
SpecEM: Training-Free LLM Ensembling via Iterative
Drafting, Verification, and Online Feedback

Bo Lv1,2,3, Nayu Liu4∗ , Chen Tang5, Xin Liu1, Yue Yu1∗, Ping Luo1,2,3

1Peng Cheng Laboratory
2Key Lab of Intelligent Information Processing, Institute of

Computing Technology, Chinese Academy of Sciences (ICT/CAS)
3University of Chinese Academy of Sciences

4Tianjin Laboratory Autonomous Intelligence Technology and Systems, School of
Computer Science and Technology, Tiangong University
5Institute for Advanced Algorithms Research, Shanghai

lvbo19@mails.ucas.ac.cn

Abstract

Ensembles of generative large language models (LLMs) are a promising way to
compensate for individual model limitations, integrating the strengths of differ-
ent LLMs. Existing LLM ensemble methods, however, face limitations such as
first-token delay and challenges in long-range semantic collaboration between
models, Moreover, they typically assume equal voting weights for all models
during ensemble, ignoring task-specific performance differences among models.
In this work, we propose SpecEM, a training-free, plug-and-play LLM ensemble
framework that dynamically adjusts each model’s model contribution in real time
based on task performance. Inspired by speculative decoding, SpecEM iteratively
performs drafting and verification, allowing models to collaborate semantically at
the segment level for integrated output. Furthermore, we introduce an online feed-
back mechanism with multiplicative weight updates, where each model’s voting
weight is adjusted on-the-fly according to how often it outperforms others during
verification stage, ensuring that stronger models exert greater influence during
ensembling. Experimental results on five LLM families (ranging from 7B to 72B
parameters) and six benchmark datasets, spanning open-domain instruction follow-
ing, reasoning, commonsense, demonstrate consistent performance improvements
compared to state-of-the-art LLM ensemble methods. Our code is available at
https://github.com/lvbotenbest/SpecEM.

1 Introduction

Generative large language models (LLMs) [AI@Meta, 2024, Yang et al., 2024] have been widely
adopted due to their impressive performance across a broad range of domains. Owing to differences
in training data and model architectures, off-the-shelf generative LLMs often exhibit strengths
in different areas. Consequently, ensembling multiple LLMs at inference time can help mitigate
individual biases and errors, resulting in a more robust and reliable user experience.

Existing LLM ensemble approaches [Chen et al., 2025, Jiang et al., 2023b, Huang et al., 2024, Lv
et al., 2024a] can be broadly categorized into generate-then-ensemble [Jiang et al., 2023b, Lv et al.,
2024b] and ensemble-while-generation [Huang et al., 2024, Yao et al., 2025] paradigms. The former
typically generates full responses from all base models for a given query, then leverages an additional

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

fusion model to summarize or select the best outputs. The latter adopts a more interleaved approach,
greedily aggregating the output probabilities from different models at certain timesteps to decide next
tokens, which is then broadcast to all models.

Despite promising progress, generate-then-ensemble methods suffer from first-token delay, as users
must wait until all models complete their responses before receiving integrated output. In contrast,
ensemble-while-generation methods mitigate this latency but may fall short in enabling long-range
semantic communications across models. Moreover, existing methods focus solely on aggregating
model outputs, typically assuming equal contribution from all models, and overlooking the fact that
different models may perform differently depending on the task. We argue that incorporating an
online learning mechanism to dynamically assign higher weights to better-performing models while
down-weighting weaker ones can lead to higher-quality ensemble outputs.

Based on the above observations, we propose SpecEM, a training-free, plug-and-play LLM ensemble
framework that performs segment-level fusion of model outputs and dynamically adjusts model
weights on-the-fly based on task-specific performance. Inspired by speculative decoding [Xia et al.,
2023, Leviathan et al., 2023a], SpecEM iteratively executes two key stages: drafting and verification.
In the drafting stage, each base LLM generates a candidate text segment given the prior context, with
a predefined maximum length per iteration. In the verification stage, all LLMs receive these candidate
segments with prior context and mutually evaluate them in parallel based on their output logits. The
top-ranked segment is then broadcast to all models, guiding them to generate higher-quality text in
subsequent rounds. This iterative drafting-verification process eliminates the need for training fusion
modules or selection aggregators, and allows for effortless integration of base LLMs without any
fine-tuning.

Furthermore, we introduce an online feedback mechanism in SpecEM to dynamically adjust each
model’s influence during the verification stage. It is based on the assumption that models capable
of generating higher-quality segments in drafting are also better at evaluating others in verification.
Specifically, we treat the number of times a model outperforms its peers in verification as a reward
signal to update its voting weight using a multiplicative weight update algorithm. This ensures that
stronger models progressively exert greater influence during generation.

We evaluate SpecEM on five popular LLM families (ranging from 7B to 72B parameters) across
six benchmark datasets, covering open-domain instruction following, reasoning, and commonsense.
Experimental results demonstrate consistent performance improvements over state-of-the-art LLM
ensemble methods. In summary, our contributions are as follows:

• We propose SpecEM, a training-free and plug-and-play ensemble framework that integrates
outputs by iteratively coordinating drafting and verification across multiple LLMs.

• We propose an online feedback mechanism that dynamically adjusts each model’s contri-
bution to inference and verification during generation, ensuring that stronger models exert
greater influence in the ensemble.

• We conduct comprehensive evaluations on five LLM families and six benchmarks, showing
that SpecEM consistently outperforms state-of-the-art ensemble methods.

2 Related Work

2.1 LLM Ensembling

Recent efforts in LLM ensembling have shown that combining multiple models can enhance perfor-
mance by leveraging their complementary strengths. These methods can be broadly categorized into
generate-then-ensemble and ensemble-while-generation, depending on when and how the ensembling
of model outputs occurs.

Generate-then-ensemble methods first let each base LLM generate a complete response, and then
aggregate the outputs through selection [Freitag et al., 2023] or fusion [Lv et al., 2024b]. Selection-
based methods, such as MBR [Freitag et al., 2023] and PairRank [Jiang et al., 2023b], rank or
compare candidates among all outputs to select the best one as the output. Fusion-based methods,
such as GenFuse [Jiang et al., 2023b] and MOA [Wang et al., 2024], generate new outputs by using
base model responses as input to a fusion model or aggregator.

2

Drafting Stage

Prior context 𝕀(𝒌#𝟏)

How does one work a computer mouse ? …

Verification Stage

Candidates

Model 1 Model 2 Model 3

Model 1

Model 2

Model 3

Online Feedback

Calculate
Reward

Update voting
weights Single-Round-Output

Here's a step-by-step guide

Candidates

𝑪𝟏
(𝒌): A computer mouse is a simple input device

𝑪𝟐
(𝒌): Here's a step-by-step guide

𝑪𝟑
(𝒌): Working a computer mouse is a skill

𝜔(
()#*) # 𝑒+,'

(
→ 𝜔(

())

𝜔*
())

𝑪𝟏
(𝒌):A computer mouse is a simple input device

𝜔-
())

𝜔.
())

𝛾*
())

𝛾-
())

𝛾.
())

𝑪𝟐
(𝒌):Hereʹs a step−by−step guide

𝑪𝟑
(𝒌):Working a computer mouse is a skill

𝐶*
()) 𝐶-

()) 𝐶.
())

𝑠*,*
()) 𝑠*,-

()) 𝑠*,.
())

𝑠-,*
()) 𝑠-,-

()) 𝑠-,.
())

𝑠.,*
()) 𝑠.,-

()) 𝑠.,.
())

𝜔*
())

𝜔-
())

𝜔.
())

y*
()) 𝑦-

()) 𝑦.
())

Select Top 1
Candidate

Concatenate with the best candidate 𝐶)
(*)

𝑠*,*
()) 𝑠*,-

()) 𝑠*,.
())

𝑠-,*
()) 𝑠-,-

()) 𝑠-,.
())

𝑠.,*
()) 𝑠.,-

()) 𝑠.,.
())

×

×

×

+

+

⋯

⋯

𝐶*
()) 𝐶-

()) 𝐶.
())

Final score

Concat

𝕀(𝒌+𝟏)

Figure 1: Overview of SpecEM, a training-free plug-and-play LLM ensemble framework with three
components: drafting, verification, and online feedback. The blue solid lines indicate a single
iteration; dashed lines denote input refreshing for the next round.

Ensemble-while-generation methods [Yu et al., 2024, Huang et al., 2024, Xu et al., 2024] aggregate
model outputs during the generation process, typically by fusing output probability distributions to
produce ensembling results incrementally. Due to vocabulary mismatches across different LLMs
that hinder the combination of multiple probability distributions, Yu et al. [2024] construct a new
union vocabulary by combining the vocabularies of multiple models to include all tokens from each
model. They then project the distribution information from each model onto this merged vocabulary
for averaging aggregation. Similarly, DeePEn [Huang et al., 2024] and EVA [Xu et al., 2024] project
the output distributions of multiple models into a shared relative/pivot space, followed by averaging
aggregation. While, these methods operate over all LLM’s vocabulary at each timestep, which may
leads to some computational overhead. More efficiently, UniTe [Yao et al., 2025] focuses only on
the top-K portion of each model’s output distribution and uses the union vocabulary strategy [Yao
et al., 2025] to reduce alignment costs while maintaining good performance.

While recent progress has been made, challenges remain in balancing efficiency with effective cross-
model collaboration. In this work, we introduce SpecEM, a plug-and-play training-free framework
that performs segment-level collaboration via iterative drafting and verification. Unlike previous
methods that rely on static model contributions, SpecEM incorporates an online feedback mechanism
to dynamically adjust each model’s influence based on performance during generation, promoting
more adaptive and effective ensembling.

2.2 Speculative Decoding

Speculative Decoding [Xia et al., 2023, Chen et al., 2023, Sun et al., 2024] aims to accelerate inference
in LLMs by leveraging a lightweight draft model to propose multiple candidate tokens, which are
then verified by a larger target model [Leviathan et al., 2023b]. Concretely, at each decoding step, the
draft model efficiently generates a sequence of potential tokens, and the target model accepts only
those that match its own predictions [Miao et al., 2024]. This significantly reduces the number of
expensive forward passes through the larger model without compromising output quality.

Inspired by this idea, we propose SpecEM, which reimagines speculative decoding for model
ensembling rather than acceleration. Instead of a small model drafting for a large one, multiple LLMs
iteratively generate draft segments and verify each other’s outputs in parallel. This collaborative
refinement allows stronger models to guide weaker ones. In addition, SpecEM incorporates an online
feedback mechanism that dynamically adjusts each model’s influence during verification.

3 Methodology

Figure 1 presents an overview of SpecEM. SpecEM performs LLM ensembling through iterative
drafting, verification, and online feedback, which are described in detail in the following subsections.

3

Pos Id 1 2 3 4 65 7 8

Original Attention Mask Matrix Verify-In-line Attention Mask Matrix

Original Position Id Verify-In-line Position Id

𝐶!𝕀 𝐶!𝕀 𝕀 𝐶" 𝐶" 𝐶#𝐶#
𝕀
𝕀
𝕀
𝐶!
𝐶!
𝐶"
𝐶"
𝐶#
𝐶#

𝐶!𝕀 𝐶!𝕀 𝕀 𝐶" 𝐶" 𝐶#𝐶#
𝕀
𝕀
𝕀
𝐶!
𝐶!
𝐶"
𝐶"
𝐶#
𝐶#

0

𝐶!𝕀 𝐶!𝕀 𝕀 𝐶" 𝐶" 𝐶#𝐶#
Pos Id 1 2 3 4 43 3 40

𝐶!𝕀 𝐶!𝕀 𝕀 𝐶" 𝐶" 𝐶#𝐶#

Figure 2: An overview of verify-in-line attention mask and postion id.

3.1 Drafting Stage

During the drafting stage, in each generation round, all models are simultaneously activated to
perform parallel inference based on the task query and the best candidate segment broadcast from
previous rounds. Formally, let the ensemble consist of models {Mi}N , where Mi denotes the i-th
base LLM. In the k-th iteration round, the draft candidate segment generated by Mi is denoted
as C(k)

i = {t(k)1 , ..., t
(k)
l }, where the number of generated tokens l is constrained by a predefined

maximum segment length L.
C

(k)
i = M

i
(I(0), ..., I(k−1)) (1)

Here, I(k−1) denotes the best candidate segment broadcast in the k-th round, and I(0) corresponds to
the initial task query.

3.2 Verification Stage

During the verification stage, all models perform mutual evaluation on the candidate segments
generated during the drafting stage. At iteration k, each model receives the full set of candidate
segments {C(k)

i }N , along with the prior context {I(0), ..., I(k−1)}. Each model scores the candidates,
and the one with the highest aggregated score is selected as the output of the current round. This
selected segment is then broadcast to all models as part of the context for the next generation round.
As illustrated in the mutual evaluation matrix in Figure 1, let s(k)i,j denote the score assigned by model
i to candidate j in generation round k. Concretely, for each candidate segment, we compute the
average of the logits produced by the model over the tokens in the segment, which serves as the
model’s evaluation score [Lv et al., 2023, Varshney et al., 2023, Lv et al., 2025] for that candidate:

s
(k)
i,j =

1

l

l∑
u=1

p(t
(k)
i,j,u) (2)

where p(t
(k)
i,j,u) denotes the logit score by model i in round k for the u-th token of candidate j. To

mitigate scoring bias caused by some models producing systematically higher or lower logits, we
normalize the scores that the model assigns to all candidates before aggregation:

s
(k)
i,j ←

s
(k)
i,j∑N

j=1 s
(k)
i,j

(3)

Finally, the overall score {yj}N of each candidate is computed as a weighted sum of the scores from
all verifier models:

y
(k)
j =

N∑
i=1

ω
(k)
i s

(k)
i,j (4)

with weights {ωi}N dynamically updated by the online feedback mechanism described in Section 3.3.

Specially, we introduce a verify-in-line mechanism, avoiding redundant attention computations over
the prior context and the increased time complexity caused by serial model-wise scoring. Concretely,
at the k-th generation iteration, we concatenate the prior context and all candidate segments along the
sequence dimension to construct a unified input sequence:

LINE = [I(k−1) : C
(k)
1 : C

(k)
2 : C

(k)
N] (5)

4

where I(k−1) denotes the prior context [I(0) : ... : I(k−1)] for brevity, and [:] denotes sequence-wise
concatenation. We then modify the attention mask and position IDs in the Transformer such that each
model can process LINE and output scores for all candidates in parallel, as shown in Figure 2:

Verify-in-line attention mask. During verification, each candidate segment should only attend to
the shared prior context I(k−1), without accessing information from other candidate segments. To
enforce this, we augment the standard triangular attention mask of the decoder-only Transformer
with an additional masking scheme that blocks attention across candidate segments. This ensures that
tokens in C

(k)
i can only attend to I(k−1), not to tokens in other candidates C(k)

j for j ̸= i. As a result,

although all candidates are concatenated into LINE, model Mi effectively "sees" only [I(k−1) : C
(k)
i]

during scoring, enabling efficient and parallel evaluation.

Verify-in-line position IDs. While the modified attention mask guarantees the correct visibility, the
default position encoding would still reflect the segments’ physical positions in the concatenated
LINE, which may distort modeling. For instance, the actual input sequence for scoring C

(k)
2 is

[I(k−1) : [mask] : C
(k)
2 : [mask] : ...] rather than [I(k−1) : C

(k)
2]. To address this, we further

adapt LLMs’ relative positional encoding so that each candidate segment is positioned as if it were
immediately following the prior context. That is, the position IDs for each C

(k)
i are reset to be

consecutive with I(k−1), ensuring the position modeling remains consistent with the actual evaluation
context.

3.3 Online Feedback Mechanism

It is generally difficult to anticipate which model performs best on a given query. Due to differences
in model architectures and training corpora, different models may exhibit varying strengths across
domains, and may produce low-quality outputs when encountering unfamiliar or challenging topics.
Since the verification stage relies on each model’s scoring of candidate segments, models with weaker
generation capabilities may also produce unreliable evaluations when acting as validators.

We propose a core assumption: models that perform better in generation tend to offer more
reliable judgments during verification. This assumption is empirically supported in Appendix A.
Building on this, we introduce an online feedback mechanism based on the multiplicative weights
update algorithm. It dynamically adjusts each model’s contribution in the verification stage by tracking
and weighting its validation performance during the generation process. As a result, decisions from
better-performing models are prioritized, enhancing the overall ensemble effectiveness.

Formally, let there be N models. Denote the verification weight of model Mi at generation round
k as ω

(k)
i . All models are initially assigned uniform weights: ω(0)

i = 1
N . At round k, model Mi

receives a feedback reward γ
(k)
i , and its weight is updated according to:

ω
(k)
i = ω

(k−1)
i · eηγ

(k)
i (6)

To address the fact that more models (i.e. N) lead to smaller initial weights, and to ensure that
updates become more stable over time (i.e. k), we define the learning rate η in Eq. 6 as:

η = α ·
√
1/k

N
(7)

where α is a hyperparameter. Then all weights are normalized as:

ω
(k)
i ← ω

(k)
i∑n

j=1 ω
(k)
j

(8)

This feedback-driven reweighting ensures that more credible validators exert greater influence on the
selection process, leading to progressively improved collective decisions over time.

Reward Definition. For each model Mi, we define its reward γ
(k)
i in Eq. 6 based on how often its

generated segment is preferred over others in the evaluations conducted by the remaining models.
Specifically, we count the number of times model Mi’s candidate C

(k)
i is scored higher than another

5

candidate C(k)
r by a third model Mj , where j ̸= i and r ̸= i, and normalize this count as reward γ

(k)
i :

γ
(k)
i =

∑
j ̸=i

∑
r ̸=i bool(s

(k)
j,i > s

(k)
j,r)∑N

i=1

∑
j ̸=i

∑
r ̸=i bool(s

(k)
j,i > s

(k)
j,r)

(9)

Here, bool(·) returns 1 if the condition inside is true, and 0 otherwise. Intuitively, if a model’s
candidate frequently outperforms others in peer evaluations, it is considered better suited to the current
task. In Section 4.3, we empirically compare this reward formulation against alternative segment
selection strategies. Finally, the comprehensive score for each candidate {y(k)j }N is computed as
the weighted sum of its scores assigned by all validators, following Equation 4. The highest-scoring
candidate is selected as the best output I(k), and it is appended to the prior context for use in the next
round of drafting and verification.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate SpecEM on six datasets that reflect key capabilities of LLMs, including open-
domain instruction following, commonsense, and reasoning. FuseEval: A multilingual instruction
response benchmark we construct by combining Dolly-15k [Conover et al., 2023] and Alpaca-
GPT4 [Peng et al., 2023] for English, and Human-Value and Ruozb from COIG-CQIA [Bai et al.,
2024] for Chinese. IFEval [Zhou et al., 2023]: Evaluates instruction adherence under four granular
settings, prompt-strict/loose, instruction-strict/loose. AlpacaEval 2.0 [Dubois et al., 2024]: Measures
alignment with human preferences via GPT-4 based pairwise comparisons against GPT-4 outputs.
MMLU (5-shot) [Hendrycks et al., 2021] and ARC-C (5-shot) [Clark et al., 2018]: Multiple-choice
benchmarks that test factual knowledge and general commonsense. GSM8K (3-shot) [Cobbe et al.,
2021]: Focuses on arithmetic and multi-step reasoning through grade-school math problems. x-shot
refers to providing x examples as in-context during inference. Please refer to Appendix B.1 for a
detailed description of datasets.

Base LLMs. We use top-performing open-source instruction-tuned models (7B–9B) as base LLMs
in our ensemble, including Llama-3-8B-instruct [AI@Meta, 2024], Mistral-7B-v0.3-instruct [Jiang
et al., 2023a], Qwen2-7B-instruct [Yang et al., 2024], Glm-4-9b-instruct [GLM et al., 2024], and
Gemma-2-9b-instruct [Gemma et al., 2024]. Moreover, to assess scalability, we also evaluate
SpecEM with larger base models, including Qwen2-72B-instruct, Llama3-70B-instruct, Qwen2.5-
32B-instruct[Qwen et al., 2025], and Mistral-24B-instruct-2501 [Team., 2025].

Metrics. We follow standard evaluation protocols for each task in previous works. For FuseEval,
we use BARTScore[Yuan et al., 2021], BERTScore[Zhang et al., 2019], BLEU[Papineni et al., 2002],
ROUGE [Lin, 2004], and GPT4-Rank [OpenAI et al., 2024] to assess reference-based generation
quality. MMLU and ARC-C report accuracy by selecting the option with the highest likelihood. For
GSM8K, we compute exact match accuracy based on the predicted answer. For IFEval, we use the
provided evaluation files to test under prompt/instruction-strict and -loose conditions. AlpacaEval 2.0
reports length-controlled (LC) win rates against GPT-4 outputs using gpt-4-1106-preview.

Comparative methods. We compare our proposed SpecEM with several strong recent LLM
ensemble methods, including PairRank [Jiang et al., 2023b], Minimum Bayes Risk (MBR) [Freitag
et al., 2023], Generation Fusion (GF) [Jiang et al., 2023b], Mixture-of-Agents (MOA) [Wang et al.,
2024], Majority Voting [Davani et al., 2022], and Unite [Yao et al., 2025]. Please refer to Appendix
B.3 for a detailed description of these baseline methods.

Implement details. SpecEM requires no training and operates purely during inference. All models
are loaded using bfloat16 precision, with do_sample = True, temperature = 0.6, and top_p = 0.9
generation settings. For experiments with 7B–9B models, we use A100 GPUs, while larger models
(24B–72B) are evaluated on H200 GPUs. The maximum number of candidate segments is set to
L = 10, and the online feedback hyperparameter is set to α = 1. All reported results are averaged
over three independent runs to ensure stability.

6

Table 1: Results on the English and Chinese subsets of the FuseEval benchmark. Pink highlights the
best overall result, and Blue marks the best result among base LLMs. The upward arrow ↑ means
higher is better, and the downward arrow ↓ means lower is better.

Model ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ BLEU↑ BARTScore↑ BERTScore↑ GPT4-Rank↓
English Scenario

Base LLMs
Llama-3-8B-instruct [AI@Meta, 2024] 25.16 9.77 23.31 3.57 -2.98 69.99 9.52
Glm-4-9B-instruct [GLM et al., 2024] 25.85 10.26 23.90 3.48 -2.96 70.51 9.24
Qwen2-7B-instruct [Yang et al., 2024] 26.62 10.81 24.49 3.86 -2.94 71.44 8.48

Gemma-2-9B-instruct [Gemma et al., 2024] 25.31 10.01 23.59 4.19 -2.93 71.52 9.01
Mistral-7B-instruct-v0.3 [Jiang et al., 2023a] 27.75 10.75 25.57 4.82 -2.94 71.88 7.62
Larger LLMs

Llama-3-70B-instruct [AI@Meta, 2024] 26.77 10.87 24.56 4.10 -2.84 70.98 5.22
Qwen2-72B-instruct [Yang et al., 2024] 27.26 11.23 25.11 4.29 -2.76 71.73 4.21

Mixtral-8x7B-instruct [Jiang et al., 2023a] 29.04 12.25 26.75 4.08 -2.81 72.19 4.16
Methods of Ensembling Base LLMs

GF (Qwen2) [Jiang et al., 2023b] 23.08 8.92 21.28 3.19 -2.95 69.70 10.10
GF (Gemma-2) [Jiang et al., 2023b] 21.81 7.66 20.08 3.00 -3.02 68.20 10.11

GF (Mistral) [Jiang et al., 2023b] 24.92 9.58 22.97 3.92 -2.93 70.38 8.56
MBR [Freitag et al., 2023] 27.12 10.40 25.33 4.56 -2.89 71.63 7.66

PairRank [Jiang et al., 2023b] 28.21 10.86 25.94 4.99 -2.86 72.09 6.84
MOA [Wang et al., 2024] 27.61 11.30 25.47 5.12 -2.88 71.90 7.48
UniTE [Yao et al., 2025] 27.81 10.91 25.73 4.53 -2.90 71.77 6.00

SpecEM (Ours) 31.19 14.40 28.86 5.81 -2.88 73.34 3.98
Chinese Scenario

Base LLMs
Gemma-2-9B-instruct [Gemma et al., 2024] 29.15 7.65 18.35 3.36 -4.28 68.73 8.58
Mistral-7B-instruct-v0.3 [Jiang et al., 2023a] 30.99 8.65 20.66 4.42 -4.48 70.10 6.55

Qwen2-7B-instruct [Yang et al., 2024] 29.93 8.09 20.03 3.62 -4.33 69.99 6.42
Glm-4-9B-instruct [GLM et al., 2024] 30.88 8.71 20.42 4.47 -4.30 70.25 5.18

Larger LLMs
Llama-3-70B-instruct [AI@Meta, 2024] 27.78 7.05 20.22 4.14 -4.55 68.52 7.38
Qwen2-72B-instruct [Yang et al., 2024] 31.44 8.97 22.48 4.88 -4.34 70.65 3.63

Methods of Ensembling Base LLMs
GF (Mistral) [Jiang et al., 2023b] 30.29 8.12 20.33 3.88 -4.54 70.04 7.28
GF (Qwen2) [Jiang et al., 2023b] 28.69 7.87 18.93 3.32 -4.41 69.81 8.41
GF (Glm-4) [Jiang et al., 2023b] 30.26 8.70 20.51 4.27 -4.33 70.23 5.40

MBR [Freitag et al., 2023] 30.93 8.71 20.63 4.31 -4.31 70.23 5.33
UniTE [Yao et al., 2025] 27.46 8.22 20.54 2.83 -4.60 67.58 9.37
MOA [Wang et al., 2024] 30.96 8.50 20.60 4.36 -4.31 70.11 5.93

SpecEM (Ours) 32.15 9.94 24.00 4.75 -4.29 71.03 3.25

4.2 Main Results

Results on Diverse Evaluation Benchmarks. Table 1 presents results on the English and Chinese
subsets of the FuseEval benchmark. SpecEM, built on 7B–9B base models, outperforms all individual
LLMs and existing ensemble methods across all metrics.

Table 3: Performance on FuseEval and AlpacaEval 2.0 bench-
marks. Win rates on FuseEval are measured relative to the outputs
of Qwen2-72b-instruct.

Model English FuseEval Chinese FuseEval AlpacaEval 2.0 Avg
(winrate) (winrate) (LC-winrate)

Base LLMs
Qwen2-72b-instruct – – 38.10 –

Qwen2.5-32b-instruct 49.31 37.48 43.82 43.54
Llama3-70b-instruct 43.10 10.66 34.40 29.39

Mistral-24b-instruct-2501 52.55 31.79 48.46 44.27

Methods of Ensembling Base LLMs
MOA 53.63 (+1.08) 53.12 (+15.64) 46.98 (-1.48) 51.24

GenFuse 51.06 (-1.49) 52.41 (+14.93) 49.06 (+0.60) 50.84
UniTE 54.79 (+2.24) 19.13 (-18.35) 49.20 (+0.74) 41.04

SpecEM 55.46 (+2.91) 56.77 (+19.29) 51.32 (+2.86) 54.52

Notably, it achieves over 3-
point average gains in ROUGE-
1/2/L and ranks highest on
GPT4-Rank. Despite using
only several 7B–9B LLMs,
SpecEM performs compara-
bly to 70B-scale single mod-
els while remaining more pa-
rameter efficient. The improve-
ments are consistent in the En-
glish and Chinese scenarios,
indicating the generalizability
of SpecEM across languages.
We further assess SpecEM on
MMLU, ARC-C, GSM8K, and
IFEval benchmarks using base

7

Table 2: Results on MMLU, ARC-C, GSM8K, and IFEval benchmarks. Values in parentheses
indicate performance difference from the best-performing base model in ensemble in each column.

Model MMLU ARC-C GSM8K IFEval

prompt-avg instruct-avg

Base LLMs
Qwen2-7B-instruct 68.23 84.73 74.22 41.70 53.88
GLM-4-9B-instruct 67.16 85.15 71.80 56.01 67.14

Gemma-2-9B-instruct 71.51 88.14 77.26 61.64 72.26

Methods of Ensembling Base LLMs
Majority-Voting 71.78 (+0.27) 88.38 (+0.24) 77.29 (+0.03) – –

MBR – – 76.98 (-0.28) 54.96 (-6.68) 66.21 (-6.05)
MOA 70.43 (-1.08) 88.28 (+0.14) 77.30 (+0.04) 60.80 (-0.84) 68.81 (-3.45)
UniTE 71.94 (+0.43) 88.54 (+0.40) 76.52 (-0.74) 56.72 (-4.92) 62.08 (-10.18)

SpecEM (Qwen2+GLM4) 70.73 (+2.50) 87.54 (+2.39) 75.44 (+1.22) 51.15 (-4.86) 63.07 (-4.07)
SpecEM (Qwen2+Gemma2) 72.18 (+0.67) 88.40 (+0.26) 78.70 (+1.44) 56.01 (-5.63) 67.39 (-4.87)
SpecEM (GLM4+Gemma2) 71.82 (+0.31) 88.74 (+0.60) 75.82 (-1.44) 66.89 (+5.25) 75.52 (+3.26)

SpecEM (All) 73.01 (+1.50) 89.08 (+0.94) 77.41 (+0.15) 62.11 (+0.47) 71.56 (-0.70)

LLMs with varied strengths.
As shown in Table 2, SpecEM consistently surpasses all baseline ensemble methods across these
benchmarks. In particular, SpecEM (Qwen2 + GLM4) achieves +2.5 and +2.4 improvements on
MMLU and ARC-C, respectively, leveraging complementary model capabilities. These results
demonstrate the effectiveness of SpecEM across diverse task formats beyond open-ended generation.

Scaling to Larger Models. To further evaluate the scalability of our framework, we conduct
experiments by integrating four larger LLMs ranging from 24B to 72B parameters on FuseEval and
AlpacaEval 2.0. As shown in Table 3, SpecEM consistently outperforms all base models and prior
ensemble baselines, achieve the best performance. In particular, it surpasses the strongest single
base model by an average win rate margin of 10.3 points. These results demonstrate that SpecEM
generalizes robustly across model sizes scale.

Table 4: Win-rate comparisons between SpecEM and ablations on English (EN) and Chinese (CN)
FuseEval. Each cell shows the win/loss percentage judged by GPT-4o-2024-11-20. ∆ denotes
average win-rate improvement over ablations, and Avg reflects the mean win rate across EN and CN.

Comparison EN (win/lose) CN (win/lose) ∆ (EN / CN) Avg ∆

SpecEM vs w/o Online feedback 53.66 / 46.34 52.98 / 47.02 +7.32 / +5.96 +6.64
SpecEM vs w/ Feedback (Score-based reward) 52.17 / 47.83 51.63 /48.37 +4.34 / +3.26 +3.80
SpecEM vs w/o Feedback, Top-win selection 53.40 / 46.60 52.35 / 47.65 +6.80 / +4.70 +5.75

4.3 Analysis

Ablation analysis. We perform ablation studies to assess the effect of the online feedback mech-
anism in the verification stage. Using GPT-4 as the evaluator, we compare the full SpecEM with
three variants: (a) w/o online feedback: Removes feedback; final output is selected solely based on
verification scores. (b) w/ score-based reward: Replaces win count γi with the normalized average
verification score as the reward. (c) w/o feedback, top-win selection: Selects the candidate with the
highest win count without reward accumulation. As shown in Figure 4, the full SpecEM outperforms
all variants. Online feedback yields a 6.6-point average gain; using win count as the reward offers an
additional 2.8-point improvement over score-based reward. Directly selecting the top-win segment
leads to a 5.8-point drop, likely due to close or tied win counts, which are more reliable as soft
rewards than as decisive selection criteria.

Inference Latency Analysis. We evaluate the inference efficiency of SpecEM against other en-
semble methods and base models, focusing on two key metrics shown in Figure 3: (1) First Token
Latency, the time from user input to the generation of the first token, which is crucial for interactive
user experience; (2) Total Generation Time, the time to generate a complete response across varying
output lengths. SpecEM achieves the lowest total response time among all ensemble methods, with

8

Figure 3: Comparison of inference latency performance across methods. Left: total generation time
(seconds); Right: first-token latency (seconds), both plotted against the number of generated tokens.

only a 20% overhead compared to the slowest single model. This is because, under parallel inference
settings, the ensemble latency is bottlenecked by the slowest model’s output time.

Figure 4: The variation in SpecEM’s ROUGE-
L score as the number of base LLMs increases.
+[model] indicates the incremental addition of
a specific model to the ensemble.

Crucially, SpecEM maintains consistently low first
token latency (under 0.6s) across all lengths, en-
abling fast user feedback. In contrast, methods
that wait for full outputs before fusion suffer from
rapidly increasing first token latency, making them
unsuitable for real-time applications.

Base Model Number Analysis. We evaluate how
SpecEM scales with the number of integrated base
LLMs on the English FuseEval dataset. As shown
in Figure 4, performance consistently improves as
more base models are added. The improvements
are more pronounced when stronger models are in-
troduced, while even weaker models still contribute
positively. These results highlight the flexibility
and scalability of SpecEM, where new models can
be seamlessly integrated without additional train-
ing or adaptation, making the system robust and
extensible in real-world deployment.

Candidate Segment Length Analysis. We study
the impact of the maximum generation length L of
candidate segments on SpecEM’s performance using the English FuseEval development set. As
shown in Figure 5 (left), both BERTScore and ROUGE-L improve as L increases, peaking at L = 10,
then gradually decrease. This trend arises because shorter segments lack sufficient information,
which weakens the judgment of the verification component and limits the mutual inspiration between
models. Conversely, overly long segments reduce the frequency of cross-model interactions, hindering
effective knowledge fusion and ultimately degrading the final output quality.

Figure 5: Performance trends of SpecEM. Left: Varying maximum candidate segment length. Right:
Varying hyperparameter α in the online feedback.

Online Feedback Hyperparameter Analysis. To investigate the impact of the hyperparameter
α in learning rate in online feedback mechanism, we vary its value from 0.1 to 2 and evaluate the

9

results on the English FuseEval development set. As shown in Figure 5 (right), both BERTScore and
ROUGE-L scores initially increase with larger α, stabilize around the range of 0.8–1.3, and then
begin to decline. A very small α leads to insufficient updates, limiting the effectiveness of online
feedback, while an overly large α causes instability and degrades performance.

5 Conclusion

We propose SpecEM, a training-free and plug-and-play ensemble framework for generative LLMs.
SpecEM integrates model outputs through an iterative drafting-verification process at the segment
level, enabling semantic collaboration across models without additional training. Further, we in-
troduce an online feedback mechanism that dynamically adjusts each model’s influence during
generation based on real-time performance. Experiments across six datasets and five LLM families
ranging from 7B to 72B parameters show that SpecEM can effectively coordinate multiple LLMs,
demonstrating strong generalization across model scales, task types, and languages.

6 Limitations

Although SpecEM enables flexible integration of new models without additional training, it still
faces challenges in the ensemble process. Specifically, introducing a model that performs poorly
on the current task can degrade the overall performance, sometimes even falling below that of an
ensemble excluding the weaker model. For instance, as shown in Table 2, on the IFEval dataset,
SpecEM integrating Qwen2, GLM4, and Gemma2 underperforms compared to the ensemble of only
GLM4 and Gemma2. While we adopt an online feedback mechanism to dynamically adjust each
model’s contribution, low-quality outputs from weaker models can still negatively affect the initial
generation phase. In future work, we plan to explore rejection sampling and resampling strategies to
more effectively identify and amplify stronger models in the generation process, while suppressing
the influence of weaker ones.

7 Acknowledgments

This work was supported by the National Key Research and Development Program of China (No.
2022ZD0115301), Major Key Project of PCL via grant No. PCL2025AS11, National Natural Science
Foundation of China (NSFC) via grant 62206140,62406223. Thanks for the support provided by
OpenI Community (https://openi.pcl.ac.cn).

References
AI@Meta. Llama 3 model card, 2024. URL https://github.com/meta-llama/llama3/blob/
main/MODEL_CARD.md.

Yuelin Bai, Xinrun Du, Yiming Liang, Yonggang Jin, Ziqiang Liu, Junting Zhou, Tianyu Zheng,
Xincheng Zhang, Nuo Ma, Zekun Wang, et al. Coig-cqia: Quality is all you need for chinese
instruction fine-tuning, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023. URL
https://arxiv.org/abs/2302.01318.

Zhijun Chen, Jingzheng Li, Pengpeng Chen, Zhuoran Li, Kai Sun, Yuankai Luo, Qianren Mao,
Dingqi Yang, Hailong Sun, and Philip S. Yu. Harnessing multiple large language models: A survey
on llm ensemble, 2025. URL https://arxiv.org/abs/2502.18036.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2502.18036
https://arxiv.org/abs/1803.05457

Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly
open instruction-tuned llm, 2023. URL https://www.databricks.com/blog/2023/04/12/
dolly-first-open-commercially-viable-instruction-tuned-llm.

Aida Mostafazadeh Davani, Mark Díaz, and Vinodkumar Prabhakaran. Dealing with disagreements:
Looking beyond the majority vote in subjective annotations. Transactions of the Association for
Computational Linguistics, 10:92–110, 01 2022. ISSN 2307-387X. doi: 10.1162/tacl_a_00449.
URL https://doi.org/10.1162/tacl_a_00449.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/abs/
1810.04805.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Yu Fei, Yasaman Razeghi, and Sameer Singh. Nudging: Inference-time alignment of llms via guided
decoding, 2025. URL https://arxiv.org/abs/2410.09300.

Markus Freitag, Behrooz Ghorbani, and Patrick Fernandes. Epsilon sampling rocks: Investigating
sampling strategies for minimum Bayes risk decoding for machine translation. In Houda Bouamor,
Juan Pino, and Kalika Bali, editors, Findings of the Association for Computational Linguistics:
EMNLP 2023, pages 9198–9209, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.617. URL https://aclanthology.org/
2023.findings-emnlp.617.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings, 2022. URL https://arxiv.org/abs/2104.08821.

Team Gemma, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan
Ferret, Peter Liu, and Pouya Tafti et al. Gemma 2: Improving open language models at a practical
size, 2024. URL https://arxiv.org/abs/2408.00118.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng,
and Jiayi Gui et al. Chatglm: A family of large language models from glm-130b to glm-4 all tools,
2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URL https://arxiv.
org/abs/2009.03300.

Yichong Huang, Xiaocheng Feng, Baohang Li, Yang Xiang, Hui Wang, Bing Qin, and Ting Liu. En-
abling ensemble learning for heterogeneous large language models with deep parallel collaboration,
2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed et al. Mistral 7b, 2023a. URL https://arxiv.
org/abs/2310.06825.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models with
pairwise ranking and generative fusion, 2023b. URL https://arxiv.org/abs/2306.02561.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding, 2023a. URL https://arxiv.org/abs/2211.17192.

11

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://doi.org/10.1162/tacl_a_00449
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2410.09300
https://aclanthology.org/2023.findings-emnlp.617
https://aclanthology.org/2023.findings-emnlp.617
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2306.02561
https://arxiv.org/abs/2211.17192

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding, 2023b. URL https://arxiv.org/abs/2211.17192.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension, 2019. URL https://arxiv.org/
abs/1910.13461.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pages 74–81, 2004.

Bo Lv, Xin Liu, Shaojie Dai, Nayu Liu, Fan Yang, Ping Luo, and Yue Yu. DSP: Discriminative soft
prompts for zero-shot entity and relation extraction. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki, editors, Findings of the Association for Computational Linguistics: ACL 2023,
pages 5491–5505, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.findings-acl.339. URL https://aclanthology.org/2023.findings-acl.
339/.

Bo Lv, Xin Liu, Kaiwen Wei, Ping Luo, and Yue Yu. TAeKD: Teacher assistant enhanced knowledge
distillation for closed-source multilingual neural machine translation. In Nicoletta Calzolari,
Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue, editors,
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024), pages 15530–15541, Torino, Italia, May 2024a.
ELRA and ICCL. URL https://aclanthology.org/2024.lrec-main.1350/.

Bo Lv, Chen Tang, Yanan Zhang, Xin Liu, Ping Luo, and Yue Yu. URG: A unified ranking and
generation method for ensembling language models. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar, editors, Findings of the Association for Computational Linguistics ACL 2024, pages
4421–4434, Bangkok, Thailand and virtual meeting, August 2024b. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-acl.261. URL https://aclanthology.org/2024.
findings-acl.261.

Bo Lv, Nayu Liu, Yang Shen, Xin Liu, Ping Luo, and Yue Yu. Whether LLMs know if they know:
Identifying knowledge boundaries via debiased historical in-context learning. In Wanxiang Che,
Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar, editors, Findings of the
Association for Computational Linguistics: ACL 2025, pages 19516–19528, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/
2025.findings-acl.999. URL https://aclanthology.org/2025.findings-acl.999/.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan
Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating large language model serving
with tree-based speculative inference and verification. In Proceedings of the 29th ACM Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems,
Volume 3, ASPLOS ’24, page 932–949. ACM, April 2024. doi: 10.1145/3620666.3651335. URL
http://dx.doi.org/10.1145/3620666.3651335.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, and Sam Altman et al. Gpt-4 technical report, 2024.
URL https://arxiv.org/abs/2303.08774.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of ACL, pages 311–318, Philadelphia, Pennsylvania,
USA, July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL
https://aclanthology.org/P02-1040.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
gpt-4, 2023. URL https://arxiv.org/abs/2304.03277.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin

12

https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://aclanthology.org/2023.findings-acl.339/
https://aclanthology.org/2023.findings-acl.339/
https://aclanthology.org/2024.lrec-main.1350/
https://aclanthology.org/2024.findings-acl.261
https://aclanthology.org/2024.findings-acl.261
https://aclanthology.org/2025.findings-acl.999/
http://dx.doi.org/10.1145/3620666.3651335
https://arxiv.org/abs/2303.08774
https://aclanthology.org/P02-1040
https://arxiv.org/abs/2304.03277

Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix Yu.
Spectr: Fast speculative decoding via optimal transport, 2024. URL https://arxiv.org/abs/
2310.15141.

Mistral AI Team. Mistral small 3: Apache 2.0, 81 URL https://mistral.ai/news/
mistral-small-3.

Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jianshu Chen, and Dong Yu. A stitch in time saves
nine: Detecting and mitigating hallucinations of llms by validating low-confidence generation,
2023. URL https://arxiv.org/abs/2307.03987.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities, 2024. URL https://arxiv.org/abs/2406.04692.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative decoding:
Exploiting speculative execution for accelerating seq2seq generation, 2023. URL https://arxiv.
org/abs/2203.16487.

Yangyifan Xu, Jinliang Lu, and Jiajun Zhang. Bridging the gap between different vocabularies for
llm ensemble, 2024. URL https://arxiv.org/abs/2404.09492.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, and Haoran Wei et al. Qwen2 technical
report, 2024. URL https://arxiv.org/abs/2407.10671.

Yuxuan Yao, Han Wu, Mingyang Liu, Sichun Luo, Xiongwei Han, Jie Liu, Zhijiang Guo, and Linqi
Song. Determine-then-ensemble: Necessity of top-k union for large language model ensembling,
2025. URL https://arxiv.org/abs/2410.03777.

Yao-Ching Yu, Chun-Chih Kuo, Ziqi Ye, Yu-Cheng Chang, and Yueh-Se Li. Breaking the ceiling of
the llm community by treating token generation as a classification for ensembling, 2024. URL
https://arxiv.org/abs/2406.12585.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore: Evaluating generated text as text
generation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 27263–27277.
Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with BERT. CoRR, abs/1904.09675, 2019. URL http://arxiv.org/abs/1904.
09675.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models, 2023. URL
https://arxiv.org/abs/2311.07911.

13

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2310.15141
https://arxiv.org/abs/2310.15141
https://mistral.ai/news/mistral-small-3
https://mistral.ai/news/mistral-small-3
https://arxiv.org/abs/2307.03987
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2203.16487
https://arxiv.org/abs/2203.16487
https://arxiv.org/abs/2404.09492
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2410.03777
https://arxiv.org/abs/2406.12585
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2311.07911

A Empirical Validation of the Correlation Between Generation and
Verification Capabilities of LLMs.

Figure 6: Win rates of four LLMs compared to Llama-3-8B-instruct, evaluated by GPT-4. Orange bars
indicate generation performance (as response generators); Blue bars indicate verification performance
(as candidate scorers for LLaMA). The consistent ordering supports the hypothesis that stronger
generators are also stronger verifiers.

In Section 3.3, we hypothesize that models with stronger generation capabilities also possess stronger
verification abilities, to conduct online feedback mechanism in SpecEM. To verify the assumption, we
design an empirical experiment. Specifically, we use GPT-4 as an external evaluator, and evaluate four
models, Mistral-7B-v0.3-instruct, Qwen2-7B-instruct, Gemma-2-9b-instruct, and Glm-4-9b-instruct,
by comparing their responses against those generated by Llama-3-8B-instruct on FuseEval. The
orange bars in Figure 6 report the win rates of these models over LLaMA, as judged by GPT-4. The
results indicate a consistent performance ranking: Mistral > Qwen > Genma > GLM, with all models
outperforming LLaMA.

To assess verification ability, we treat each of the four models as a verifier. For every input example,
we sample four candidate responses from LLaMA. Each verifier independently scores all candidates
using the method described in Section 3.2, and selects the one with the highest score. The selected
responses are then evaluated by GPT-4 against the original single-response baseline from LLaMA.
The blue bars in Figure 6 show the win rates of the verifier-selected responses, again consistently
ranked as Mistral > Qwen > Genma > GLM.

This alignment in performance ordering across generation and verification supports our central
hypothesis: models with stronger generation capabilities are more competent as verifiers. For
example, Mistral not only achieves the highest generation win rate, but also, when acting as a verifier,
selects the strongest responses for LLaMA, demonstrating its superior verification ability.

B Experimental Setup

B.1 Dataset Details

We evaluate all the models on six datasets that represent different core capabilities of LLMs, including
open-domain instruction-following, commonsense, and reasoning.

14

• FuseEval: We evaluate the model’s instruction-response capability by constructing this
category on both English and Chinese scenarios. For English, we choose the Dolly-
15k [Conover et al., 2023] and Alpaca-gpt4 [Peng et al., 2023] datasets for evaluation,
both of which have inputs that consist of human instructions. We select these two datasets
because their response sources differ: the Dolly-15k dataset features human-provided
responses, while the Alpaca-GPT4 contains responses generated by the state-of-the-art GPT-
4 [OpenAI et al., 2024] model, which provides neutral reference answers to each question
and can refuse to answer inappropriate or harmful ones. Using both types of responses
for scoring allows us to more thoroughly compare the advantages of our ensemble system.
Additionally, due to the large size of these datasets, we randomly sample portions from each
to create a new test set and a development set. For Chinese, we utilize the Human-Value
and Ruozb datasets from the COIG-CQIA [Bai et al., 2024] benchmark for testing. The
instructions in these two datasets consist of human-posed questions, with answers provided
either by humans or generated by GPT-4. The COIG-CQIA authors manually review and
filter the responses, retaining only the correct answers generated by GPT-4.

• AlpacaEval 2.0 [Dubois et al., 2024] : This is an automated benchmark for evaluating large
language models’ instruction-following capabilities. It employs GPT-4 Preview (11/06) as
an evaluator to compare model responses against a baseline (also GPT-4 Preview (11/06)),
computing win rates with a length-controlled scoring mechanism to reduce verbosity bias.
Given the strong performance of 24-72B foundation models, we further conducted direct
comparisons between ensemble model outputs and GPT-4 generated responses.

• MMLU (5-shot) [Hendrycks et al., 2021]: A widely-used massive multitask language
understanding benchmark for evaluating knowledge and commonsense reasoning across 57
subjects, including STEM, humanities, and social sciences. It assesses models’ breadth of
understanding across a diverse set of multiple-choice questions. x-shot refers to providing x
examples as in-context during inference.

• ARC-C (5-shot) [Clark et al., 2018]: A subset of the AI2 Reasoning Challenge benchmark
consisting of grade 3–9 science exam questions that require non-trivial logical reasoning.
The task is formulated as a multiple-choice question answering problem.

• GSM8K (3-shot) [Cobbe et al., 2021]: A high-quality dataset of linguistically diverse
grade school math word problems, curated to evaluate arithmetic reasoning capabilities.
Each question requires multi-step reasoning to arrive at the correct solution.

• IFEval [Zhou et al., 2023]: A targeted benchmark for assessing instruction-following
proficiency. It contains prompts with explicit directives and uses GPT-4 to evaluate how
well model outputs comply with the given instructions.

B.2 Evaluation Methods

We use a variety of metrics for different tasks, following the test scripts from the Openllm leaderboard.
For FuseEval, we apply BARTScore (Bart-S) [Yuan et al., 2021], BERTScore (Bert-S) [Zhang et al.,
2019], GPT4-Rank (GPT4-R) [OpenAI et al., 2024], BLEU [Papineni et al., 2002], and ROUGE
(R-n) [Lin, 2004]. For multiple-choice tasks such as MMLU and ARC-C, we select the option
with the highest likelihood to calculate accuracy (Acc). For the reasoning dataset GSM8K, we
evaluate exact match (EM) accuracy. For IFEVAL, we rely on the evaluation files provided by the
dataset creators [Zhou et al., 2023], testing under prompt-strict, instruction-strict, prompt-loose,
and instruction-loose conditions. For AlpacaEval 2.0, we use the official GPT-4-based pairwise
comparison framework [Conover et al., 2023], where each model’s output is evaluated against a
GPT-4 reference response, and the win rate is computed as the final metric. A detailed description of
some evaluation metrics for FuseEval is as follows:

• BLEU (B-n) [Papineni et al., 2002] and ROUGE (R-n) [Lin, 2004] compare a generated
response with a reference by calculating n-gram overlap. For the Chinese results, we use
Jieba2 to split the text into words before calculating these two scores.

• BERTScore [Zhang et al., 2019] (comprising Precision, Recall, and F1-score) measures the
similarity between two texts based on the contextualized embedding from BERT [Devlin
et al., 2019]. In this paper, we report the F1 score of BERTScore.

2https://pypi.org/project/jieba/

15

https://pypi.org/project/jieba/

• BARTScore [Yuan et al., 2021] is a unified evaluator which evaluates with the average
likelihood of the pretrained encoder-decoder model, BART [Lewis et al., 2019]. It can
predict different scores depending on the formats of the source and target.

• The GPT4-Rank [OpenAI et al., 2024] evaluation utilizes the GPT-4o-2024-11-20 model
to compare two different responses against a ground-truth response. The model will select
the better of the two responses. For each test sample, we pair the responses generated by
different models and have GPT-4 determine which one is superior. Since the MBR and
PairRank methods do not generate new responses, we do not re-rank the responses they
select from the base LLMs. Instead, we use the average rankings of the responses they select
from the base LLMs to represent their GPT4-Rank. Once all comparisons are complete, we
count the number of wins for each model. Based on these win counts, we rank the responses
from the different models. The average ranking of each model across all data in the dataset
is the value reported in our table. The evaluation instructions for GPT-4 are shown in Table
5.

• The win rate comparisons between models in this study were conducted using GPT-4o-2024-
11-20 as the evaluator. Both Table 3 and Table 4 employ GPT-4o-2024-11-20 to compare
outputs from different models, with the evaluation instructions for GPT-4 shown in Table
5. In Table 3: The "English FuseEval winrate" and "Chinese FuseEval winrate" metrics
compare the outputs of various base models (and ensemble methods) against those generated
by Qwen2_72b_instruct.

B.3 Baselines

Since our approach has not undergone any additional training, we selecte several types of untrained
baseline models for comparison with our method:

• PairRank: An English reward model introduced in the LLM-Blender [Jiang et al., 2023b],
which compares candidate results generated by different LLMs and selects the best candidate
as the ensemble output.

• Majority Voting [Davani et al., 2022]: each model provides a choice, and the final result is
determined by the option with the most votes.

• Minimum Bayes Risk (MBR) [Freitag et al., 2023]: Selects the answer with the highest
lexical similarity to other candidate answers. In this paper, we use the SimCSE [Gao et al.,
2022] model to calculate the similarity between candidate responses.

• Generation Fusion (GF) [Jiang et al., 2023b]: Uses the outputs of other models as context,
passing them to a new model, which generates a response based on this context. In our
implementation, Mistral-7B-v0.3 is employed as the final model for the 7B–9B scale
integration, and Mistral-24B-instruct-2501 for the 24B–72B scale integration, based on their
performance advantages.

• Mixture-of-agents (MOA) [Wang et al., 2024]: Multi-layer fusion is applied, where the
outputs of all base models are concatenated and fed back into the models, with an aggregator
outputting the final result. In this work, we adopt the stronger-performing Mistral-7B-v0.3
as the aggressor in the 7B–9B scale integration, and the better-performing Mistral-24B-
instruct-2501 as the aggressor in the 24B–72B scale integration. The fusion process is
repeated three times, consistent with the original MOA methodology.

• Unite [Yao et al., 2025]: Constructs a new union vocabulary by combining the vocabularies
of multiple models to include all tokens from each model.

C Case Study

Table 7 presents a case from the SpecEM workflow where the user’s request is “Write a simile to
describe a person who is hard-working.” The reasoning process goes through four iterations, and the
verify model’s selection of the best candidate is not always from the same model. In the first round,
the best candidate is generated by Qwen2. In the second round, Mistral, after receiving Qwen2’s
output from the previous round, is inspired and generates a response that better meets the user’s needs,
as using “farmer” to describe a hard-working person is inappropriate. Additionally, the table shows

16

Table 5: The template used for GPT-4 compares two models’ responses.

Template

Instruction:
${instruction}

Ground-Truth Response:
${Truth response}

Model A:
${A response}

Model B:
${B response}

Given the User’s Instruction and Ground-Truth response above, please compare the two Model’s responses.
You only have 2 choices to output:
If you think A is better, please output: 1. A is better
If you think B is better, please output: 2. B is better
Output your choice below:

Comparison Option
1. A is better
2. B is better

that through mutual inspiration between models, the final response more closely matches the user’s
expectations, thereby improving the overall quality of the reply.

D Discussion on Segment Length

SpecEM employs fixed-length candidate segments for model evaluation and routing, which simplifies
the computation process but may occasionally cause semantic truncation, particularly when segment
boundaries intersect with meaningful linguistic or contextual units. This truncation can weaken
semantic coherence and reduce the accuracy of optimal segment selection. In contrast, adaptive seg-
mentation approaches such as NUDGING Fei et al. [2025] dynamically determine token boundaries
based on uncertainty estimation across model families. However, these methods assume a shared
vocabulary and tokenization scheme, which restricts their applicability in heterogeneous large-model
scenarios where model architectures and vocabularies differ. Future work could explore adaptive
or semantics-aware segmentation mechanisms that maintain context completeness while remaining
compatible with multi-model routing frameworks.

17

User instruction: Write a simile to describe a person who is hard-working.

Input for each round Qwen2 Generation Mistral Generation Glm-4 Generation Best Candidate

Round 1:

Write a simile to describe a person who is

hard-working.

A person who is hard-

working is like a determined

This person is as dedicated

to their work as

A hard-working person

is like a well

A person who is hard-

working is like a

determined

Round 2:

Write a simile to describe a person who is

hard-working. A person who is hard-

working is like a determined

farmer, tirelessly cultivating
the land and nurturing their

crops

river, steadily carving its
path through the

horse pulling a heavy
cart through a long

journey.
river, steadily carving its

path through the

Round 3:

Write a simile to describe a person who is

hard-working. A person who is hard-

working is like a determined river, steadily

carving its path through the
rockiest of landscapes.

<|im_end|> mountains.</s>

rocks and obstacles in
its way, never giving up

rocks and obstacles in its
way, never giving up

Round 4:

Write a simile to describe a person who is

hard-working. A person who is hard-

working is like a determined river, steadily

carving its path through the rocks and

obstacles in its way, never giving up
until it reaches the sea.

until it reaches its

destination.</s> . <|user|> until it reaches its

destination.

Overall Output: A person who is hard-working is like a determined river, steadily carving its path through the rocks and obstacles in its

way, never giving up until it reaches its destination.

Figure 7: Case study of SpecEM integrating the base LLMs Qwen2, Mistral, and GLM-4. The Best
Candidate is the top-ranked option determined by the verify component and is directly presented to
the user. < |im_end| >, < /s >, and < |user| > are special end tokens for the three base LLMs,
and generation halts when the best candidate includes any of these end tokens.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering

18

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction provide a comprehensive overview of the
background and motivation of this study, effectively outlining its main contributions point-
by-point, thus accurately reflecting the paper’s scope and significance.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We primarily focused on discussing the limitations associated with this study
in Appendix 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

19

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The theories used in this paper are all based on well-established algorithms,
with detailed derivations available in the cited literature.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All information regarding the key contribution of this paper have be fully
disclosed (to the extent that it affects the main claims and/or conclusions of the paper). Fur-
thermore, the implementation of other components within the proposed SpecEM framework
is facilitated by the plenty of support available from existing open-source resources within
the community.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

20

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The supplementary material accompanying the manuscript contains all source
code and scripts necessary to reproduce the main experimental results. Detailed instructions
for execution are embedded within the scripts.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides detailed experimental configurations in Section 4.1 and
Appendix B, offering readers the necessary information to understand the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Since our framework requires no training, it avoids potential errors introduced
by the training process. Moreover, all experimental results in our paper are averaged over
multiple runs to reduce randomness in model generation and ensure stable measurements.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: As mentioned in 4.1, for ensembles involving models with fewer than 9 billion
parameters, we use 8×A100 GPUs with 80 GB memory. For larger models with 24 billion
parameters or more, we utilize 4×H200 GPUs equipped with 140 GB memory.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: After carefully reviewing the referenced document, we certify that the research
conducted in the paper conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

22

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on improving response quality and reducing bias via model
ensembling, with a societal impact comparable to that of deploying a strong single LLM,
while introducing no additional societal risks beyond those already associated with standard
high-performing models.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: The datasets used in this study, such as AlpacaEval, MMLU, and GSM8K,
as well as the pretrained models such as Qwen and Llama, are sourced from open-access
platforms like Hugging Face. These resources have undergone comprehensive safety as-
sessments and are widely utilized within the research community. All datasets and models
employed in this work are publicly released, well-documented, and subject to extensive
community scrutiny, ensuring their reliability and appropriateness for academic research.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

23

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In the paper, we clearly specified the datasets and code sources used, and pro-
vided appropriate citations in the reference section. Additionally, we ensured transparency
by including the original sources of any modified code files, making the changes traceable.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The supplementary materials contain the full source code and comprehensive
usage instructions. Following the conclusion of the review process, the code will be
made publicly available to support transparency and reproducibility within the research
community.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

24

paperswithcode.com/datasets

Justification: This study does not involve any crowdsourcing experiments or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing experiments or research with human subjects were involved
in this study. All experiments were conducted using code and GPU servers.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We did not design or train new large language models. Our method aims to
improve system performance based on existing LLMs. In Section 4.1 (Base LLMs) and
Appendix B, we describe how we use existing open-source large language models.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	LLM Ensembling
	Speculative Decoding

	Methodology
	Drafting Stage
	Verification Stage
	Online Feedback Mechanism

	Experiments
	Experimental Setup
	Main Results
	Analysis

	Conclusion
	Limitations
	Acknowledgments
	Empirical Validation of the Correlation Between Generation and Verification Capabilities of LLMs.
	Experimental Setup
	Dataset Details
	Evaluation Methods
	Baselines

	Case Study
	Discussion on Segment Length

