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ABSTRACT

Multi-object tracking (MOT) in human-dominant scenarios, which involves con-
tinuously tracking multiple people within video sequences, remains a significant
challenge in computer vision due to targets’ complex motion and severe occlu-
sions. Conventional tracking-by-detection methods are fundamentally limited by
their reliance on Kalman filter (KF) and rigid Intersection over Union (IoU)-based
association. The motion model in KF often mismatches real-world object dynam-
ics, causing filtering errors, while rigid association struggles under occlusions,
leading to identity switches or target loss. To address these issues, we propose
MeMOoSORT, a simple, online, and real-time MOT algorithm with two key in-
novations. At first, the Memory-assisted Kalman filter (MeKF) uses memory-
augmented neural networks to compensate for mismatches between assumed and
actual object motion. Secondly, the Motion-adaptive IoU (Mo-IoU) adaptively
expands the matching region and incorporates height similarity to reduce mis-
associations, while remaining lightweight. Experiments show that MeMoSORT
achieves state-of-the-art performance, with HOTA scores of 67.9% and 82.1% on
DanceTrack and SportsMOT, respectively.

1 INTRODUCTION

Multi-object tracking (MOT) refers to the task of continuously tracking multiple objects across video
sequences, and has been widely applied in autonomous driving (Geiger et al., 2012; Yu et al.,|2020),
video surveillance (Milan et al.| 2016} Dendorfer et al.,2020), and sports analysis (Cui et al., 2023
Cioppa et al.,2022; |Sun et al.,|2022). Among these scenarios, tracking persons has become the most
extensively studied and practically relevant subproblem.

As the dominant paradigm of MOT, tracking-by-detection (TBD) (Bewley et al.,[2016} Zhang et al.,
2022;|Cao et al., 2023 Maggiolino et al., | 2023b)) addresses this task by decomposing it into three key
stages: detection, state estimation (filter), and association. While detection accuracy was historically
a primary limiting factor, the advent of high-performance detectors like YOLO series (Redmon et al.,
2016; |Varghese & M., 2024)) has largely addressed this issue. As a result, the performance of modern
TBD trackers is now principally constrained by the efficacy of the other two stages: state estimation
and association.

Conventional state estimation and association modules suffer from two key limitations. First, the
Kalman filter (KF) (Kalman) [1960) assumes linear dynamics and a first-order Markovian process
(Khodarahmi & Maihamil [2023)), which does not match the complex and temporally correlated
motion patterns of real-world targets (as illustrated in Appendix [A). The mismatch can lead to sig-
nificant errors in motion prediction and estimation when the actual motion deviates from these as-
sumptions (Wang, |2025)), such as in coordinated or repetitive behaviors (e.g., a dancer consistently
spinning after a specific jump). Second, standard association strategies often rely on simplistic In-
tersection over Union (IoU) (Yu et al.,|2016)), without adapting to the target’s motion patterns. This
lack of adaptability can degrade association performance, resulting in tracking failure.

To address these challenges, we propose MeMoSORT, a simple, online, and real-time MOT frame-
work tailored for complex scenarios. MeMoSORT introduces two key innovations: (a) Memory-
assisted Kalman Filter (MeKF), which leverages memory-augmented neural networks (NN) to com-
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Figure 1: Visualization of DiffMOT (a, c) and MeMoSORT (b, d) in challenging scenarios from the
DanceTrack validation set. Case 1 (Complex Motion): DiffMOT’s inaccurate prediction leads to
an identity switch, while MeMoSORT maintains the correct identity by leveraging the precise state
estimation from its MeKF. Case 2 (Severe Occlusion): Standard IoU-based association in Diff MOT
fail in association when encountering severe occlusion. MeMoSORT’s Mo-IoU robustly handles this
challenge and ensuring continuous tracking.

pensate for the gap between assumed and actual motion patterns; (b) Motion-adaptive IoU (Mo-
IoU), which adaptively expands the matching region and incorporates height similarity to reduce
association errors.

Extensive experiments demonstrate that MeMoSORT achieves state-of-the-art (SOTA) performance
on challenging benchmarks, reaching HOTA scores of 67.9% on DanceTrack and 82.1% on
SportsMOT, significantly outperforming existing methods across multiple metrics.

2 RELATED WORKS

2.1 METHODS FOR STATE ESTIMATION

KF is the widely used for state estimation in early TBD trackers. Subsequent methods such as OC-
SORT 2023) introduced improvements to handle occlusions, but could not overcome
the fundamental limitations of the linear, first-order Markovian motion model in scenarios with
complex, non-Markovian dynamics.

To address this, one line of research replaces the KF entirely with data-driven NN. For example, Diff-
MOT (Lv et al, 2024) employs a diffusion model for non-linear motion prediction, while Mamba-
based trackers (Xiao et al.,[2024a;[Khanna et al.|[2025) utilize state space models to capture complex
motion. However, a key challenge for these pure predictors is the lack of a principled filtering step;
they often replace a track’s state directly with the noisy detector measurement instead of update,
which degrade trajectory quality.

Another direction (Li et al., 2024} [Adzemovi¢ et al, 2023)) involves hybrid approaches that replace
physics-based models with deep learning techniques within the classic Bayesian filter structure.

These methods combine the expressiveness of NN with the stability of the prediction—update cycle.
A drawback is that discarding the physics-based prior in favor of a complex NN makes the filter
heavily reliant on training data, thereby reducing robustness and generalization.

2.2  ASSOCIATION BETWEEN DETECTION AND PREDICTION

Mainstream association methods within the TBD paradigm are typically based on two principles:
spatial consistency and appearance similarity. The former is primarily addressed by IoU and its
variants, while the latter relies mainly on ReID based methods. In practice, these two approaches
are often combined into a final association cost, typically through a weighted sum.

IoU-based methods use IoU as spatial association metric, higher IoU between boxes across frames
represents higher probability of the same targets. Recent studies modified IoU by expanding the

scale of the box (Fan et al 2023 [Huang et all,[2024b), incorporating height similarity (Yang et al
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2024) or considering both (Khanna et al., |2025). However, the performance of above types of
IoU with fixed parameters critically depends on manual setting, limiting their applicability across
complex environments. Existing dynamic parameter methods either use multiple association stages
with several fixed parameter (Huang et al., 2024b) or focus on temporal information of the trajec-
tory (Stanojevi¢ & Todorovic} 2024), lacking adaptivity according to target’s motion characteristics.

RelD-based methods uses an additional NN to extract feature to represent the visual appearance of
target, considering shorter distance between feature across frames leads to same target. The majority
of RelD based methods (Wojke et al.l [2017; |/Aharon et al., 2022; |Du et al., 2023) use convolution
NN to extract appearance feature and apply cosine distance as measurement. ReID-based methods
are less effective in distinguishing targets with similar appearance or under occlusion.

3 METHODOLOGY

3.1 PRELIMINARIES: TRACKING BY DETECTION

The TBD paradigm is a prevalent approach in MOT. Unlike monolithic end-to-end methods, TBD
frameworks decouple the tracking problem into three distinct stages, as illustrated in Figure 2(a)}t
detection, association, and filtering.

The first step involves an object detector, such as the widely used YOLO model, generating a
set of candidate boxes for each frame ¢. A detection is typically represented as a vector Et =
[@t, Ut, Wy, Et]T, defining the center coordinates, width, and height of the box. It is generated via the
linear measurement matrix H from the target’s state vector, b;, which contains the target’s position,
size, and velocity. This relationship is modeled as:

Bt = Hbt + Uy, (1)

where v; is the measurement noise, it is generally assumed to follow an independent zero-mean
Gaussian distribution with a covariance matrix R;.

The output detections, which are prone to false alarms and misses from occlusion, are linked across
frames via association to form trajectories. This association is formulated as a bipartite matching
problem between existing tracks and current detections, where the matching cost typically com-
bines spatial overlap (IoU) and appearance similarity (ReID). Specifically, loU measures the spatial

overlap between a detection b; and a track’s predicted state IA);. And RelD involves masking the
object within the detection box, encoding its appearance, and then measuring similarity using co-
sine distance. Finally, the Hungarian algorithm is used to find the optimal assignments based on the
combined matching cost.

After association, a filter is applied to estimate the target’s state via a prediction-update cycle. For
the widely used KF, the prediction is based on a linear, first-order Markovian motion model:

b; = Fb,_1 + wy, ()

where F is the linear state transition matrix (e.g. constant velocity model). And w; is the process
noise, it is generally assumed to follow an independent zero-mean Gaussian distribution with a
covariance matrix Q. In the update step, this prediction is refined by incorporating the newly
associated detection.

However, this prevalent pipeline suffers from two critical limitations. First, the state estimation
relies on an underlying linear, first-order Markovian motion model is often an oversimplification
of real-world dynamics. This prevents the KF from handling complex, non-linear paths. Second,
the association cost, based mainly on IoU, is unreliable during occlusion as the boxes is mixed to a
mess. To this end, our work introduces a deep learning aided filter that leverages temporal memory
to model complex dynamics and a robust association metric resilient to occlusion.

3.2 FRAMEWORK OF THE PROPOSED MEMOSORT

The framework of our proposed MeMoSORT is illustrated in Figure 2(b)} with the following three
stages.
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Figure 2: Comparison between (a) the conventional Tracking-by-Detection framework and (b) our
proposed MeMoSORT framework. MeMoSORT introduces two key components: it leverages a
memory mechanism to guide state estimation for more accurate state prediction and update, and it
applies a Motion-adaptive IoU to achieve robust association.

Detection. In line with the conventional TBD paradigm, MeMoSORT leverages the YOLOX (Ge
et al.| [2021) to perform the initial detection task, generating a set of candidate boxes for all potential
targets within each frame.

Association. We introduce an association pipeline inspired by Deep OC-SORT (Maggiolino et al.|
2023a). This pipeline incorporates our novel Mo-IoU, a metric that refines conventional IoU by
adaptively expanding the boxes and considering height similarity based on the target’s motion char-
acteristics. Within this pipeline, detections are initially stratified by their confidence scores. High-
scoring detections are matched using a combined Mo-IoU and RelD cost via the Hungarian algo-
rithm, while low-scoring detections are matched using a standard IoU cost.

Filtering. We propose the MeKF, a variant of the standard KF inspired by literature (Yan et al.,
2024a)) that leverages memory to aid in state estimation. The MeKF consists of three gated modules:
a Memory Update Gate (MUG) to maintain a historical representation, a State Prediction Gate (SPG)
to correct the motion prediction using memory, and a State Update Gate (SUG) to refine the state
based on the associated detection.

3.3 MEMORY-ASSISTED KALMAN FILTER

To address the limitations of the first-order Markovian assumption in the KF (Eq. [2)), we introduce
a non-Markovian motion formulation capable of modeling the complex dynamics inherent in real-
world targets:

by = fi(bi—1,bt2,...,b1) + wy, (3)
where f;(+) is a non-linear transition function. Unlike the transition matrix F in Eq. [2| f;() ex-
plicitly conditions the state prediction on the full trajectory history, thus enabling the modeling of

long-term dependencies. As an explicit analytical form for f;(-) is intractable, we simplified the
problem by introducing the transition matrix F', namely,

by =Fbi_1 + fi(bi—1,bi—2,....,b1) — Fb,_1 +w,

F

& )
where A} is the model mismatch term, capturing the residual between the non-Markovian and
first-order Markovian dynamics. As this term is a function of the entire history, we approximate
it using a mapping function Af a 1)(m;), where the memory vector my is defined as m; =
gt(bi—1,bi_2, ..., b1). The function ¢,(+), which encodes the entire history into the memory vector
my, is computationally intensive. We therefore approximate it using a nested structure, which can
be implemented in an iterative form by the memory update function ¢(+):

my = G(d(P(---),bi—2),bs_1)
——

t times

= ¢(my—1,bi_1).

=Fb;_; + A} +wy,

S
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Furthermore, the linear measurement matrix H defined in Eq. [T] often fails to represent the true
observation process. To address this discrepancy, a similar transformation can be made, i.e.,

Et = Hbt + A],ZHI + Uy, (6)
where the mismatch term A¥ is generated by b, through function ;(+), namely, A ~ ¢, (Et)

The memory update function ¢(+), state compensation function (+), and measurement compensa-
tion function (+) are difficult to model with explicit analytical forms. Such that we employ NN
technique to fit these complex, non-linear functions. By integrating these learned modules with the
foundational principles of Egs. [5]-[6} we construct a data-driven Bayesian filter: the MeKF, as shown
in Figure 3]

3.3.1 STRUCTURE OF MEKF e g c
t-1 T Z ™ hy
my_y o ™ My
Memory Update Gate. The memory update process in | yemor = Memory
Eq.[5is formally analogous to the Recurrent Neural Net- L™ Ouput

Trajectory
Output

work. We therefore implement the update function ¢(+) [
using the Long Short-Term Memory (LSTM) network.

The LSTM is trained to distill and update the memory ﬂ
from the historical trajectory sequence, with the specific Al
update process detailed as follows: bis 1

my = Frsrm(ci—1, hi—1, my—1), @)

where FrgTm(+) denotes the mapping function of the fanmc“on
MUG, implemented by the LSTM network. And c;_;
and h;_ are the cell state and hidden state of the LSTM,
respectively.

State Prediction Gate. In contrast to MoveSORT and DiffMOT, which directly utilize NN to predict

the target’s state, the SPG compensates for the error between the physical motion model and the true

physical process. While reducing the amount of parameters, the SPG leverages a prior model to
guarantee the error lower bound of the MeKF, which is defined as follows:

b, = Fb, 1 + Af, ®)

P, =FP, ;F' +P; + Q,, 9)

Prior
B0 ~vsiock [ ) xrpiock ([l kobmieige

Input

Figure 3: Framework of MeKF.

where l;; and P} represent the state prediction and the error covariance prediction, respectively.
Here, A?:fﬁdLP (m) and P]f:ff/{LP(mt) (Fp(my) " are the exception and covariance com-
pensation generated by distinct multilayer perceptrons (MLP) with unshared parameters.

State Update Gate. Similarly, the SUG utilizes distinct MLPs to generate corresponding compen-
sation terms and is naturally embedded within the state update process, namely,

K:=PH (HP,H' +P;'+ R, ", (10)
by = b} + K, (b, — Hb — A}, (11)
P; = (I- K;H)P}, (12)

where b, and P, are the state update and the error covariance update, respectively. Here, A]fl =
Fiwp (), P = Fl o (0)) (Fip (b)) T and K is the Kalman gain. The derivation is detailed in
Appendix [B] All of the aforementioned gates are designed based on Bayesian principles similar to
the KF and are derived according to|Wang et al.|(2012).

3.3.2 Lo0SsS FUNCTION AND TRAINING PREPARATION

The analytical expression of the MeKF (Eqs. [§] - [I2), derived through a Gaussian approximation,
renders the filter fully differentiable (Yan et al., [2024b)), enabling end-to-end training via a loss
function composed of mean square error (MSE) and L2 regularization, as calculated below:

J T

1 o .
L=—52 > | (b:0) ~b]|I* +le], (13)
j=1t=1



Under review as a conference paper at ICLR 2026

where © represents the set of learnable parameters in the MeKF, and + is the L2 regularization
coefficient. The loss is computed over J training sequences in a batch, each of length T'.

End-to-end training of the MeKF requires a dataset of paired trajectory sequences, each consisting

of a detection 5% , and its corresponding ground truth box I_){ . We construct this dataset by selecting
detections from a candidate pool and pairing them with ground truth boxes based on their IoU. A
detailed description of this dataset generation procedure is provided in Appendix

3.4 MOTION-ADAPTIVE ASSOCIATION

To achieve robust association in severe occlusion scenarios, we introduce the Motion-adaptive IoU
(Mo-IoU). It is defined as a multiplicative fusion of two IoU variants with an adaptive parameter
setting:

Mo-IoU (B}, b, e, q;) = EloU(b,, by, p;) x HIoU(B}, by, 1), (14)

where Expansion IoU (EloU) expands matching region to enhances the probability of establish-
ing reliable matches, and Height IoU (HIoU) emphasizes height similarity to distinguish occluded
targets. The parameters p, and g, are adaptively set by our Motion-Adaptive Technique (MAT).

Expansion IoU. Motivated by C-BloU (Fan et al., 2023)), we design EIoU to relax box boundaries,
effectively enlarging the matching region to enhance association likelihood, ultimately leading more
continuous target tracking. Formally, EloU is defined as:

EloU(b}, by, p;) = IoU(&}, &), (15)

where &,=[1}, §;, (2p;+1)y, (2ps+1)R})T and &=[T+, Ui, (2pe+1)iy, (2pi+1)hy] T are the ex-

pansion boxes of lA)fs and by, respectively. The expansion scaling factor p; controls the expansion
scale of the boxes. When p,=0, no expansion occurs, and EIoU degenerates to the standard IoU.

Height IoU. Recognizing that height remains a highly distinguishable feature under severe occlu-
sion, we introduce HloU, inspired by Hybrid-SORT (Yang et al.,[2024), to reinforce height similarity
and mitigate the ambiguity potentially induced by EloU. And HIoU is defined as:

qt
N, o~ lt
HIoU(b,, b, qt) = | ——— | , (16)
b~ ()

where [, denotes the intersection height of lA)ﬁ5 and Et, and the exponent ¢; adaptively controls the
emphasis placed on this height similarity. The base of this formula is geometrically equivalent to a
1D-IoU on the vertical axis, robustly measuring the boxes’ vertical alignment.

Motion-Adaptive Technique. To improve the generalization of Mo-IoU in diverse scenarios, a
novel MAT is proposed to adaptively adjust the expansion scaling parameter p; and the height mod-
ulation parameter ¢; based on the target’s motion characteristics, as formulated below:

Py = Mslow if C.tfl < @centeru
t — .
My, otherwise.

Nslow if ltfl < @heighlv

18
Npse  otherwise. (18)

A7) qr = {

where ét_lz\/(it_l/wt_l)2+(yt_1/ht_1)2 and Zt_lzht_l/ht_l represent the normalized
speeds of the box center and height, respectively, with a dot denoting velocity. The terms Ocenter
and Opeignc are predefined thresholds for these two speeds. Instead of continuously tuning p; and g,
which would be computationally expensive, we adopt a discrete piecewise design. This choice
strikes a balance between adaptivity and efficiency, ensuring practical applicability in real-time
tracking. As a scale-invariant metric, the normalized speed is a suitable quantitative description
of the target’s motion characteristics.

The parameter p; compensates for the motion model’s prediction error. Since high-speed motion
often leads to larger errors, a larger expansion scaling parameter (p.= M) is used to provide greater
spatial tolerance, and vice versa. In contrast, the parameter g; adapts to the reliability of height as
a feature: a rapidly changing, less reliable height warrants a smaller height modulation parameter
(qt=Nra), and vice versa.
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4 EXPERIMENTS

4.1 DATASETS AND METRICS

Datasets. We conducted the main experiments on DanceTrack and SportsMOT datasets known for
their diverse and rapid movements and indistinguishable appearances, in which the performance of
RelID module is highly limited, requiring accurate motion capability. DanceTrack features severe
occlusion and similar appearance, demanding robust motion capacity for long-term identity con-
sistency. SportsMOT introduces fast, variable-speed target motion and extensive camera motion,
requiring more robust motion models and association.

Metrics. We utilize Higher Order Metric (Luiten et al.| [2021) (HOTA, AssA, DetA), IDF1 (Ris-
tani et al.| 2016)), and CLEAR metrics (Bernardin & Stiefelhagen, [2008) (MOTA) as our evaluation
metrics. Among various metrics, HOTA is the core benchmark that holistically balances association
consistency and positional precision. Complementing this, IDF1 and AssA specifically measure
association quality and identity preservation, while DetA and MOTA primarily evaluate state es-
timation accuracy. Additionally, computational efficiency is quantified through frames per second
(FPS) to evaluate real-time processing capability.

4.2 IMPLEMENTATION DETAILS

For the training of our proposed MeKF, we utilize AdamW optimizer with learning rate set to 10~4,
and regularization coefficient 7y is set to 0.02. The hidden size of LSTM cell and MLPs is set to
32, and the state transition matrix F is set to a constant velocity model. For Mo-IoU, the expansion
scaling parameters are set to M;jow=0.5 and M= M;ow+0.1, while the height modulation param-
eter are set to Nyjow=2, With Np=Nsow—1. Velocity thresholds Ocener and Ohpeigh are determined
by the 70th and 50th percentile of the normalized velocity distribution from training set (i.e. 0.0406
and 0.0090 for DanceTrack, 0.1172 and 0.0062 for SportsMOT).

For the detector, we fine-tune the COCO-pretrained YOLOX model on CrowdHuman (Shao et al.,
2018) and the target dataset, same to the training procedure used in SportsMOT. In the association
stage, the confidence threshold of high-score and low-score matching are set to 0.6 and 0.1. For
ReID model, we utilize SBS50 from the fast-reid library (He et al., [ 2020).

Experiments are conducted on 8 GeForce RTX 4090, while FPS is evaluated in FP16 precision with
batchsize of 1 using a single RTX 4090.

4.3 BENCHMARK RESULTS

DanceTrack. As depicted in Table [I} MeMoSORT establishes a new SOTA on the challenging
DanceTrack test set with 67.9% HOTA. MeMoSORT significantly outperforms traditional KF-based
trackers, demonstrating the advantages of the proposed MeKF. In contrast to sliding window-based
filters like DiffMOT, which estimate the current state from a fixed-length trajectory history, our
method shows superior tracking performance. When compared to other implicit memory-based fil-
ters such as TrackSSM, MeMoSORT’s hybrid design of physical prior and NN proves more effective
than purely data-driven alternatives. By retaining the robust inductive bias of a classic Bayesian fil-
ter while using the memory network to handle non-Markovian dynamics, our method achieves a
more stable and accurate state estimation. Finally, even against methods that also employ modified
IoU metrics like Hybrid-SORT, our synergistic combination of an advanced filter and an adaptive
association metric secures a clear performance advantage.

SportsMOT. On the SportsMOT benchmark, characterized by fast and variable motion, MeMo-
SORT again establishes a new SOTA, as shown in Table [2| This result underscores the superiority
of memory-based filters over traditional KF and sliding-window approaches for handling complex
dynamics. Within the implicit memory-based paradigm, MeMoSORT’s hybrid design further distin-
guishes it; instead of fully replacing the motion model, our MeKF uses memory to explicitly correct
a physics-based prior, leading to more stable and accurate state estimation. Furthermore, by adap-
tively adjust its parameters, our Mo-IoU robustly resolves ambiguities during severe occlusions, a
key factor in its superior performance over other modified IoU techniques.
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Table 1: Performance comparison on the DanceTrack test set. The best results are shown in bold.

Methods IoU modified HOTA 1 AssA 1 IDF1 1T DetA 1t MOTA 1
KF-based filter:

ByteTrack (Zhang et al.|[2022) 47.7 32.1 53.9 71.0 89.6
OC-SORT (Cao et al.[[2023) 55.1 404 54.9 80.4 92.2
Deep OC-SORT (Maggiolino et al.}[2023a) 61.3 45.8 61.5 822 92.3
C-BloU (Fan et al.|[2023) v 60.6 454 61.6 81.3 91.6
Hybrid-SORT (Yang et al.|[2024) v 65.7 - 67.4 - 91.8
Sliding window-based filter:

MotionTrack (Xiao et al.|[2024b) 58.2 41.7 58.6 81.4 91.3
DiffMOT (Lv et al.[|2024) 62.3 47.2 63.0 82.5 92.8
Implicit memory-based filter:

MambaMOT (Huang et al.}[2024a) 56.1 39.0 54.9 80.8 90.3
Track SSM (Hu et al.[[2024) 57.7 41.0 57.5 81.5 92.2
DeepMove SORT (Adzemovic et al.|[2024) v 63.0 48.6 65.0 82.0 92.6
MeMoSORT(ours) v 67.9 54.3 68.0 85.0 93.4

Table 2: Performance comparison on the SportsMOT test set. The best results are shown in bold.

Methods IoU modified HOTA 1 AssA 1 IDF11 DetA {1 MOTA 1
Without filter:

Deep-EloU (Maggiolino et al.|[2023a) v 772 67.7 79.8 88.2 96.3
Deep HM-SORT (Gran-Henriksen et al.|[2024) v 80.1 72.7 85.2 88.3 96.6
KF-based filter:

ByteTrack (Zhang et al.}[2022) 64.1 523 71.4 78.5 95.9
OC-SORT (Cao et al.][2023) 73.7 61.5 74.0 88.5 96.5
Sliding window-based filter:

MotionTrack (Xiao et al.|2024b) 74.0 61.7 74.0 88.8 96.6
DiffMOT (Lv et al.|[2024) 76.2 65.1 76.1 89.3 97.1
Implicit memory-based filter:

MambaMOT (Huang et al.}|2024a) 71.3 58.6 71.1 86.7 94.9
Track SSM (Hu et al.;[2024) 74.4 62.4 74.5 88.8 96.8
SportMamba (Khanna et al.![2025) v 77.3 66.8 77.7 89.5 96.9
DeepMove SORT (Adzemovic et al.}[2024) v 78.7 70.3 81.7 88.1 96.5
MeMoSORT (ours) v 82.1 75.6 86.4 89.3 97.0

4.4 ABLATION STUDY

We conduct ablation studies on the DanceTrack validation set, which concentrate on investigating the
impact of different components, different filters, different IoU variants on the proposed MeMoSORT.

Component Ablation. The proposed MeMoSORT algorithm comprises two components, MeKF
and Mo-IoU, whose individual contributions are examined through ablation studies, as the results
shown in Table[3| Using ByteTrack as the baseline (line 1), we first replace its KF with MeKF (line
2), which yields a significant gain and confirms that the non-Markovian modeling improves motion
prediction and filtering. Next, we substitute the baseline association module with Mo-IoU (line 3),
improving association and thus HOTA. When both modules are combined (line 4), performance is
further boosted by jointly enhancing state estimation and association. Finally, adding ReID infor-
mation alongside Mo-IoU (line 5) brings additional slight gains, though with a drop in FPS. We
attribute this modest gain to the degradation of the ReID model in challenging scenes with severe
occlusions, which causes target appearance to become indistinguishable.

Table 3: Ablation study of MeMoSORT’s key components on the DanceTrack validation set.

MeKF Mo-loU RelD | HOTAT AssA1 IDFI+ MOTA? DetAt FPS?

56.94 34.92 48.18 96.35 92.91 74.5
67.41 49.58 66.41 97.55 91.69 60.8
68.32 50.35 63.86 97.30 92.76 62.0
77.54 64.73 76.92 97.74 92.93 49.4
v 77.91 65.21 77.49 97.73 93.13 28.8

N
NN
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Performance with Different Filter. Noting that the proposed tracking framework leverages MeKF
to enhance motion prediction and update, thereby improving overall tracking performance, we fur-
ther compare MeKF against other filtering strategies within the same ByteTrack baseline, as the re-
sults shown in Table 4] Results show that MeKF consistently achieves the best performance across
most metrics, demonstrating superior state estimation accuracy through its non-Markovian model-
ing. The NN blocks in MeKF assist the physical motion model by generating compensation for
its errors, based on memory and detection respectively. Compairing with data-driven methods, the
approach robustly ensures the stability of the state estimation; even if the NN fails, the underlying
physical model can still provide a baseline prediction as a failsafe.

Table 4: Performance comparison of different filter on the DanceTrack validation set.

Filter | HOTA1 AssAtT [IDFI1t MOTA®T DetA T
KF (Kalman,|1960) 56.94 34.92 48.18 96.35 92.91
LSTM (Hochreiter & Schmidhuber}|1997) 60.16 38.97 52.31 96.64 92.94
Transformer (Vaswani et al.;[2017) 64.12 44.20 57.60 97.04 93.08
Diffusion (Ho et al.[[2020) 65.91 46.78 60.38 97.15 92.93
MeKF(ours) 67.41 49.58 66.41 97.55 91.69

Performance with Different IoU Variants. In Table[5] we compare the performance of different as-
sociation methods, where the motion prediction and update components are consistently handled by
MeKF. HMIoU, proposed in Hybrid-SORT, combines loU with HIoU to incorporate height similar-
ity, while HA-EIoU, introduced in SportMamba, multiplies EIoU with HIoU to enhance association
performance. Our proposed Mo-IoU achieves the best results across all metrics, outperforming ex-
isting IoU variants. Its superior performance can be attributed to its adaptive parameter selection,
which jointly controls the expansion scale and height weighting, resulting in more robust and accu-
rate tracking. Moreover, the HIoU introduced in Mo-IoU counterbalances the looseness of EloU,
yielding a significant improvement in association robustness compared to EloU alone.

Table 5: Performance comparison of different IoU variants on the DanceTrack validation set.

ToU variants | HOTAT AssA? IDFI+ MOTAT DetA 1
ToU (Yu et all 2016) 67.41 49.58  66.41 97.55 91.69
EloU (Fan et al, 2023) 70.80 5437 70.50 97.62 92.24
HMIoU (Yang et al.||2024) 7270 5715 7165 97.66 92.52
HA-EloU (Khanna et al;)2025) | 75.21 6097 7453 97.71 92.81
Mo-IoU(ours) 77.54 6473 7692 97.74 92.93

5 CONCLUSION

In this paper, we present MeMoSORT, a simple, online and real-time MOT algorithm designed to
overcome key limitations in conventional TBD methods. Our approach introduces two key innova-
tions: the MeKF, which uses a memory-augmented NN to correct state estimation errors, and the
Mo-IoU, which adaptively expands the matching region and incorporates height similarity to ensure
robust association. The effectiveness of our method is demonstrated through extensive experiments,
where MeMoSORT achieves SOTA performance on the challenging benchmark DanceTrack and
SportsMOT, providing a robust solution for MOT challenges.
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APPENDIX

A ANALYSIS OF NON-MARKOVIAN DYNAMICS IN TARGET TRAJECTORIES

Conventional KF-based MOT algorithms typically adopt a first-order Markov assumption to sim-
plify target dynamics. However, real-world targets often exhibit more complex motion with long-
term temporal correlations, as illustrated in Figure ] a phenomenon we refer to as non-Markovian
dynamics.

4401 —e— dancetrack0001_GT#5
420 600 600 600
400 500 550 500
X
280 *\‘i 400 500 400
360 ] - -
AN
340 é\hf"‘* -
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320 200 200
300 100 > 100
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(a) Dancetrack0001: Target #5 GT trajectory (b) Dancetrack0065: Target #0 GT trajectory

Figure 4: Two representative ground truth (GT) trajectories from the DanceTrack dataset, showcas-
ing complex and non-Markovian motion. The color of the path indicates the progression of time,
evolving from purple (start) to yellow (end).The x-axis and y-axis represent the target positions in
image coordinates (pixels).

As shown in Figure[d(a)] a visual inspection of the target’s trajectory strongly suggests its motion has
significant non-Markovian properties. The path is not a simple random walk but can be decomposed
into three distinct phases: an initial period of localized, high-frequency movement (yellow area); a
middle phase of directional, long-range displacement (pink area); and a final phase of dense hovering
in a new local area (purple area). This phased switching from a stable local pattern to a directional
journey and back again strongly implies an underlying “plan” or “intent” that a memoryless Marko-
vian model could not produce. Furthermore, the high degree of path overlap and repeated visits to
specific areas demonstrate a form of memory, directly contradicting the core Markovian assumption
that the future depends only on the present. In summary, the trajectory’s clear structure, apparent
purposefulness, and historical dependence provide strong qualitative evidence of its non-Markovian
nature.

The trajectory shown in Figure [A(b)] provides even more compelling evidence of non-Markovian
dynamics. It moves in a predictable, back-and-forth pattern, creating a clear rhythm. This is the
opposite of a chaotic random walk. This pattern is not static; it displays multi-scale dynamics, with
the amplitude and frequency of the oscillations evolving throughout the sequence. Such a structured
and evolving “choreography” points to a process with significant state memory.

The non-Markovian nature is further confirmed by the trajectory’s continuity across interruptions.
When the target reappears after a gap in observation, its motion pattern seamlessly resumes rather
than resetting to a random state. This suggests a persistent “intent” that violates the core memoryless
assumption of the Markov process.

B DERIVATION OF MEKF

B.1 BAYESIAN FILTERS FOR NON-MARKOVIAN PROCESSES

Before deriving the analytical expression for our MeKF, we first establish a general Bayesian filter-
ing framework for non-Markovian dynamics to describe the computation of the relevant probability
density functions (PDFs). Within this framework, obtaining the filtered estimate at time step ¢ re-
quires computing the joint posterior PDF of the entire history of target states b;., and memory 1 .;.

This is conditioned on all available measurements up to the current time, namely, b;.;, as well as
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the training data D (the detailed generation procedure for this dataset is described in Appendix [©).
Formally, the density of interest is p(by.¢, m1.¢|b1.¢, D).

According to Bayes’ theorem, this posterior probability density can be decomposed as follows:

p(bu, ml:t|51:t, D) = p(b1:t, m1:t|51:t—1,gt, D)
_ p(be|bi.e, mig, bii—1, D)p(br:t, M4 |b1.4—1, D) (19)
p(bt‘blzt—la D)

o8 p(gt |b1:ta my.¢, gl:t—la D)p(bl:ta ml:t|51:t—la D) (20)

Since the detection Et is generated by the detector based only on the current ground truth state by,
it is independent of the memory m;.;. Consequently, the corresponding likelihood PDF can be
expressed equivalently as:

p(5t|b1:tam1:taglztflap) :p(gt‘btvp)~ 2D

To account for the observation model mismatch present in Eq. [6] we express the likelihood PDF in
the following integral form:

p(gt|bt7D) = /p(gt,Aﬁbt’D)dAP

- / p(Be|AE, b, D)p(AE|b, D)AAE. 22)

According to the total probability formula, the prior PDF in Eq. |19|can be expressed as follows:

p(b1ts m[bri—1, D) = p(by, my|brie—1, m1y—1,br—1, D)p(brie—1. M1 [br—1, D). (23)
The second term on the right-hand side of Eq. 23]is the joint posterior PDF of the state and memory
at time £—1, while the term on the left-hand side represents the joint transition process for the
state and memory that captures the system’s non-Markovian dynamics. Applying the conditional
independence expressed by Eqs. [ and[3] this transition process can be expressed as follows:

p(bta my ‘bl:tfl ,Myt—1, Abil:tfl ) D)

:p(bt|mt7bl:tflyml:tflaﬂl;l:tflaD)p(mt|b1:t717ml:tflaﬂl;l:tflatD)
:/p(bt\Af,mt,b1:t71,m1:t717g1:t717p)p(Af|mt,b1:t71,m1:t71751:t7179)
x p(my|bi_1,my_1, D)dA}

= /P(bt\AltF, b1, D)p(A]ﬂmt, D)p(my|be_1,my_q, D)dAltF~ 24)

Based on the Bayesian theorem, the joint posterior of state and memory can be obtained as:
p(brs, M |bry, D) o /p(5t|A]fI7 b, D)p(Af'|by, D)dAS

X /p(bt|AIf,bt_l,D)p(A]tF\mt,D)p(mt|bt_1,mt_1,D)dAItF

x p(bri—1,mMi—1|bre—1, D). (25)
B.2 IMPLEMENTATION WITH GAUSSIAN APPROXIMATION
While the above derivation establishes the general Bayesian filtering framework, its direct imple-
mentation involves various methods. For the purposes of computational efficiency and stability, we

choose to implement the framework using Gaussian approximation. The following assumptions are
therefore required to perform this approximation.
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Assumption 1. The process noise w; given in Eq. ] obeys Gaussian distribution with a mean of 0
and a covariance of Q;, namely, w; ~ AN(0,Q;). And the measurement noise v; given in Eq. E]
obeys a Gaussian distribution with a mean of 0 and a covariance of R;, namely, v, ~ N (0, R;).

Assumption 2. The state posterior PDF obeys a Gaussian distribution with first- and second-order
moments of b; and P, respectively, namely,

P(bl:tﬂ;l:t,D) = N(bt; Bt; Pt)- (26)

Assumption 3. The state transition mismatch term AL obeys a Gaussian distribution with first- and
second-order moments of A and P}, respectively. And the observation mismatch term A obeys
a Gaussian distribution with first- and second-order moments of A]fl and P]fl, respectively, namely,

p(Afler, D) = N(AT; AT PY), 27
p(AY|br, D) = N(AF; AYL,PY). (28)
B.2.1 IMPLEMENTATION FOR STATE PREDICTION
Based on Eq. [4} the mean of state prediction is calculated as:

b, =E (blt\EH 1,D) {b:}
p(b1it|bric— 173){Fbt 1+A +wt}

/ / / / Fb,_1 + AY) Pl dAYdm,dm,_1db;_1, (29)

where Ptl = p(A]tF\mt, D)p(my|by—1,my—1,D)p(br.t—1, m11t71|b1:t717 D).
According to Eq. the state posterior PDF at time ¢—1 is formulated as:

p(b1:t71|glzt717D) = N(b;—1; bi_1, P;_1). (30)

Substituting Eq. [30] and the Eq. 27]into Eq. [29] the analytical expression of state prediction mean
can be calculated as:

b, =Fb,_, + AT 31)

The state prediction covariance is calculated as:

P = ]Ep(bl:tﬁl:t_l,D) {(bt B i)é) (bt Bl BQ)T}

N ~N T
- //// (Fbt,1 +AF 4, — b;) (FbH LAY faw, — bg) PLAAFdm,dm,_db,_;.
(32)

Substituting Eq. 27 and Eq. [30]into Eq. [32] thus we have the state prediction covariance as follows:
P, =FP,_,F' + P} + Q.. (33)

B.2.2 IMPLEMENTATION FOR STATE UPDATE

According to Egs. [6]and 28] the mean value of the measurement prediction is calculated as:

b; = EP(Et|’51:t71,D) {bt}
H
- EP(‘EHEl;thD) {Hbt + Ay + vt}

= // (Hb, + A) p(AY by, D)p(by.s, My |11, D)dAEdm,db,

= Hb, + Al (34)
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The measurement prediction covariance is calculated as:

P — N AT {(Ef B i’i) (Et B B;)T}

7 ~\ T
= ] (o o) (ot ) s
~ P PR (35)

where Pt2 = p(A]fI‘btv D)p(b1:t7 ml:t|51:t—17 D)

And the mutual covariance of the state prediction and the measurement prediction is calculated as:

PP =E G5, D) {(bt —~ B;) (R B BQ)T}
= /// (Fbes+ AT + w, ~ b;) (Hb, + AF 4 v, _g;)TPtgdAEﬂdmtdbt
=PH'. 36)
According to the Bayesian rule in Eq. [T9] the posterior can be equivalent to:

- b1y, miy|br_1, D
p(br by, D) = POu b1 D) (37)

p(gt|glzt—1a D)

Due to the self-conjugate property of Gaussian distributions under Bayesian theorem, the joint distri-
bution of the state prediction and the measurement prediction is also Gaussian and can be expressed
as follows:

bl ) - | (B[ P FE
p bl:t; bl:t bl:t—laD = (N ) ) AT T 9 (38)
b))\ (P¥) PP

Subsequently, we substitute Eq. [38]into Eq. to obtain updates of the state and covariance as
follows:

b, = b, + PP (P{’f’)_l (Et - 13;) : (39)

= =\ —1 -\ T
P, =P, - P} (PI")  (P) . (40)

Finally, if we define P?B(Ptz’g)*1 as K; (so called Kalman gain), then Egs. and {40 can be
expressed as:

b, = b} + K, (b, — Hb|, — A}), (41)
P, = (I- K,H)P,. (42)

C DETAILED TRAINING PROCEDURE FOR MEKF

The MeKF requires detection boxes as input during inference to produce an estimate of the target’s
state. However, existing MOT datasets typically only provide ground truth trajectories, which is
insufficient for our end-to-end training pipeline. To address this, we construct paired sequences of
detection boxes and ground truth trajectories.

Specifically, we first employ the YOLOX detector, pre-trained as described in Section[4.2] to gen-
erate a sequence of detections for each frame, ensuring consistency with the actual tracking pro-
cess. At time ¢, the detector generates a set of V; detection boxes from a single frame, namely,

A = {E?}n=1,27___7 N,» where n stands for the index of the detection box. Subsequently, we match
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these detections to the ground truth (a set of M; boxes at time ¢, namely, B; = {B;"}mzl’g,‘_” M,)
based on a standard IoU threshold of 0.8. This process can be formulated as:

IoU(b, b7), if IoU(b™, b7) > 0.8,
m(m):{ arginax oU(b; t) i 1o (t t) (43)

0, otherwise,

where 7;(m) defines the mapping from a ground truth box to a detection box. Specifically, m;(m) =
n indicates that the m-th ground-truth box is successfully associated with the n-th detection. A value
of m¢(m) = 0 signifies a matching failure, meaning the ground truth box remains unmatched, which
often corresponds to a missed detection.

Based on Eq. 3] The matching follows these criteria:

* Each ground truth box is matched with at most one detection; if multiple detections surpass the
IoU threshold, the one with the highest IoU is selected.

* A single detection can be associated with multiple ground truth boxes.

Following this matching procedure, we obtain a set of pair-wise tuples, each containing a ground

truth box and its matched detection for a single target in a given frame, namely, C; = {b", b;* (m) }.
Since our LSTM-based MeKF requires fixed-length sequences for training, we generate these by
applying a sliding window of length 7" (as defined in Eq. [T3) to the full trajectories. Each resulting
training sequence for a single target trajectory, generated from one sliding window, can be repre-
sented as C = [Cy,Ca, ..., Cr]. The final training dataset, which we denote as D, is the collection of
all such sequences generated from all target trajectories. This dataset is then used to train the MeKF.

It should be noted that the IoU-based matching between detections and ground truth boxes is not
always successful. Matching failures can occur, for instance, in cases of missed detections (i.e.,
no detection box is generated) or when a detection significantly deviates from its correspond

ground-truth box. In such scenarios where a match is lossed, we set by, = Hb, + A in Eq.
This configuration prompts the filter to perform only the state prediction for the current time step,
and bypassing the measurement update process.

D ADDITIONAL EXPERIMENTS

D.1 SENSITIVITY ANALYSIS OF Mo-IoU
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Figure 5: Sensitivity analysis of Mo-IoU’s thresholds, Oheighi and Ocenier, On the (a) DanceTrack
validation set and (b) SportsMOT validation set. The heatmap displays the HOTA improvement (in
points) relative to fixed parameters. The analysis reveals a peak performance gain at the configura-
tion of Opeighi=50% and Ocener=70%. The broad area of significant improvement demonstrate the
robustness of our proposed Motion-Adaptive Technique (MAT) to hyperparameter variations.
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To evaluate the sensitivity of our proposed Mo-IoU, we conduct an analysis on its thresholds, Oneight
and Ocenier. As depicted in Figure [5] we explore various parameter combinations and report the
resulting HOTA improvement over the static parameter setting. The values for both thresholds are
determined based on the percentile of the target speed distribution observed in the training set; for
instance, a 50% setting corresponds to the median speed.

The results indicate that the optimal configuration (Opeight=50%, Ocener=70%) achieves a peak
HOTA gain on both datasets. More importantly, the heatmap reveals a large contiguous region
where performance gains consistently exceed the fixed parameter setting. This demonstrates that
Mo-IoU is not highly sensitive to the precise choice of thresholds, validating the robustness and
practical applicability of MAT.

D.2 SENSITIVITY ANALYSIS OF MEKF

Table 6: Sensitivity analysis of MeKF’s memory dimension on the DanceTrack validation set.

Dimension | HOTA1 AssA{ IDF1t MOTA{ DetAt

8 60.47 39.32 52.34 96.68 93.07
16 63.67 43.55 56.81 96.92 93.10
32 67.41 49.58 66.41 97.55 91.69
64 67.11 49.04 66.39 97.58 91.89

As shown in Table[6] we analyze the sensitivity of MeKF’s memory dimension. HOTA, AssA and
IDF1 achieve their highest values at the dimension of 32. However, further increasing the dimension
to 64 leads to a slight degradation in performance. This trend suggests that choosing 32 as the
dimension of memory provides an optimal trade-off, offering sufficient capacity to model complex
motions without introducing overfitting.

D.3 GENERALIZATION EXPERIMENTS OF MEKF

Table 7: Generalization experiments of MeKF on DanceTrack and SportsMOT

Training Dataset ~ Testing Dataset | HOTA+  AssA1 IDF11 MOTA{ DetA 1

DanceTrack DanceTrack 67.41 49.58 66.41 97.55 91.69
SportsMOT DanceTrack 65.83 46.53 59.93 97.21 93.20
SportsMOT SportsMOT 79.77 68.18 78.84 98.43 93.35
DanceTrack SportsMOT 78.70 66.57 77.80 97.79 93.09

To assess the generalization capability of MeKF, we conduct a cross-dataset evaluation on Dance-
Track and SportsMOT. The experiments focus on training MeKF on one dataset’s training set and
testing it on the other dataset’s validation set, with the results detailed in Table

As expected, MeKF achieves its best performance when trained and tested on the same dataset, with
only a slight degradation observed in cross-dataset experiments. The minimal performance gap in
these experiments validate that MeKF learns robust and transferable motion patterns, highlighting
its strong generalization capability.

D.4 GENERALITY ON OTHER BASELINE TRACKERS

We applied the key components of MeMoSORT on other representative TBD trackers as baselines,
including SORT, BoT-SORT and DeepSORT. They utilize KF as state estimation methods, while ap-
plying different association strategies in consideration of spatial and appearance information. From
Table [8] significant improvements can be observed from all these baseline trackers after applying
MeKF or Mo-IoU, demonstrating the generality of the proposed key components.

E CASE ANALYSIS

To provide an intuitive understanding of the tracking behavior, we present several representative
cases that illustrate how the algorithms perform under challenging scenarios. These examples are se-
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Table 8: Generality experiments of applying MeKF and Mo-IoU to other baseline trackers on the
DanceTrack validation set.

Baseline tracker MeKF Mo-IoU | HOTA1 AssAft IDF1+ MOTAT DetAf
58.68 37.11 50.22 96.50 92.87
BoT-SORT (Aharon et al., 2022) v 68.28 50.72 66.40 97.40 91.97
v 68.62 51.26 67.39 97.62 91.91
55.57 33.26 46.22 96.19 92.94
SORT (Bewley et al.,[2016) v 63.64 43.48 56.55 96.95 93.21
v 67.11 49.04 66.39 97.58 91.89
53.68 31.02 44.14 95.98 92.97
DeepSORT (Wojke et al.,[2017) v 62.12 41.45 54.38 96.83 93.16
v 64.18 44.15 57.31 97.07 93.36

lected from different sequences to highlight typical situations where identity preservation is difficult,
such as temporary occlusions or group separation. By examining these cases, we aim to complement
the quantitative results, offering a clearer picture of the strengths of our proposed MeMoSORT.

E.1 CASE 1: OCCLUSION

We analyze a video segment from the DanceTrack dataset where two targets cross paths, leading to a
temporary occlusion. As shown in Figure[f] each subfigure contains a tracking results plot (left) and
representative frames (right). In the tracking results plot, each ground truth (GT) identity is shown
as a vertical line, while colors denote tracking identities. Frames where the GT identity has been
missed are left blank, and thick dots mark the temporal positions where ID switches occur. Dashed
arrows connect the temporal positions in the tracking results plot to the corresponding frames. In
the DiffMOT algorithm, the IDs of the two targets are swapped when encountering occlusion during
crossing. In contrast, our proposed MeMoSORT successfully maintains consistent IDs throughout
the occlusion, demonstrating its robustness in handling occlusions and interactions.

400

1000 1000

2
GTID

(a) DifftMOT (b) MeMoSORT

2
GTID

Figure 6: Comparison of DiffMOT and MeMoSORT in a crossing scenario. (a) DiffMOT shows
ID switch when two targets cross paths. (b) MeMoSORT preserves consistent IDs, demonstrating
stronger robustness in handling interactions.

E.2 CASE 2: GROUP SEPARATION

To further assess the robustness of the tracker, we examine a group separation scenario from the
SportsMOT dataset. In this sequence, three targets move closely together, merging and separating,
with frequent interactions and occlusions making identity tracking particularly challenging. As
shown in Figure[7] Diff MOT fails to maintain ID consistency during separation, resulting in swapped
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IDs. In contrast, MeMoSORT effectively preserves stable IDs, showing its advantage in recovering
from occlusion and maintaining robustness in group interaction scenarios.

a 6( lTeybal 5
GTID GTID

(a) DifftMOT (b) MeMoSORT

Figure 7: Comparison of DiffMOT and MeMoSORT in a group separation scenario. (a) Difft MOT
shows ID switch when three targets separate. (b) MeMoSORT preserves consistent IDs, demonstrat-
ing stronger robustness in handling group interactions and occlusion recovery.

E.3 ADDITIONAL VISUALIZATIONS

Fig. [ presents additional qualitative comparisons between our method and DiffMOT on the Dance-
Track and SportsMOT validation sets. Similar to the sequences shown earlier, these cases highlight
challenging scenarios such as frequent occlusions and complex interactions, where our approach
demonstrates more stable identity preservation. These results further validate the effectiveness of
our method under real-world challenges.

F THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, a Large Language Model (LLM) was utilized to assist
with language polishing, grammar correction, and improving overall readability. The LLM’s role
was strictly limited to editing and rephrasing. All intellectual content, including the core ideas,
methodology, experiments, and conclusions, is the original work of the authors.

G REPRODUCIBILITY STATEMENT

To maintain the integrity of the double-blind review, our source code will be made available to the
reviewers and area chairs via a private link during the official discussion period. We are committed
to releasing our code publicly upon acceptance of the manuscript.
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Figure 8: Tracking results visualizations on supplementary videos from the DanceTrack and
SportsMOT validation sets. (a-c) video dancetrack0058 from DanceTrack. (d-f) video
v_00HRwkvvjtQ_c008 from SportsMOT. (g-i) video v_cC2mHWgMcjk_c007 from SportsMOT.
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