assumption to build FraPPE.

Assumption 1 (L-Parameter Exponential Family). Let X = (X1, , XL) be a L-dimensional random
vector with a distribution Pθ, θ ∈ Θ and mean µ ∈ M ⊂ RL. Suppose X1, . . . , XL are jointly
continuous. Then, the family of distributions {Pθ, θ ∈ Θ} belongs to the L parameter exponential
family if its density of X can be represented as f(X|θ) ≜ h(X) exp (η(θ)T (X)− ψ(θ)). η : Θ→
Rs is the natural parametrization for some s ≥ L. T : RL → Rs is the sufficient statistic for
the natural parameter. h(X) is the base density such that h : RL → [0,∞). Finally, ψ(θ) =
log
(∫

X h(X) exp (⟨η(θ), T (X)⟩dx)
)

is the log-normaliser or log-partition function. Additionally,
we assume that the exponential family is non-singular, i.e. ∇2

θψ(θ) ≥ β for some β > 0 and for all θ.

Note that the natural parameter can have dimension s greater than L but in our case, only the L-
dimensional mean is unknown. To highlight this, we call the above an L-parameter exponential family
rather than s-parameter. This is a common assumption in BAI for L = 1 (Kaufmann et al., 2016;
Garivier and Kaufmann, 2016; Degenne and Koolen, 2019). Rather, the Pareto front identification
literature has been limited to Gaussians and extending to exponential families has been an open
question (Crepon et al., 2024). The non-singular curvature is also a mild assumption for keeping the
problem well-defined. For example, this holds true for any Gaussian with non-singular covariance
matrix (See Example 1) and Bernoullis with probability of success not equal to zero or one.

4.1 Fast Optimisation of Allocations with Frank-Wolfe

The outer optimisation problem in Equation (5) is Linear Program (LP) over a polyhedra with respect
to ω. Any PrePEx algorithm solves this LP trying to estimate allocation per step. Unlike typical LP
solvers, projection-free methods, like Frank-Wolfe (FW) (Jaggi, 2013), solve this smooth convex
program more efficiently (Chandrasekaran et al., 2012). The necessary conditions for FW to converge
towards the optimal allocation ω⋆(M) are 1. the LP under study must be smooth, 2. the gradient and
curvature of the function to be maximised should not blow up at the boundary of the polyhedra.

1. Smoothness: For a fixed π⋆
i ∈ {π⋆

i }
p
i=1, the function fij(ω |M) is smooth only at the minima

πj ∈ argminπj∈nbd(π⋆
i )
fij(ω |M). As suggested by Wang et al. (2021), we can adapt FW to cope

with non-smooth objective function by constructing r-sub-differential set close to the non-smooth
points. We define the r-sub-differential set as

HM (ω, r) ≜ ch

{
∇ωfij(ω|M) : fij(ω|M) < min

π⋆
i ,πj

fij(ω|M) + r,∀π⋆
i ∈ ΠP,πj ∈ nbd (π⋆

i )

}
. (6)
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Algorithm 1 FraPPE- Frugal and Fast Preference-Based Pure Exploration

1: Input: Confidence level δ and sequence {rt}t≥1 = t−0.9/K

2: Initialise: For t ∈ [K], sample each arm once s.t. ωK = (1/K, · · ·, 1/K), mean estimate M̂K

3: while Equation (8) is FALSE do
4: if

√
t/K ∈ N or M̂t /∈M then

5: Forced Exploration: ωt ← (1/K, · · ·, 1/K)
6: else
7: Estimate Pareto Indices: Calculate Pareto indices Pt based on current estimate M̂t.
8: Estimate Set of Pareto Policies: ΠPt consisting pure policies with it ∈ Pt as basis.
9: Set of Neighbours: Π \ΠPt , where Π is the set of all pure policies.

10: Construct Sub-Differential Set: HM̂t
(ωt, rt) using Equation (6)

11: FW-Update: xt+1 ← argmax
ω∈∆Kγ

min
h∈HM̂t

(ωt,rt)
⟨x− ω(t),h⟩, ωt+1 ← 1

t+1xt+1 +
t

t+1ωt

12: end if
13: C-tracking: Play At ∈ argminNa,t −

∑t+1
s=1 ωs (ties broken arbitrarily)

14: Feedback and Parameter Update: Get feedback Rt ∈ RL and update M̂t to M̂t+1 with Rt

15: end while
16: Recommendation Rule: Recommend Pt as the Pareto optimal set

As computing gradient in the neighbourhood of ω is expensive, FW further simplifies the outer
maximisation and calculates the allocation in two simple steps by linearising as follows

xt+1 ≜ argmax
x∈∆K

min
h∈HM (ω,r)

⟨x− ωt,h⟩, ωt+1 ≜
t

t+ 1
ωt +

1

t+ 1
xt+1 . (7)

We further prove (Appendix D) that ω 7−→ HM (ω, r) is continuous and continuously differentiable.

2. Gradient and Curvature. For FW to converge, boundedness of the gradient and curvature constant
is necessary. Lemma 1 ensures that the FW converges to the optimal allocation (ref. Appendix D).
Lemma 1. If Assumption 1 holds true, then for all M ∈ M: 1. Bounded gradients:
∥∇ωfij(ω|M)∥∞ ≤ D for all π⋆

i ,πj , and ω ∈ ∆K . 2. Bounded curvature: Cfij(·|M)(∆Kγ) ≤
8Dα−1 for all i, j, γ ∈ (0, 1/K), and some α > 0. Here, Cf (A) is curvature constant of concave
differentiable function f in set A (Definition 8) and ∆Kγ ≜ {ω ∈ ∆K : mink ωk ≥ γ}.

Lemma 1 allows us to further accelerate the linearised optimisation in Equation (7) inO
(

1
tol

)
instead

of standard FW complexity O
(
K
tol

)
(Jaggi, 2013), where tol is the tolerable error margin for the

optimisation. Thus, we propose the first PrePEX algorithm for general exponential family whereas
existing literature is restricted to Gaussian or Bernoulli (Crepon et al., 2024).

4.2 FraPPE: Frugal and Fast PrePEx

We propose FraPPE for efficient (Frugal and Fast) identification of all the Pareto optimal arms in
PrePEx. FraPPE follows the three component-based design from pure exploration literature (Kauf-
mann et al., 2016; Degenne and Koolen, 2019; Wang et al., 2021).

Component 1. The first component of FraPPE is a hypothesis testing scheme based on a
sample statistic (Line 3 in Algorithm 1) that decides whether the algorithm should stop sam-
pling and recommend the estimated Pareto optimal set as the optimal one. This is called
the “Stopping Rule”. We revisit the stopping rule described by Shukla and Basu (2024):
minM̃∈ch(∂Λ(M̂t)) minz∈C̄+

∑K
k=1Nk,tDKL

(
z⊤M̂k,t

∥∥∥ z⊤M̃k

)
≥ c(t, δ). We note that construct-

ing convex hull around the Alt-set per iteration is computationally expensive and not really tractable.
Instead, we take advantage of Equation (5) to deploy a tractable and efficient stopping rule:

min
π⋆

it
∈ΠPt

min
πj∈nbd(π⋆

it
)

inf
M̃∈Λij(M̂t)

min
z∈C̄+

∑K

k=1
Nk,tDKL

(
z⊤M̂k,t

∥∥∥ z⊤M̃k

)
≥ c(t, δ) (8)

where c(t, δ) ≜
∑K

k=1 3 ln (1 + ln (Nk,t)) +KG
(

ln( 1
δ )

K

)
. For explicit expression of G(·) : R+ →

R+, refer to Theorem 13 (Kaufmann and Koolen, 2021). The intuition behind this stopping rule
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stems from the Sticky Track-and-Stop strategy for multiple correct answers setting (Degenne and
Koolen, 2019) that stops as soon as it can identify any one of the correct answers (Pareto arms in our
case). Though in our setting, we need to rule out the possibility of choosing a confusing instance for
all the correct answers, i.e. the Pareto arms. Hence, we take minimum over the finite set of Pareto
optimal policies {π⋆

i }
p
i=1. Note that, (8) is the first Chernoff-type stopping rule that encapsulates the

effect of C that has been unresolved in the literature (Crepon et al., 2024).

Component 2. The next component of FraPPE is a “Sampling Rule”. It chooses the action to play
based on the allocation ωt estimated via Equation (7) (cf. Section 4.1). We use “C-tracking” (Line
13, Algorithm 1) as the other variant “D-tracking” fails to converge to ω⋆(M) for multiple correct
answers (Degenne and Koolen, 2019). We refer to Appendix H for convergence and other results.

Component 3: Once the stopping rule is fired i.e., flag is TRUE, FraPPE recommends the estimated
Pareto arms as the set of correct answers. The stopping rule ensures that the Pareto arms given by
“Recommendation rule” are correct with probability at least (1− δ) (Theorem 13).

Sample Complexity. Now, we show that FraPPE is an asymptotically optimal PrePEx algorithm.

Lemma 2 (Sample Complexity Upper Bound). For any M ∈M, δ ∈ (0, 1), and preference cone C̄,
expected stopping time satisfies lim supδ→0

E[τδ]
log( 1

δ )
≤ TM,C̄ .

Thus, FraPPE achieves asymptotic optimality. We also prove correctness (Theorem 6) and derive a
non-asymptotic sample complexity bound (Lemma 6 in Appendix E.4), which we omit for brevity.

Computational Complexity. First, Line 7 suffers worst-case complexity for estimating Pareto set
using the algorithm of Kung et al. (1975) is O

(
K log(K)max{1,L−2}) (Kone et al., 2024). Then,

for each {π⋆
i }

p
i=1 and {πj}

|nbd(π⋆
i )|

j=1 , Component 1 and Frank-Wolfe step (Line 11) enjoys time
complexityO (L) due toK-independent bound over curvature and gradients (Lemma 1 (Jaggi, 2013)).
Thus, FraPPE has the total time complexity O

(
max

{
K(logK)max{1,L−2},KLmin{K,L}

})
.

Note that, for L ≥ 5 and K ≥ 19, runtime of FraPPE is O
(
K(logK)max{1,L−2}), i.e. the Pareto

set computation becomes the dominant component. We refer to Appendix G.1 for detailed discussion.

5 Experimental Analysis

We perform empirical evaluation of FraPPE on a real-life dataset as well as synthetic environment.

Benchmark algorithms. We compare our algorithm with PSIPS (Posterior concentration based
Bayesian algorithm (Kone et al., 2024)), APE (Approximate Pareto set identification (Kone et al.,
2023a)), Oracle that pulls arms according to ω⋆(M), i.e., the optimal allocation, Uniform sampler,
and also TnS (Gradient based algorithm in (Crepon et al., 2024)). We consider c(t, δ) = ln( 1+ln(t)

δ ).

Experiment 1: Cov-Boost Trial Dataset. This real-lide inspired data set contains tabulated entries
of phase-2 booster trial for Covid-19 (Munro et al., 2021). Cov-Boost has been used as a benchmark
dataset for evaluating algorithms for Pareto Set Identification (PSI). It consists bandit instance with
20 vaccines, i.e. arms, and 3 immune responses as objectives, i.e., K = 20 and L = 3.

Observation. (a) Lower and Stable Sample Complexity. In Figure 3, we plot the stopping times for
δ = 0.01 that validates the frugality of FraPPE in terms of median sample complexity. Additionally,
we observe very less variability compared to PSIPS which leverages posterior sampling, which makes
FraPPE a more stable strategy. For δ = 0.1, Kone et al. (2024) states that PSIPS has an average
sample complexity of 20456, while TnS of Crepon et al. (2024) reports it to be 17909. FraPPE
exhibits an average sample complexity of 3523 (∼5-6X less) over 100 independent experiments.

(b) Low Error probability. In Figure 5, we visualise the evolution of average error 1(Pt ̸= P⋆) for
FraPPE against PSIPS and Uniform explorer. FraPPE reduces the error rate significantly faster.

Experiment 2: Effect of Correlated Objectives. We also test FraPPE on the Gaussian instance
of Kone et al. (2024) used with 5 arms, 2 objectives, and the covariance matrix with unit variances.
Correlation coefficients are varied from −1 to 1 with grid size 0.1. We fix δ = 0.01. We compare the
empirical performance with PSIPS as it is the only algorithm tackling correlated objectives.

Observation: Uniformly Better Performance across Correlations. We plot the average sample
complexity (averaged over 1000 runs for each correlation coefficient) in Figure 4. It shows that
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Figure 3: Stopping times for Cov-Boost Trial.
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Figure 5: Error probability evolution for Cov-Boost Trial.

FraPPE achieves better sample frugality than PSIPS across all the values of correlation coefficients.
Notably, the standard deviation of FraPPE is also narrower indicating its stability across instances.

Summary. Thus, based on the results from Experiments 1 and 2 and computational complexity
guaranty, we conclude that FraPPE is the PrePEx algorithm with the lowest empirical stopping time
(5X lower), better true positive rate, and lower computational complexity among the optimisation-
based baselines. Further results on runtime analysis of FraPPE are provided in Appendix J.

6 Discussions and Future Works

We study the problem of preference based pure exploration with fixed confidence (PrePEx) that aims
to identify all the Pareto optimal arms (and policies) for a multi-objective (aka vector-valued) bandit
problem with an arbitrary preference cone. We study the existing lower bound for this problem and
through three structural observations regarding the Pareto optimal policies, alternating instances,
and the Alt-set, we reduce it to a tractable optimisation problem. We further apply Frank-Wolfe
based optimisation method and a relaxed stopping rule to propose FraPPE. FraPPE is the first
PrePEx algorithm that is asymptotically optimal, can handle generic exponential family distributions,
and thus, resolving most of the open questions in (Crepon et al., 2024). Experiments show that
FraPPE achieves around 5X less sample complexity to identify the exact set of Pareto optimal arms
across instances.

Throughout this work, we have assumed to know the exact cone C. Thus, learning the cone simulta-
neously while solving PrePEx is an interesting future direction of research. Another future work is
to scale FraPPE to practical applications of PrePEx, e.g. aligning large language models with RL
under Human Feedback (RLHF) (Ji et al., 2023). It would be also interesting to extend our algorithm
design from independent arms to structured bandits (e.g., linear, contextual).
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A Notations and Extended Related Works

Notation Description

C,≺C̄ Given convex cone and induced partial order

C̄ ≜ C ∩ B(1) where B(1) is an unit ball

C̄+ Dual cone of C̄
C̄◦ Polar cone of a cone C̄+

K,L Number of arms and objectives

P∗, P̂t Ground truth Pareto set and estimated Pareto set

M ∈ RK×L matrix with mean reward of K arms

ω Allocation vector

ΠP Family of Pareto optimal policies

µ̂
(ℓ)
k,t, µ

(ℓ)
k Estimated and true of mean rewards

Λij(M) Set of alternating instances of M for fixed π⋆
i ∈ ΠP and πjnbd (π

⋆
i )

int(X) Interior of a set X

ch {X} Convex Hull of a set X

Si Si ≜
{
M ∈M,∃z ∈ C : z⊤Mπ⋆

i ≥ z⊤Mπ,∀π ∈ nbd (π⋆
i )
}

δ Confidence parameter

c(t, δ) Stopping threshold

c1(M) and c2(M) Constants such that ∀t > c1(M), c(t, δ) ≤ log
(

c2(M)t
δ

)
HM (ω, r) r-subdifferential set (Equation (6))

M̃ Confusing instance w.r.t M

tol Error tolerance in linear optimisation

Na,t Number of pulls of arm a at time t ∈ N

z Preference vector from the cone C̄
π⋆

i Pareto optimal policy

πj Neighbour of the Pareto optimal policy π⋆
i

∆K K-dimensional simplex

∆Kγ {ω ∈ ∆K : mink ωk ≥ γ}
W Preference Matrix

τδ (1− δ)-correct Stopping time

y Vector from polar cone C̄◦

D Upper bound on infinite norm of gradient∇ωfij(ω |M)

M Parameter space of mean matrix

p Number of Pareto optimal arms, i.e cardinality of the set P⋆

ek K-dimensional vector with 1 at k-th index, and 0 elsewhere
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A.1 Extended Related Works

Pure exploration in multi-armed bandits (MAB) has been extensively studied, particularly in the
context of best-arm identification (BAI) under fixed-confidence (Kaufmann et al., 2016; Garivier
and Kaufmann, 2016) and fixed-budget (Even-Dar et al., 2006) settings. In this paper we restrict
ourselves to fixed-confidence setting where the goal is to recommend the arm with highest mean
reward with probability at least (1 − δ) for a given confidence parameter δ ∈ (0, 1). Specially, in
the last decade we have witnessed emergence of several algorithmic strategies to tackle the problem
of BAI in fixed-confidence setting. To name a few, these include action elimination based approach
in (Even-Dar et al., 2006; Kone et al., 2023a), LUCB strategies introduced in (Audibert and Bubeck,
2010), further in (Jamieson et al., 2014), tracking a information theoretic lower bound (Track-and-
Stop) (Kaufmann et al., 2016), extended by gamification of the lower bound (Degenne et al., 2020)
or acceleration by leveraging projection-free convergence towards optimal allocation (Wang et al.,
2021).

Pure exploration with vector feedback. Traditionally, pure exploration in BAI focuses on scalarised
rewards (Carlsson et al., 2024). In contrast, we consider the problem of preference-based pure explo-
ration (PrePEx), where the agent receives a vector reward upon playing an arm of dimension equal to
the number of objectives (L) under study partially ordered by a preference cone. Recently, Shukla and
Basu (2024) tackle this problem by deriving a novel information-theoretic lower bound on expected
sample complexity that captures the influence of the preference cone’s geometry. They proposed
the Preference-based Track-and-Stop (PreTS) algorithm, which leverages a convex relaxation of the
lower bound and demonstrates asymptotic optimality through new concentration inequalities for
vector-valued rewards. Kone et al. (2024), on the other hand leverages concentration on priors over
reward vectors by posterior sampling to recommend the exact Pareto optimal arms. Other notable
works include Auer et al. (2016), who explored Pareto Set Identification (PSI) in MABs, and Ararat
and Tekin (2023), who provided gap-based sample complexity bounds under cone-based preferences.
Korkmaz et al. (2023) extended these ideas to Gaussian process bandits, while Karagözlü et al.
(2024) developed adaptive elimination algorithms for learning the Pareto front under incomplete
preferences. Crepon et al. (2024) proposed a gradient-based track-and-stop strategy for exact Pareto
front identification with known preference cones.

Pure exploration with multiple correct answers. We further connect the premise of PrePEx problem
with the literature on pure exploration with multiple correct answers (Degenne and Koolen, 2019;
Wang et al., 2021). Unlike standard BAI, this setting assumes existence of multiple optimal answers,
though proceeds to identify any one of them. The philosophy of top-K type strategies (Jourdan, 2024;
Jourdan et al., 2022; Chen et al., 2017; You et al., 2023) extend this setting by efficiently identifying
the top-k optimal answers. On the contrary, in PrePEx we aim to find not k, but all of the correct
answers (Pareto optimal arms), being as frugal as possible.

Duelling bandits. Preference-based bandit problems have traditionally been studied in the dueling
bandit framework, that is limited to pairwise comparisons between arms (Zoghi et al., 2015; Busa-
Fekete et al., 2014; Szörényi et al., 2015; Chen and Frazier, 2017). These models focus on learning a
global ranking or identifying a Condorcet or Copeland winner based on binary preference outcomes.
While such frameworks capture relative preference information effectively, they typically assume
a fixed, often discrete preference structure and are studied under regret minimization. In contrast,
PrePEx generalises this idea by considering vector-valued feedback and encoding preferences via
convex cones, which enables us to extend towards more complex, continuous, and possibly incomplete
preference structures. Unlike dueling bandits, PrePEx targets pure exploration with statistical
guarantees, hoping to identify all the Pareto optimal arms with high confidence under a richer
preference model.

Connection to constrained pure exploration and safe RL. PrePEx also generalises the setting
of pure exploration under known linear constraints (Carlsson et al., 2024) though the notion of
preference cone over objective is redundant for single objective bandit instances. In Safe RL, we
consider presence of different risk constraints (e.g., on fairness, resource allocation etc.) (Achiam
et al., 2017; Gu et al., 2024). This setting resonates with PrePEx as these constraints can be modelled
as conflicting objectives while performing optimisation. The preference cone in PrePEx can also
encode these constraint if they are implicit (one objective must not worsen).
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B Structures of Confusing Instance

In this section, we will first define the Pareto policy set and prove some of its useful properties in B.1.
Then, in B.2 we will introduce the novel polar cone characterisation of the alternating instances and
finally in B.3 we will show the closed form of the alternating instance under multivariate Gaussian
reward vectors with non-diagonal variance-covariance matrix.

B.1 Pareto Optimal Policies to Pareto Optimal Arms

Definition 7 (Pareto Policies). The set of Pareto policies is given by ΠP ≜{
π :M⊤π̃ ⪯C̄ M

⊤π ∀ π̃ ∈ ∆K \ {π}
}

.

We now have some useful results regarding the set of Pareto policies.
Lemma 3 (Compactness of Pareto Policy set). The set of Pareto policies ΠP is a compact set.

Proof. To prove compactness of ΠP, we leverage Heine-Borel theorem (refer Theorem 14). It is
evident that ΠP is an subspace of the Euclidean space RK . Since complement of ΠP is an open set,
then ΠP is closed. It is also bounded because all elements in ΠP are policies which consist of entries
bounded in the interval [0, 1]. Thus, according to Heine-Borel theorem we can equivalently state that
ΠP is compact, or in other words every open cover of ΠP has a finite sub-cover.

Theorem 2 (Basis of ΠP). Pareto optimal policy set ΠP is spanned by p pure policies corresponding
to p Pareto optimal arms, i.e. {π⋆

i }
p
i=1. Here, π⋆

i is the pure policy with support on only arm i.

Proof. Consider the set of pure policies whose support lies on the Pareto front. For each i ∈ P∗

define the pure policy π∗
i ∈ [0, 1]K associated with arm i as:

π∗
i [j] =

{
1, j = i

0, otherwise

Further, since i ∈ P∗, M⊤π ⪯C̄ M
⊤π̃i, ∀ π ∈ Π\ΠP. With this construction, viewing each policy

as a vector in [0, 1]K , we have that the set of pure policies is linearly independent, i.e.,

c1π̃1 + c2π̃2 + . . .+ c|P∗|π̃|P∗| = 0 =⇒ c1 = c2 = . . . = c|P∗| = 0

Let π ∈ ΠP \ ΠP,basis, where ΠP,basis is the set of pure Pareto strategies. Since π is a randomized
policy (Lemma 3) there exists constants pj ≥ 0,

∑
j pj = 1, such that π = p1π̃1 + p2π̃2 +

. . .+ p|P∗|π̃|P∗|. By linearity of dot product, M⊤π = p1M
⊤π̃1 + p2M

⊤π̃2 . . .+ p|P∗|M
⊤π̃|P∗|.

Since each π̃i ∈ ΠP and pj ≥ 0, p1M⊤π̃1 + p2M
⊤π̃2 + . . . + p|P∗|M

⊤π̃|P∗| ⪯̸C̄ M
⊤π′ for all

π′ ∈ Π \ΠP.

Thus, any policy π ∈ ΠP can be expressed as a linear combination of the Pareto pure strategies
πi ∈ ΠP,basis, i ∈ P∗. Hence, proved.

B.2 Polar Cone Characterization of Alternative Instances

Proposition 1 (Polar Cone Representation of Alternating Instances). For all M ∈ M and given
π⋆

i ∈ ΠP and πj ∈ nbd(π⋆
i ), the set of alternating instances takes the explicit form Λij(M) =

{M̃ ∈M \ {M} : ∃y ∈ bd(C̄◦) such that M̃πj = M̃π⋆
i + y} where y are defined with the polar

cone of C̄, i.e. C̄◦ ≜ {y : y ∈ RL
+ s.t. ⟨z,y⟩ ≤ 0 ,∀z ∈ C̄+}.

Proof. Let us remind the definition of the set of confusing instances

Λij(M) ≜
{
M̃ ∈M \ {M} : ∃ z ∈ C̄+, ⟨vect

(
z(πj − π⋆

i )
⊤) , vect(M̃)⟩ = 0

}
,

which implies that M̃(πj − π⋆
i ) ∈ bd(C̄◦). We characterize the polar cone, using Farkas’ lemma.

For x ∈ C̄,x =
∑L′

i=1 αiwi, αi > 0∀i ∈ [L], where WL×L = {w1, w2, ..., wL}, wi’s being the
basis rays of the cone C̄.
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Using Farkas’ lemma, the polar cone can be characterized as C̄◦ ≜ {W⊤ρ : ρ ∈
RL

+ satisfies ⟨z,W⊤ρ⟩ ≤ 0 ,∀z ∈ C̄}. Therefore, by Projection Lemma, M̃(πj − π⋆
i ) = W⊤ρ ∈

bd(C̄◦). Thus, we can write

Λij(M) ≜
{
M̃ ∈M \ {M} : ∃W⊤ρ ∈ bd(C̄◦) such that M̃πj = M̃π⋆

i +W⊤ρ
}
.

Defining y =W⊤ρ concludes the proof.

B.3 Characterisation of Confusing Instances for Multivariate Gaussians

Lemma 4 (Confusing instances for Multivariate Gaussian rewards). Let the reward vectors follow
Multi-variate Gaussian distributions with diagonal covariance matrix Σ with non-zero diagonal
entries. Under the polar cone characterisation of the alternating instance, the polar vector has
the closed form expression y = M∆(i, j) − z⊤M∆(i, j)(zz⊤)†z, where ∆(i, j) ≜ (π⋆

i − πj),
Σ0 ≜ z⊤Σz for given π⋆

i ∈ ΠP and πj ∈ nbd (π⋆
i ). Also, A† denotes the pseudo-inverse of matrix

A. The inverse characteristic time is then given by

T −1
M,C̄ = max

ω∈∆K

min
π⋆

i ∈ΠP
min

πj∈nbd(π⋆
i )

min
z∈C̄+

(
z⊤M∆(i, j)

)2
2Σ0∥∆(i, j)∥2Diag(1/ωk)

Proof. First, for a fixed π⋆
i ∈ ΠP and πj ∈ nbd (π⋆

i ) we proceed by looking at the main optimisation
problem under correlated Gaussian assumption,

min
M̃∈Λij(M)

min
z∈C̄+

K∑
k=1

ωkDKL

(
z⊤Mk

∥∥∥ z⊤M̃k

)
= min

M̃ :z⊤M̃(π⋆
i −πj)=0

min
z∈C̄+

K∑
k=1

ωk
(z⊤Mk − z⊤M̃k)

2

2z⊤Σz

where the last line holds due to the definition of Alt-set ∂̄Λij(M). Thus, we incorporate the boundary
constraint and write the Lagrangian dual with Lagrangian multiplier γ > 0 as

L(M̃, γ) = min
z∈C̄+

K∑
k=1

(
ωk

(z⊤Mk − z⊤M̃k)
2

2z⊤Σz
+ γz⊤M̃k(π

⋆
i − πj)k

)
(9)

We differentiate (9) with respect to M̃k and equate it to zero to get the minima

∇M̃k
L(M̃, γ) = 0

=⇒ ωk
z⊤Mk − z⊤M̃k

z⊤Σz
= γ(π⋆

i − πj)k

=⇒ z⊤M̃k = z⊤Mk −
γ(π⋆

i − πj)kz
⊤Σz

ωk

We plug back the value of z⊤M̃k in (9) to get

L(γ) =
K∑

k=1

(
γz⊤Mk(π

⋆
i − πj)k −

γ2(π⋆
i − πj)

2
kz

⊤Σz

2ωk

)
(10)

We again differentiate (10) with respect to γ and equate it to zero to get closed form of γ,

∇γL(γ) = 0

=⇒ γ

K∑
k=1

(π⋆
i − πj)

2
kz

⊤Σz

ωk
=

K∑
k=1

z⊤Mk(π
⋆
i − πj)k

=⇒ γ =

∑K
k=1 z

⊤Mk(π
⋆
i − πj)k

z⊤Σz
∑K

k=1
(π⋆

i −πj)2k
ωk
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We define ∆(i, j) ≜ (π⋆
i −πj) and Σ0 ≜ z⊤Σz and lastly Diag(1/ωk) as a K×K diagonal matrix

with k-th entry as 1
ωk

. Then γ = z⊤M∆(i,j)
Σ0∥∆(i,j)∥2

Diag(1/ωk)

. Thus, we finally have

z⊤M̃k = z⊤Mk −
z⊤M∆(i, j)

∥∆(i, j)∥2Diag(1/ωk)

∆(i, j)k
ωk

=⇒ z⊤M̃ = z⊤M − z⊤M∆(i, j)

∥∆(i, j)∥2Diag(1/ωk)

∆ω

=⇒ M̃ =M − z⊤M∆(i, j)

∥∆(i, j)∥2Diag(1/ωk)

(zz⊤)†z∆ω

where ∆ω is a K-dimensional vectors with k-th component being ∆(i,j)k
ωk

and A† denotes the pseudo-
inverse of matrix A. Now, from the polar cone characterisation discussed in Appendix B.2 we know
M̃∆(i, j) = y ∈ bd(C̄◦). Thus we derive the closed form of the polar cone vector as

y =M∆(i, j)− z⊤M∆(i, j)(zz⊤)†z,

since ⟨∆ω,∆(i, j)⟩ = ∥∆(i, j)∥2Diag(1/ωk)
.

Therefore, we also get the closed form of the inverse characteristic time for Multivariate Gaussian
rewards as well.

T −1
M,C̄ = max

ω∈∆K

min
π⋆

i ∈ΠP
min

πj∈nbd(π⋆
i )

min
z∈C̄+

(
z⊤M∆(i, j)

)2
2Σ0∥∆(i, j)∥2Diag(1/ωk)

z⊤(zz⊤)†z

Note that zz⊤ is a rank-1 matrix and its pseudo-inverse satisfies all four Moore-Penrose conditions.
Thus we can use the identity (zz⊤)† = 1

∥z∥4 zz
⊤. Therefore z⊤(zz⊤)†z = 1. Hence, the final

expression of the inverse characteristic time is given by

T −1
M,C̄ = max

ω∈∆K

min
π⋆

i ∈ΠP
min

πj∈nbd(π⋆
i )

min
z∈C̄+

(
z⊤M∆(i, j)

)2
2Σ0∥∆(i, j)∥2Diag(1/ωk)

Hence, we conclude the proof.
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C Continuity Results

First, we remind the lower bound on the expected sample complexity of any (1− δ)-correct PrePEx
algorithm,
Theorem 1 (Lower Bound (Shukla and Basu, 2024)). Given a bandit model M ∈M, a preference
cone C̄, and a confidence level δ ∈ [0, 1), the expected stopping time of any (1− δ)-correct PrePEx
algorithm, to identify the Pareto Optimal Set is

E[τδ] ≥ TM,C̄ log

(
1

2.4δ

)
, (11)

where, the expectation is taken over the stochasticity of both the algorithm and the bandit instance.
Here, TM,C̄ is called the characteristic time of the PrePEx instance (M, C̄) and is expressed as

(
TM,C̄

)−1
≜ max

ω∈∆K

min
πj∈nbd(π∗

i )

π∗
i ∈ΠP

min
M̃∈Λij(M)

min
z∈C̄+

K∑
k=1

ωkDKL

(
z⊤Mk

∥∥∥ z⊤M̃k

)
︸ ︷︷ ︸

fij(ω,M̃ |M)︸ ︷︷ ︸
fij(ω|M)︸ ︷︷ ︸

F (ω|M)

, (12)

where for a fixed π⋆
i ∈ ΠP and πj ∈ nbd (π⋆

i ),

Λij(M) ≜
{
M̃ ∈M \ {M} : ∃ z ∈ C, ⟨vect

(
z(πj − π⋆

i )
⊤) , vect(M̃)⟩ = 0

}
.

Useful Notations: For maintaining brevity, we state the useful notations related to functions under
continuity analysis which are followed throughout this section and beyond.

1. First, we define the following functions. For a fixed M̃ ∈ Λij(M),

fij(ω, M̃ |M) ≜ min
z∈C̄+

K∑
k=1

ωkDKL

(
z⊤Mk

∥∥∥ z⊤M̃k

)
2. Again we define for fixed π⋆

i ∈ ΠP and πj ∈ nbd(i),

fij(ω|M) ≜ min
M̃∈Λij(M)

fij(ω, M̃ |M)

3. Finally, F (ω |M) ≜ minπj∈nbd(π∗
i )

π∗
i ∈ΠP

fij(ω |M)

Fact 1. Due to convexity of KL divergence with respect to z ∈ C̄+ and convexity of the solid cone C̄+,
fij(ω|M) is convex in z and M̃ , but concave with respect to ω (Minimum over concave functions).
Fact 2. As a consequence of Fact 1, F (ω | M), being minimum among finite concave function,
is concave in ω, but a non-smooth function. This function is smooth only at the points where the
minimum is reached for π⋆

i and πj .

In C.1, we state and prove continuity results of the peeled objective functions with respect to
alternating instance and the preference vector.

C.1 Continuity w.r.t. Preferences and Alternating Instances: fij(ω, M̃ |M) and fij(ω|M)

Proposition 2. Let Si ⊂M be the set of mean matrices for which π⋆
i is the Pareto optimal policy.

For given π⋆
i ∈ ΠP,πj ∈ nbd(π⋆

i ), then for all (ω,M) ∈ ∆K × Si,

(a) For a given M̃ ∈M \M , there exists a unique zinf ∈ int(C̄+) such that

zinf ≜ argmin
z∈int(C̄+)

K∑
k=1

ωkDKL

(
z⊤Mk

∥∥∥ z⊤M̃k

)
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if z⊤Mk ̸= 0 and z⊤M̃k ̸= 0 for all k = [1,K].

(b) there exists a unique M̃inf such that

M̃inf ≜ argmin
M̃∈Λij(M)

K∑
k=1

ωkDKL

(
z⊤infMk

∥∥∥ z⊤infM̃k

)
(c) As fπ is continuously differentiable on ∆K × Si, the gradient is expressed as

∇ωfij(ω|M) = min
M̃,z∈C̄+

K∑
k=1

DKL

(
z⊤Mk

∥∥∥ z⊤M̃k

)
ek

where, ek is a K-dimensional vector with 1 in k-th index, 0 elsewhere.

Proof. Proof of Part (a). We do this proof in two parts. First we prove the existence of zinf and then
its uniqueness.

Existence. We refer to Theorem 11 to prove the first part. We define X ≜ ∆K×Si,Y ≜ int(C̄+),Φ ≜

int(C̄+) and u(ω,M) ≜
∑K

k=1 ωkDKL

(
z⊤Mk

∥∥∥ z⊤M̃k

)
. Now Φ : (∆K × Si) ⇒ int(C̄+) is a

constant correspondence (as it is defined before computing ω andM ) and u : ∆K×Si×int(C̄+)→ R
is a continuous mapping. Thus fij(ω, M̃ |M) is continuous. Hence, zinf exists.

Uniqueness. Now if we can prove that the KL-divergence is strictly convex in int(C̄+), then zinf
is unique. For strict convexity, we need to show that the second derivative (Hessian) of the KL
divergence w.r.t. z is positive, which can be tricky if the function has flat regions or degenerate
directions (which could arise at the boundary of the polyhedral cone). Here, we leverage Lemma 5
that shows that if z⊤Mk ̸= 0 and z⊤M̃k ̸= 0 for all k = [1,K], then KL is strictly convex on z.
That means as zinf ∈ int(C̄+), for any k ∈ [K], Mk and M̃k cannot lie in int(C̄◦). Thus, zinf exists
and it is unique. Hence, proved.

Proof of Part (b). We again leverage Theorem 11 to prove existence of a unique M̃inf . We define
X ≜ ∆K × Si, Y = Λij(M), Φ = Λij(M) and u(ω,M) ≜

∑K
k=1 ωkDKL

(
z⊤infMk

∥∥∥ z⊤infM̃k

)
.

Now Φ : (∆K × Si) ⇒ Λij(M) is a constant correspondence (as we already fix π⋆
i ∈ ΠP and

πj ∈ nbd(π⋆
i ), Λij(M) does not depend on π⋆

i ,πj) and u : ∆K × Si × Λij(M) → R is a
continuous mapping. Therefore, M̃inf is upper-hemicontinuous and fij(ω|M) is continuous on
Λij(M). Again, the KL-divergence follows strict convexity in Λij(M), therefore proving uniqueness
of M̃inf .

Proof of Part (c). We leverage Lemma 11 with the following definitions X ≜ Λij(M)×int(C̄+), Y ≜

∆K × Si,x
⋆(ω,M) ≜ z⊤inf(M̃inf)k and u(x⋆,ω,M) ≜

∑K
k=1 ωkDKL

(
z⊤infMk

∥∥∥ zinf(M̃inf)k

)
.

This simply proves u(x⋆,ω,M) is continuously differentiable by the virtue of continuity of

Lemma 5. For all (ω,M) ∈ ∆K × Si, DKL

(
z⊤M

∥∥∥ z⊤M̃) is strictly convex on z iff z⊤M̃k ̸= 0

and z⊤Mk ̸= 0∀k = [1,K].

Proof. The KL-divergence has the following form

DKL

(
z⊤M

∥∥∥ z⊤M̃) =

K∑
k=1

L∑
l=1

(Mk,lzl) log

(∑L
l=1Mk,lzl∑L
l=1 M̃k,lzl

)
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Partially differentiating the KL with respect to zl we get

∂DKL

(
z⊤M

∥∥∥ z⊤M̃)
∂zl

=

K∑
k=1

{
Mk,l log

(∑L
l=1Mk,lzl∑L
l=1 M̃k,lzl

)
+
Mk,l

∑L
l=1 M̃k,lzl − M̃k,l

∑L
l=1Mk,lzl∑L

l=1 M̃k,lzl

}
The components of Hessian are expressed as

Hl,l′ ≜
∂2DKL

(
z⊤M

∥∥∥ z⊤M̃)
∂zl∂zl′

=
∂

∂zl′

K∑
k=1

{
Mk,l log

(∑L
l=1Mk,lzl∑L
l=1 M̃k,lzl

)
+Mk,l − M̃k,l

∑L
l=1Mk,lzl∑L
l=1 M̃k,lzl

}

=

K∑
k=1

Mk,l

∑L
l=1 M̃k,lzl∑L
l=1Mk,lzl

Mk,l′
∑L

l=1 M̃k,lzl − M̃k,l′
∑L

l=1Mk,lzl

(
∑L

l=1 M̃k,lzl)2

− M̃k,l
Mk,l′

∑L
l=1 M̃k,lzl − M̃k,l′

∑L
l=1Mk,lzl

(
∑L

l=1 M̃k,lzl)2

=

K∑
k=1

Mk,lMk,l′
1∑L

l=1Mk,lzl
−

K∑
k=1

(
Mk,lM̃k,l′ + M̃k,lMk,l′

) 1∑L
l=1 M̃k,lzl

+

K∑
k=1

M̃k,lM̃k,l′

∑L
l=1Mk,lzl

(
∑L

l=1 M̃k,lzl)2

=

K∑
k=1

(
L∑

l=1

Mk,lzl

) Mk,lMk,l′

(
∑L

l=1Mk,lzl)2
−

(
Mk,lM̃k,l′ + M̃k,lMk,l′

)
(
∑L

l=1Mk,lzl)(
∑L

l=1 M̃k,lzl)
+

M̃k,lM̃k,l′

(
∑L

l=1 M̃k,lzl)2


Thus, the Hessian of KL is positive definite iff for any non-zero x ∈ RL,

x⊤Hx > 0

=⇒
K∑

k=1

(
(x⊤Mk)

2

Ak
− 2

(x⊤Mk)(x
⊤M̃k)

Ãk

+
Ak

Ã2
k

(x⊤M̃k)
2

)
> 0

=⇒ Ãk

Ak
(x⊤Mk)

2 +
Ak

Ãk

(x⊤M̃k)
2 > 2(x⊤Mk)(x

⊤M̃k)

=⇒

√Ak

Ãk

x⊤M̃k −

√
Ãk

Ak
x⊤Mk

2

> 0

This statement is always true if Ak =
∑L

l=1Mk,lzl ̸= 0 and Ãk = M̃k,lzl ̸= 0. Hence, we conclude
the proof.
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D Convergence of FW Algorithms

Fact 3. Frank-Wolfe is a second order method. For it to converge, we must ensure the gradient of the
objective with respect to ω is bounded around the non-smooth points and also the curvature constant
must be bounded.

In this section, we first derive upper bounds on gradient and curvature constant in D.1. Then we
move on the state and prove continuity properties of the sub-differential set defined in (6) in D.2.
Finally, unifying continuity results from C and results derived in this section, we elaborate on the
convergence of Frank-Wolfe in D.3.

D.1 Boundedness of Gradient and Curvature of Sub-Differentials

Before jumping into the proof of Lemma 1, we first define the curvature constant and a subset of
simplex that ensures the minimum index of ω does not fall on the boundary of the simplex.
Definition 8. For ω,ω′ ∈ ∆Kγ , α ∈ (0, 1] and given the bandit instance M ∈ M, the curvature
constant is expressed as,

Cfij(·|M)(∆Kγ) = sup
x,z∈∆Kγ

α∈(0,1]
y=x+α(z−x)

2

α2
[ψ(x)− ψ(y) + ⟨y − x,∇ψ(x)⟩].

Definition 9. For any γ ∈ (0, 1/K), we define a subset of the simplex ∆K as

∆Kγ ≜ {ω ∈ ∆K : min
k

ωk ≥ γ}

With these definitions in hand, now we show that the space of fij(ω|M) had bounded gradient and
curvature w.r.t. ω.
Lemma 1. If Assumption 1 holds true, then for all M ∈ M: 1. Bounded gradients:
∥∇ωfij(ω|M)∥∞ ≤ D for all π⋆

i ,πj , and ω ∈ ∆K . 2. Bounded curvature: Cfij(·|M)(∆Kγ) ≤
8Dα−1 for all i, j, γ ∈ (0, 1/K), and some α > 0. Here, Cf (A) is curvature constant of concave
differentiable function f in set A (Definition 8) and ∆Kγ ≜ {ω ∈ ∆K : mink ωk ≥ γ}.

Proof. Proof of 1. We already have the expression for the gradient from Appendix C as

∇ωfij(ω|M) = min
M̃,z∈C

K∑
k=1

DKL

(
z⊤M

∥∥∥ z⊤M̃) ek
Therefore

∥∇ωfij(ω|M)∥∞ = ∥d(z⊤M, z⊤M̃)∥∞ = max
k∈[1,K]

| DKL

(
z⊤Mk

∥∥∥ z⊤M̃k

)
|

We know for exponential families the KL-divergence can be expressed as the Bregman divergence
generated by the Cumulant Generating function or Cramer function i.e,

DKL(µ||µ′) = A(µ′)−A(µ)−∇A(µ)(µ′ − µ)

where A(.) is the CGF and µ,µ′ belong to L-parameter exponential family according to Assumption
1 with natural parameter θ,θ′ ∈ int(Θ). DKL(µ||µ′) is bounded if support of θ and θ′ are same,
which is true in our case.

Example 1 : Univariate Gaussian. Let, p(x) = N (µ1, σ
2
1) and q(x) =

N (µ2, σ
2
2). Any of these densities has the following canonical exponential form p(x) =

exp
(

µ
σ2
1
x− 1

2θ
2σ2

1 − x
2σ2

1
− 1

2 log(2πσ
2
1)
)

. Therefore for p(x) the natural parameter is θ1 = µ1

σ2
1

− 1
2σ2

1

 and for the q(x) the natural parameter is θ2 =

 µ2

σ2
2

− 1
2σ2

2

 and also the CGF is given

by

A(θi) =
θ2i1
4θi2

+
1

2
log

(
− π

θi2

)
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for i = 1, 2. Now the KL is always finite, smooth and well-behaved as long as the natural parameters
belong to the same domain.

Example 2: Bernoulli. Let p(x) = Ber(p), p ∈ (0, 1). Then the canonical exponential form can
be written as p(x) = exp

(
x log p

1−p + log(1− p)
)

. Therefore the natural parameter θ = log p
1−p ,

which is the log-odds and the CGF is A(θ) = log(1 + eθ). So KL-divergence between any two
Bernoulli random variable X and Y with mean parameters p1 and p2 is finite and well-behaved iff
p1, p2 ∈ (0, 1).

Therefore by the virtue of Assumption 1 we claim that ∃D > 0 such that the gradient is upper
bounded i.e.,

∥∇ωfij(ω|M)∥∞ ≤ D∀i, j, and ω ∈ ∆K .

Proof of 2. We observe from the proof of part 1, fij(ω | M) is D-smooth, meaning for any
ω,ω′ ∈ ∆Kγ

| fij(ω′ |M)− fij(ω |M) |≤ ∥∇ωfij(ω|M)∥∞ ∥ω
′ − ω∥1 ≤ D ∥ω

′ − ω∥1
Then we start with the definition of the curvature constant

Cfij(·|M)(∆Kγ) =
2

α2
[fij(ω|M)− fij(ω′′|M) + ⟨ω − ω′′,∇fij(ω|M)⟩]

≤ 2

α2

[
fij(ω |M)− (1− α)fij(ω |M) + αfij(ω

′|M)

+ ∥∇ωfij(ω|M)∥∞ ∥ω
′ − ω∥1

]
≤ 2

α2
[αD ∥ω′ − ω∥1 + αD ∥ω′ − ω∥1]

≤4D

α
∥ω′ − ω∥1

Now, as ω,ω′ ∈ ∆Kγ , ∥ω′ − ω∥1 ≤ 2. Therefore, we have the final upper bound on the curvature
constant as

Cfij(·|M) ≤
8D

α

Hence, proved.

Interestingly, Wang et al. (2021) considered bounded gradients and bounded curvature as assumption.
On the other hand, in our PrePEx we get this necessary conditions for convergence automatically
leveraging Assumption 1, which is arguably a very generic assumption on the parametric family
of the reward vectors and standard in the literature. Additionally, leveraging Lemma 1, Wang et al.
(2021) could only show that boundedness of gradient and curvature constant is restricted towards
only Bernoulli and Gaussian. Instead, we claim that Lemma 1 holds for any generic exponential
family satisfying Assumption 1.

Now we move on the proving some good properties of the subdifferential set that handles the
non-smoothness of fij(ω |M).

D.2 Continuity of the Frank-Wolfe Iterates: Sub-Differentials

Let’s remind the definition of r-sub-differential set.

HM (ω, r) ≜ ch

{
∇ωfij(ω|M) : fij(ω|M) < min

π⋆
i ,πj

fij(ω|M) + r,∀π⋆
i ∈ ΠP,πj ∈ nbd (π⋆

i )

}
. (13)

Corollary 1. The mapping ω 7→ HM (ω, r) is continuous.

Proof. Let {ωt, M̂t, rt}∞t=1 −→ {ω⋆(M),M, r} ∈ ∆K × Si × (0, 1) and HM (ω, r) =

ch
{
∇ωfij(ω | M̂)

}|nbd(π⋆
i )|

j=1
for some πj ∈ nbd (π⋆

i ). We can write for any h ∈ HM (ω, r),∃
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a sequence of {αi ≥ 0}|nbd(π
⋆
i )|

i=1 such that h can be expressed as a convex combina-
tion of {∇ωfij(ω | M̂)}|nbd(π

⋆
i )|

j=1 . Further, leveraging continuity of fij(· | M̂) for all
j = [1, | nbd (π⋆

i ) |](ref. Appendix C), we claim that ∇ωfij(ωt | M̂t) ∈ HM̂t
(ωt, rt) for some

t > N .

Lower Hemicontinuity of subdifferential. Lower Hemicontinuity follows from the continuity result
of∇ωfij derived in Appendix C.

Upper Hemicontinuity of subdifferentials. We adapt similar proof structure as Wang et al. (2021)
by adding a ϵ-radius (Minkowski addition) to HM̂t

(ωt, rt) to show it is still contained by the open
set containing HM (ω⋆(M), r). Thus, the subdifferential set is lower and upper hemicontinuous with
respect to ω, i.e continuous. Hence, proved.

Now, we prove the convergence of the Frank-Wolfe iterates. Let us remind the Frank-Wolfe steps
once again for brevity,

xt+1 ≜ argmax
x∈∆K

min
h∈HM (ω,r)

⟨x− ωt,h⟩ (14)

ωt+1 ≜
t

t+ 1
ωt +

1

t+ 1
xt+1 (15)

First, we define the following maps

1. ϕ1 : (ω, r, M̂ ,x) 7→ minh∈HM̂ (ω,r)⟨x− ω,h⟩,

2. ϕ2 : (ω, r, M̂) 7→ maxx∈∆K
ϕ1.

Corollary 2. ϕ1 is continuous on ∆Kγ × (0, 1)× Si ×∆K .

Proof. We again leverage Theorem 11 with the following definitions, X ≜ ∆Kγ × (0, 1)×Si×∆K ,
Y ≜ RK , Φ(ω, r, M̂ ,x) ≜ HM̂ (ω, r) and u(ω, r, M̂ ,x, h) = ⟨x− ω,h⟩. We are concerned only
about continuity of the correspondence Φ, as u is a linear function, hence continuous. Though we
have already proven continuity of Φ in Corollary 1. Thus, we conclude the proof.

Corollary 3. ϕ2 is continuous on ∆Kγ × (0, 1)× Si.

Proof. We again apply Theorem 11 with the definitions X ≜ ∆Kγ × (0, 1) × Si, Y ≜ ∆K ,
Φ(ω, r, M̂ ,x) ≜ ∆K and u(ω, r, M̂ ,x, h) = ϕ1(ω, r, M̂ ,x). As Φ is a constant corresponding, we
claim continuity of ϕ2 and conclude the proof.

Theorem 3. For any ϵ > 0, ∃ a constant ξ1,ϵ > 0, such that if
∥∥∥M̂ −M∥∥∥

∞,∞
< ξ1,ϵ, then for all

M ∈ Si∣∣∣∣ max
x∈∆K

min
h∈HM̂ (ω,r)

⟨x− ω,h⟩ − max
x∈∆K

min
h∈HM (ω,r)

⟨x− ω,h⟩
∣∣∣∣ < ϵ

2
,∀(ω, r) ∈ ∆Kγ × (0, 1) (16)

and∣∣∣∣ min
h∈HM̂ (ω,r)

⟨x− ω,h⟩ − min
h∈HM (ω,r)

⟨x− ω,h⟩
∣∣∣∣ < ϵ

2
,∀(ω, r,x) ∈ ∆Kγ × (0, 1)×∆K (17)

Proof. Proof of claim (16). We define for ω ∈ ∆Kγ and r ∈ (0, 1), ψ(M̂) ≜

min
{
− | ϕ2(ω, r, M̂)− ϕ2(ω, r,M) |

}
. If we apply Theorem 12 with the following

definitions (X) = Si, (Y ) = ∆Kγ × (0, 1), Φ(M̂) = ∆Kγ × (0, 1) and finally
u(M̂,ω, r) = − | ϕ2(ω, r, M̂) − ϕ2(ω, r,M) |, we can claim that ψ(M̂) is continuous on
∆Kγ×(0, 1). So, by definition of ψ,∃ξ1,ϵ > 0, such that ψ(M̂) > − ϵ

2 for all
∥∥∥M̂ −M∥∥∥

∞,∞
< ξ1,ϵ.
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Hence, proved.

Proof of claim (17). This proof is analogous by leveraging Corollary 2.

Corollary 4. For any ϵ > 0, ∃ a constant ξ2,ϵ > 0, such that if
∥∥∥M̂ −M∥∥∥

∞,∞
< ξ2,ϵ, then

M̂ ∈ Si and
∣∣F (ω|M)− F (ω|M̂)

∣∣ < ϵ,∀ω ∈ ∆Kγ .

Proof. We define (X) = Si, (Y ) = ∆Kγ , Φ(M̂) = ∆Kγ and u(M̂,ω) = − | F (ω | M̂)− F (ω |
M̂) |. We again leverage Theorem 12 to claim thatψ(M̂) ≜ minω∈∆Kγ − | F (ω | M̂)−F (ω | M̂) |
is continuous on the open set Si. Also, u(M̂) is continuous due to continuity results in Appendix C.
Then, by definition of ψ,∃ξ2,ϵ > 0, such that ψ(M̂) > − ϵ

2 for all
∥∥∥M̂ −M∥∥∥

∞,∞
< ξ2,ϵ. Hence,

proved.

D.3 Final Convergence Proof

Due to virtue of Lemma 1 and continuity of fij in ∆Kγ (ref. C), we claim that

Fact 4. F (ω|M) is L-Lipschitz on ∆Kγ .

Proof. This fact can be simply proved by applying min-value theorem with guarantees from Lemma
1 to get for ω,ω′ ∈ ∆Kγ

F (ω|M) = min
πj∈nbd(π⋆

i )
fij(ω|M) ≥ min

πj∈nbd(π⋆
i )
(fij(ω

′|M)−D ∥ω′ − ω∥∞)

min
πj∈nbd(π⋆

i )
fij(ω

′|M)−D ∥ω′ − ω∥∞ = F (ω′|M)−D ∥ω′ − ω∥∞

Hence, proved. Additionally, Lipstchitzness of F can be extended from ∆Kγ to ∆K due to continuity
properties proved in Appendix C.1.

Fact 5. Let γ ∈ (0, 1
K ),ω ∈ ∆Kγ and x ∈ ∆K . Under Lemma 1, we have

fij(ω|M) + ⟨y − ω,∇fij(ω|M)⟩ − fij(y|M) ≤ 8Dβ

γ

where j ∈ nbd (i) and y = ω + β(x− ω) for some β ∈ (0, 12 ].

Proof.

fij(ω|M) + ⟨y − ω,∇fij(ω|M)⟩ − fij(y|M) ≤2 ∥∇fij(ω|M)∥∞ ∥y − ω∥1

≤8Dβ

γ

where the last inequality holds due to the definition of β, x ∈ ∆Kγ/2. Hence, proved.

We can extend Fact 5 to get similar result on F (·|M) = minj∈nbd(i) fij(· |M) as well.

Fact 6. Let γ ∈ (0, 1/K), r ∈ (0, 1), ω ∈ ∆Kγ and x ∈ ∆K . Then if β < min
{

1
2 ,

r
D

}
, then we

have

F (y |M) ≥ F (ω |M) + min
h∈HM (ω,r)

⟨y − ω, h⟩ − 8Dβ

γ

where y = (1− β)ω + βx
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Proof. Let there are two different neighbours of π⋆
i as πj1 and πj2 ∈ nbd (π⋆

i ) such that F (ω |
M) = fij1(ω |M) < fij2(ω |M) and F (y |M) = fij2(y |M) < fij1(y |M). Then

F (ω |M) + min
h∈HM (ω,r)

⟨y − ω, h⟩ − F (y |M) ≤ 8Dβ

γ

The last inequality holds due to Fact 5. Hence, proved.

Theorem 4. Let ηt ≜ F (ω⋆(M) |M)− F (ωt |M). Also, let t ∈ N satisfying
⌊√

t
K

⌋
/∈ N, then

under the good events G1(t) ∩G2(t) and Frank-Wolfe update step defined in Equation (14) and (15)
with trt > D, we have

ηt ≤
t− 1

t
ηt−1 +

rt − ϵ
t

+
16D
√
K

t

Proof. Using Lemma 9 and Fact 6, we have γ = 1
2
√
tK

and

F (y |M) ≥F (ω |M) + α

(
max
ω∈∆K

min
h∈HM (ω,r)

⟨x− ω,h⟩ − ϵ
)
− 16Dβ

√
tK

≥F (ω |M) + α(ηt−1 − r − ϵ)− 16Dβ
√
tK

The second inequality holds due to properties of HM (ω, r). Refer Appendix L.2 of Wang et al.
(2021) for further details. Now subtracting F (ω⋆(M) | M) from both sides and putting β = 1

t3/2
,

we get the desired result. Hence, proved.

Therefore, for t > 4K the optimality gap becomes very small and asymptotically it converges to
zero.
Theorem 5. Let {rt}t≥1 be a sequence of positive numbers with the properties limt→∞

1
t

∑t
s=1 rs =

0 and limt→∞ trt =∞. Then for T ≥ max
{(

35D
ϵ

)11
, T

11
8

ϵ,D, (4K + 1)
11
8

}
where ∃Tϵ,D ∈ N such

that if t ≥ Tϵ,D then
∑t

s=1 rs < ϵt and trt > D for any ϵ ∈ (0, 1).Then under the good events
defined in Equation (18) and (19) we have

F (ω⋆(M) |M)− F (ωt) ≤ 5ϵ,∀t = h̄(T ), h̄(T ) + 1, . . . , T ,

where h̄(T ) = min{t ∈ N : t ≥ T 2/11h(T ),
√

t
K ∈ N}, and h(T ) = min{t ∈ N : t ≥

T 8/11 + 2,
√

t
K ∈ N}.

Theorem 5 is a by product of Lemma 3 in Wang et al. (2021) with L = D.
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E Sample Complexity of FraPPE

In this section, we first derive the stopping criterion in E.1 that makes FraPPE (1 − δ)-correct.
Then we move on to the almost sure upper bound on sample complexity of FraPPE in E.2. Then
we respectively prove asymptotic and non-asymptotic upper bound guaranties on expected sample
complexity in E.3 and E.4.

E.1 Stopping Criterion

Theorem 6. Given any bandit instance M ∈M and a preference cone C, the Chernoff stopping rule
to ensure (1− δ)-correctness in identifying the set of Pareto optimal arms is given by

min
π⋆

it
∈ΠPt

min
πj∈nbd(π⋆

it
)

inf
M̃∈Λij(M̂t)

min
z∈C̄+

∑K

k=1
Nk,tDKL

(
z⊤M̂k,t

∥∥∥ z⊤M̃k

)
≥ c(t, δ)

where c(t, δ) ≜
∑K

k=1 3 ln (1 + ln (Nk,t)) +KG
(

ln( 1
δ )

K

)
.

Proof. We begin this proof in two parts. First, we show that the stopping time τδ ∈ N is finite
i.e. τδ < ∞ and then apply concentration on the carefully chosen stochastic process by mixture
martingale technique (Kaufmann and Koolen, 2021) to achieve (1− δ)-correctness.

Finiteness of τδ. We claim that τδ < ∞, if the parameters in the model converges in finite time.
Specifically, for FraPPE , we say it stops when the good events defined in E.3 holds with certainty,
and additionally the allocation ωt has converged to the optimal allocation ω⋆(M). While finiteness
of the first event follows directly from tracking results in Appendix H (For t > 4K, each arm
has been played enough number of times for M̂t to M ; finiteness of the second event is due to
convergence guaranties of the Frank-Wolfe iterates proven in Appendix D.

Stopping threshold. We define the following stochastic process Xk(t) ≜∑K
k=1 max{0,minπ⋆∈{π⋆

i }
p
i=1

minπj∈nbd(π⋆) minz∈C̄+ Nk,tDKL

(
z⊤Mk

∥∥∥ z⊤M̃k

)
− 3 ln(1 +

lnNk,t)}. Now as MK belongs to an exponential family of distributions, z⊤minMk also belongs to
the exponential distribution with linearly projected scalar mean. Thus, we can directly apply the
mixture of martingale technique i.e. Theorem 7 of (Kaufmann and Koolen, 2021) (Refer Theorem
13) with our definition of Xk(t) to conclude the proof.

E.2 Almost Sure Upper Bound on Sample Complexity

Theorem 7. For any M ∈M, and δ ∈ (0, 1), stopping time of the algorithm FraPPE satisfies

lim sup
δ→0

τδ

log( 1δ )
≤ TM,C and τδ <∞ ,

almost surely.

Proof. This proof structure closely follows Appendix I of (Wang et al., 2021) with adaptations
necessary due to vector valued rewards ordered via given preference cone C.

We start the proof defining the event

Ξ ≜ {F (ωt |M)→ F (ω⋆(M)) as t→∞}

We claim that Ξ is a sure event following Theorem 5 and periodic forced exploration used in
FraPPE (So every arm is pulled infinite times, thus we leverage theory of large number). Since
we have proved continuity of F (ω | M̂t) with respect to M , we can further claim F (ωt | M̂t) →
F (ω⋆(M) | M) as t → ∞. We again assume existence of a t0 ∈ N such that for t > t0,
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F (ωt | M̂t) ≥ (1 − ϵ)F (ω⋆(M) | M) for ϵ ∈ (0, 1). We also assume existence of constants
c1(M),c2(M) > 0 such that if ∀t ≥ c1(M), β(t, δ) ≤ log

(
c2(M)t

δ

)
. Therefore the stopping time

τδ = inf{t ∈ N ∪ {∞} : tF (ωt | M̂t) ≥ β(t, δ)}
≤ inf{t > t0 : t(1− ϵ)F (ω⋆(M) |M) ≥ β(t, δ)}

≤ inf

{
t.max{t0, c1(M)} : t ≥ log(c2(M)t)

(1− ϵ)δ
TM,C

}
=⇒ τδ ≤ c1(M) + t0 +

TM,C

(1− ϵ)δ

[
log

(
ec2(M)TM,C

(1− ϵ)δ

)
+ log log

(
c2(M)TM,C

(1− ϵ)δ

)]
where the last inequality holds due to Lemma 12.

This result ensures asymptotic optimality of FraPPE, i.e, for all δ ∈ (0, 1), lim supδ→0
τδ

log( 1
δ )
≤

TM,C and also τδ <∞ almost surely.

E.3 Expected Upper Bound on Sample Complexity

Lemma 2 (Sample Complexity Upper Bound). For any M ∈M, ϵ, ϵ̃ ∈ (0, 1) and δ ∈ (0, 1), and

preference cone C̄, expected stopping time satisfies lim supδ→0
E[τδ]
log( 1

δ )
≤ (1 + ϵ̃)

(
T −1
M,C̄ − 6ϵ

)−1

.

Proof. Definition of Good Event. We define our good events as G1(T ) ≜
⋂T

t=h(t)G1(t) and

G2(T ) ≜
⋂T

t=h(t)G2(t), where

G1(t) ≜

{
max
x∈∆K

min
h∈HF (.|M̂t)(ωt−1,rt)

⟨x− ωt−1,h⟩ − ϵ > max
x∈∆K

min
h∈HF (.|M)(ωt−1,rt)

⟨x− ωt−1,h⟩

}
(18)

G2(t) ≜
{
M̂t ∈ Si ∧ |F (ω|M̂t)− F (ω|M)| < ϵ, ∀ω ∈ ∆Kγ

}
(19)

We start by declaring existence of some constants. Let ∃Tϵ,D ∈ N such that if t ≥ Tϵ,D then∑t
s=1 rs < ϵt and trt > D for any ϵ ∈ (0, 1).

Following the concentration results in Appendix F, we can show that G1(t) ∩G2(t) holds true, and
thus, by Theorem 5, for t ≥ h̄(T ) :

F (ω⋆(M)|M)− F (ωt|M) < 5ϵ.

Here, h̄(T ) = min{t ∈ N : t ≥ T 2/11h(T ),
√

t
K ∈ N}, h(T ) = min{t ∈ N : t ≥

T 8/11 + 2,
√

t
K ∈ N}, and T ≥ max{

(
35D
ϵ

)11
, T

11
8

ϵ,D, (4K + 1)
11
8 }.

Now, given G1(t) ∩G2(t) holds true, we have min(τ, T ) ≤ h̄(T ) +
∑T

t=h̄(T ) 1{τ > T}, where τ
is the stopping time of FraPPE. Thus,

min(τ, T ) ≤ h̄(T ) +
T∑

t=h̄(T )

1{tF (ωt | M̂t) < c(t, δ)}.

Now, for t ≥ h̄(T ), F (ωt | M̂t) < F (ωt |M)− ϵ < F (ω⋆(M)|M)− 6ϵ.
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Therefore, we have,

min(τ, T ) ≤ h̄(T ) +
T∑

t=h̄(T )

1{t(F (ω⋆(M)|M)− 6ϵ) < c(t, δ)} ≤ h̄(T ) + c(T, δ)

F (ωt
⋆(M)|M)− 6ϵ

.

Finally, we define a constant

T0(δ) ≜ inf{T ∈ N : h̄(T ) +
c(T, δ)

F (ωt
⋆(M)|M)− 6ϵ

≤ T}.

Now, we introduce a small constant ϵ̃ ∈ (0, 1), such that T − h̄(T ) ≥ T
1+ϵ̃ , when T ≥

(
2
ϵ̃

)11
This

choice of ϵ̃ is reflected in non-asymptotic sample complexity upper bound (Lemma 6 in Appendix
E.3).

Now, following the algebra in (Wang et al., 2021), we get

E[τδ] ≤
(
35D

ϵ

)11

+ T
11
8

ϵ,D + (4K + 1)
11
8 + T0(δ) +

∞∑
T=N+1

P ((G1(T ) ∩G2(T ))
c) (20)

where N = max
{(

35D
ϵ

)11
+ T 11

ϵ,D, T
11
8

ϵ,D, (4K + 1)
11
8

}
and T0(δ) satisfies the following inequality

T0(δ) ≤ max

{(
2

ϵ̃

)11

, c1(M)

}

+
1 + ϵ̃

F (ω⋆(M) |M)− 6ϵ

[
log

(
1

δ

)
+ log log

(
1

δ

)
+ log

(
(1 + ϵ̃)c2(M)e

(F (ω⋆(M) |M)− 6ϵ)

)
+ log log

(
(1 + ϵ̃)c2(M)

(F (ω⋆(M) |M)− 6ϵ)

)]
Thus, the asymptotic sample complexity is then given by,

lim sup
δ→0

E[τδ]
log( 1δ )

≤ 1 + ϵ̃

F (ω⋆(M) |M)− 6ϵ

Optimality follows if ϵ and ϵ̃ are arbitrarily small, that is lim supδ→0
E[τδ]
log( 1

δ )
≤ 1

F (ω⋆(M)|M) = TM,C .
Hence, proved.

E.4 Non-Asymptotic Sample Complexity Upper Bound

Lemma 6. For any M ∈M, ϵ, ϵ̃ ∈ (0, 1) and δ ∈ (0, 1), and given preference cone C stopping time
of the algorithm FraPPE satisfies

E[τδ] ≤ 34eK
K∑

k=1

1

DKL

(
z⊤maxMk − ϵ

2D

∥∥ z⊤maxMk

)19/4 +
1

DKL

(
z⊤maxMk + ϵ

2D

∥∥ z⊤maxMk

)19/4
+

(
35D

ϵ

)11

+ (4K + 1)
11
8 +max

{(
2

ϵ̃

)11

, c1(M)

}

+
1 + ϵ̃

F (ω⋆(M) |M)− 6ϵ

[
log

(
(1 + ϵ̃)c2(M)e

δ(F (ω⋆(M) |M)− 6ϵ)

)
+ log log

(
(1 + ϵ̃)c2(M)

δ(F (ω⋆(M) |M)− 6ϵ)

)]
Proof. We combine Equation (20) and Lemma 7 to write the expression of expected sample com-
plexity and conclude the proof.
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F Concentration Result

Lemma 7. Under the good events defined in (18) and (19),

P ((G1(T ) ∩G2(T ))
c) ≤ ∞

Proof. We first remind the definition of the good events

G1(t) ≜

{
max
x∈∆K

min
h∈HF (.|M̂t)(ωt−1,rt)

⟨x− ωt−1,h⟩ − ϵ > max
x∈∆K

min
h∈HF (.|M)(ωt−1,rt)

⟨x− ωt−1,h⟩

}

G2(t) ≜
{
M̂t ∈ Si ∧ |F (ω|M̂t)− F (ω|M)| < ϵ, ∀ω ∈ ∆Kγ

}
We have G1(t) ⊂ {∥M − M̂t−1∥∞,∞ ≤ ξ1,ϵ} and also G2(t) ⊂ {∥M − M̂t∥∞,∞ ≤ ξ2,ϵ}, if we
apply Theorem 3 and Corollary 4 respectively.

Then we have

P ((G1(T ) ∩G2(T ))
c) ≤

T∑
h(T )

P(∥M − M̂t∥∞,∞ > ξϵ)

where ξϵ = max(ξ1,ϵ, ξ2,ϵ). Now ∥M − M̂t∥∞,∞ = maxz∈C̄+ maxk∈[K] z
⊤(M − M̂t). Therefore

P
(
(G1(T ) ∩G2(T ))

c

)
≤

T∑
h(t)

P(max
z∈C̄+

max
k∈[K]

|z⊤(M − M̂t)| > ξϵ)

≤
T∑

h(t)

K∑
k=1

P(max
z∈C̄+

|z⊤(Mk − M̂k,t)| > ξϵ)

From tracking results (Lemma 9) we have at any time t > 4K and ∀k ∈ [K], Nt,k ≥
√

t
K −K,

ensuring that each arm, is played enough till time t ∈ [T ] to bring M̂k,t close to Mk. Now we choose
zmax ≜ argmaxz∈C̄+ |z⊤Mk − M̂k,t|. Therefore

P
(
(G1(T ) ∩G2(T ))

c

)
≤

T∑
h(t)

K∑
k=1

P
(
|z⊤max(Mk − M̂k,t)| > ξϵ

)
(21)

Then applying Chernoff inequality on the probability on the R.H.S of the inequality (21), we get

P
(
|z⊤(Mk − M̂k,t)| > ξϵ

)
≤ eK

[
exp(−

√
tA−

k ) + exp(−
√
tA+

k )
]

where A−
k =

DKL(z⊤
maxMk−ξϵ ∥ z⊤

maxMk)√
K

and A+
k =

DKL(z⊤
maxMk+ξϵ ∥ z⊤

maxMk)√
K

. We leverage this
upper bound the bad event to get

P
(
(G1(T ) ∩G2(T ))

c

)
≤ eK

T∑
h(t)

K∑
k=1

[
exp(−

√
tA−

k ) + exp(−
√
tA+

k )
]
<∞

=⇒
∞∑

T=N

P
(
(G1(T ) ∩G2(T ))

c

)
< 34eK

K∑
k=1

1

DKL (z⊤maxMk − ξϵ ∥ z⊤maxMk)
19/4

+
1

DKL (z⊤maxMk + ξϵ ∥ z⊤maxMk)
19/4

(22)

Where the last line is implied by leveraging Lemma 13 with α = 8
11 , β = 1

2 and A = A+
k = A−

k
respectively.
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Now using Theorem 8 and 9 of Wang et al. (2021), we also get stricter versions of Theorem 3 and
Corollary 4 as

Corollary 5. (Stricter version of Corollary 4) For any M ∈ M and ϵ < (0, κD) where κ ≜
infπi

infz∈C̄+ infπj∈nbd(πi) z
⊤M(πi − πj), then if ∥M − M̂∥∞,∞ ≤ ϵ

2D , then

|F (ω|M)− F (ω|M̂)| < ϵ, ∀ω ∈ ∆Kγ

Theorem 8. (Stricter version of Theorem 3) Let M ∈M and ϵ ∈ (0, κD). For any r ∈ (0, 1), and
ω ∈ ∆Kγ , if M̂ ∈ Si that is ∥M − M̂∥∞,∞ ≤ ϵ

2D , then we get∣∣∣∣ max
x∈∆K

min
h∈HM̂ (ω,r)

⟨x− ω,h⟩ − max
x∈∆K

min
h∈HM (ω,r)

⟨x− ω,h⟩
∣∣∣∣ < ϵ

2
,∀(ω, r) ∈ ∆Kγ × (0, 1)

and ∣∣∣∣ min
h∈HM̂ (ω,r)

⟨x− ω,h⟩ − min
h∈HM (ω,r)

⟨x− ω,h⟩
∣∣∣∣ < ϵ

2
,∀(ω, r,x) ∈ ∆Kγ × (0, 1)×∆K

Therefore putting ξϵ = κ
2D in Equation (22) to get the final non-asymptotic bound on the bad event

probabilities as

P
(
(G1(T ) ∩G2(T ))

c

)
≤ 34eK

K∑
k=1

1

DKL

(
z⊤maxMk − ϵ

2D

∥∥ z⊤maxMk

)19/4
+

1

DKL

(
z⊤maxMk − ϵ

2D

∥∥ z⊤maxMk

)
19/4
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G Algorithmic Complexity

G.1 Time Complexity

1. Pareto Set Estimation. Our proposed algorithm FraPPE first computes the set of Pareto arms
based on current estimates of the means. We refer to Kone et al. (2024) to state that worst-case
complexity for estimating Pareto set is given by O

(
K log(K)max{1,L−2}).

2. Now for each candidate pure Pareto policies and its neighbour,

(i) Frank-Wolfe Step. FraPPE again solves a linear optimisation as a part of Frank-Wolfe update
step in the sub-differential set. So, it also suffers complexity of O

(
1
tol

)
due to K-independent upper

bound on curvature constant.

(ii) Stopping Criteria. To calculate the GLRT metric FraPPE solves another linear optimisation
with complexity O

(
L
tol

)
, since z and y respectively come from a convex preference cone and its

polar form.

Therefore Step 2 suffers from a total time complexity of O
(

K min{K,L}
tol

)
since in the worst case,

there can be K Pareto candidates and there can be min{K,L} neighbours.

3. Parameter Update. Updating M̂t+1 enjoys complexity of order O(L).

Total Time Complexity. Then combining Step 1, 2 and 3 we get the total worst-case time
complexity per iteration of FraPPE as O

(
K log(K)max{1,L−2}) + O (KLmin{K,L}

tol

)
+ O(L) =

O
(
max

{
K log(K)max{1,L−2},Kmin{K,L}

})
.

In most real-life instances, the number of available options are greater than objectives, i.e K > L.
In that case FraPPE enjoys time complexity of O

(
KL2

)
, which is a significant improvement over

existing literature. Notably, the complexity shows that the complexity for calculating the Pareto front
dominates the overall complexity when L ≥ 5 and K ≥ 19.

G.2 Space Complexity

We compute the space complexity of FraPPE in three steps,

1. Mean estimates. We need to maintain the estimate of M of dimension K × L per step, so space
complexity is of O(KL).

2. Estimated Pareto Set. This is of O(K) in the worst case.

3. Neighbour set. The space for maintaining the neighbour set is of O(KL).

Total Sample Complexity. Therefore the total space complexity of FraPPE is given by O(KL).
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H Tracking Results

We leverage similar tracking results as Wang et al. (2021). We reiterate the Tracking Lemmas again
with notations used in this paper.
Lemma 8. Let {xs}s∈N ∈ ∆K be a sequence of vectors such that xk is ek for k = [1,K]. Then

t = K,Nk,t = 1,

∀t ≥ K + 1, At ∈ argmax
k′

∑t
s=1 xk′,s

Nk′,t−1
∀k ∈ [1,K], where Nk,t =

t∑
s=1

1{As = k}

where the argmax breaks ties arbitrarily. Then for all t ≥ K, and all k ∈ [1,K]

t∑
s=1

xk,s − (K − 1) ≤ Nk,t ≤
t∑

s=1

xk,s + 1

Lemma 9. At any t ≥ 4K, the sampling rule of FraPPE satisfies ωs ∈ ∆ 1
2
√

tK

Proof. By forced exploration enforced in FraPPE, we can write

tωt =

t∑
s=1

xs ≥
1

K
1{xs = (1/K, 1/K, . . . , 1/K)}

=

√⌊
t

K

⌋
≥
√

t

K
− 1 ≥ 1

2

√
t

K

=⇒ ωt ≥
1

2
√
tK

35



I Additional Experimental Details

I.1 Implementation Details

Computational Resource. We run all the algorithms on a 64-bit 13th Gen Intel octa-Core i7-1370P
× 20 processor machine with 32GB RAM.

Dataset Description: Cov-Boost. This real-life inspired data set contains tabulated entries of phase-2
booster trial for Covid-19 (Munro et al., 2021). Cov-Boost has been used as a benchmark dataset for
evaluating algorithms for Pareto Set Identification (PSI). It consists bandit instance with 20 vaccines,
i.e. arms, and 3 immune responses as objectives, i.e., K = 20 and L = 3. Additionally, Kone et al.
(2024) provides detailed description of this dataset in Table 3 (empirical arithmetic mean of the
log-transformed immune response for three immunogenicity indicators) and 4 (pooled variances).
For entirety, we include the mean and pooled variance table here

Table 3: Mean matrix

Dose 1/Dose 2
Dose 3 (booster) Immune response

Anti-spike IgG NT50 cellular response

Prime BNT/BNT

ChAd 9.50 6.86 4.56

NVX 9.29 6.64 4.04

NVX Half 9.05 6.41 3.56

BNT 10.21 7.49 4.43

BNT Half 10.05 7.20 4.36

VLA 8.34 5.67 3.51

VLA Half 8.22 5.46 3.64

Ad26 9.75 7.27 4.71

m1273 10.43 7.61 4.72

CVn 8.94 6.19 3.84

Prime ChAd/ChAd

ChAd 7.81 5.26 3.97

NVX 8.85 6.59 4.73

NVX Half 8.44 6.15 4.59

BNT 9.93 7.39 4.75

BNT Half 8.71 7.20 4.91

VLA 7.51 5.31 3.96

VLA Half 7.27 4.99 4.02

Ad26 8.62 6.33 4.66

m1273 10.35 7.77 5.00

CVn 8.29 5.92 3.87

Table 4: Pooled variances

Immune response

Anti-spike IgG NT 50 cellular response

Pooled sample variance 0.70 0.83 1.54
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Code. The anonymous repository link for the implementations - code repository.

I.2 A Pseudocode of Accelerated PreTS

The algorithm PreTS provided in Shukla and Basu (2024) lacks tractability as discussed before. The
allocation computation involved constructing a convex hull over the Alt-set, which is very expensive
and makes it non-implementable. So, here we provide an accelerated version of PreTS (Algorithm
2) that can be implemented leveraging our observations of the optimisation problem. Note that,
this version of PreTS is still expensive to run. Roughly our Algorithm 2 runs 90 times faster than
Algorithm 2 when implemented in Python3 with identical resource environment.

Algorithm 2 Accelerated Preference-based Track-and-Stop (Accelerated PreTS)

1: Input: Confidence parameter δ, preference cone C̄
2: Initialise: For t ∈ [K], sample each arm once s.t. ωK = (1/K, · · ·, 1/K), mean estimate M̂K

3: while Equation (8) is FALSE do
4: Estimate Pareto Indices: Calculate Pareto indices Pt based on current estimate M̂t.
5: Estimate Set of Pareto Policies: ΠPt consisting pure policies with it ∈ Pt as basis.
6: Set of Neighbours: Π \ΠPt , where Π is the set of all pure policies.
7: Allocation: ωt ← argmax

ω∈∆K

min
πj∈nbd(π⋆

i )
π⋆

i ∈{π⋆
i }

p
i=1

min
M̃∈Λ̄ij(M)

min
z∈C̄+

∑K
k=1 ωkDKL

(
z⊤M̂k,t

∥∥∥ z⊤M̃k

)
8: C-tracking: Play At ∈ argminNa,t −

∑t+1
s=1 ωs (ties broken arbitrarily)

9: Feedback and Parameter Update: Get feedback Rt ∈ RL and update M̂t to M̂t+1 with Rt

10: end while
11: Recommendation Rule: Recommend Pt as the Pareto optimal set
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Figure 6: Runtime per iteration (in seconds) of FraPPE for varying number of arms K in the
Gaussian instance with L = 2 and correlation coefficient ρ = 0.9.

J Runtime Analysis of FraPPE

In this section, we provide runtime analysis of FraPPE with varying values of K and L.

I. Scaling with K. We consider synthetic environments consisting of L = 2, multivariate Gaussian
rewards, and positive right orthant as the preference cone. Additionally, we assume the two objectives
to be highly positively correlated with correlation coefficient ρ = 0.9. We set δ = 0.01. Finally,
we vary the number of arms K = 5, 10, 20, 30, 40, keeping the Pareto front same and report the
corresponding clock time per iteration for each of the instances. The final results are averaged over
10 experiments.

Observation. From Figure 6, the trend in runtime is sub-linear with respect to K, i.e. the clock
runtime complexity scales with at most O(K).

I. Scaling with L. To test the runtime of FraPPE with varying values of L, we fix K = 25. Keeping
all other parameters and Pareto front same, we set four environments with L = 2, 6, 10, 14 to report
the runtimes per iterations. The final results are averaged over 10 experiments.

Observations: It is clear from Figure 7 that both mean and median runtime of FraPPE falls below
the rate O((log(K)max{1,L−2}) after L ≥ 5. That means complexity of calculating Pareto front
dominates the complexity of lower bound optimisation.
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Figure 7: Runtime per iteration (in seconds) of FraPPE for varying number of arms L in the Gaussian
instance with K = 25 and correlation coefficient ρ = 0.9.
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K Auxiliary Definitions and Results

Theorem 9 (Berge’s Maximum Theorem). Let U and V be topological spaces, f : U × V →
R and C : U → V be non-empty compact set for all u ∈ U . Then, if C is continuous at u,
f∗(u) = maxv∈C(u) f(u, v) is continuous and C∗(u) = {v ∈ C(u) : f∗(u) = f(u, v)} is upper-
hemicontinuous.

Theorem 10 (Donsker-Vardhan Variational Formula). For mutual information KL(P∥Q), we have
that:

dKL(P∥Q) = sup
f

EP [f ]− lnEQ [exp(f)]

Lemma 10 (Peskun Ordering). For any two random variables X,Y on RKL the following are
equivalent:

1. X ≤s Y

2. For all x ∈ RKL, P [X ≥ x] ≤ P [Y ≥ x]

3. For all non-negative functions f1, f2, . . . , fk, we have that: ΠK
i=1fi ≤ ΠK

i=1fi

Theorem 11 (Berge (1877)). Let X and Y be Hausdorff topological spaces. Assume that

1. Φ : X ⇒ K(X) is continuous, where K(X) = {F ∈ S(X) : F is compact.} (i.e. both upper
and lower hemiconituous),

2. u : X× Y→ R is continuous.

Then the function v : X→ R is continuous and the solution multifunction Φ⋆ : X→ S(Y) is upper
hemicontinuous and compact valued, where S(Y) is the set of non-empty subsets of Y.

Theorem 12 (Feinberg et al. (2014)). Assume that

1. X is compactly generated,

2. Φ : X ⇒ S(Y) is lower hemicontinuous,

3. u : X× Y→ R is K-inf-compact and upper semi-continuous on GrX(Φ).

Then the function v : X→ R is continuous and the solution multifunction Φ∗ : X ⇒ S(Y) is upper
hemicontinuous and compact valued.

Lemma 11 (Combes et al. (2017)). Let X be a metric space and Y be a nonempty open subset in RK .
Let u : X× Y → R and ∂u

∂y exists and is continuous in X× Y . For each y ∈ Y , let x⋆(y) minimises
u(x, y) over x ∈ X. Set

v(y) = u(x⋆(y), y).

Assume that x⋆ : Y → X is a continuous function. Then v is continuously differentiable and

d

dy
v(y) =

∂u

∂y
(x⋆(y), y).

Fact 7 (Existence and Continuity of Minimum). IfX and Y are topological spaces and Y is compact.
Then for any continuous f : X × Y → R, the function g(x) ≜ infy∈Y f(x, y) is well-defined and
continuous. Additionally, infy∈Y f(x, y) = miny∈Y f(x, y).

Fact 8 (inf and min over Union of Sets). Let us consider an ordered universe S and a set A ⊂ S
which is union of |I| sets, i.e. A = ∪i∈IAi and Ai ⊂ S. If the following statements are true:

1. a ≜ inf A exists, and

2. ai ≜ inf Ai exists for each i ∈ I ,

they imply that a = inf{ai : i ∈ I}. The same holds true for min.
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Theorem 13 (Version of Theorem 7 in Kaufmann and Koolen (2021)). Let δ > 0, ν be independent
one-parameter exponential families with mean µ and S ⊂ [K]. Then we have,

Pν

[
∃t ∈ N :

∑
a∈S

Ñt,adKL (µt,a, µa) ≥
∑
a∈S

3 ln
(
1 + ln

(
Ñt,a

))
+ |S|T

(
ln
(
1
δ

)
|S|

)]
≤ δ .

Here, G : R+ → R+is such that G(x) = 2h̃3/2

(
h−1(1+x)+ln

(
π2

3

)
2

)
with

∀u ≥ 1, h(u) = u− ln(u)

∀z ∈ [1, e],∀x ≥ 0, h̃z(x) =

{
exp

(
1

h−1(x)

)
h−1(x) if x ≥ h−1

(
1

ln(z)

)
z(x− ln(ln(z))) else

.

Theorem 14 (Grinberg (2017)). For a subset S in Euclidean space Rn, the statements S is compact,
i.e every open cover of S has a finite sub-cover⇐⇒ S is closed and bounded.

Lemma 12 (Lemma 18 in (Garivier and Kaufmann, 2016)). For α ∈ [1, e/2], any two constants
c1, c2,

x =
1

c1

[
log

(
c2e

cα1

)
+ log log

(
c2
cα1

)]
is such that c1x ≥ log (c2x

α).

Lemma 13 (Wang et al. (2021)). Let α, β ∈ (0, 1) and A > 0.

∫ ∞

0

(∫ ∞

Tα

exp
(
−Atβ

)
dt

)
dT =

Γ
(

1
αβ + 1

β

)
βA

1
αβ+ 1

β

Example 1. Multivariate Gaussian with mean µ and covariance Σ

The density function is

f(x) = (2π)−
L
2 det(Σ)−

1
2 exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.

We can rewrite it as

f(x) = (2π)−
L
2 exp

(〈
Σ−1µ,x

〉
+

〈
vec

(
−1

2
Σ−1

)
, vec

(
xx⊤)〉− 1

2

[
log |Σ|+ µ⊤Σ−1µ

])
.

Thus, the base density is h(X) = (2π)−
L
2 . The natural parameter is η(θ) =

( Σ−1µ

vec(− 1
2Σ

−1)

)
. The

sufficient statistic is T (x) =
(

x
vec(xx⊤)

)
. The log-normaliser or log-partition function is ψ(θ) =

1
2

[
log det(Σ) + µ⊤Σ−1µ

]
.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract has clear mention of theoretical claims and contributions towards
existing literature.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have clearly mentioned the limitations and potential future directions of
research in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The assumptions for problem environment are standard in the literature and
are described in the beginning of Section 2 and in Section 4.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experimental details are given in Section 5 and also in supplement exten-
sively for full reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

42



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the codes for experiments are given with an anonymous link in the
supplement.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the dataset sources, hyperparameter details are given in Section 6 and
supplement.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resource details used in the experiments are reported in the
supplement in details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

Justification: The authors have read the code of ethics and confirm that the research con-
ducted in the paper conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This research should be considered as foundation research, though it can have
positive impact in terms of effective experimental designs in sectors like policy making,
clinical trial etc as described as motivation in Section 1.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This research uses only open source and synthetic datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Every piece of code or data used in this research has proper citations and are
respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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