

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MEMoSORT: MEMORY-ASSISTED FILTERING AND MOTION-ADAPTIVE ASSOCIATION METRIC FOR MULTI-PERSON TRACKING

Anonymous authors

Paper under double-blind review

ABSTRACT

Multi-object tracking (MOT) in human-dominant scenarios, which involves continuously tracking multiple people within video sequences, remains a significant challenge in computer vision due to targets' complex motion and severe occlusions. Conventional tracking-by-detection methods are fundamentally limited by their reliance on Kalman filter (KF) and rigid Intersection over Union (IoU)-based association. The motion model in KF often mismatches real-world object dynamics, causing filtering errors, while rigid association struggles under occlusions, leading to identity switches or target loss. To address these issues, we propose MeMoSORT, a simple, online, and real-time MOT algorithm with two key innovations. At first, the Memory-assisted Kalman filter (MeKF) uses memory-augmented neural networks to compensate for mismatches between assumed and actual object motion. Secondly, the Motion-adaptive IoU (Mo-IoU) adaptively expands the matching region and incorporates height similarity to reduce misassociations, while remaining lightweight. Experiments show that MeMoSORT achieves state-of-the-art performance, with HOTA scores of 67.9% and 82.1% on DanceTrack and SportsMOT, respectively.

1 INTRODUCTION

Multi-object tracking (MOT) refers to the task of continuously tracking multiple objects across video sequences, and has been widely applied in autonomous driving (Geiger et al., 2012; Yu et al., 2020), video surveillance (Milan et al., 2016; Dendorfer et al., 2020), and sports analysis (Cui et al., 2023; Cioppa et al., 2022; Sun et al., 2022). Among these scenarios, tracking persons has become the most extensively studied and practically relevant subproblem.

As the dominant paradigm of MOT, tracking-by-detection (TBD) (Bewley et al., 2016; Zhang et al., 2022; Cao et al., 2023; Maggiolino et al., 2023) addresses this task by decomposing it into three key stages: detection, state estimation (filter), and association. While detection accuracy was historically a primary limiting factor, the advent of high-performance detectors like YOLO series (Redmon et al., 2016; Varghese & M., 2024) has largely addressed this issue. As a result, the performance of modern TBD trackers is now principally constrained by the efficacy of the other two stages: state estimation and association.

Conventional state estimation and association modules suffer from two key limitations. First, the Kalman filter (KF) (Kalman, 1960) assumes linear dynamics and a first-order Markovian process (Khodarahmi & Maihami, 2023), which does not match the complex and temporally correlated motion patterns of real-world targets (as illustrated in Appendix A). The mismatch can lead to significant errors in motion prediction and estimation when the actual motion deviates from these assumptions (Wang, 2025), such as in coordinated or repetitive behaviors (e.g., a dancer consistently spinning after a specific jump). Second, standard association strategies often rely on simplistic Intersection over Union (IoU) (Yu et al., 2016), without adapting to the target's motion patterns. This lack of adaptability can degrade association performance, resulting in tracking failure.

To address these challenges, we propose MeMoSORT, a simple, online, and real-time MOT framework tailored for complex scenarios. MeMoSORT introduces two key innovations: **(a)** Memory-assisted Kalman Filter (MeKF), which leverages memory-augmented neural networks (NN) to com-

Figure 1: Visualization of DiffMOT (a, c) and MeMoSORT (b, d) in challenging scenarios from the DanceTrack validation set. **Case 1 (Complex Motion):** DiffMOT’s inaccurate prediction leads to an identity switch, while MeMoSORT maintains the correct identity by leveraging the precise state estimation from its MeKF. **Case 2 (Severe Occlusion):** Standard IoU-based association in DiffMOT fail in association when encountering severe occlusion. MeMoSORT’s Mo-IoU robustly handles this challenge and ensuring continuous tracking.

pensate for the gap between assumed and actual motion patterns; **(b)** Motion-adaptive IoU (Mo-IoU), which adaptively expands the matching region and incorporates height similarity to reduce association errors.

Extensive experiments demonstrate that MeMoSORT achieves state-of-the-art (SOTA) performance on challenging benchmarks, reaching HOTA scores of 67.9% on DanceTrack and 82.1% on SportsMOT, significantly outperforming existing methods across multiple metrics.

2 RELATED WORKS

2.1 METHODS FOR STATE ESTIMATION

KF is the widely used for state estimation in early TBD trackers. Subsequent methods such as OC-SORT (Cao et al., 2023) introduced improvements to handle occlusions, but could not overcome the fundamental limitations of the linear, first-order Markovian motion model in scenarios with complex, non-Markovian dynamics.

To address this, one line of research replaces the KF entirely with data-driven NN. For example, DiffMOT (Lv et al., 2024) employs a diffusion model for non-linear motion prediction, while Mamba-based trackers (Xiao et al., 2024a; Khanna et al., 2025) utilize state space models to capture complex motion. However, a key challenge for these pure predictors is the lack of a principled filtering step; they often replace a track’s state directly with the noisy detector measurement instead of update, which degrade trajectory quality.

Another direction (Li et al., 2024; Adžemović et al., 2025) involves hybrid approaches that replace physics-based models with deep learning techniques within the classic Bayesian filter structure. These methods combine the expressiveness of NN with the stability of the prediction–update cycle. A drawback is that discarding the physics-based prior in favor of a complex NN makes the filter heavily reliant on training data, thereby reducing robustness and generalization.

2.2 ASSOCIATION BETWEEN DETECTION AND PREDICTION

Mainstream association methods within the TBD paradigm are typically based on two principles: spatial consistency and appearance similarity. The former is primarily addressed by IoU and its variants, while the latter relies mainly on ReID based methods. In practice, these two approaches are often combined into a final association cost, typically through a weighted sum.

IoU-based methods use IoU as spatial association metric, higher IoU between boxes across frames represents higher probability of the same targets. Recent studies modified IoU by expanding the scale of the box (Fan et al., 2023; Huang et al., 2024b), incorporating height similarity (Yang et al.,

2024) or considering both (Khanna et al., 2025). However, the performance of above types of IoU with fixed parameters critically depends on manual setting, limiting their applicability across complex environments. Existing dynamic parameter methods either use multiple association stages with several fixed parameter (Huang et al., 2024b) or focus on temporal information of the trajectory (Stanojević & Todorović, 2024), lacking adaptivity according to target’s motion characteristics.

113 ReID-based methods uses an additional NN to extract feature to represent the visual appearance of
 114 target, considering shorter distance between feature across frames leads to same target. The majority
 115 of ReID based methods (Wojke et al., 2017; Aharon et al., 2022; Du et al., 2023) use convolution
 116 NN to extract appearance feature and apply cosine distance as measurement. ReID-based methods
 117 are less effective in distinguishing targets with similar appearance or under occlusion.

119 3 METHODOLOGY

121 3.1 PRELIMINARIES: TRACKING BY DETECTION

123 The TBD paradigm is a prevalent approach in MOT. Unlike monolithic end-to-end methods, TBD
 124 frameworks decouple the tracking problem into three distinct stages, as illustrated in Figure 2(a):
 125 detection, association, and filtering.

127 The first step involves an object detector, such as the widely used YOLO model, generating a
 128 set of candidate boxes for each frame t . A detection is typically represented as a vector $\tilde{\mathbf{b}}_t =$
 129 $[\tilde{x}_t, \tilde{y}_t, \tilde{w}_t, \tilde{h}_t]^\top$, defining the center coordinates, width, and height of the box. It is generated via the
 130 linear measurement matrix \mathbf{H} from the target’s state vector, \mathbf{b}_t , which contains the target’s position,
 131 size, and velocity. This relationship is modeled as:

$$132 \tilde{\mathbf{b}}_t = \mathbf{H}\mathbf{b}_t + \mathbf{v}_t, \quad (1)$$

134 where \mathbf{v}_t is the measurement noise, it is generally assumed to follow an independent zero-mean
 135 Gaussian distribution with a covariance matrix \mathbf{R}_t .

136 The output detections, which are prone to false alarms and misses from occlusion, are linked across
 137 frames via association to form trajectories. This association is formulated as a bipartite matching
 138 problem between existing tracks and current detections, where the matching cost typically
 139 combines spatial overlap (IoU) and appearance similarity (ReID). Specifically, IoU measures the spatial
 140 overlap between a detection $\tilde{\mathbf{b}}_t$ and a track’s predicted state $\hat{\mathbf{b}}'_t$. And ReID involves masking the
 141 object within the detection box, encoding its appearance, and then measuring similarity using co-
 142 sine distance. Finally, the Hungarian algorithm is used to find the optimal assignments based on the
 143 combined matching cost.

144 After association, a filter is applied to estimate the target’s state via a prediction-update cycle. For
 145 the widely used KF, the prediction is based on a linear, first-order Markovian motion model:

$$146 \mathbf{b}_t = \mathbf{F}\mathbf{b}_{t-1} + \mathbf{w}_t, \quad (2)$$

148 where \mathbf{F} is the linear state transition matrix (e.g. constant velocity model). And \mathbf{w}_t is the process
 149 noise, it is generally assumed to follow an independent zero-mean Gaussian distribution with a
 150 covariance matrix \mathbf{Q}_t . In the update step, this prediction is refined by incorporating the newly
 151 associated detection.

152 However, this prevalent pipeline suffers from two critical limitations. First, the state estimation
 153 relies on an underlying linear, first-order Markovian motion model is often an oversimplification
 154 of real-world dynamics. This prevents the KF from handling complex, non-linear paths. Second,
 155 the association cost, based mainly on IoU, is unreliable during occlusion as the boxes is mixed to a
 156 mess. To this end, our work introduces a deep learning aided filter that leverages temporal memory
 157 to model complex dynamics and a robust association metric resilient to occlusion.

159 3.2 FRAMEWORK OF THE PROPOSED MeMoSORT

160 The framework of our proposed MeMoSORT is illustrated in Figure 2(b), with the following three
 161 stages.

Figure 2: Comparison between (a) the conventional Tracking-by-Detection framework and (b) our proposed MeMoSORT framework. MeMoSORT introduces two key components: it leverages a memory mechanism to guide state estimation for more accurate state prediction and update, and it applies a Motion-adaptive IoU to achieve robust association.

Detection. In line with the conventional TBD paradigm, MeMoSORT leverages the YOLOX (Ge et al., 2021) to perform the initial detection task, generating a set of candidate boxes for all potential targets within each frame.

Association. We introduce an association pipeline inspired by Deep OC-SORT (Maggiolino et al., 2023). This pipeline incorporates our novel Mo-IoU, a metric that refines conventional IoU by adaptively expanding the boxes and considering height similarity based on the target’s motion characteristics. Within this pipeline, detections are initially stratified by their confidence scores. High-scoring detections are matched using a combined Mo-IoU and ReID cost via the Hungarian algorithm, while low-scoring detections are matched using a standard IoU cost.

Filtering. We propose the MeKF, a variant of the standard KF inspired by literature (Yan et al., 2024) that leverages memory to aid in state estimation. The MeKF consists of three gated modules: a Memory Update Gate (MUG) to maintain a historical representation, a State Prediction Gate (SPG) to correct the motion prediction using memory, and a State Update Gate (SUG) to refine the state based on the associated detection.

3.3 MEMORY-ASSISTED KALMAN FILTER

To address the limitations of the first-order Markovian assumption in the KF (Eq. 2), we introduce a non-Markovian motion formulation capable of modeling the complex dynamics inherent in real-world targets:

$$\mathbf{b}_t = f_t(\mathbf{b}_{t-1}, \mathbf{b}_{t-2}, \dots, \mathbf{b}_1) + \mathbf{w}_t, \quad (3)$$

where $f_t(\cdot)$ is a non-linear transition function. Unlike the transition matrix \mathbf{F} in Eq. 2, $f_t(\cdot)$ explicitly conditions the state prediction on the full trajectory history, thus enabling the modeling of long-term dependencies. As an explicit analytical form for $f_t(\cdot)$ is intractable, we simplified the problem by introducing the transition matrix \mathbf{F} , namely,

$$\begin{aligned} \mathbf{b}_t &= \mathbf{F}\mathbf{b}_{t-1} + \underbrace{f_t(\mathbf{b}_{t-1}, \mathbf{b}_{t-2}, \dots, \mathbf{b}_1) - \mathbf{F}\mathbf{b}_{t-1}}_{\Delta_t^F} + \mathbf{w}_t \\ &= \mathbf{F}\mathbf{b}_{t-1} + \Delta_t^F + \mathbf{w}_t, \end{aligned} \quad (4)$$

where Δ_t^F is the model mismatch term, capturing the residual between the non-Markovian and first-order Markovian dynamics. As this term is a function of the entire history, we approximate it using a mapping function $\Delta_t^F \approx \psi(\mathbf{m}_t)$, where the memory vector \mathbf{m}_t is defined as $\mathbf{m}_t = g_t(\mathbf{b}_{t-1}, \mathbf{b}_{t-2}, \dots, \mathbf{b}_1)$. The function $g_t(\cdot)$, which encodes the entire history into the memory vector \mathbf{m}_t , is computationally intensive. We therefore approximate it using a nested structure, which can be implemented in an iterative form by the memory update function $\phi(\cdot)$:

$$\begin{aligned} \mathbf{m}_t &\approx \underbrace{\phi(\phi(\phi(\dots), \mathbf{b}_{t-2}), \mathbf{b}_{t-1})}_{t \text{ times}} \\ &= \phi(\mathbf{m}_{t-1}, \mathbf{b}_{t-1}). \end{aligned} \quad (5)$$

Furthermore, the linear measurement matrix \mathbf{H} defined in Eq. 1, often fails to represent the true observation process. To address this discrepancy, a similar transformation can be made, i.e.,

$$\tilde{\mathbf{b}}_t = \mathbf{H}\mathbf{b}_t + \Delta_t^{\mathbb{H}} + \mathbf{v}_t, \quad (6)$$

where the mismatch term $\Delta_t^{\mathbb{H}}$ is generated by $\tilde{\mathbf{b}}_t$ through function $\varphi_t(\cdot)$, namely, $\Delta_t^{\mathbb{H}} \approx \varphi_t(\tilde{\mathbf{b}}_t)$.

The memory update function $\phi(\cdot)$, state compensation function $\psi(\cdot)$, and measurement compensation function $\varphi(\cdot)$ are difficult to model with explicit analytical forms. Such that we employ NN technique to fit these complex, non-linear functions. By integrating these learned modules with the foundational principles of Eqs. 5 - 6, we construct a data-driven Bayesian filter: the MeKF, as shown in Figure 3.

3.3.1 STRUCTURE OF MEKF

Memory Update Gate. The memory update process in Eq. 5 is formally analogous to the Recurrent Neural Network. We therefore implement the update function $\phi(\cdot)$ using the Long Short-Term Memory (LSTM) network. The LSTM is trained to distill and update the memory from the historical trajectory sequence, with the specific update process detailed as follows:

$$\mathbf{m}_t = \mathcal{F}_{\text{LSTM}}(\mathbf{c}_{t-1}, \mathbf{h}_{t-1}, \mathbf{m}_{t-1}), \quad (7)$$

where $\mathcal{F}_{\text{LSTM}}(\cdot)$ denotes the mapping function of the MUG, implemented by the LSTM network. And \mathbf{c}_{t-1} and \mathbf{h}_{t-1} are the cell state and hidden state of the LSTM, respectively.

State Prediction Gate. In contrast to MoveSORT and DiffMOT, which directly utilize NN to predict the target's state, the SPG compensates for the error between the physical motion model and the true physical process. While reducing the amount of parameters, the SPG leverages a prior model to guarantee the error lower bound of the MeKF, which is defined as follows:

$$\hat{\mathbf{b}}'_t = \mathbf{F}\hat{\mathbf{b}}_{t-1} + \hat{\Delta}_t^{\mathbb{F}}, \quad (8)$$

$$\mathbf{P}'_t = \mathbf{F}\mathbf{P}_{t-1}\mathbf{F}^{\top} + \mathbf{P}_t^{\mathbb{F}} + \mathbf{Q}_t, \quad (9)$$

where $\hat{\mathbf{b}}'_t$ and \mathbf{P}'_t represent the state prediction and the error covariance prediction, respectively. Here, $\hat{\Delta}_t^{\mathbb{F}} = \mathcal{F}_{\text{MLP}}^1(\mathbf{m}_t)$ and $\mathbf{P}_t^{\mathbb{F}} = \mathcal{F}_{\text{MLP}}^2(\mathbf{m}_t)(\mathcal{F}_{\text{MLP}}^2(\mathbf{m}_t))^{\top}$ are the exception and covariance compensation generated by distinct multilayer perceptrons (MLP) with unshared parameters.

State Update Gate. Similarly, the SUG utilizes distinct MLPs to generate corresponding compensation terms and is naturally embedded within the state update process, namely,

$$\mathbf{K}_t = \mathbf{P}'_t \mathbf{H}^{\top} (\mathbf{H} \mathbf{P}'_t \mathbf{H}^{\top} + \mathbf{P}_t^{\mathbb{H}} + \mathbf{R}_t)^{-1}, \quad (10)$$

$$\hat{\mathbf{b}}_t = \hat{\mathbf{b}}'_t + \mathbf{K}_t (\tilde{\mathbf{b}}_t - \mathbf{H}\hat{\mathbf{b}}'_t - \hat{\Delta}_t^{\mathbb{H}}), \quad (11)$$

$$\mathbf{P}_t = (\mathbf{I} - \mathbf{K}_t \mathbf{H}) \mathbf{P}'_t, \quad (12)$$

where $\hat{\mathbf{b}}_t$ and \mathbf{P}_t are the state update and the error covariance update, respectively. Here, $\hat{\Delta}_t^{\mathbb{H}} = \mathcal{F}_{\text{MLP}}^3(\hat{\mathbf{b}}'_t)$, $\mathbf{P}_t^{\mathbb{H}} = \mathcal{F}_{\text{MLP}}^4(\hat{\mathbf{b}}'_t)(\mathcal{F}_{\text{MLP}}^4(\hat{\mathbf{b}}'_t))^{\top}$ and \mathbf{K}_t is the Kalman gain. The derivation is detailed in Appendix B. All of the aforementioned gates are designed based on Bayesian principles similar to the KF and are derived according to Wang et al. (2012).

3.3.2 LOSS FUNCTION AND TRAINING PREPARATION

The analytical expression of the MeKF (Eqs. 8 - 12), derived through a Gaussian approximation, renders the filter fully differentiable (Yan et al., 2024), enabling end-to-end training via a loss function composed of mean square error (MSE) and L2 regularization, as calculated below:

$$\mathcal{L} = \frac{1}{JT} \sum_{j=1}^J \sum_{t=1}^T \|\hat{\mathbf{b}}_t^j(\tilde{\mathbf{b}}_t^j; \Theta) - \bar{\mathbf{b}}_t^j\|^2 + \gamma \|\Theta\|^2, \quad (13)$$

270 where Θ represents the set of learnable parameters in the MeKF, and γ is the L2 regularization
 271 coefficient. The loss is computed over J training sequences in a batch, each of length T .
 272

273 End-to-end training of the MeKF requires a dataset of paired trajectory sequences, each consisting
 274 of a detection \hat{b}_t^j , and its corresponding ground truth box \bar{b}_t^j . We construct this dataset by selecting
 275 detections from a candidate pool and pairing them with ground truth boxes based on their IoU. A
 276 detailed description of this dataset generation procedure is provided in Appendix C.
 277

278 3.4 MOTION-ADAPTIVE ASSOCIATION

279 To achieve robust association in severe occlusion scenarios, we introduce the Motion-adaptive IoU
 280 (Mo-IoU). It is defined as a multiplicative fusion of two IoU variants with an adaptive parameter
 281 setting:
 282

$$283 \text{Mo-IoU}(\hat{b}_t', \tilde{b}_t, p_t, q_t) = \text{EIoU}(\hat{b}_t', \tilde{b}_t, p_t) \times \text{HIoU}(\hat{b}_t', \tilde{b}_t, q_t), \quad (14)$$

284 where Expansion IoU (EIoU) expands matching region to enhances the probability of establishing
 285 reliable matches, and Height IoU (HIoU) emphasizes height similarity to distinguish occluded
 286 targets. The parameters p_t and q_t are adaptively set by our Motion-Adaptive Technique (MAT).
 287

288 **Expansion IoU.** Motivated by C-BIoU (Fan et al., 2023), we design EIoU to relax box boundaries,
 289 effectively enlarging the matching region to enhance association likelihood, ultimately leading more
 290 continuous target tracking. Formally, EIoU is defined as:
 291

$$292 \text{EIoU}(\hat{b}_t', \tilde{b}_t, p_t) = \text{IoU}(\hat{e}_t', \tilde{e}_t), \quad (15)$$

293 where $\hat{e}_t' = [\hat{x}_t', \hat{y}_t', (2p_t+1)\hat{w}_t', (2p_t+1)\hat{h}_t']^\top$ and $\tilde{e}_t = [\tilde{x}_t, \tilde{y}_t, (2p_t+1)\tilde{w}_t, (2p_t+1)\tilde{h}_t]^\top$ are the ex-
 294 pansion boxes of \hat{b}_t' and \tilde{b}_t , respectively. The expansion scaling factor p_t controls the expansion
 295 scale of the boxes. When $p_t=0$, no expansion occurs, and EIoU degenerates to the standard IoU.
 296

297 **Height IoU.** Recognizing that height remains a highly distinguishable feature under severe oc-
 298 clusion, we introduce HIoU, inspired by Hybrid-SORT (Yang et al., 2024), to reinforce height similarity
 299 and mitigate the ambiguity potentially induced by EIoU. And HIoU is defined as:
 300

$$301 \text{HIoU}(\hat{b}_t', \tilde{b}_t, q_t) = \left(\frac{l_t}{\hat{h}_t' + \tilde{h}_t - l_t} \right)^{q_t}, \quad (16)$$

302 where l_t denotes the intersection height of \hat{b}_t' and \tilde{b}_t , and the exponent q_t adaptively controls the
 303 emphasis placed on this height similarity. The base of this formula is geometrically equivalent to a
 304 1D-IoU on the vertical axis, robustly measuring the boxes' vertical alignment.
 305

306 **Motion-Adaptive Technique.** To improve the generalization of Mo-IoU in diverse scenarios, a
 307 novel MAT is proposed to adaptively adjust the expansion scaling parameter p_t and the height mod-
 308 ulation parameter q_t based on the target's motion characteristics, as formulated below:
 309

$$310 p_t = \begin{cases} M_{\text{slow}} & \text{if } \dot{c}_{t-1} \leq \Theta_{\text{center}}, \\ 311 M_{\text{fast}} & \text{otherwise.} \end{cases} \quad (17) \quad q_t = \begin{cases} N_{\text{slow}} & \text{if } \dot{l}_{t-1} \leq \Theta_{\text{height}}, \\ 312 N_{\text{fast}} & \text{otherwise.} \end{cases} \quad (18)$$

313 where $\dot{c}_{t-1} = \sqrt{(\dot{x}_{t-1}/w_{t-1})^2 + (\dot{y}_{t-1}/h_{t-1})^2}$ and $\dot{l}_{t-1} = \dot{h}_{t-1}/h_{t-1}$ represent the normalized
 314 speeds of the box center and height, respectively, with a dot denoting velocity. The terms Θ_{center}
 315 and Θ_{height} are predefined thresholds for these two speeds. Instead of continuously tuning p_t and q_t ,
 316 which would be computationally expensive, we adopt a discrete piecewise design. This choice
 317 strikes a balance between adaptivity and efficiency, ensuring practical applicability in real-time
 318 tracking. As a scale-invariant metric, the normalized speed is a suitable quantitative description
 319 of the target's motion characteristics.
 320

321 The parameter p_t compensates for the motion model's prediction error. Since high-speed motion
 322 often leads to larger errors, a larger expansion scaling parameter ($p_t=M_{\text{fast}}$) is used to provide greater
 323 spatial tolerance, and vice versa. In contrast, the parameter q_t adapts to the reliability of height as
 324 a feature: a rapidly changing, less reliable height warrants a smaller height modulation parameter
 325 ($q_t=N_{\text{fast}}$), and vice versa.
 326

324

4 EXPERIMENTS

325

4.1 DATASETS AND METRICS

326 **Datasets.** We conducted the main experiments on DanceTrack and SportsMOT datasets known for
 327 their diverse and rapid movements and indistinguishable appearances, in which the performance of
 328 ReID module is highly limited, requiring accurate motion capability. DanceTrack features severe
 329 occlusion and similar appearance, demanding robust motion capacity for long-term identity con-
 330 sistency. SportsMOT introduces fast, variable-speed target motion and extensive camera motion,
 331 requiring more robust motion models and association.

332 **Furthermore, we conducted comparative experiments on the MOT17 and MOT20 datasets, which**
 333 **are characterized by relatively linear and stable motion (Hu et al., 2024). The detailed results have**
 334 **been added to Appendix D.1.**

335 **Metrics.** We utilize Higher Order Metric (Luiten et al., 2021) (HOTA, AssA, DetA), IDF1 (Ris-
 336 tani et al., 2016), and CLEAR metrics (Bernardin & Stiefelhagen, 2008) (MOTA) as our evaluation
 337 metrics. Among various metrics, HOTA is the core benchmark that holistically balances association
 338 consistency and positional precision. Complementing this, IDF1 and AssA specifically measure
 339 association quality and identity preservation, while DetA and MOTA primarily evaluate state es-
 340 timation accuracy. Additionally, computational efficiency is quantified through frames per second
 341 (FPS) to evaluate real-time processing capability.

342

4.2 IMPLEMENTATION DETAILS

343 For the training of our proposed MeKF, we utilize AdamW optimizer with learning rate set to 10^{-4} ,
 344 and regularization coefficient γ is set to 0.02. The hidden size of LSTM cell and MLPs is set to
 345 32, and the state transition matrix \mathbf{F} is set to a constant velocity model. For Mo-IoU, the expansion
 346 scaling parameters are set to $M_{\text{slow}}=0.5$ and $M_{\text{fast}}=M_{\text{slow}}+0.1$, while the height modulation param-
 347 eter are set to $N_{\text{slow}}=2$, with $N_{\text{fast}}=N_{\text{slow}}-1$. Velocity thresholds Θ_{center} and Θ_{height} are determined
 348 by the 70th and 50th percentile of the normalized velocity distribution from training set (i.e. 0.0406
 349 and 0.0090 for DanceTrack, 0.1172 and 0.0062 for SportsMOT).

350 For the detector, we fine-tune the COCO-pretrained YOLOX-X model on CrowdHuman (Shao et al.,
 351 2018) and the target dataset, same to the training procedure used in SportsMOT. In the association
 352 stage, the confidence threshold of high-score and low-score matching are set to 0.6 and 0.1. For
 353 ReID model, we utilize SBS50 from the fast-reid library (He et al., 2020).

354 Experiments are conducted on 8 GeForce RTX 4090, while FPS is evaluated in FP16 precision with
 355 batchsize of 1 using a single RTX 4090.

356

4.3 BENCHMARK RESULTS

357 **DanceTrack.** As depicted in Table 1, MeMoSORT establishes a new SOTA on the challenging
 358 DanceTrack test set with 67.9% HOTA score. MeMoSORT significantly outperforms traditional KF-
 359 based trackers, demonstrating the advantages of the proposed MeKF. In contrast to sliding window-
 360 based filters like DiffMOT, which estimate the current state from a fixed-length trajectory history,
 361 our method shows superior tracking performance. When compared to other implicit memory-based
 362 filters such as TrackSSM, MeMoSORT’s hybrid design of physical prior and NN proves more effec-
 363 tive than purely data-driven alternatives. By retaining the robust inductive bias of a classic Bayesian
 364 filter while using the memory network to handle non-Markovian dynamics, our method achieves
 365 a more stable and accurate state estimation. Furthermore, when compared with trackers utilizing
 366 similar modified IoU metrics, such as Hybrid-SORT, our synergistic combination of an advanced
 367 filter and an adaptive association metric secures a clear performance advantage.

368 **Finally, even against transformer-based end-to-end methods like MeMOTR, our method demon-
 369 strates significant advantages in both estimation accuracy and inference speed. Although there is a
 370 slight performance gap compared to MOTRv2 and MOTIP, our method inherits the low computa-
 371 tional overhead characteristic of the TBD paradigm, offering a substantial advantage in inference
 372 speed over these computationally heavy transformer-based trackers.**

378 Table 1: Performance on DanceTrack test set, with FPS evaluated on the validation set. The
 379 best/second results are shown in **bold**/underlined.

381 Methods	382	IoU modified	HOTA \uparrow	AssA \uparrow	IDF1 \uparrow	DetA \uparrow	MOTA \uparrow	FPS \uparrow
<i>383 End-to-end tracker:</i>								
MOTRv2 (Zhang et al., 2023)								
384 MOTRv2 (Zhang et al., 2023)		69.9	59.0	71.7	83.0	91.9	10.2	
385 MOTR (Gao & Wang, 2023)		63.4	52.3	65.5	77.0	85.4	17.7	
MOTIP (Gao et al., 2025)		69.6	60.4	74.7	80.4	90.6	19.8	
<i>386 KF-based filter:</i>								
387 ByteTrack (Zhang et al., 2022)		47.7	32.1	53.9	71.0	89.6	35.8	
388 OC-SORT (Maggiolini et al., 2023)		55.1	40.4	54.9	80.4	92.2	-	
389 Deep OC-SORT (Maggiolini et al., 2023)		61.3	45.8	61.5	82.2	92.3	-	
390 TrackTrack (Shim et al., 2025)		<u>66.5</u>	<u>52.9</u>	<u>67.8</u>	-	93.6	-	
<i>391 Sliding window-based filter:</i>								
392 MotionTrack (Xiao et al., 2024b)		58.2	41.7	58.6	81.4	91.3	-	
393 DiffMOT (Lv et al., 2024)		62.3	47.2	63.0	<u>82.5</u>	92.8	22.7	
<i>394 Implicit memory-based filter:</i>								
395 MambaMOT (Huang et al., 2024a)		56.1	39.0	54.9	80.8	90.3	<u>28.8</u>	
396 Track SSM (Hu et al., 2024)		57.7	41.0	57.5	81.5	92.2	20.3	
397 DeepMove SORT (Adžemović et al., 2024)		✓	63.0	48.6	65.0	82.0	92.6	-
398 MeMoSORT (ours)		✓	67.9	54.3	68.0	85.0	<u>93.4</u>	28.8

400 **SportsMOT.** On the SportsMOT benchmark, characterized by fast and variable motion, MeMo-
 401 SORT again establishes a new SOTA, as shown in Table 2. This result underscores the superiority
 402 of memory-based filters over traditional KF and sliding-window approaches for handling complex
 403 dynamics. Within the implicit memory-based paradigm, MeMoSORT’s hybrid design further distin-
 404 guishes it; instead of fully replacing the motion model, our MeKF uses memory to explicitly correct
 405 a physics-based prior, leading to more stable and accurate state estimation. Furthermore, by adap-
 406 tively adjust its parameters, our Mo-IoU robustly resolves ambiguities during severe occlusions, a
 407 key factor in its superior performance over other modified IoU techniques.

408 Table 2: Performance comparison on the SportsMOT test set. The best/second results are shown in
 409 **bold**/underlined.

411 Methods	412	IoU modified	HOTA \uparrow	AssA \uparrow	IDF1 \uparrow	DetA \uparrow	MOTA \uparrow
<i>413 Without filter:</i>							
Deep-EIoU (Maggiolini et al., 2023)							
414 Deep HM-SORT (Gran-Henriksen et al., 2024)		✓	77.2	67.7	79.8	88.2	96.3
<i>415 KF-based filter:</i>							
416 ByteTrack (Zhang et al., 2022)		64.1	52.3	71.4	78.5	95.9	
417 OC-SORT (Cao et al., 2023)		73.7	61.5	74.0	88.5	96.5	
<i>418 Sliding window-based filter:</i>							
419 MotionTrack (Xiao et al., 2024b)		74.0	61.7	74.0	88.8	96.6	
DiffMOT (Lv et al., 2024)		76.2	65.1	76.1	<u>89.3</u>	97.1	
<i>420 Implicit memory-based filter:</i>							
421 MambaMOT (Huang et al., 2024a)		71.3	58.6	71.1	86.7	94.9	
422 Track SSM (Hu et al., 2024)		74.4	62.4	74.5	88.8	96.8	
423 SportMamba (Khanna et al., 2025)		✓	77.3	66.8	77.7	89.5	96.9
424 DeepMove SORT (Adžemović et al., 2024)		✓	78.7	70.3	81.7	88.1	96.5
425 MeMoSORT (ours)		✓	82.1	75.6	86.4	<u>89.3</u>	<u>97.0</u>

426 4.4 ABLATION STUDY

427 We conduct ablation studies on the DanceTrack validation set, which concentrate on investigating
 428 the impact of different components, different filters, different training data quality, and different IoU
 429 variants on the proposed MeMoSORT.

430 **Component Ablation.** The proposed MeMoSORT algorithm comprises two components, MeKF
 431 and Mo-IoU, whose individual contributions are examined through ablation studies, as the results

432 shown in Table 3. Using ByteTrack as the baseline (line 1), we first replace its KF with MeKF (line
 433 2), which yields a significant gain and confirms that the non-Markovian modeling improves motion
 434 prediction and filtering. Next, we substitute the baseline association module with Mo-IoU (line 3),
 435 improving association and thus HOTA. When both modules are combined (line 4), performance is
 436 further boosted by jointly enhancing state estimation and association. Finally, adding ReID infor-
 437 mation alongside Mo-IoU (line 5) brings additional slight gains, though with a drop in FPS. We
 438 attribute this modest gain to the degradation of the ReID model in challenging scenes with severe
 439 occlusions, which causes target appearance to become indistinguishable.

440
 441 Table 3: Ablation study of MeMoSORT’s key components on the DanceTrack validation set. The
 442 best/second results are shown in **bold**/underlined.

MeKF	Mo-IoU	ReID	HOTA \uparrow	AssA \uparrow	IDF1 \uparrow	DetA \uparrow	MOTA \uparrow	FPS \uparrow
✓			56.94 67.41 68.32 77.54 77.91	34.92 49.58 50.35 64.73 65.21	48.18 66.41 63.86 76.92 77.49	92.91 91.69 92.76 92.93 93.13	96.35 97.55 97.30 97.74 97.73	74.5 60.8 62.0 49.4 28.8
✓	✓							
✓	✓							
✓	✓	✓						

443
 444
 445
 446
 447
 448
 449
 450 **Performance with Different Filter.** Noting that the proposed tracking framework leverages MeKF
 451 to enhance motion prediction and update, thereby improving overall tracking performance, we fur-
 452 ther compare MeKF against other filtering methods within the same ByteTrack baseline, as the
 453 results shown in Table 4. Specifically, we replace the baseline filter with several standard KFs using
 454 different motion models, as well as several data-driven filters, while keeping ByteTrack’s associa-
 455 tion module unchanged. Results show that MeKF consistently achieves the best performance across
 456 most metrics, demonstrating superior state estimation accuracy through its non-Markovian model-
 457 ing. The NN blocks in MeKF assist the physical motion model by generating compensation for its
 458 errors, based on memory and detection respectively.

459
 460 **Compared with the KF that uses a constant velocity (CV) motion model, using more complex mo-**
 461 **tion models, such as constant acceleration (CA), coordinated turn (CT), and constant turn rate and**
 462 **acceleration (CTRA), does not lead to significant performance gains. This is because all these mod-**
 463 **els are based on the first-order Markovian assumption, making them fail to adapt to the complex,**
 464 **non-Markovian motion patterns inherent in the DanceTrack dataset. Furthermore, compared with**
 465 **data-driven methods, the MeKF robustly ensures the stability of the state estimation; even if the NN**
 466 **fails, the underlying physical model can still provide a baseline prediction as a failsafe.**

467 Table 4: Performance comparison of different filter on the DanceTrack validation set. The
 468 best/second results are shown in **bold**/underlined.

Filter	HOTA \uparrow	AssA \uparrow	IDF1 \uparrow	DetA \uparrow	MOTA \uparrow
KF (CV)	56.94	34.92	48.18	92.91	96.35
KF (CA)	57.55	39.46	54.64	84.18	92.98
KF (CT)	57.32	39.21	54.25	84.05	93.08
KF (CTRA)	58.13	40.43	55.54	83.83	93.09
LSTM (Hochreiter & Schmidhuber, 1997)	60.16	38.97	52.31	92.94	96.64
Transformer (Vaswani et al., 2017)	64.12	44.20	57.60	93.08	97.04
Diffusion (Lv et al., 2024)	65.91	46.78	60.38	92.93	97.15
MeKF (ours)	67.41	49.58	66.41	91.69	97.55

477
 478 **Performance with Different Training Data Quality.** As the training process of MeKF relies on
 479 detection data to learn and generate compensations for observation process mismatches, we con-
 480 ducted an ablation study on DanceTrack to investigate the sensitivity of MeKF to detector quality.
 481 Specifically, following the consistent training pipeline described in Section 4.2, we trained YOLOX
 482 models of varying scales (YOLOX-S, -M, and -L) to generate distinct training datasets of differ-
 483 ing quality and retrained the MeKF accordingly. The comparison results of MeKFs within the same
 484 ByteTrack baseline are presented in Table 5.

485 Notably, MeKF retains strong performance even with the lightweight YOLOX-S. Despite the sig-
 486 nificant drop in detection precision, the MeKF effectively learns to compensate for the higher ob-

486 servation bias. This demonstrates that our method is not strictly dependent on high-quality inputs;
 487 rather, it adaptively models the specific performance of the detector.
 488

489 Table 5: Sensitivity analysis on detector dependency for MeKF training. The best/second results are
 490 shown in **bold/underlined**.

Detector	HOTA \uparrow	AssA \uparrow	IDF1 \uparrow	DetA \uparrow	MOTA \uparrow
YOLOX-S	59.51	42.51	60.71	83.49	93.63
YOLOX-M	<u>63.22</u>	<u>44.85</u>	<u>62.34</u>	<u>89.20</u>	<u>96.31</u>
YOLOX-L	<u>65.19</u>	<u>47.26</u>	<u>64.06</u>	<u>89.98</u>	<u>96.88</u>
YOLOX-X	67.41	49.58	66.41	91.69	97.55

492
 493
 494
 495
 496
 497
498 Performance with Different IoU Variants. In Table 6, we compare the performance of different as-
 499 sociation methods, where the motion prediction and update components are consistently handled by
 500 MeKF. HMIoU, proposed in Hybrid-SORT, combines IoU with HIoU to incorporate height similar-
 501 ity, while HA-EIoU, introduced in SportMamba, multiplies EIoU with HIoU to enhance association
 502 performance. Our proposed Mo-IoU achieves the best results across all metrics, outperforming ex-
 503 isting IoU variants. Its superior performance can be attributed to its adaptive parameter selection,
 504 which jointly controls the expansion scale and height weighting, resulting in more robust and accu-
 505 rate tracking. Moreover, the HIoU introduced in Mo-IoU counterbalances the looseness of EIoU,
 506 yielding a significant improvement in association robustness compared to EIoU alone.
 507

508 Table 6: Performance comparison of different IoU variants on the DanceTrack validation set.

IoU variants	HOTA \uparrow	AssA \uparrow	IDF1 \uparrow	DetA \uparrow	MOTA \uparrow
IoU (Yu et al., 2016)	67.41	49.58	66.41	91.69	97.55
EIoU (Fan et al., 2023)	70.80	54.37	70.50	92.24	97.62
HMIoU (Yang et al., 2024)	72.70	57.15	71.65	92.52	97.66
HA-EIoU (Khanna et al., 2025)	75.21	60.97	74.53	92.81	97.71
Mo-IoU(ours)	77.54	64.73	76.92	92.93	97.74

5 CONCLUSION

514
 515 In this paper, we present MeMoSORT, a simple, online and real-time MOT algorithm designed to
 516 overcome key limitations in conventional TBD methods. Our approach introduces two key innova-
 517 tions: the MeKF, which uses a memory-augmented NN to correct state estimation errors, and the
 518 Mo-IoU, which adaptively expands the matching region and incorporates height similarity to ensure
 519 robust association. The effectiveness of our method is demonstrated through extensive experiments,
 520 where MeMoSORT achieves SOTA performance on the challenging benchmark DanceTrack and
 521 SportsMOT, providing a robust solution for MOT challenges.
 522

540 REFERENCES

541 Momir Adžemović, Predrag Tadić, Andrija Petrović, and Mladen Nikolić. Engineering an efficient
542 object tracker for non-linear motion, 2024. URL <http://arxiv.org/abs/2407.00738>.

543 Momir Adžemović, Predrag Tadić, Andrija Petrović, and Mladen Nikolić. Beyond kalman fil-
544 ters: Deep learning-based filters for improved object tracking. 36(1), 2025. ISSN 0932-8092,
545 1432-1769. doi: 10.1007/s00138-024-01644-x. URL <https://link.springer.com/10.1007/s00138-024-01644-x>.

546 Nir Aharon, Roy Orfaig, and Ben-Zion Bobrovsky. Bot-sort: Robust associations multi-pedestrian
547 tracking. *arXiv preprint arXiv:2206.14651*, 2022.

548 Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking performance: The
549 clear mot metrics. 2008:1–10, 2008. ISSN 1687-5176, 1687-5281. doi: 10.1155/2008/246309.
550 URL <http://jivp.eurasipjournals.com/content/2008/1/246309>.

551 Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple online and real-
552 time tracking. In *2016 IEEE International Conference on Image Processing (ICIP)*, pp. 3464–
553 3468, 2016. doi: 10.1109/ICIP.2016.7533003. URL [http://ieeexplore.ieee.org/](http://ieeexplore.ieee.org/document/7533003/)
554 document/7533003/.

555 Jinkun Cao, Jiangmiao Pang, Xinshuo Weng, Rawal Khirodkar, and Kris Kitani. Observation-centric
556 sort: Rethinking sort for robust multi-object tracking. In *Proceedings of the IEEE/CVF conference*
557 *on computer vision and pattern recognition*, pp. 9686–9696, 2023.

558 Xiaoyan Cao, Yiyao Zheng, Yao Yao, Huapeng Qin, Xiaoyu Cao, and Shihui Guo. Topic: a parallel
559 association paradigm for multi-object tracking under complex motions and diverse scenes. *IEEE*
560 *Transactions on Image Processing*, 2025.

561 Anthony Cioppa, Silvio Giancola, Adrien Deliege, Le Kang, Xin Zhou, Zhiyu Cheng, Bernard
562 Ghanem, and Marc Van Droogenbroeck. Soccernet-tracking: Multiple object tracking dataset
563 and benchmark in soccer videos. In *2022 IEEE/CVF Conference on Computer Vision and Pat-
564 tern Recognition Workshops (CVPRW)*, pp. 3490–3501, 2022. doi: 10.1109/CVPRW56347.2022.
565 00393. URL <https://ieeexplore.ieee.org/document/9857224/>.

566 Yutao Cui, Chenkai Zeng, Xiaoyu Zhao, Yichun Yang, Gangshan Wu, and Limin Wang. Sportsmot:
567 A large multi-object tracking dataset in multiple sports scenes. In *Proceedings of the IEEE/CVF*
568 *international conference on computer vision*, pp. 9921–9931, 2023.

569 Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cremers, Ian Reid, Stefan
570 Roth, Konrad Schindler, and Laura Leal-Taixé. Mot20: A benchmark for multi object tracking in
571 crowded scenes. *arXiv preprint arXiv:2003.09003*, 2020.

572 Yunhao Du, Zhicheng Zhao, Yang Song, Yanyun Zhao, Fei Su, Tao Gong, and Hongying Meng.
573 Strongsort: Make deepsort great again. 25:8725–8737, 2023. ISSN 1520-9210, 1941-0077.
574 doi: 10.1109/TMM.2023.3240881. URL [https://ieeexplore.ieee.org/](https://ieeexplore.ieee.org/document/10032656/)
575 document/10032656/.

576 Yang Fan, Shigeyuki Odashima, Shoichi Masui, and Shan Jiang. Hard to track objects with ir-
577 regular motions and similar appearances? make it easier by buffering the matching space. In
578 *2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pp. 4788–4797,
579 2023. doi: 10.1109/WACV56688.2023.00478. URL <https://ieeexplore.ieee.org/>
580 document/10030951/.

581 Ruopeng Gao and Limin Wang. Memotr: Long-term memory-augmented transformer for multi-
582 object tracking. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
583 pp. 9901–9910, 2023.

584 Ruopeng Gao, Ji Qi, and Limin Wang. Multiple object tracking as id prediction. In *Proceedings of*
585 *the Computer Vision and Pattern Recognition Conference*, pp. 27883–27893, 2025.

586 Yan Gao, Haojun Xu, Jie Li, and Xinbo Gao. Bpmtrack: Multi-object tracking with detection box
587 application pattern mining. *IEEE Transactions on Image Processing*, 33:1508–1521, 2024.

594 Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo series in
 595 2021, 2021. URL <http://arxiv.org/abs/2107.08430>.

596

597 A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision bench-
 598 mark suite. In *2012 IEEE Conference on Computer Vision and Pattern Recognition*, pp. 3354–
 599 3361, 2012. doi: 10.1109/cvpr.2012.6248074. URL [http://ieeexplore.ieee.org/](http://ieeexplore.ieee.org/document/6248074/)
 600 document/6248074/.

601

602 Matias Gran-Henriksen, Hans Andreas Lindgaard, Gabriel Kiss, and Frank Lindseth. Deep hm-sort:
 603 Enhancing multi-object tracking in sports with deep features, harmonic mean, and expansion iou,
 604 2024. URL <http://arxiv.org/abs/2406.12081>.

605

606 Lingxiao He, Xingyu Liao, Wu Liu, Xincheng Liu, Peng Cheng, and Tao Mei. Fastreid: A pytorch
 607 toolbox for general instance re-identification, 2020. URL <http://arxiv.org/abs/2006.02631>.

608

609 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. 9(8):1735–1780, 1997. ISSN
 610 0899-7667, 1530-888X. doi: 10.1162/neco.1997.9.8.1735. URL <https://direct.mit.edu/neco/article/9/8/1735-1780/6109>.

611

612 Bin Hu, Run Luo, Zelin Liu, Cheng Wang, and Wenyu Liu. Trackssm: A general motion predictor
 613 by state-space model, 2024. URL <http://arxiv.org/abs/2409.00487>.

614

615 Hsiang-Wei Huang, Cheng-Yen Yang, Wenhao Chai, Zhongyu Jiang, and Jeng-Neng Hwang. Mam-
 616 bamot: State-space model as motion predictor for multi-object tracking. In *ICASSP 2025 - 2025*
 617 *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–
 618 5, 2024a. doi: 10.1109/icassp49660.2025.10890199. URL <https://ieeexplore.ieee.org/document/10890199/>.

619

620 Hsiang-Wei Huang, Cheng-Yen Yang, Jiacheng Sun, Pyong-Kun Kim, Kwang-Ju Kim, Kyoun-
 621 goh Lee, Chung-I Huang, and Jenq-Neng Hwang. Iterative scale-up expansioniou and deep
 622 features association for multi-object tracking in sports. In *2024 IEEE/CVF Winter Confer-
 623 ence on Applications of Computer Vision Workshops (WACVW)*, pp. 163–172, 2024b. doi: 10.
 624 1109/WACVW60836.2024.00024. URL <https://ieeexplore.ieee.org/document/10495659/>.

625

626 R. E. Kalman. A new approach to linear filtering and prediction problems. 82
 627 (1):35–45, 1960. ISSN 0021-9223. doi: 10.1111/1.3662552. URL <https://asmedigitalcollection.asme.org/fluidsengineering/article/82/1/35/397706/A-New-Approach-to-Linear-Filtering-and-Prediction>.

628

629

630 Dheeraj Khanna, Jerrin Bright, Yuhao Chen, and John Zelek. Sportmamba: Adaptive non-linear
 631 multi-object tracking with state space models for team sports. In *2025 IEEE/CVF Conference on*
 632 *Computer Vision and Pattern Recognition Workshops (CVPRW)*, 2025.

633

634 Masoud Khodarahmi and Vafa Maihami. A review on kalman filter models. *Archives of Compu-
 635 tational Methods in Engineering*, 30(1):727–747, 2023.

636

637 Zepeng Li, Dongxiang Zhang, Sai Wu, Mingli Song, and Gang Chen. Sampling-resilient multi-
 638 object tracking. 38(4):3297–3305, 2024. ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v38i4.
 639 28115. URL <https://ojs.aaai.org/index.php/AAAI/article/view/28115>.

640

641 Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip Torr, Andreas Geiger, Laura Leal-Taixé,
 642 and Bastian Leibe. Hota: A higher order metric for evaluating multi-object tracking. 129(2):548–
 643 578, 2021. ISSN 0920-5691, 1573-1405. doi: 10.1007/s11263-020-01375-2. URL <https://link.springer.com/10.1007/s11263-020-01375-2>.

644

645 Weiyi Lv, Yuhang Huang, Ning Zhang, Ruei-Sung Lin, Mei Han, and Dan Zeng. Diffmot: A
 646 real-time diffusion-based multiple object tracker with non-linear prediction. In *2024 IEEE/CVF*
 647 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 19321–19330, 2024. doi:
 10.1109/CVPR52733.2024.01828.

648 Gerard Maggiolino, Adnan Ahmad, Jinkun Cao, and Kris Kitani. Deep oc-sort: Multi-pedestrian
 649 tracking by adaptive re-identification. In *2023 IEEE International Conference on Image Process-
 650 ing (ICIP)*, pp. 3025–3029, 2023. doi: 10.1109/ICIP49359.2023.10222576.
 651

652 Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler. Mot16: A benchmark
 653 for multi-object tracking. *arXiv preprint arXiv:1603.00831*, 2016.
 654

655 Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
 656 real-time object detection. In *2016 IEEE Conference on Computer Vision and Pattern Recognition
 657 (CVPR)*, pp. 779–788, 2016. doi: 10.1109/cvpr.2016.91. URL <http://ieeexplore.ieee.org/document/7780460/>.
 658

659 Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and Carlo Tomasi. Performance
 660 measures and a data set for multi-target, multi-camera tracking. In Gang Hua and Hervé
 661 Jégou (eds.), *Computer Vision – ECCV 2016 Workshops*, volume 9914, pp. 17–35. 2016.
 662 doi: 10.1007/978-3-319-48881-3_2. URL http://link.springer.com/10.1007/978-3-319-48881-3_2.
 663

664 Shuai Shao, Zijian Zhao, Boxun Li, Tete Xiao, Gang Yu, Xiangyu Zhang, and Jian Sun. Crowdhu-
 665 man: A benchmark for detecting human in a crowd, 2018. URL <http://arxiv.org/abs/1805.00123>.
 666

667 Kyujin Shim, Kangwook Ko, Yujin Yang, and Changick Kim. Focusing on tracks for online multi-
 668 object tracking. In *2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition
 669 (CVPR)*, 2025.
 670

671 Vukašin Stanojević and Branimir Todorović. Boosttrack++: Using tracklet information to detect
 672 more objects in multiple object tracking, 2024. URL <http://arxiv.org/abs/2408.13003>.
 673

674 Peize Sun, Jinkun Cao, Yi Jiang, Zehuan Yuan, Song Bai, Kris Kitani, and Ping Luo. Dancetrack:
 675 Multi-object tracking in uniform appearance and diverse motion. In *Proceedings of the IEEE/CVF
 676 conference on computer vision and pattern recognition*, pp. 20993–21002, 2022.
 677

678 Lorenzo Vaquero, Yihong Xu, Xavier Alameda-Pineda, Víctor M Brea, and Manuel Mucientes. Lost
 679 and found: Overcoming detector failures in online multi-object tracking. In *European Conference
 680 on Computer Vision*, pp. 448–466. Springer, 2024.
 681

682 Rejin Varghese and Sambath M. Yolov8: A novel object detection algorithm with enhanced per-
 683 formance and robustness. In *2024 International Conference on Advances in Data Engineering
 684 and Intelligent Computing Systems (ADICS)*, pp. 1–6, 2024. doi: 10.1109/ADICS58448.2024.
 685 10533619.
 686

687 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 688 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017. URL <http://arxiv.org/abs/1706.03762>.
 689

690 Xiaoxu Wang, Yan Liang, Quan Pan, and Feng Yang. A gaussian approximation recursive filter for
 691 nonlinear systems with correlated noises. *Automatica*, 48(9):2290–2297, 2012.
 692

693 Zhiling Wang. Transformer-based motion predictor for multi-dancer tracking in non-linear move-
 694 ments of dancesport performance. *IEEE Access*, 2025.
 695

696 Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime tracking with a deep
 697 association metric. In *2017 IEEE international conference on image processing (ICIP)*, pp. 3645–
 698 3649. IEEE, 2017.
 699

700 Changcheng Xiao, Qiong Cao, Zhigang Luo, and Long Lan. Mambatrack: A simple baseline for
 701 multiple object tracking with state space model, 2024a. URL <http://arxiv.org/abs/2408.09178>.
 702

702 Changcheng Xiao, Qiong Cao, Yujie Zhong, Long Lan, Xiang Zhang, Zhigang Luo, and Dacheng
 703 Tao. Motiontrack: Learning motion predictor for multiple object tracking. 179:106539,
 704 2024b. ISSN 0893-6080. doi: 10.1016/j.neunet.2024.106539. URL <https://linkinghub.elsevier.com/retrieve/pii/S0893608024004635>.

705

706 Shi Yan, Yan Liang, Le Zheng, Mingyang Fan, Xiaoxu Wang, and Binglu Wang. Explainable gated
 707 bayesian recurrent neural network for non-markov state estimation. *IEEE Transactions on Signal
 708 Processing*, 72:4302–4317, 2024. doi: 10.1109/TSP.2024.3390139.

709

710 Mingzhan Yang, Guangxin Han, Bin Yan, Wenhua Zhang, Jinqing Qi, Huchuan Lu, and Dong
 711 Wang. Hybrid-sort: Weak cues matter for online multi-object tracking. volume 38, pp. 6504–
 712 6512, 2024. doi: 10.1609/aaai.v38i7.28471. URL <https://ojs.aaai.org/index.php/AAAI/article/view/28471>.

713

714 Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Mad-
 715 havan, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask
 716 learning. In *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 717 pp. 2633–2642, 2020. doi: 10.1109/cvpr42600.2020.00271. URL <https://ieeexplore.ieee.org/document/9156329/>.

718

719 Jiahui Yu, Yuning Jiang, Zhangyang Wang, Zhimin Cao, and Thomas Huang. Unitbox: An
 720 advanced object detection network. In *Proceedings of the 24th ACM International Conference on
 721 Multimedia*, pp. 516–520, 2016. doi: 10.1145/2964284.2967274. URL <https://dl.acm.org/doi/10.1145/2964284.2967274>.

722

723 Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan Yuan, Ping Luo, Wenyu
 724 Liu, and Xinggang Wang. Bytetrack: Multi-object tracking by associating every detection box.
 725 In *European conference on computer vision*, pp. 1–21. Springer, 2022.

726

727 Yuang Zhang, Tiancai Wang, and Xiangyu Zhang. Motrv2: Bootstrapping end-to-end multi-object
 728 tracking by pretrained object detectors. In *Proceedings of the IEEE/CVF conference on computer
 729 vision and pattern recognition*, pp. 22056–22065, 2023.

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 APPENDIX
757758 **Table of Contents**
759760 **A Analysis of Non-Markovian Dynamics in Target Trajectories**
761762 **B Derivation of MeKF**
763764 **B.1 Bayesian Filters for non-Markovian Processes**
765766 **B.2 Implementation with Gaussian Approximation**
767768 **C Detailed Training Procedure for MeKF**
769770 **D Supplementary Experiments**
771772 **D.1 Benchmark Results on MOT17 and MOT20**
773774 **D.2 Generality on Other Baseline Trackers**
775776 **E Additional Experiments of MeKF**
777778 **E.1 Sensitivity Analysis of MeKF’s Training Data Volume**
779780 **E.2 Sensitivity Analysis of MeKF’s Memory Dimension**
781782 **E.3 Generalization Experiments of MeKF**
783784 **F Additional Experiments of Mo-IoU**
785786 **F.1 Discussion on the Design of MAT Formulations**
787788 **F.2 Sensitivity Analysis of Mo-IoU’s Thresholds**
789790 **F.3 Sensitivity Analysis of Mo-IoU’s Parameter**
791792 **G Case Analysis**
793794 **G.1 Case 1: Occlusion**
795796 **G.2 Case 2: Group Separation**
797798 **G.3 Additional Visualizations**
799800 **H The Use of Large Language Models**
801802 **I Reproducibility Statement**
803804 **A ANALYSIS OF NON-MARKOVIAN DYNAMICS IN TARGET TRAJECTORIES**
805806 Conventional KF-based MOT algorithms typically adopt a first-order Markov assumption to sim-
807 plify target dynamics. However, real-world targets often exhibit more complex motion with long-
808 term temporal correlations, as illustrated in Figure 4, a phenomenon we refer to as non-Markovian
809 dynamics.810 As shown in Figure 4(a), a visual inspection of the target’s trajectory strongly suggests its motion has
811 significant non-Markovian properties. The path is not a simple random walk but can be decomposed
812 into three distinct phases: an initial period of localized, high-frequency movement (yellow area); a
813 middle phase of directional, long-range displacement (pink area); and a final phase of dense hovering
814 in a new local area (purple area). This phased switching from a stable local pattern to a directional
815 journey and back again strongly implies an underlying “plan” or “intent” that a memoryless Markovian
816 model could not produce. Furthermore, the high degree of path overlap and repeated visits to
817 specific areas demonstrate a form of memory, directly contradicting the core Markovian assumption
818 that the future depends only on the present. In summary, the trajectory’s clear structure, apparent
819 purposefulness, and historical dependence provide strong qualitative evidence of its non-Markovian
820 nature.821 The trajectory shown in Figure 4(b) provides even more compelling evidence of non-Markovian
822 dynamics. It moves in a predictable, back-and-forth pattern, creating a clear rhythm. This is the
823

Figure 4: Two representative ground truth (GT) trajectories from the DanceTrack dataset, showcasing complex and non-Markovian motion. The color of the path indicates the progression of time, evolving from purple (start) to yellow (end). The x-axis and y-axis represent the target positions in image coordinates (pixels).

opposite of a chaotic random walk. This pattern is not static; it displays multi-scale dynamics, with the amplitude and frequency of the oscillations evolving throughout the sequence. Such a structured and evolving “choreography” points to a process with significant state memory.

The non-Markovian nature is further confirmed by the trajectory’s continuity across interruptions. When the target reappears after a gap in observation, its motion pattern seamlessly resumes rather than resetting to a random state. This suggests a persistent “intent” that violates the core memoryless assumption of the Markov process.

B DERIVATION OF MEKF

B.1 BAYESIAN FILTERS FOR NON-MARKOVIAN PROCESSES

Before deriving the analytical expression for our MeKF, we first establish a general Bayesian filtering framework for non-Markovian dynamics to describe the computation of the relevant probability density functions (PDFs). Within this framework, obtaining the filtered estimate at time step t requires computing the joint posterior PDF of the entire history of target states $\mathbf{b}_{1:t}$ and memory $\mathbf{m}_{1:t}$. This is conditioned on all available measurements up to the current time, namely, $\tilde{\mathbf{b}}_{1:t}$, as well as the training data \mathcal{D} (the detailed generation procedure for this dataset is described in Appendix C). Formally, the density of interest is $p(\mathbf{b}_{1:t}, \mathbf{m}_{1:t} | \tilde{\mathbf{b}}_{1:t}, \mathcal{D})$.

According to Bayes’ theorem, this posterior probability density can be decomposed as follows:

$$p(\mathbf{b}_{1:t}, \mathbf{m}_{1:t} | \tilde{\mathbf{b}}_{1:t}, \mathcal{D}) = p(\mathbf{b}_{1:t}, \mathbf{m}_{1:t} | \tilde{\mathbf{b}}_{1:t-1}, \tilde{\mathbf{b}}_t, \mathcal{D}) \\ = \frac{p(\tilde{\mathbf{b}}_t | \mathbf{b}_{1:t}, \mathbf{m}_{1:t}, \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}) p(\mathbf{b}_{1:t}, \mathbf{m}_{1:t} | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D})}{p(\tilde{\mathbf{b}}_t | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D})} \quad (19)$$

$$\propto p(\tilde{\mathbf{b}}_t | \mathbf{b}_{1:t}, \mathbf{m}_{1:t}, \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}) p(\mathbf{b}_{1:t}, \mathbf{m}_{1:t} | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}). \quad (20)$$

Since the detection $\tilde{\mathbf{b}}_t$ is generated by the detector based only on the current ground truth state \mathbf{b}_t , it is independent of the memory $\mathbf{m}_{1:t}$. Consequently, the corresponding likelihood PDF can be expressed equivalently as:

$$p(\tilde{\mathbf{b}}_t | \mathbf{b}_{1:t}, \mathbf{m}_{1:t}, \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}) = p(\tilde{\mathbf{b}}_t | \mathbf{b}_t, \mathcal{D}). \quad (21)$$

To account for the observation model mismatch present in Eq. 6, we express the likelihood PDF in the following integral form:

$$p(\tilde{\mathbf{b}}_t | \mathbf{b}_t, \mathcal{D}) = \int p(\tilde{\mathbf{b}}_t, \Delta_t^{\mathbb{H}} | \mathbf{b}_t, \mathcal{D}) d\Delta_t^{\mathbb{H}} \\ = \int p(\tilde{\mathbf{b}}_t | \Delta_t^{\mathbb{H}}, \mathbf{b}_t, \mathcal{D}) p(\Delta_t^{\mathbb{H}} | \mathbf{b}_t, \mathcal{D}) d\Delta_t^{\mathbb{H}}. \quad (22)$$

According to the total probability formula, the prior PDF in Eq. 19 can be expressed as follows:

$$p(\mathbf{b}_{1:t}, \mathbf{m}_{1:t} | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}) = p(\mathbf{b}_t, \mathbf{m}_t | \mathbf{b}_{1:t-1}, \mathbf{m}_{1:t-1}, \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}) p(\mathbf{b}_{1:t-1}, \mathbf{m}_{1:t-1} | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}). \quad (23)$$

The second term on the right-hand side of Eq. 23 is the joint posterior PDF of the state and memory at time $t-1$, while the term on the left-hand side represents the joint transition process for the state and memory that captures the system's non-Markovian dynamics. Applying the conditional independence expressed by Eqs. 4 and 5, this transition process can be expressed as follows:

$$\begin{aligned} & p(\mathbf{b}_t, \mathbf{m}_t | \mathbf{b}_{1:t-1}, \mathbf{m}_{1:t-1}, \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}) \\ &= p(\mathbf{b}_t | \mathbf{m}_t, \mathbf{b}_{1:t-1}, \mathbf{m}_{1:t-1}, \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}) p(\mathbf{m}_t | \mathbf{b}_{1:t-1}, \mathbf{m}_{1:t-1}, \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}) \\ &= \int p(\mathbf{b}_t | \Delta_t^{\mathbb{F}}, \mathbf{m}_t, \mathbf{b}_{1:t-1}, \mathbf{m}_{1:t-1}, \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}) p(\Delta_t^{\mathbb{F}} | \mathbf{m}_t, \mathbf{b}_{1:t-1}, \mathbf{m}_{1:t-1}, \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}) \\ &\quad \times p(\mathbf{m}_t | \mathbf{b}_{t-1}, \mathbf{m}_{t-1}, \mathcal{D}) d\Delta_t^{\mathbb{F}} \\ &= \int p(\mathbf{b}_t | \Delta_t^{\mathbb{F}}, \mathbf{b}_{t-1}, \mathcal{D}) p(\Delta_t^{\mathbb{F}} | \mathbf{m}_t, \mathcal{D}) p(\mathbf{m}_t | \mathbf{b}_{t-1}, \mathbf{m}_{t-1}, \mathcal{D}) d\Delta_t^{\mathbb{F}}. \end{aligned} \quad (24)$$

Based on the Bayesian theorem, the joint posterior of state and memory can be obtained as:

$$\begin{aligned} p(\mathbf{b}_{1:t}, \mathbf{m}_{1:t} | \tilde{\mathbf{b}}_{1:t}, \mathcal{D}) &\propto \int p(\tilde{\mathbf{b}}_t | \Delta_t^{\mathbb{H}}, \mathbf{b}_t, \mathcal{D}) p(\Delta_t^{\mathbb{H}} | \mathbf{b}_t, \mathcal{D}) d\Delta_t^{\mathbb{H}} \\ &\quad \times \int p(\mathbf{b}_t | \Delta_t^{\mathbb{F}}, \mathbf{b}_{t-1}, \mathcal{D}) p(\Delta_t^{\mathbb{F}} | \mathbf{m}_t, \mathcal{D}) p(\mathbf{m}_t | \mathbf{b}_{t-1}, \mathbf{m}_{t-1}, \mathcal{D}) d\Delta_t^{\mathbb{F}} \\ &\quad \times p(\mathbf{b}_{1:t-1}, \mathbf{m}_{1:t-1} | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}). \end{aligned} \quad (25)$$

B.2 IMPLEMENTATION WITH GAUSSIAN APPROXIMATION

While the above derivation establishes the general Bayesian filtering framework, its direct implementation involves various methods. For the purposes of computational efficiency and stability, we choose to implement the framework using Gaussian approximation. The following assumptions are therefore required to perform this approximation.

Assumption 1. The process noise \mathbf{w}_t given in Eq. 4 obeys Gaussian distribution with a mean of $\mathbf{0}$ and a covariance of \mathbf{Q}_t , namely, $\mathbf{w}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_t)$. And the measurement noise \mathbf{v}_t given in Eq. 6 obeys a Gaussian distribution with a mean of $\mathbf{0}$ and a covariance of \mathbf{R}_t , namely, $\mathbf{v}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_t)$.

Assumption 2. The state posterior PDF obeys a Gaussian distribution with first- and second-order moments of $\hat{\mathbf{b}}_t$ and \mathbf{P}_t , respectively, namely,

$$p(\mathbf{b}_{1:t} | \tilde{\mathbf{b}}_{1:t}, \mathcal{D}) = \mathcal{N}(\mathbf{b}_t; \hat{\mathbf{b}}_t, \mathbf{P}_t). \quad (26)$$

Assumption 3. The state transition mismatch term $\Delta_t^{\mathbb{F}}$ obeys a Gaussian distribution with first- and second-order moments of $\hat{\Delta}_t^{\mathbb{F}}$ and $\mathbf{P}_t^{\mathbb{F}}$, respectively. And the observation mismatch term $\Delta_t^{\mathbb{H}}$ obeys a Gaussian distribution with first- and second-order moments of $\hat{\Delta}_t^{\mathbb{H}}$ and $\mathbf{P}_t^{\mathbb{H}}$, respectively, namely,

$$p(\Delta_t^{\mathbb{F}} | \mathbf{c}_t, \mathcal{D}) = \mathcal{N}(\Delta_t^{\mathbb{F}}; \hat{\Delta}_t^{\mathbb{F}}, \mathbf{P}_t^{\mathbb{F}}), \quad (27)$$

$$p(\Delta_t^{\mathbb{H}} | \mathbf{b}_t, \mathcal{D}) = \mathcal{N}(\Delta_t^{\mathbb{H}}; \hat{\Delta}_t^{\mathbb{H}}, \mathbf{P}_t^{\mathbb{H}}). \quad (28)$$

B.2.1 IMPLEMENTATION FOR STATE PREDICTION

Based on Eq. 4, the mean of state prediction is calculated as:

$$\begin{aligned} \hat{\mathbf{b}}'_t &= \mathbb{E}_{p(\mathbf{b}_{1:t} | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D})} \{ \mathbf{b}_t \} \\ &= \mathbb{E}_{p(\mathbf{b}_{1:t} | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D})} \{ \mathbf{F} \mathbf{b}_{t-1} + \Delta_t^{\mathbb{F}} + \mathbf{w}_t \} \\ &= \iiint (\mathbf{F} \mathbf{b}_{t-1} + \Delta_t^{\mathbb{F}}) P_t^1 d\Delta_t^{\mathbb{F}} d\mathbf{m}_t d\mathbf{m}_{t-1} d\mathbf{b}_{t-1}, \end{aligned} \quad (29)$$

918 where $P_t^1 = p(\Delta_t^{\mathbb{F}} | \mathbf{m}_t, \mathcal{D}) p(\mathbf{m}_t | \mathbf{b}_{t-1}, \mathbf{m}_{t-1}, \mathcal{D}) p(\mathbf{b}_{1:t-1}, \mathbf{m}_{1:t-1} | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D})$.
 919
 920 According to Eq. 26, the state posterior PDF at time $t-1$ is formulated as:
 921

$$p(\mathbf{b}_{1:t-1} | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}) = \mathcal{N}(\mathbf{b}_{t-1}; \hat{\mathbf{b}}_{t-1}, \mathbf{P}_{t-1}). \quad (30)$$

923 Substituting Eq. 30 and the Eq. 27 into Eq. 29, the analytical expression of state prediction mean
 924 can be calculated as:
 925

$$\hat{\mathbf{b}}'_t = \mathbf{F}\hat{\mathbf{b}}_{t-1} + \hat{\Delta}_t^{\mathbb{F}}. \quad (31)$$

928 The state prediction covariance is calculated as:
 929

$$\begin{aligned} 930 \mathbf{P}'_t &= \mathbb{E}_{p(\mathbf{b}_{1:t} | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D})} \left\{ (\mathbf{b}_t - \hat{\mathbf{b}}'_t) (\mathbf{b}_t - \hat{\mathbf{b}}'_t)^{\top} \right\} \\ 931 &= \iiint \left(\mathbf{F}\mathbf{b}_{t-1} + \Delta_t^{\mathbb{F}} + \mathbf{w}_t - \hat{\mathbf{b}}'_t \right) \left(\mathbf{F}\mathbf{b}_{t-1} + \Delta_t^{\mathbb{F}} + \mathbf{w}_t - \hat{\mathbf{b}}'_t \right)^{\top} P_t^1 d\Delta_t^{\mathbb{F}} d\mathbf{m}_t d\mathbf{m}_{t-1} d\mathbf{b}_{t-1}. \end{aligned} \quad (32)$$

936 Substituting Eq. 27 and Eq. 30 into Eq. 32, thus we have the state prediction covariance as follows:
 937

$$\mathbf{P}'_t = \mathbf{F}\mathbf{P}_{t-1}\mathbf{F}^{\top} + \mathbf{P}_t^{\mathbb{F}} + \mathbf{Q}_t. \quad (33)$$

939 B.2.2 IMPLEMENTATION FOR STATE UPDATE

941 According to Eqs. 6 and 28, the mean value of the measurement prediction is calculated as:
 942

$$\begin{aligned} 943 \tilde{\mathbf{b}}'_t &= \mathbb{E}_{p(\tilde{\mathbf{b}}_t | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D})} \left\{ \tilde{\mathbf{b}}_t \right\} \\ 944 &= \mathbb{E}_{p(\tilde{\mathbf{b}}_t | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D})} \left\{ \mathbf{H}\mathbf{b}_t + \Delta_t^{\mathbb{H}} + \mathbf{v}_t \right\} \\ 945 &= \iint \left(\mathbf{H}\mathbf{b}_t + \Delta_t^{\mathbb{H}} \right) p(\Delta_t^{\mathbb{H}} | \mathbf{b}_t, \mathcal{D}) p(\mathbf{b}_{1:t}, \mathbf{m}_{1:t} | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}) d\Delta_t^{\mathbb{H}} d\mathbf{m}_t d\mathbf{b}_t \\ 946 &= \mathbf{H}\hat{\mathbf{b}}'_t + \hat{\Delta}_t^{\mathbb{H}}. \end{aligned} \quad (34)$$

950 The measurement prediction covariance is calculated as:
 951

$$\begin{aligned} 952 \mathbf{P}_t^{\tilde{b}\tilde{b}} &= \mathbb{E}_{p(\tilde{\mathbf{b}}_t | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D})} \left\{ (\tilde{\mathbf{b}}_t - \hat{\mathbf{b}}'_t) (\tilde{\mathbf{b}}_t - \hat{\mathbf{b}}'_t)^{\top} \right\} \\ 953 &= \iiint \left(\mathbf{H}\mathbf{b}_t + \Delta_t^{\mathbb{H}} + \mathbf{v}_t - \tilde{\mathbf{b}}'_t \right) \left(\mathbf{H}\mathbf{b}_t + \Delta_t^{\mathbb{H}} + \mathbf{v}_t - \tilde{\mathbf{b}}'_t \right)^{\top} P_t^2 d\Delta_t^{\mathbb{H}} d\mathbf{m}_t d\mathbf{b}_t \\ 954 &= \mathbf{H}\mathbf{P}'_t\mathbf{H}^{\top} + \mathbf{P}_t^{\mathbb{H}} + \mathbf{R}_t, \end{aligned} \quad (35)$$

955 where $P_t^2 = p(\Delta_t^{\mathbb{H}} | \mathbf{b}_t, \mathcal{D}) p(\mathbf{b}_{1:t}, \mathbf{m}_{1:t} | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D})$.
 956

957 And the mutual covariance of the state prediction and the measurement prediction is calculated as:
 958

$$\begin{aligned} 959 \mathbf{P}_t^{b\tilde{b}} &= \mathbb{E}_{p(\tilde{\mathbf{b}}_t | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D})} \left\{ (\mathbf{b}_t - \hat{\mathbf{b}}'_t) (\tilde{\mathbf{b}}_t - \hat{\mathbf{b}}'_t)^{\top} \right\} \\ 960 &= \iiint \left(\mathbf{F}\mathbf{b}_{t-1} + \Delta_t^{\mathbb{F}} + \mathbf{w}_t - \hat{\mathbf{b}}'_t \right) \left(\mathbf{H}\mathbf{b}_t + \Delta_t^{\mathbb{H}} + \mathbf{v}_t - \tilde{\mathbf{b}}'_t \right)^{\top} P_t^2 d\Delta_t^{\mathbb{H}} d\mathbf{m}_t d\mathbf{b}_t \\ 961 &= \mathbf{P}'_t\mathbf{H}^{\top}. \end{aligned} \quad (36)$$

962 According to the Bayesian rule in Eq. 19, the posterior can be equivalent to:
 963

$$p(\mathbf{b}_{1:t}, \mathbf{m}_{1:t} | \tilde{\mathbf{b}}_{1:t}, \mathcal{D}) = \frac{p(\mathbf{b}_{1:t}, \mathbf{m}_{1:t} | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D})}{p(\tilde{\mathbf{b}}_t | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D})} \quad (37)$$

972 Due to the self-conjugate property of Gaussian distributions under Bayesian theorem, the joint distribution
 973 of the state prediction and the measurement prediction is also Gaussian and can be expressed
 974 as follows:

$$975 \quad 976 \quad 977 \quad 978 \quad p(\mathbf{b}_{1:t}, \tilde{\mathbf{b}}_{1:t} | \tilde{\mathbf{b}}_{1:t-1}, \mathcal{D}) = \mathcal{N} \left[\begin{pmatrix} \hat{\mathbf{b}}'_t \\ \tilde{\mathbf{b}}'_t \end{pmatrix}, \begin{pmatrix} \mathbf{P}'_t & \mathbf{P}^{bb}_t \\ (\mathbf{P}^{bb}_t)^\top & \mathbf{P}^{bb\tilde{b}}_t \end{pmatrix} \right], \quad (38)$$

979 Subsequently, we substitute Eq. 38 into Eq. 37 to obtain updates of the state and covariance as
 980 follows:

$$981 \quad 982 \quad 983 \quad \hat{\mathbf{b}}_t = \hat{\mathbf{b}}'_t + \mathbf{P}_t^{bb} \left(\mathbf{P}_t^{bb} \right)^{-1} \left(\tilde{\mathbf{b}}_t - \hat{\mathbf{b}}'_t \right), \quad (39)$$

$$984 \quad 985 \quad \mathbf{P}_t = \mathbf{P}'_t - \mathbf{P}_t^{bb} \left(\mathbf{P}_t^{bb} \right)^{-1} \left(\mathbf{P}_t^{bb} \right)^\top. \quad (40)$$

986 Finally, if we define $\mathbf{P}_t^{bb} (\mathbf{P}_t^{bb})^{-1}$ as \mathbf{K}_t (so called Kalman gain), then Eqs. 39 and 40 can be
 987 expressed as:

$$988 \quad 989 \quad \hat{\mathbf{b}}_t = \hat{\mathbf{b}}'_t + \mathbf{K}_t (\tilde{\mathbf{b}}_t - \mathbf{H} \hat{\mathbf{b}}'_t - \hat{\Delta}^H), \quad (41)$$

$$990 \quad 991 \quad \mathbf{P}_t = (\mathbf{I} - \mathbf{K}_t \mathbf{H}) \mathbf{P}'_t. \quad (42)$$

992 C DETAILED TRAINING PROCEDURE FOR MEKF

994 The MeKF requires detection boxes as input during inference to produce an estimate of the target's
 995 state. However, existing MOT datasets typically only provide ground truth trajectories, which is
 996 insufficient for our end-to-end training pipeline. To address this, we construct paired sequences of
 997 detection boxes and ground truth trajectories.

999 Specifically, we first employ the YOLOX detector, pre-trained as described in Section 4.2, to generate
 1000 a sequence of detections for each frame, ensuring consistency with the actual tracking process. At time t , the detector generates a set of N_t detection boxes from a single frame, namely,
 1001 $\mathcal{A}_t = \{\tilde{\mathbf{b}}_t^n\}_{n=1,2,\dots,N_t}$, where n stands for the index of the detection box. Subsequently, we match
 1002 these detections to the ground truth (a set of M_t boxes at time t , namely, $\mathcal{B}_t = \{\bar{\mathbf{b}}_t^m\}_{m=1,2,\dots,M_t}$)
 1003 based on a standard IoU threshold of 0.8. This process can be formulated as:

$$1004 \quad 1005 \quad 1006 \quad \pi_t(m) = \begin{cases} \arg \max_n \text{IoU}(\bar{\mathbf{b}}_t^m, \tilde{\mathbf{b}}_t^n), & \text{if } \text{IoU}(\bar{\mathbf{b}}_t^m, \tilde{\mathbf{b}}_t^n) > 0.8, \\ 0, & \text{otherwise,} \end{cases} \quad (43)$$

1008 where $\pi_t(m)$ defines the mapping from a ground truth box to a detection box. Specifically, $\pi_t(m) = n$ indicates that the m -th ground-truth box is successfully associated with the n -th detection. A value
 1009 of $\pi_t(m) = 0$ signifies a matching failure, meaning the ground truth box remains unmatched, which
 1010 often corresponds to a missed detection.

1012 Based on Eq. 43, The matching follows these criteria:

- 1014 • Each ground truth box is matched with at most one detection; if multiple detections surpass the
 1015 IoU threshold, the one with the highest IoU is selected.
- 1016 • A single detection can be associated with multiple ground truth boxes.

1018 Following this matching procedure, we obtain a set of pair-wise tuples, each containing a ground
 1019 truth box and its matched detection for a single target in a given frame, namely, $\mathcal{C}_t = \{\bar{\mathbf{b}}_t^m, \tilde{\mathbf{b}}_t^{\pi_t(m)}\}$.
 1020 Since our LSTM-based MeKF requires fixed-length sequences for training, we generate these by
 1021 applying a sliding window of length T (as defined in Eq. 13) to the full trajectories. Each resulting
 1022 training sequence for a single target trajectory, generated from one sliding window, can be repre-
 1023 sented as $\mathbf{C} = [\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_T]$. The final training dataset, which we denote as \mathcal{D} , is the collection of
 1024 all such sequences generated from all target trajectories. This dataset is then used to train the MeKF.

1025 It should be noted that the IoU-based matching between detections and ground truth boxes is not
 1026 always successful. Matching failures can occur, for instance, in cases of missed detections (i.e.,

no detection box is generated) or when a detection significantly deviates from its corresponding ground-truth box. In such scenarios where a match is lost, we set $\hat{b}_t = \mathbf{H}\hat{b}'_t + \hat{\Delta}_t^{\mathbb{H}}$ in Eq. 11. This configuration prompts the filter to perform only the state prediction for the current time step, and bypassing the measurement update process.

D SUPPLEMENTARY EXPERIMENTS

D.1 BENCHMARK RESULTS ON MOT17 AND MOT20

We incorporated full evaluations on the MOT17 and MOT20 benchmarks, as shown in Tables 7 and 8. These benchmarks are characterized by pedestrian tracking scenarios where motion patterns are predominantly linear and predictable (Hu et al., 2024). We retained the settings from DanceTrack and SportsMOT, modifying only the velocity thresholds Θ_{center} and Θ_{height} according to the normalized velocity distribution from training set (i.e. 0.0208 and 0.0001 for MOT17, 0.0209 and 0.0001 for MOT20).

Table 7: Performance comparison with SOTA methods on the MOT17 test set. The best/second results are shown in **bold**/underlined.

Methods	HOTA \uparrow	AssA \uparrow	IDF1 \uparrow	DetA \uparrow	MOTA \uparrow	IDs \downarrow	FP (10^4) \downarrow	FN (10^4) \downarrow
ByteTrack (Zhang et al., 2022)	63.1	62.0	77.3	<u>64.5</u>	<u>80.3</u>	2196	2.55	8.37
OC-SORT (Cao et al., 2023)	63.2	63.2	77.5	-	78.0	1950	1.51	10.80
C-BIoU (Fan et al., 2023)	64.1	63.7	79.7	64.8	81.1	-	-	-
BUSCA (Vaquero et al., 2024)	<u>63.9</u>	64.2	79.2	63.9	78.6	1428	2.46	<u>9.45</u>
TOPICTrack (Cao et al., 2025)	<u>63.9</u>	64.3	78.6	63.7	78.8	<u>1515</u>	<u>1.70</u>	<u>10.11</u>
MeMoSORT (ours)	<u>63.9</u>	64.5	<u>79.3</u>	63.6	78.7	2058	2.02	9.77

Table 8: Performance comparison with SOTA methods on the MOT20 test set. The best/second results are shown in **bold**/underlined.

Methods	HOTA \uparrow	AssA \uparrow	IDF1 \uparrow	DetA \uparrow	MOTA \uparrow	IDs \downarrow	FP (10^4) \downarrow	FN (10^4) \downarrow
ByteTrack (Zhang et al., 2022)	61.3	59.6	75.2	<u>63.4</u>	77.8	1223	2.62	8.76
OC-SORT (Cao et al., 2023)	62.1	62.0	75.9	-	<u>75.5</u>	<u>913</u>	1.80	<u>10.80</u>
BPMTrack (Gao et al., 2024)	62.3	60.9	<u>76.7</u>	63.9	78.3	<u>1314</u>	2.86	8.25
BUSCA (Vaquero et al., 2024)	<u>61.8</u>	63.5	<u>76.3</u>	60.3	72.7	1006	1.38	12.63
TOPICTrack (Cao et al., 2025)	62.6	65.4	77.6	60.0	72.4	869	1.10	13.11
MeMoSORT (ours)	61.9	<u>63.8</u>	75.7	60.2	72.5	1200	<u>1.26</u>	12.83

The results in Tables 7 and 8 indicate MeMoSORT achieves results comparable to established baselines on standard benchmarks. Notably, on MOT17, our method achieves the best AssA score, outperforming leading baselines like TOPICTrack and BUSCA, while maintaining a competitive HOTA score.

Our MeMoSORT shows significant performance gains on DanceTrack and SportsMOT, but only modest improvements on MOT17 and MOT20, revealing a performance discrepancy across datasets. We attribute this discrepancy on MOT17/20 to their distinct motion patterns and occlusion characteristics, which interact differently with our MeKF and Mo-IoU modules.

At first, pedestrians in MOT17/20 typically move in a linear and stable manner, making standard KFs based on the Markovian assumption sufficient for motion prediction. Conversely, targets in DanceTrack and SportsMOT exhibit long-term dependencies, a complexity that our MeKF is explicitly designed to handle. Consequently, the distinct advantage of our MeKF in modeling complex motion is not fully exploited on MOT17/20, resulting in performance marginally superior to standard KF-based methods.

Secondly, the motion characteristics of targets during occlusion in MOT17/20 significantly differ from those in DanceTrack and SportsMOT. For example, targets in the latter datasets often interact with complex and rapid movements during occlusion, whereas occluded pedestrians in MOT17/20 typically remain in a slow-motion. When targets within the surveillance area move slowly, the dynamic adaptability of Mo-IoU to varying speeds yields only limited gains.

1080 Overall, despite these limiting factors on MOT17/20, MeMoSORT still outperforms several trackers
 1081 that do not utilize NNs. This demonstrates that MeKF and Mo-IoU effectively solve the complex
 1082 MOT problem without overfitting to the simplified scenarios in traditional benchmarks.
 1083

1084 D.2 GENERALITY ON OTHER BASELINE TRACKERS

1085
 1086 We applied the key components of MeMoSORT on other representative TBD trackers as baselines,
 1087 including SORT, BoT-SORT and DeepSORT. They utilize KF as state estimation methods, while ap-
 1088 plying different association strategies in consideration of spatial and appearance information. From
 1089 Table 9, significant improvements can be observed from all these baseline trackers after applying
 1090 MeKF or Mo-IoU, demonstrating the generality of the proposed key components.
 1091

1092 Table 9: Generality experiments of applying MeKF and Mo-IoU to other baseline trackers on the
 1093 DanceTrack validation set.

Baseline tracker	MeKF	Mo-IoU	HOTA \uparrow	AssA \uparrow	IDF1 \uparrow	DetA \uparrow	MOTA \uparrow
BoT-SORT (Aharon et al., 2022)	✓	✓	58.68	37.11	50.22	92.87	96.50
			68.28	50.72	66.40	91.97	97.40
			68.62	51.26	67.39	91.91	97.62
SORT (Bewley et al., 2016)	✓	✓	55.57	33.26	46.22	92.94	96.19
			63.64	43.48	56.55	93.21	96.95
			67.11	49.04	66.39	91.89	97.58
DeepSORT (Wojke et al., 2017)	✓	✓	53.68	31.02	44.14	92.97	95.98
			62.12	41.45	54.38	93.16	96.83
			64.18	44.15	57.31	93.36	97.07

1104 E ADDITIONAL EXPERIMENTS OF MEKF

1105 E.1 SENSITIVITY ANALYSIS OF MEKF’S TRAINING DATA VOLUME

1106 We conduct experiments on the DanceTrack validation set to investigate the data efficiency of MeM-
 1107 oSORT by varying the training data volume for MeKF. The results shown in Table 10 demonstrate
 1108 remarkable data efficiency: even when the training data is restricted to only 5%, MeMoSORT main-
 1109 tains a robust HOTA score, exhibiting negligible degradation compared to the full-data baseline.
 1110 This confirms that our MeKF possesses strong robustness, relying on the physical prior and the
 1111 Bayesian framework as inductive bias to maintain high performance even when training samples are
 1112 scarce.
 1113

1114 Table 10: Performance comparison under varying training data volume on the DanceTrack validation
 1115 set. The best/second results are shown in **bold**/underlined.
 1116

Percentage of training data	HOTA \uparrow	AssA \uparrow	IDF1 \uparrow	DetA \uparrow	MOTA \uparrow
5%	65.56	46.15	58.18	93.19	96.79
10%	66.13	46.81	59.27	93.32	96.94
25%	66.62	47.77	61.07	92.97	97.24
50%	67.13	48.53	61.89	92.91	97.26
100%	67.41	49.58	66.41	91.69	97.55

1125 E.2 SENSITIVITY ANALYSIS OF MEKF’S MEMORY DIMENSION

1126 Table 11: Sensitivity analysis of MeKF’s memory dimension on the DanceTrack validation set. The
 1127 best/second results are shown in **bold**/underlined.
 1128

Dimension	HOTA \uparrow	AssA \uparrow	IDF1 \uparrow	DetA \uparrow	MOTA \uparrow
8	60.47	39.32	52.34	93.07	96.68
16	63.67	43.55	56.81	93.10	96.92
32	67.41	49.58	66.41	91.69	97.55
64	<u>67.11</u>	<u>49.04</u>	<u>66.39</u>	91.89	97.58

1134 As shown in Table 11, we analyze the sensitivity of MeKF’s memory dimension. HOTA, AssA
 1135 and IDF1 achieve their highest values at the dimension of 32. However, further increasing the
 1136 dimension to 64 leads to a slight degradation in performance. This trend suggests that choosing
 1137 32 as the dimension of memory provides an optimal trade-off, offering sufficient capacity to model
 1138 complex motions without introducing overfitting.
 1139

1140 E.3 GENERALIZATION EXPERIMENTS OF MEKF

1141 To assess the generalization capability of MeKF, we conduct a cross-dataset evaluation on Dance-
 1142 Track and SportsMOT. The experiments focus on training MeKF on one dataset’s training set and
 1143 testing it on the other dataset’s validation set, with the results detailed in Table 12.
 1144

1145 As expected, MeKF achieves its best performance when trained and tested on the same dataset, with
 1146 only a slight degradation observed in cross-dataset experiments. The minimal performance gap in
 1147 these experiments validate that MeKF learns robust and transferable motion patterns, highlighting
 1148 its strong generalization capability.
 1149

1150 Table 12: Generalization experiments of MeKF on DanceTrack and SportsMOT

Training Dataset	Testing Dataset	HOTA \uparrow	AssA \uparrow	IDF1 \uparrow	DetA \uparrow	MOTA \uparrow
DanceTrack	DanceTrack	67.41	49.58	66.41	91.69	97.55
SportsMOT	DanceTrack	65.83	46.53	59.93	93.20	97.21
SportsMOT	SportsMOT	79.77	68.18	78.84	93.35	98.43
DanceTrack	SportsMOT	78.70	66.57	77.80	93.09	97.79

1157 F ADDITIONAL EXPERIMENTS OF MO-IoU

1158 F.1 DISCUSSION ON THE DESIGN OF MAT FORMULATIONS

1159 We introduce two continuous baselines based on $\tanh(\cdot)$ and $\text{sigmoid}(\cdot)$ functions to evaluate robust-
 1160 ness against velocity noise. This comparison aims to verify whether continuous mappings propagate
 1161 minor jitters compared to the stable discrete design. The formulations are defined as follows:
 1162

1163 $\tanh(\cdot)$ function form:

$$p_t = \frac{1 + \tanh(\alpha(\dot{c}_{t-1} - \Theta_{\text{center}}))}{2}(M_{\text{fast}} - M_{\text{slow}}) + M_{\text{slow}}, \quad (44)$$

$$q_t = \frac{1 + \tanh(\alpha(\dot{h}_{t-1} - \Theta_{\text{height}}))}{2}(N_{\text{fast}} - N_{\text{slow}}) + N_{\text{slow}}, \quad (45)$$

1164 $\text{sigmoid}(\cdot)$ function form:

$$p_t = \text{sigmoid}(\alpha(\dot{c}_{t-1} - \Theta_{\text{center}}))(M_{\text{fast}} - M_{\text{slow}}) + M_{\text{slow}}, \quad (46)$$

$$q_t = \text{sigmoid}(\alpha(\dot{h}_{t-1} - \Theta_{\text{height}}))(N_{\text{fast}} - N_{\text{slow}}) + N_{\text{slow}}, \quad (47)$$

1165 where α is a scalar controlling the transition rate of the functions. Specific results are presented in
 1166 the Table 13.
 1167

1168 Table 13: Sensitivity analysis of continuous MAT functions on DanceTrack validation set. Values
 1169 represent HOTA scores, with deviations from the original binary form in parentheses.
 1170

α	1	10	10^2	10^3	10^4	10^5
$\tanh(\cdot)$	76.96 (-0.58)	77.16 (-0.38)	77.21 (-0.33)	77.47 (-0.07)	77.54 (-0.00)	77.54 (-0.00)
$\text{sigmoid}(\cdot)$	76.91 (-0.63)	77.25 (-0.29)	76.94 (-0.60)	77.27 (-0.27)	77.54 (-0.00)	77.54 (-0.00)

1171 As illustrated in Table 13, the HOTA score exhibits a consistent upward trend as the scaling factor
 1172 α increases. The performance reaches its optimum when α is large ($10^4 \sim 10^5$), at which point
 1173

the continuous functions approximate the original discrete binary form. Conversely, smoother transitions (smaller α) lead to performance degradation. This empirical evidence validates that discrete binary switching is superior to continuous tuning for this application.

Overall, the discrete design functions as a parameter quantizer, which forces all targets within a binary speed level (“fast” or “slow”) to utilize the same association parameters (p_t and q_t), ignoring minor speed fluctuations. This parameter consistency yields a stable and uniform association cost matrix, which is critical for the Hungarian algorithm to find global optima without flickering.

F.2 SENSITIVITY ANALYSIS OF MO-IoU’S THRESHOLDS

Figure 5: Sensitivity analysis of Mo-IoU’s thresholds, Θ_{height} and Θ_{center} , on the (a) DanceTrack validation set and (b) SportsMOT validation set. The heatmap displays the HOTA improvement (in points) relative to fixed parameters. The analysis reveals a peak performance gain at the configuration of $\Theta_{\text{height}}=50\%$ and $\Theta_{\text{center}}=70\%$. The broad area of significant improvement demonstrate the robustness of our proposed Motion-Adaptive Technique (MAT) to hyperparameter variations.

To evaluate the sensitivity on the threshold of our proposed Mo-IoU, we conduct an analysis on Θ_{height} and Θ_{center} . As depicted in Figure 5, we explore various parameter combinations and report the resulting HOTA improvement over the static parameter setting. The values for both thresholds are determined based on the percentile of the target speed distribution observed in the training set; for instance, a 50% setting corresponds to the median speed.

The results indicate that the optimal configuration ($\Theta_{\text{height}}=50\%$, $\Theta_{\text{center}}=70\%$) achieves a peak HOTA gain on both datasets. More importantly, the heatmap reveals a large contiguous region where performance gains consistently exceed the fixed parameter setting. This demonstrates that Mo-IoU is not highly sensitive to the precise choice of thresholds, validating the robustness and practical applicability of MAT.

F.3 SENSITIVITY ANALYSIS OF MO-IoU’S PARAMETER

To evaluate the sensitivity on the threshold of our proposed Mo-IoU, we have added a sensitivity analysis for the MAT parameters (M_{slow} , M_{fast} , N_{slow} , and N_{fast}) to verify their impact on tracking performance. The results are summarized in Table 14.

As illustrated in the table, the MAT demonstrates a significant performance margin across diverse parameter configurations. Specifically, even under suboptimal settings where parameters significantly deviate from the optimal values (e.g., the most extreme case of $M_{\text{slow}}=0.3$, $M_{\text{fast}}=0.4$ combined with $N_{\text{slow}}=4$, $N_{\text{fast}}=3$), the HOTA score remains above 75. This wide operating range of the system’s performance stems from the intrinsic physical consistency of the MAT, rather than relying on fine-tuned heuristics.

1242 Table 14: Sensitivity analysis of MAT parameters on DanceTrack validation set. Values represent
 1243 HOTA scores, with rows denote expansion parameters (M_{slow} , M_{fast}) and columns denote height
 1244 parameters (N_{slow} , N_{fast}).

	HOTA \uparrow	(N _{slow} , N _{fast})		
		(N _{slow} , N _{fast})		
		(2,1)	(3,2)	(4,3)
$(M_{\text{slow}}, M_{\text{fast}})$	(0.3,0.4)	77.02	76.34	75.59
	(0.4,0.5)	77.51	76.46	75.77
	(0.5,0.6)	77.54	76.46	75.91
	(0.6,0.7)	77.48	76.59	75.85
	(0.7,0.8)	77.01	76.27	75.60

G CASE ANALYSIS

To provide an intuitive understanding of the tracking behavior, we present several representative cases that illustrate how the algorithms perform under challenging scenarios. These examples are selected from different sequences to highlight typical situations where identity preservation is difficult, such as temporary occlusions or group separation. By examining these cases, we aim to complement the quantitative results, offering a clearer picture of the strengths of our proposed MeMoSORT.

G.1 CASE 1: OCCLUSION

We analyze a video segment from the DanceTrack dataset where two targets cross paths, leading to a temporary occlusion. As shown in Figure 6, each subfigure contains a tracking results plot (left) and representative frames (right). In the tracking results plot, each ground truth (GT) identity is shown as a vertical line, while colors denote tracking identities. Frames where the GT identity has been missed are left blank, and thick dots mark the temporal positions where ID switches occur. Dashed arrows connect the temporal positions in the tracking results plot to the corresponding frames. In the DiffMOT algorithm, the IDs of the two targets are swapped when encountering occlusion during crossing. In contrast, our proposed MeMoSORT successfully maintains consistent IDs throughout the occlusion, demonstrating its robustness in handling occlusions and interactions.

1292 Figure 6: Comparison of DiffMOT and MeMoSORT in a crossing scenario. (a) DiffMOT shows
 1293 ID switch when two targets cross paths. (b) MeMoSORT preserves consistent IDs, demonstrating
 1294 stronger robustness in handling interactions.

1296
1297

G.2 CASE 2: GROUP SEPARATION

1298
1299
1300
1301
1302
1303

To further assess the robustness of the tracker, we examine a group separation scenario from the SportsMOT dataset. In this sequence, three targets move closely together, merging and separating, with frequent interactions and occlusions making identity tracking particularly challenging. As shown in Figure 7, DiffMOT fails to maintain ID consistency during separation, resulting in swapped IDs. In contrast, MeMoSORT effectively preserves stable IDs, showing its advantage in recovering from occlusion and maintaining robustness in group interaction scenarios.

1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

1316

Figure 7: Comparison of DiffMOT and MeMoSORT in a group separation scenario. (a) DiffMOT shows ID switch when three targets separate. (b) MeMoSORT preserves consistent IDs, demonstrating stronger robustness in handling group interactions and occlusion recovery.

1317
1318
1319
1320

G.3 ADDITIONAL VISUALIZATIONS

1321
1322
1323
1324
1325
1326
1327
1328
1329

Fig. 8 presents additional qualitative comparisons between our method and DiffMOT on the Dance-Track and SportsMOT validation sets. Similar to the sequences shown earlier, these cases highlight challenging scenarios such as frequent occlusions and complex interactions, where our approach demonstrates more stable identity preservation. These results further validate the effectiveness of our method under real-world challenges.

1330
1331

H THE USE OF LARGE LANGUAGE MODELS

1332
1333
1334
1335
1336

During the preparation of this manuscript, a Large Language Model (LLM) was utilized to assist with language polishing, grammar correction, and improving overall readability. The LLM's role was strictly limited to editing and rephrasing. All intellectual content, including the core ideas, methodology, experiments, and conclusions, is the original work of the authors.

1337
1338
1339

I REPRODUCIBILITY STATEMENT

To maintain the integrity of the double-blind review, our source code will be made available to the reviewers and area chairs via a private link during the official discussion period. We are committed to releasing our code publicly upon acceptance of the manuscript.

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 8: Tracking results visualizations on supplementary videos from the DanceTrack and SportsMOT validation sets. (a-c) video *dancetrack0058* from DanceTrack. (d-f) video *v_00HRwkvvjtQ_c008* from SportsMOT. (g-i) video *v_cC2mHWqMcjk_c007* from SportsMOT.