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ABSTRACT

Multi-object tracking (MOT) in human-dominant scenarios, which involves con-
tinuously tracking multiple people within video sequences, remains a significant
challenge in computer vision due to targets’ complex motion and severe occlu-
sions. Conventional tracking-by-detection methods are fundamentally limited by
their reliance on Kalman filter (KF) and rigid Intersection over Union (IoU)-based
association. The motion model in KF often mismatches real-world object dynam-
ics, causing filtering errors, while rigid association struggles under occlusions,
leading to identity switches or target loss. To address these issues, we propose
MeMoSORT, a simple, online, and real-time MOT algorithm with two key in-
novations. At first, the Memory-assisted Kalman filter (MeKF) uses memory-
augmented neural networks to compensate for mismatches between assumed and
actual object motion. Secondly, the Motion-adaptive IoU (Mo-IoU) adaptively
expands the matching region and incorporates height similarity to reduce mis-
associations, while remaining lightweight. Experiments show that MeMoSORT
achieves state-of-the-art performance, with HOTA scores of 67.9% and 82.1% on
DanceTrack and SportsMOT, respectively.

1 INTRODUCTION

Multi-object tracking (MOT) refers to the task of continuously tracking multiple objects across video
sequences, and has been widely applied in autonomous driving (Geiger et al., 2012; Yu et al., 2020),
video surveillance (Milan et al., 2016; Dendorfer et al., 2020), and sports analysis (Cui et al., 2023;
Cioppa et al., 2022; Sun et al., 2022). Among these scenarios, tracking persons has become the most
extensively studied and practically relevant subproblem.

As the dominant paradigm of MOT, tracking-by-detection (TBD) (Bewley et al., 2016; Zhang et al.,
2022; Cao et al., 2023; Maggiolino et al., 2023) addresses this task by decomposing it into three key
stages: detection, state estimation (filter), and association. While detection accuracy was historically
a primary limiting factor, the advent of high-performance detectors like YOLO series (Redmon et al.,
2016; Varghese & M., 2024) has largely addressed this issue. As a result, the performance of modern
TBD trackers is now principally constrained by the efficacy of the other two stages: state estimation
and association.

Conventional state estimation and association modules suffer from two key limitations. First, the
Kalman filter (KF) (Kalman, 1960) assumes linear dynamics and a first-order Markovian process
(Khodarahmi & Maihami, 2023), which does not match the complex and temporally correlated
motion patterns of real-world targets (as illustrated in Appendix A). The mismatch can lead to sig-
nificant errors in motion prediction and estimation when the actual motion deviates from these as-
sumptions (Wang, 2025), such as in coordinated or repetitive behaviors (e.g., a dancer consistently
spinning after a specific jump). Second, standard association strategies often rely on simplistic In-
tersection over Union (IoU) (Yu et al., 2016), without adapting to the target’s motion patterns. This
lack of adaptability can degrade association performance, resulting in tracking failure.

To address these challenges, we propose MeMoSORT, a simple, online, and real-time MOT frame-
work tailored for complex scenarios. MeMoSORT introduces two key innovations: (a) Memory-
assisted Kalman Filter (MeKF), which leverages memory-augmented neural networks (NN) to com-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Case 1: DiffMOT (b) Case 1: MeMoSORT

(c) Case 2: DiffMOT (d) Case 2: MeMoSORT

Figure 1: Visualization of DiffMOT (a, c) and MeMoSORT (b, d) in challenging scenarios from the
DanceTrack validation set. Case 1 (Complex Motion): DiffMOT’s inaccurate prediction leads to
an identity switch, while MeMoSORT maintains the correct identity by leveraging the precise state
estimation from its MeKF. Case 2 (Severe Occlusion): Standard IoU-based association in DiffMOT
fail in association when encountering severe occlusion. MeMoSORT’s Mo-IoU robustly handles this
challenge and ensuring continuous tracking.

pensate for the gap between assumed and actual motion patterns; (b) Motion-adaptive IoU (Mo-
IoU), which adaptively expands the matching region and incorporates height similarity to reduce
association errors.

Extensive experiments demonstrate that MeMoSORT achieves state-of-the-art (SOTA) performance
on challenging benchmarks, reaching HOTA scores of 67.9% on DanceTrack and 82.1% on
SportsMOT, significantly outperforming existing methods across multiple metrics.

2 RELATED WORKS

2.1 METHODS FOR STATE ESTIMATION

KF is the widely used for state estimation in early TBD trackers. Subsequent methods such as OC-
SORT (Cao et al., 2023) introduced improvements to handle occlusions, but could not overcome
the fundamental limitations of the linear, first-order Markovian motion model in scenarios with
complex, non-Markovian dynamics.

To address this, one line of research replaces the KF entirely with data-driven NN. For example, Diff-
MOT (Lv et al., 2024) employs a diffusion model for non-linear motion prediction, while Mamba-
based trackers (Xiao et al., 2024a; Khanna et al., 2025) utilize state space models to capture complex
motion. However, a key challenge for these pure predictors is the lack of a principled filtering step;
they often replace a track’s state directly with the noisy detector measurement instead of update,
which degrade trajectory quality.

Another direction (Li et al., 2024; Adžemović et al., 2025) involves hybrid approaches that replace
physics-based models with deep learning techniques within the classic Bayesian filter structure.
These methods combine the expressiveness of NN with the stability of the prediction–update cycle.
A drawback is that discarding the physics-based prior in favor of a complex NN makes the filter
heavily reliant on training data, thereby reducing robustness and generalization.

2.2 ASSOCIATION BETWEEN DETECTION AND PREDICTION

Mainstream association methods within the TBD paradigm are typically based on two principles:
spatial consistency and appearance similarity. The former is primarily addressed by IoU and its
variants, while the latter relies mainly on ReID based methods. In practice, these two approaches
are often combined into a final association cost, typically through a weighted sum.

IoU-based methods use IoU as spatial association metric, higher IoU between boxes across frames
represents higher probability of the same targets. Recent studies modified IoU by expanding the
scale of the box (Fan et al., 2023; Huang et al., 2024b), incorporating height similarity (Yang et al.,
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2024) or considering both (Khanna et al., 2025). However, the performance of above types of
IoU with fixed parameters critically depends on manual setting, limiting their applicability across
complex environments. Existing dynamic parameter methods either use multiple association stages
with several fixed parameter (Huang et al., 2024b) or focus on temporal information of the trajec-
tory (Stanojević & Todorović, 2024), lacking adaptivity according to target’s motion characteristics.

ReID-based methods uses an additional NN to extract feature to represent the visual appearance of
target, considering shorter distance between feature across frames leads to same target. The majority
of ReID based methods (Wojke et al., 2017; Aharon et al., 2022; Du et al., 2023) use convolution
NN to extract appearance feature and apply cosine distance as measurement. ReID-based methods
are less effective in distinguishing targets with similar appearance or under occlusion.

3 METHODOLOGY

3.1 PRELIMINARIES: TRACKING BY DETECTION

The TBD paradigm is a prevalent approach in MOT. Unlike monolithic end-to-end methods, TBD
frameworks decouple the tracking problem into three distinct stages, as illustrated in Figure 2(a):
detection, association, and filtering.

The first step involves an object detector, such as the widely used YOLO model, generating a
set of candidate boxes for each frame t. A detection is typically represented as a vector b̃t =

[x̃t, ỹt, w̃t, h̃t]
⊤, defining the center coordinates, width, and height of the box. It is generated via the

linear measurement matrix H from the target’s state vector, bt, which contains the target’s position,
size, and velocity. This relationship is modeled as:

b̃t = Hbt + vt, (1)

where vt is the measurement noise, it is generally assumed to follow an independent zero-mean
Gaussian distribution with a covariance matrix Rt.

The output detections, which are prone to false alarms and misses from occlusion, are linked across
frames via association to form trajectories. This association is formulated as a bipartite matching
problem between existing tracks and current detections, where the matching cost typically com-
bines spatial overlap (IoU) and appearance similarity (ReID). Specifically, IoU measures the spatial
overlap between a detection b̃t and a track’s predicted state b̂′t. And ReID involves masking the
object within the detection box, encoding its appearance, and then measuring similarity using co-
sine distance. Finally, the Hungarian algorithm is used to find the optimal assignments based on the
combined matching cost.

After association, a filter is applied to estimate the target’s state via a prediction-update cycle. For
the widely used KF, the prediction is based on a linear, first-order Markovian motion model:

bt = Fbt−1 +wt, (2)

where F is the linear state transition matrix (e.g. constant velocity model). And wt is the process
noise, it is generally assumed to follow an independent zero-mean Gaussian distribution with a
covariance matrix Qt. In the update step, this prediction is refined by incorporating the newly
associated detection.

However, this prevalent pipeline suffers from two critical limitations. First, the state estimation
relies on an underlying linear, first-order Markovian motion model is often an oversimplification
of real-world dynamics. This prevents the KF from handling complex, non-linear paths. Second,
the association cost, based mainly on IoU, is unreliable during occlusion as the boxes is mixed to a
mess. To this end, our work introduces a deep learning aided filter that leverages temporal memory
to model complex dynamics and a robust association metric resilient to occlusion.

3.2 FRAMEWORK OF THE PROPOSED MEMOSORT

The framework of our proposed MeMoSORT is illustrated in Figure 2(b), with the following three
stages.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Framework of Tracking-by-Detection (b) Framework of MeMoSORT

Figure 2: Comparison between (a) the conventional Tracking-by-Detection framework and (b) our
proposed MeMoSORT framework. MeMoSORT introduces two key components: it leverages a
memory mechanism to guide state estimation for more accurate state prediction and update, and it
applies a Motion-adaptive IoU to achieve robust association.

Detection. In line with the conventional TBD paradigm, MeMoSORT leverages the YOLOX (Ge
et al., 2021) to perform the initial detection task, generating a set of candidate boxes for all potential
targets within each frame.

Association. We introduce an association pipeline inspired by Deep OC-SORT (Maggiolino et al.,
2023). This pipeline incorporates our novel Mo-IoU, a metric that refines conventional IoU by adap-
tively expanding the boxes and considering height similarity based on the target’s motion character-
istics. Within this pipeline, detections are initially stratified by their confidence scores. High-scoring
detections are matched using a combined Mo-IoU and ReID cost via the Hungarian algorithm, while
low-scoring detections are matched using a standard IoU cost.

Filtering. We propose the MeKF, a variant of the standard KF inspired by literature (Yan et al.,
2024) that leverages memory to aid in state estimation. The MeKF consists of three gated modules:
a Memory Update Gate (MUG) to maintain a historical representation, a State Prediction Gate (SPG)
to correct the motion prediction using memory, and a State Update Gate (SUG) to refine the state
based on the associated detection.

3.3 MEMORY-ASSISTED KALMAN FILTER

To address the limitations of the first-order Markovian assumption in the KF (Eq. 2), we introduce
a non-Markovian motion formulation capable of modeling the complex dynamics inherent in real-
world targets:

bt = ft(bt−1, bt−2, ..., b1) +wt, (3)
where ft(·) is a non-linear transition function. Unlike the transition matrix F in Eq. 2, ft(·) ex-
plicitly conditions the state prediction on the full trajectory history, thus enabling the modeling of
long-term dependencies. As an explicit analytical form for ft(·) is intractable, we simplified the
problem by introducing the transition matrix F, namely,

bt = Fbt−1 + ft(bt−1, bt−2, ..., b1)− Fbt−1︸ ︷︷ ︸
∆F

t

+wt

= Fbt−1 +∆F
t +wt, (4)

where ∆F
t is the model mismatch term, capturing the residual between the non-Markovian and

first-order Markovian dynamics. As this term is a function of the entire history, we approximate
it using a mapping function ∆F

t ≈ ψ(mt), where the memory vector mt is defined as mt =
gt(bt−1, bt−2, ..., b1). The function gt(·), which encodes the entire history into the memory vector
mt, is computationally intensive. We therefore approximate it using a nested structure, which can
be implemented in an iterative form by the memory update function ϕ(·):

mt ≈ ϕ(ϕ(ϕ(︸ ︷︷ ︸
t times

· · · ), bt−2), bt−1)

= ϕ(mt−1, bt−1). (5)
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Furthermore, the linear measurement matrix H defined in Eq. 1, often fails to represent the true
observation process. To address this discrepancy, a similar transformation can be made, i.e.,

b̃t = Hbt +∆H
t + vt, (6)

where the mismatch term ∆H
t is generated by b̃t through function φt(·), namely, ∆H

t ≈ φt(b̃t).

The memory update function ϕ(·), state compensation function ψ(·), and measurement compensa-
tion function φ(·) are difficult to model with explicit analytical forms. Such that we employ NN
technique to fit these complex, non-linear functions. By integrating these learned modules with the
foundational principles of Eqs. 5 - 6, we construct a data-driven Bayesian filter: the MeKF, as shown
in Figure 3.

3.3.1 STRUCTURE OF MEKF

Figure 3: Framework of MeKF.

Memory Update Gate. The memory update process in
Eq. 5 is formally analogous to the Recurrent Neural Net-
work. We therefore implement the update function ϕ(·)
using the Long Short-Term Memory (LSTM) network.
The LSTM is trained to distill and update the memory
from the historical trajectory sequence, with the specific
update process detailed as follows:

mt = FLSTM(ct−1,ht−1,mt−1), (7)

where FLSTM(·) denotes the mapping function of the
MUG, implemented by the LSTM network. And ct−1

and ht−1 are the cell state and hidden state of the LSTM,
respectively.

State Prediction Gate. In contrast to MoveSORT and DiffMOT, which directly utilize NN to predict
the target’s state, the SPG compensates for the error between the physical motion model and the true
physical process. While reducing the amount of parameters, the SPG leverages a prior model to
guarantee the error lower bound of the MeKF, which is defined as follows:

b̂′t = Fb̂t−1 + ∆̂F
t , (8)

P′
t = FPt−1F

⊤ +PF
t +Qt, (9)

where b̂′t and P′
t represent the state prediction and the error covariance prediction, respectively.

Here, ∆̂F
t=F1

MLP(mt) and PF
t=F2

MLP(mt)(F2
MLP(mt))

⊤ are the exception and covariance com-
pensation generated by distinct multilayer perceptrons (MLP) with unshared parameters.

State Update Gate. Similarly, the SUG utilizes distinct MLPs to generate corresponding compen-
sation terms and is naturally embedded within the state update process, namely,

Kt = P′
tH

⊤(HP′
tH

⊤ +PH
t +Rt)

−1, (10)

b̂t = b̂′t +Kt(b̃t −Hb̂′t − ∆̂H
t ), (11)

Pt = (I−KtH)P′
t, (12)

where b̂t and Pt are the state update and the error covariance update, respectively. Here, ∆̂H
t =

F3
MLP(b̂

′
t), P

H
t = F4

MLP(b̂
′
t)(F4

MLP(b̂
′
t))

⊤ and Kt is the Kalman gain. The derivation is detailed in
Appendix B. All of the aforementioned gates are designed based on Bayesian principles similar to
the KF and are derived according to Wang et al. (2012).

3.3.2 LOSS FUNCTION AND TRAINING PREPARATION

The analytical expression of the MeKF (Eqs. 8 - 12), derived through a Gaussian approximation,
renders the filter fully differentiable (Yan et al., 2024), enabling end-to-end training via a loss func-
tion composed of mean square error (MSE) and L2 regularization, as calculated below:

L =
1

JT

J∑
j=1

T∑
t=1

||b̂jt (b̃
j
t ;Θ)− b̄jt ||2 + γ||Θ||2, (13)
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where Θ represents the set of learnable parameters in the MeKF, and γ is the L2 regularization
coefficient. The loss is computed over J training sequences in a batch, each of length T .

End-to-end training of the MeKF requires a dataset of paired trajectory sequences, each consisting
of a detection b̃jt , and its corresponding ground truth box b̄jt . We construct this dataset by selecting
detections from a candidate pool and pairing them with ground truth boxes based on their IoU. A
detailed description of this dataset generation procedure is provided in Appendix C.

3.4 MOTION-ADAPTIVE ASSOCIATION

To achieve robust association in severe occlusion scenarios, we introduce the Motion-adaptive IoU
(Mo-IoU). It is defined as a multiplicative fusion of two IoU variants with an adaptive parameter
setting:

Mo-IoU(b̂′t, b̃t, pt, qt) = EIoU(b̂′t, b̃t, pt)×HIoU(b̂′t, b̃t, qt), (14)

where Expansion IoU (EIoU) expands matching region to enhances the probability of establish-
ing reliable matches, and Height IoU (HIoU) emphasizes height similarity to distinguish occluded
targets. The parameters pt and qt are adaptively set by our Motion-Adaptive Technique (MAT).

Expansion IoU. Motivated by C-BIoU (Fan et al., 2023), we design EIoU to relax box boundaries,
effectively enlarging the matching region to enhance association likelihood, ultimately leading more
continuous target tracking. Formally, EIoU is defined as:

EIoU(b̂′t, b̃t, pt) = IoU(ê′t, ẽt), (15)

where ê′t=[x̂′t, ŷ
′
t, (2pt+1)ŵ′

t, (2pt+1)ĥ′t]
⊤ and ẽt=[x̃t, ỹt, (2pt+1)w̃t, (2pt+1)h̃t]

⊤ are the ex-
pansion boxes of b̂′t and b̃t, respectively. The expansion scaling factor pt controls the expansion
scale of the boxes. When pt=0, no expansion occurs, and EIoU degenerates to the standard IoU.

Height IoU. Recognizing that height remains a highly distinguishable feature under severe occlu-
sion, we introduce HIoU, inspired by Hybrid-SORT (Yang et al., 2024), to reinforce height similarity
and mitigate the ambiguity potentially induced by EIoU. And HIoU is defined as:

HIoU(b̂′t, b̃t, qt) =

(
lt

ĥ′t + h̃t − lt

)qt

, (16)

where lt denotes the intersection height of b̂′t and b̃t, and the exponent qt adaptively controls the
emphasis placed on this height similarity. The base of this formula is geometrically equivalent to a
1D-IoU on the vertical axis, robustly measuring the boxes’ vertical alignment.

Motion-Adaptive Technique. To improve the generalization of Mo-IoU in diverse scenarios, a
novel MAT is proposed to adaptively adjust the expansion scaling parameter pt and the height mod-
ulation parameter qt based on the target’s motion characteristics, as formulated below:

pt =

{
Mslow if ċt−1 ≤ Θcenter,

Mfast otherwise.
(17) qt =

{
Nslow if l̇t−1 ≤ Θheight,

Nfast otherwise.
(18)

where ċt−1=
√

(ẋt−1/wt−1)2+(ẏt−1/ht−1)2 and l̇t−1=ḣt−1/ht−1 represent the normalized
speeds of the box center and height, respectively, with a dot denoting velocity. The terms Θcenter
and Θheight are predefined thresholds for these two speeds. Instead of continuously tuning pt and qt,
which would be computationally expensive, we adopt a discrete piecewise design. This choice
strikes a balance between adaptivity and efficiency, ensuring practical applicability in real-time
tracking. As a scale-invariant metric, the normalized speed is a suitable quantitative description
of the target’s motion characteristics.

The parameter pt compensates for the motion model’s prediction error. Since high-speed motion
often leads to larger errors, a larger expansion scaling parameter (pt=Mfast) is used to provide greater
spatial tolerance, and vice versa. In contrast, the parameter qt adapts to the reliability of height as
a feature: a rapidly changing, less reliable height warrants a smaller height modulation parameter
(qt=Nfast), and vice versa.
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4 EXPERIMENTS

4.1 DATASETS AND METRICS

Datasets. We conducted the main experiments on DanceTrack and SportsMOT datasets known for
their diverse and rapid movements and indistinguishable appearances, in which the performance of
ReID module is highly limited, requiring accurate motion capability. DanceTrack features severe
occlusion and similar appearance, demanding robust motion capacity for long-term identity con-
sistency. SportsMOT introduces fast, variable-speed target motion and extensive camera motion,
requiring more robust motion models and association.

Furthermore, we conducted comparative experiments on the MOT17 and MOT20 datasets, which
are characterized by relatively linear and stable motion (Hu et al., 2024). The detailed results have
been added to Appendix D.1.

Metrics. We utilize Higher Order Metric (Luiten et al., 2021) (HOTA, AssA, DetA), IDF1 (Ris-
tani et al., 2016), and CLEAR metrics (Bernardin & Stiefelhagen, 2008) (MOTA) as our evaluation
metrics. Among various metrics, HOTA is the core benchmark that holistically balances association
consistency and positional precision. Complementing this, IDF1 and AssA specifically measure
association quality and identity preservation, while DetA and MOTA primarily evaluate state es-
timation accuracy. Additionally, computational efficiency is quantified through frames per second
(FPS) to evaluate real-time processing capability.

4.2 IMPLEMENTATION DETAILS

For the training of our proposed MeKF, we utilize AdamW optimizer with learning rate set to 10−4,
and regularization coefficient γ is set to 0.02. The hidden size of LSTM cell and MLPs is set to
32, and the state transition matrix F is set to a constant velocity model. For Mo-IoU, the expansion
scaling parameters are set to Mslow=0.5 and Mfast=Mslow+0.1, while the height modulation param-
eter are set to Nslow=2, with Nfast=Nslow−1. Velocity thresholds Θcenter and Θheight are determined
by the 70th and 50th percentile of the normalized velocity distribution from training set (i.e. 0.0406
and 0.0090 for DanceTrack, 0.1172 and 0.0062 for SportsMOT).

For the detector, we fine-tune the COCO-pretrained YOLOX-X model on CrowdHuman (Shao et al.,
2018) and the target dataset, same to the training procedure used in SportsMOT. In the association
stage, the confidence threshold of high-score and low-score matching are set to 0.6 and 0.1. For
ReID model, we utilize SBS50 from the fast-reid library (He et al., 2020).

Experiments are conducted on 8 GeForce RTX 4090, while FPS is evaluated in FP16 precision with
batchsize of 1 using a single RTX 4090.

4.3 BENCHMARK RESULTS

DanceTrack. As depicted in Table 1, MeMoSORT establishes a new SOTA on the challenging
DanceTrack test set with 67.9% HOTA score. MeMoSORT significantly outperforms traditional KF-
based trackers, demonstrating the advantages of the proposed MeKF. In contrast to sliding window-
based filters like DiffMOT, which estimate the current state from a fixed-length trajectory history,
our method shows superior tracking performance. When compared to other implicit memory-based
filters such as TrackSSM, MeMoSORT’s hybrid design of physical prior and NN proves more effec-
tive than purely data-driven alternatives. By retaining the robust inductive bias of a classic Bayesian
filter while using the memory network to handle non-Markovian dynamics, our method achieves
a more stable and accurate state estimation. Furthermore, when compared with trackers utilizing
similar modified IoU metrics, such as Hybrid-SORT, our synergistic combination of an advanced
filter and an adaptive association metric secures a clear performance advantage.

Finally, even against transformer-based end-to-end methods like MeMOTR, our method demon-
strates significant advantages in both estimation accuracy and inference speed. Although there is a
slight performance gap compared to MOTRv2 and MOTIP, our method inherits the low computa-
tional overhead characteristic of the TBD paradigm, offering a substantial advantage in inference
speed over these computationally heavy transformer-based trackers.
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Table 1: Performance on DanceTrack test set, with FPS evaluated on the validation set. The
best/second results are shown in bold/underlined.

Methods IoU modified HOTA↑ AssA↑ IDF1↑ DetA↑ MOTA↑ FPS↑
End-to-end tracker:
MOTRv2 (Zhang et al., 2023) 69.9 59.0 71.7 83.0 91.9 10.2
MeMOTR (Gao & Wang, 2023) 63.4 52.3 65.5 77.0 85.4 17.7
MOTIP (Gao et al., 2025) 69.6 60.4 74.7 80.4 90.6 19.8

KF-based filter:
ByteTrack (Zhang et al., 2022) 47.7 32.1 53.9 71.0 89.6 35.8
OC-SORT (Maggiolino et al., 2023) 55.1 40.4 54.9 80.4 92.2 -
Deep OC-SORT (Maggiolino et al., 2023) 61.3 45.8 61.5 82.2 92.3 -
TrackTrack (Shim et al., 2025) 66.5 52.9 67.8 - 93.6 -

C-BIoU (Fan et al., 2023) ✓ 60.6 45.4 61.6 81.3 91.6 -
Hybrid-SORT (Yang et al., 2024) ✓ 65.7 - 67.4 - 91.8 15.5

Sliding window-based filter:
MotionTrack (Xiao et al., 2024b) 58.2 41.7 58.6 81.4 91.3 -
DiffMOT (Lv et al., 2024) 62.3 47.2 63.0 82.5 92.8 22.7

Implicit memory-based filter:
MambaMOT (Huang et al., 2024a) 56.1 39.0 54.9 80.8 90.3 28.8
Track SSM (Hu et al., 2024) 57.7 41.0 57.5 81.5 92.2 20.3

DeepMove SORT (Adžemović et al., 2024) ✓ 63.0 48.6 65.0 82.0 92.6 -
MeMoSORT (ours) ✓ 67.9 54.3 68.0 85.0 93.4 28.8

SportsMOT. On the SportsMOT benchmark, characterized by fast and variable motion, MeMo-
SORT again establishes a new SOTA, as shown in Table 2. This result underscores the superiority
of memory-based filters over traditional KF and sliding-window approaches for handling complex
dynamics. Within the implicit memory-based paradigm, MeMoSORT’s hybrid design further distin-
guishes it; instead of fully replacing the motion model, our MeKF uses memory to explicitly correct
a physics-based prior, leading to more stable and accurate state estimation. Furthermore, by adap-
tively adjust its parameters, our Mo-IoU robustly resolves ambiguities during severe occlusions, a
key factor in its superior performance over other modified IoU techniques.

Table 2: Performance comparison on the SportsMOT test set. The best/second results are shown in
bold/underlined.

Methods IoU modified HOTA ↑ AssA ↑ IDF1 ↑ DetA ↑ MOTA ↑
Without filter:
Deep-EIoU (Maggiolino et al., 2023) ✓ 77.2 67.7 79.8 88.2 96.3
Deep HM-SORT (Gran-Henriksen et al., 2024) ✓ 80.1 72.7 85.2 88.3 96.6

KF-based filter:
ByteTrack (Zhang et al., 2022) 64.1 52.3 71.4 78.5 95.9
OC-SORT (Cao et al., 2023) 73.7 61.5 74.0 88.5 96.5

Sliding window-based filter:
MotionTrack (Xiao et al., 2024b) 74.0 61.7 74.0 88.8 96.6
DiffMOT (Lv et al., 2024) 76.2 65.1 76.1 89.3 97.1

Implicit memory-based filter:
MambaMOT (Huang et al., 2024a) 71.3 58.6 71.1 86.7 94.9
Track SSM (Hu et al., 2024) 74.4 62.4 74.5 88.8 96.8

SportMamba (Khanna et al., 2025) ✓ 77.3 66.8 77.7 89.5 96.9
DeepMove SORT (Adžemović et al., 2024) ✓ 78.7 70.3 81.7 88.1 96.5
MeMoSORT(ours) ✓ 82.1 75.6 86.4 89.3 97.0

4.4 ABLATION STUDY

We conduct ablation studies on the DanceTrack validation set, which concentrate on investigating
the impact of different components, different filters, different training data quality, and different IoU
variants on the proposed MeMoSORT.

Component Ablation. The proposed MeMoSORT algorithm comprises two components, MeKF
and Mo-IoU, whose individual contributions are examined through ablation studies, as the results

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

shown in Table 3. Using ByteTrack as the baseline (line 1), we first replace its KF with MeKF (line
2), which yields a significant gain and confirms that the non-Markovian modeling improves motion
prediction and filtering. Next, we substitute the baseline association module with Mo-IoU (line 3),
improving association and thus HOTA. When both modules are combined (line 4), performance is
further boosted by jointly enhancing state estimation and association. Finally, adding ReID infor-
mation alongside Mo-IoU (line 5) brings additional slight gains, though with a drop in FPS. We
attribute this modest gain to the degradation of the ReID model in challenging scenes with severe
occlusions, which causes target appearance to become indistinguishable.

Table 3: Ablation study of MeMoSORT’s key components on the DanceTrack validation set. The
best/second results are shown in bold/underlined.

MeKF Mo-IoU ReID HOTA ↑ AssA ↑ IDF1 ↑ DetA ↑ MOTA ↑ FPS ↑
56.94 34.92 48.18 92.91 96.35 74.5

✓ 67.41 49.58 66.41 91.69 97.55 60.8
✓ 68.32 50.35 63.86 92.76 97.30 62.0

✓ ✓ 77.54 64.73 76.92 92.93 97.74 49.4
✓ ✓ ✓ 77.91 65.21 77.49 93.13 97.73 28.8

Performance with Different Filter. Noting that the proposed tracking framework leverages MeKF
to enhance motion prediction and update, thereby improving overall tracking performance, we fur-
ther compare MeKF against other filtering methods within the same ByteTrack baseline, as the
results shown in Table 4. Specifically, we replace the baseline filter with several standard KFs using
different motion models, as well as several data-driven filters, while keeping ByteTrack’s associa-
tion module unchanged. Results show that MeKF consistently achieves the best performance across
most metrics, demonstrating superior state estimation accuracy through its non-Markovian model-
ing. The NN blocks in MeKF assist the physical motion model by generating compensation for its
errors, based on memory and detection respectively.

Compared with the KF that uses a constant velocity (CV) motion model, using more complex mo-
tion models, such as constant acceleration (CA), coordinated turn (CT), and constant turn rate and
acceleration (CTRA), does not lead to significant performance gains. This is because all these mod-
els are based on the first-order Markovian assumption, making them fail to adapt to the complex,
non-Markovian motion patterns inherent in the DanceTrack dataset. Furthermore, compared with
data-driven methods, the MeKF robustly ensures the stability of the state estimation; even if the NN
fails, the underlying physical model can still provide a baseline prediction as a failsafe.

Table 4: Performance comparison of different filter on the DanceTrack validation set. The
best/second results are shown in bold/underlined.

Filter HOTA ↑ AssA ↑ IDF1 ↑ DetA ↑ MOTA ↑
KF (CV) 56.94 34.92 48.18 92.91 96.35
KF (CA) 57.55 39.46 54.64 84.18 92.98
KF (CT) 57.32 39.21 54.25 84.05 93.08
KF (CTRA) 58.13 40.43 55.54 83.83 93.09

LSTM (Hochreiter & Schmidhuber, 1997) 60.16 38.97 52.31 92.94 96.64
Transformer (Vaswani et al., 2017) 64.12 44.20 57.60 93.08 97.04
Diffusion (Lv et al., 2024) 65.91 46.78 60.38 92.93 97.15
MeKF (ours) 67.41 49.58 66.41 91.69 97.55

Performance with Different Training Data Quality. As the training process of MeKF relies on
detection data to learn and generate compensations for observation process mismatches, we con-
ducted an ablation study on DanceTrack to investigate the sensitivity of MeKF to detector quality.
Specifically, following the consistent training pipeline described in Section 4.2, we trained YOLOX
models of varying scales (YOLOX-S, -M, and -L) to generate distinct training datasets of differing
quality and retrained the MeKF accordingly. The comparison results of MeKFs within the same
ByteTrack baseline are presented in Table 5.

Notably, MeKF retains strong performance even with the lightweight YOLOX-S. Despite the sig-
nificant drop in detection precision, the MeKF effectively learns to compensate for the higher ob-
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servation bias. This demonstrates that our method is not strictly dependent on high-quality inputs;
rather, it adaptively models the specific performance of the detector.

Table 5: Sensitivity analysis on detector dependency for MeKF training. The best/second results are
shown in bold/underlined.

Detector HOTA ↑ AssA ↑ IDF1 ↑ DetA ↑ MOTA ↑
YOLOX-S 59.51 42.51 60.71 83.49 93.63
YOLOX-M 63.22 44.85 62.34 89.20 96.31
YOLOX-L 65.19 47.26 64.06 89.98 96.88
YOLOX-X 67.41 49.58 66.41 91.69 97.55

Performance with Different IoU Variants. In Table 6, we compare the performance of different as-
sociation methods, where the motion prediction and update components are consistently handled by
MeKF. HMIoU, proposed in Hybrid-SORT, combines IoU with HIoU to incorporate height similar-
ity, while HA-EIoU, introduced in SportMamba, multiplies EIoU with HIoU to enhance association
performance. Our proposed Mo-IoU achieves the best results across all metrics, outperforming ex-
isting IoU variants. Its superior performance can be attributed to its adaptive parameter selection,
which jointly controls the expansion scale and height weighting, resulting in more robust and accu-
rate tracking. Moreover, the HIoU introduced in Mo-IoU counterbalances the looseness of EIoU,
yielding a significant improvement in association robustness compared to EIoU alone.

Table 6: Performance comparison of different IoU variants on the DanceTrack validation set.

IoU variants HOTA ↑ AssA ↑ IDF1 ↑ DetA ↑ MOTA ↑
IoU (Yu et al., 2016) 67.41 49.58 66.41 91.69 97.55
EIoU (Fan et al., 2023) 70.80 54.37 70.50 92.24 97.62
HMIoU (Yang et al., 2024) 72.70 57.15 71.65 92.52 97.66
HA-EIoU (Khanna et al., 2025) 75.21 60.97 74.53 92.81 97.71
Mo-IoU(ours) 77.54 64.73 76.92 92.93 97.74

5 CONCLUSION

In this paper, we present MeMoSORT, a simple, online and real-time MOT algorithm designed to
overcome key limitations in conventional TBD methods. Our approach introduces two key innova-
tions: the MeKF, which uses a memory-augmented NN to correct state estimation errors, and the
Mo-IoU, which adaptively expands the matching region and incorporates height similarity to ensure
robust association. The effectiveness of our method is demonstrated through extensive experiments,
where MeMoSORT achieves SOTA performance on the challenging benchmark DanceTrack and
SportsMOT, providing a robust solution for MOT challenges.
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Vukašin Stanojević and Branimir Todorović. Boosttrack++: Using tracklet information to detect
more objects in multiple object tracking, 2024. URL http://arxiv.org/abs/2408.
13003.

Peize Sun, Jinkun Cao, Yi Jiang, Zehuan Yuan, Song Bai, Kris Kitani, and Ping Luo. Dancetrack:
Multi-object tracking in uniform appearance and diverse motion. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 20993–21002, 2022.

Lorenzo Vaquero, Yihong Xu, Xavier Alameda-Pineda, Vı́ctor M Brea, and Manuel Mucientes. Lost
and found: Overcoming detector failures in online multi-object tracking. In European Conference
on Computer Vision, pp. 448–466. Springer, 2024.

Rejin Varghese and Sambath M. Yolov8: A novel object detection algorithm with enhanced per-
formance and robustness. In 2024 International Conference on Advances in Data Engineering
and Intelligent Computing Systems (ADICS), pp. 1–6, 2024. doi: 10.1109/ADICS58448.2024.
10533619.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017. URL http://arxiv.
org/abs/1706.03762.

Xiaoxu Wang, Yan Liang, Quan Pan, and Feng Yang. A gaussian approximation recursive filter for
nonlinear systems with correlated noises. Automatica, 48(9):2290–2297, 2012.

Zhiling Wang. Transformer-based motion predictor for multi-dancer tracking in non-linear move-
ments of dancesport performance. IEEE Access, 2025.

Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime tracking with a deep
association metric. In 2017 IEEE international conference on image processing (ICIP), pp. 3645–
3649. IEEE, 2017.

Changcheng Xiao, Qiong Cao, Zhigang Luo, and Long Lan. Mambatrack: A simple baseline for
multiple object tracking with state space model, 2024a. URL http://arxiv.org/abs/
2408.09178.

13

http://ieeexplore.ieee.org/document/7780460/
http://ieeexplore.ieee.org/document/7780460/
http://link.springer.com/10.1007/978-3-319-48881-3_2
http://link.springer.com/10.1007/978-3-319-48881-3_2
http://arxiv.org/abs/1805.00123
http://arxiv.org/abs/1805.00123
http://arxiv.org/abs/2408.13003
http://arxiv.org/abs/2408.13003
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2408.09178
http://arxiv.org/abs/2408.09178


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Changcheng Xiao, Qiong Cao, Yujie Zhong, Long Lan, Xiang Zhang, Zhigang Luo, and Dacheng
Tao. Motiontrack: Learning motion predictor for multiple object tracking. 179:106539,
2024b. ISSN 0893-6080. doi: 10.1016/j.neunet.2024.106539. URL https://linkinghub.
elsevier.com/retrieve/pii/S0893608024004635.

Shi Yan, Yan Liang, Le Zheng, Mingyang Fan, Xiaoxu Wang, and Binglu Wang. Explainable gated
bayesian recurrent neural network for non-markov state estimation. IEEE Transactions on Signal
Processing, 72:4302–4317, 2024. doi: 10.1109/TSP.2024.3390139.

Mingzhan Yang, Guangxin Han, Bin Yan, Wenhua Zhang, Jinqing Qi, Huchuan Lu, and Dong
Wang. Hybrid-sort: Weak cues matter for online multi-object tracking. volume 38, pp. 6504–
6512, 2024. doi: 10.1609/aaai.v38i7.28471. URL https://ojs.aaai.org/index.php/
AAAI/article/view/28471.

Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Mad-
havan, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask
learning. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2633–2642, 2020. doi: 10.1109/cvpr42600.2020.00271. URL https://ieeexplore.
ieee.org/document/9156329/.

Jiahui Yu, Yuning Jiang, Zhangyang Wang, Zhimin Cao, and Thomas Huang. Unitbox: An
advanced object detection network. In Proceedings of the 24th ACM International Confer-
ence on Multimedia, pp. 516–520, 2016. doi: 10.1145/2964284.2967274. URL https:
//dl.acm.org/doi/10.1145/2964284.2967274.

Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan Yuan, Ping Luo, Wenyu
Liu, and Xinggang Wang. Bytetrack: Multi-object tracking by associating every detection box.
In European conference on computer vision, pp. 1–21. Springer, 2022.

Yuang Zhang, Tiancai Wang, and Xiangyu Zhang. Motrv2: Bootstrapping end-to-end multi-object
tracking by pretrained object detectors. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 22056–22065, 2023.

14

https://linkinghub.elsevier.com/retrieve/pii/S0893608024004635
https://linkinghub.elsevier.com/retrieve/pii/S0893608024004635
https://ojs.aaai.org/index.php/AAAI/article/view/28471
https://ojs.aaai.org/index.php/AAAI/article/view/28471
https://ieeexplore.ieee.org/document/9156329/
https://ieeexplore.ieee.org/document/9156329/
https://dl.acm.org/doi/10.1145/2964284.2967274
https://dl.acm.org/doi/10.1145/2964284.2967274


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

Table of Contents
A Analysis of Non-Markovian Dynamics in Target Trajectories

B Derivation of MeKF

B.1 Bayesian Filters for non-Markovian Processes
B.2 Implementation with Gaussian Approximation

C Detailed Training Procedure for MeKF

D Supplementary Experiments

D.1 Benchmark Results on MOT17 and MOT20
D.2 Generality on Other Baseline Trackers

E Additional Experiments of MeKF

E.1 Sensitivity Analysis of MeKF’s Training Data Volume
E.2 Sensitivity Analysis of MeKF’s Memory Dimension
E.3 Generalization Experiments of MeKF

F Additional Experiments of Mo-IoU

F.1 Discussion on the Design of MAT Formulations
F.2 Sensitivity Analysis of Mo-IoU’s Thresholds
F.3 Sensitivity Analysis of Mo-IoU’s Parameter

G Case Analysis

G.1 Case 1: Occlusion
G.2 Case 2: Group Separation
G.3 Additional Visualizations

H The Use of Large Language Models

I Reproducibility Statement

A ANALYSIS OF NON-MARKOVIAN DYNAMICS IN TARGET TRAJECTORIES

Conventional KF-based MOT algorithms typically adopt a first-order Markov assumption to sim-
plify target dynamics. However, real-world targets often exhibit more complex motion with long-
term temporal correlations, as illustrated in Figure 4, a phenomenon we refer to as non-Markovian
dynamics.

As shown in Figure 4(a), a visual inspection of the target’s trajectory strongly suggests its motion has
significant non-Markovian properties. The path is not a simple random walk but can be decomposed
into three distinct phases: an initial period of localized, high-frequency movement (yellow area); a
middle phase of directional, long-range displacement (pink area); and a final phase of dense hovering
in a new local area (purple area). This phased switching from a stable local pattern to a directional
journey and back again strongly implies an underlying “plan” or “intent” that a memoryless Marko-
vian model could not produce. Furthermore, the high degree of path overlap and repeated visits to
specific areas demonstrate a form of memory, directly contradicting the core Markovian assumption
that the future depends only on the present. In summary, the trajectory’s clear structure, apparent
purposefulness, and historical dependence provide strong qualitative evidence of its non-Markovian
nature.

The trajectory shown in Figure 4(b) provides even more compelling evidence of non-Markovian
dynamics. It moves in a predictable, back-and-forth pattern, creating a clear rhythm. This is the
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Figure 4: Two representative ground truth (GT) trajectories from the DanceTrack dataset, showcas-
ing complex and non-Markovian motion. The color of the path indicates the progression of time,
evolving from purple (start) to yellow (end).The x-axis and y-axis represent the target positions in
image coordinates (pixels).

opposite of a chaotic random walk. This pattern is not static; it displays multi-scale dynamics, with
the amplitude and frequency of the oscillations evolving throughout the sequence. Such a structured
and evolving “choreography” points to a process with significant state memory.

The non-Markovian nature is further confirmed by the trajectory’s continuity across interruptions.
When the target reappears after a gap in observation, its motion pattern seamlessly resumes rather
than resetting to a random state. This suggests a persistent “intent” that violates the core memoryless
assumption of the Markov process.

B DERIVATION OF MEKF

B.1 BAYESIAN FILTERS FOR NON-MARKOVIAN PROCESSES

Before deriving the analytical expression for our MeKF, we first establish a general Bayesian filter-
ing framework for non-Markovian dynamics to describe the computation of the relevant probability
density functions (PDFs). Within this framework, obtaining the filtered estimate at time step t re-
quires computing the joint posterior PDF of the entire history of target states b1:t and memory m1:t.
This is conditioned on all available measurements up to the current time, namely, b̃1:t, as well as
the training data D (the detailed generation procedure for this dataset is described in Appendix C).
Formally, the density of interest is p(b1:t,m1:t|b̃1:t,D).

According to Bayes’ theorem, this posterior probability density can be decomposed as follows:

p(b1:t,m1:t|b̃1:t,D) = p(b1:t,m1:t|b̃1:t−1, b̃t,D)

=
p(b̃t|b1:t,m1:t, b̃1:t−1,D)p(b1:t,m1:t|b̃1:t−1,D)

p(b̃t|b̃1:t−1,D)
(19)

∝ p(b̃t|b1:t,m1:t, b̃1:t−1,D)p(b1:t,m1:t|b̃1:t−1,D). (20)

Since the detection b̃t is generated by the detector based only on the current ground truth state bt,
it is independent of the memory m1:t. Consequently, the corresponding likelihood PDF can be
expressed equivalently as:

p(b̃t|b1:t,m1:t, b̃1:t−1,D) = p(b̃t|bt,D). (21)

To account for the observation model mismatch present in Eq. 6, we express the likelihood PDF in
the following integral form:

p(b̃t|bt,D) =

∫
p(b̃t,∆

H
t |bt,D)d∆H

t

=

∫
p(b̃t|∆H

t , bt,D)p(∆H
t |bt,D)d∆H

t . (22)
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According to the total probability formula, the prior PDF in Eq. 19 can be expressed as follows:

p(b1:t,m1:t|b̃1:t−1,D) = p(bt,mt|b1:t−1,m1:t−1, b̃1:t−1,D)p(b1:t−1,m1:t−1|b̃1:t−1,D). (23)

The second term on the right-hand side of Eq. 23 is the joint posterior PDF of the state and memory
at time t−1, while the term on the left-hand side represents the joint transition process for the
state and memory that captures the system’s non-Markovian dynamics. Applying the conditional
independence expressed by Eqs. 4 and 5, this transition process can be expressed as follows:

p(bt,mt|b1:t−1,m1:t−1, b̃1:t−1,D)

= p(bt|mt, b1:t−1,m1:t−1, b̃1:t−1,D)p(mt|b1:t−1,m1:t−1, b̃1:t−1,D)

=

∫
p(bt|∆F

t ,mt, b1:t−1,m1:t−1, b̃1:t−1,D)p(∆F
t |mt, b1:t−1,m1:t−1, b̃1:t−1,D)

× p(mt|bt−1,mt−1,D)d∆F
t

=

∫
p(bt|∆F

t , bt−1,D)p(∆F
t |mt,D)p(mt|bt−1,mt−1,D)d∆F

t . (24)

Based on the Bayesian theorem, the joint posterior of state and memory can be obtained as:

p(b1:t,m1:t|b̃1:t,D) ∝
∫
p(b̃t|∆H

t , bt,D)p(∆H
t |bt,D)d∆H

t

×
∫
p(bt|∆F

t , bt−1,D)p(∆F
t |mt,D)p(mt|bt−1,mt−1,D)d∆F

t

× p(b1:t−1,m1:t−1|b̃1:t−1,D). (25)

B.2 IMPLEMENTATION WITH GAUSSIAN APPROXIMATION

While the above derivation establishes the general Bayesian filtering framework, its direct imple-
mentation involves various methods. For the purposes of computational efficiency and stability, we
choose to implement the framework using Gaussian approximation. The following assumptions are
therefore required to perform this approximation.

Assumption 1. The process noise wt given in Eq. 4 obeys Gaussian distribution with a mean of 0
and a covariance of Qt, namely, wt ∼ N (0,Qt). And the measurement noise vt given in Eq. 6
obeys a Gaussian distribution with a mean of 0 and a covariance of Rt, namely, vt ∼ N (0,Rt).

Assumption 2. The state posterior PDF obeys a Gaussian distribution with first- and second-order
moments of b̂t and Pt, respectively, namely,

p(b1:t|b̃1:t,D) = N (bt; b̂t,Pt). (26)

Assumption 3. The state transition mismatch term ∆F
t obeys a Gaussian distribution with first- and

second-order moments of ∆̂F
t and PF

t , respectively. And the observation mismatch term ∆H
t obeys

a Gaussian distribution with first- and second-order moments of ∆̂H
t and PH

t , respectively, namely,

p(∆F
t |ct,D) = N (∆F

t ; ∆̂
F
t ,P

F
t ), (27)

p(∆H
t |bt,D) = N (∆H

t ; ∆̂
H
t ,P

H
t ). (28)

B.2.1 IMPLEMENTATION FOR STATE PREDICTION

Based on Eq. 4, the mean of state prediction is calculated as:

b̂′t = Ep(b1:t|b̃1:t−1,D) {bt}

= Ep(b1:t|b̃1:t−1,D)

{
Fbt−1 +∆F

t +wt

}
=

∫∫∫∫ (
Fbt−1 +∆F

t

)
P 1
t d∆

F
t dmtdmt−1dbt−1, (29)
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where P 1
t = p(∆F

t |mt,D)p(mt|bt−1,mt−1,D)p(b1:t−1,m1:t−1|b̃1:t−1,D).

According to Eq. 26, the state posterior PDF at time t−1 is formulated as:

p(b1:t−1|b̃1:t−1,D) = N (bt−1; b̂t−1,Pt−1). (30)

Substituting Eq. 30 and the Eq. 27 into Eq. 29, the analytical expression of state prediction mean
can be calculated as:

b̂′t = Fb̂t−1 + ∆̂F
t . (31)

The state prediction covariance is calculated as:

P′
t = Ep(b1:t|b̃1:t−1,D)

{(
bt − b̂′t

)(
bt − b̂′t

)⊤}
=

∫∫∫∫ (
Fbt−1 +∆F

t +wt − b̂′t

)(
Fbt−1 +∆F

t +wt − b̂′t

)⊤
P 1
t d∆

F
t dmtdmt−1dbt−1.

(32)

Substituting Eq. 27 and Eq. 30 into Eq. 32, thus we have the state prediction covariance as follows:

P′
t = FPt−1F

⊤ +PF
t +Qt. (33)

B.2.2 IMPLEMENTATION FOR STATE UPDATE

According to Eqs. 6 and 28, the mean value of the measurement prediction is calculated as:

b̃′t = Ep(b̃t|b̃1:t−1,D)

{
b̃t

}
= Ep(b̃t|b̃1:t−1,D)

{
Hbt +∆H

t + vt

}
=

∫∫∫ (
Hbt +∆H

t

)
p(∆H

t |bt,D)p(b1:t,m1:t|b̃1:t−1,D)d∆H
t dmtdbt

= Hb̂′t + ∆̂H
t . (34)

The measurement prediction covariance is calculated as:

Pb̃b̃
t = Ep(b̃t|b̃1:t−1,D)

{(
b̃t − b̂′t

)(
b̃t − b̂′t

)⊤}
=

∫∫∫ (
Hbt +∆H

t + vt − b̃′t

)(
Hbt +∆H

t + vt − b̃′t

)⊤
P 2
t d∆

H
t dmtdbt

= HP′
tH

⊤ +PH
t +Rt, (35)

where P 2
t = p(∆H

t |bt,D)p(b1:t,m1:t|b̃1:t−1,D).

And the mutual covariance of the state prediction and the measurement prediction is calculated as:

Pbb̃
t = Ep(b̃t|b̃1:t−1,D)

{(
bt − b̂′t

)(
b̃t − b̂′t

)⊤}
=

∫∫∫ (
Fbt−1 +∆F

t +wt − b̂′t

)(
Hbt +∆H

t + vt − b̃′t

)⊤
P 2
t d∆

H
t dmtdbt

= P′
tH

⊤. (36)

According to the Bayesian rule in Eq. 19, the posterior can be equivalent to:

p(b1:t,m1:t|b̃1:t,D) =
p(b1:t,m1:t|b̃1:t−1,D)

p(b̃t|b̃1:t−1,D)
(37)
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Due to the self-conjugate property of Gaussian distributions under Bayesian theorem, the joint distri-
bution of the state prediction and the measurement prediction is also Gaussian and can be expressed
as follows:

p(b1:t, b̃1:t|b̃1:t−1,D) = N

(b̂′t
b̃′t

)
,

 P′
t Pbb̃

t(
Pbb̃

t

)⊤
Pb̃b̃

t

 , (38)

Subsequently, we substitute Eq. 38 into Eq. 37 to obtain updates of the state and covariance as
follows:

b̂t = b̂′t +Pbb̃
t

(
Pb̃b̃

t

)−1 (
b̃t − b̂′t

)
, (39)

Pt = P′
t −Pbb̃

t

(
Pb̃b̃

t

)−1 (
Pbb̃

t

)⊤
. (40)

Finally, if we define Pbb̃
t (Pb̃b̃

t )−1 as Kt (so called Kalman gain), then Eqs. 39 and 40 can be
expressed as:

b̂t = b̂′t +Kt(b̃t −Hb̂′t − ∆̂H
t ), (41)

Pt = (I−KtH)P′
t. (42)

C DETAILED TRAINING PROCEDURE FOR MEKF

The MeKF requires detection boxes as input during inference to produce an estimate of the target’s
state. However, existing MOT datasets typically only provide ground truth trajectories, which is
insufficient for our end-to-end training pipeline. To address this, we construct paired sequences of
detection boxes and ground truth trajectories.

Specifically, we first employ the YOLOX detector, pre-trained as described in Section 4.2, to gen-
erate a sequence of detections for each frame, ensuring consistency with the actual tracking pro-
cess. At time t, the detector generates a set of Nt detection boxes from a single frame, namely,
At = {b̃nt }n=1,2,...,Nt , where n stands for the index of the detection box. Subsequently, we match
these detections to the ground truth (a set of Mt boxes at time t, namely, Bt = {b̄mt }m=1,2,...,Mt

)
based on a standard IoU threshold of 0.8. This process can be formulated as:

πt(m) =

{
argmax

n
IoU(b̄mt , b̃

n
t ), if IoU(b̄mt , b̃

n
t ) > 0.8,

0, otherwise,
(43)

where πt(m) defines the mapping from a ground truth box to a detection box. Specifically, πt(m) =
n indicates that them-th ground-truth box is successfully associated with the n-th detection. A value
of πt(m) = 0 signifies a matching failure, meaning the ground truth box remains unmatched, which
often corresponds to a missed detection.

Based on Eq. 43, The matching follows these criteria:

• Each ground truth box is matched with at most one detection; if multiple detections surpass the
IoU threshold, the one with the highest IoU is selected.

• A single detection can be associated with multiple ground truth boxes.

Following this matching procedure, we obtain a set of pair-wise tuples, each containing a ground
truth box and its matched detection for a single target in a given frame, namely, Ct = {b̄mt , b̃

πt(m)
t }.

Since our LSTM-based MeKF requires fixed-length sequences for training, we generate these by
applying a sliding window of length T (as defined in Eq. 13) to the full trajectories. Each resulting
training sequence for a single target trajectory, generated from one sliding window, can be repre-
sented as C = [C1, C2, ..., CT ]. The final training dataset, which we denote as D, is the collection of
all such sequences generated from all target trajectories. This dataset is then used to train the MeKF.

It should be noted that the IoU-based matching between detections and ground truth boxes is not
always successful. Matching failures can occur, for instance, in cases of missed detections (i.e.,
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no detection box is generated) or when a detection significantly deviates from its corresponding
ground-truth box. In such scenarios where a match is lossed, we set b̃t = Hb̂′t + ∆̂H

t in Eq. 11.
This configuration prompts the filter to perform only the state prediction for the current time step,
and bypassing the measurement update process.

D SUPPLEMENTARY EXPERIMENTS

D.1 BENCHMARK RESULTS ON MOT17 AND MOT20

We incorporated full evaluations on the MOT17 and MOT20 benchmarks, as shown in Tables 7 and
8. These benchmarks are characterized by pedestrian tracking scenarios where motion patterns are
predominantly linear and predictable (Hu et al., 2024). We retained the settings from DanceTrack
and SportsMOT, modifying only the velocity thresholds Θcenter and Θheight according to the normal-
ized velocity distribution from training set (i.e. 0.0208 and 0.0001 for MOT17, 0.0209 and 0.0001
for MOT20).

Table 7: Performance comparison with SOTA methods on the MOT17 test set. The best/second
results are shown in bold/underlined.

Methods HOTA ↑ AssA↑ IDF1↑ DetA↑ MOTA ↑ IDs ↓ FP (104 ) ↓ FN (104 ) ↓

ByteTrack (Zhang et al., 2022) 63.1 62.0 77.3 64.5 80.3 2196 2.55 8.37
OC-SORT (Cao et al., 2023) 63.2 63.2 77.5 - 78.0 1950 1.51 10.80
C-BIoU (Fan et al., 2023) 64.1 63.7 79.7 64.8 81.1 - - -
BUSCA (Vaquero et al., 2024) 63.9 64.2 79.2 63.9 78.6 1428 2.46 9.45
TOPICTrack (Cao et al., 2025) 63.9 64.3 78.6 63.7 78.8 1515 1.70 10.11
MeMoSORT (ours) 63.9 64.5 79.3 63.6 78.7 2058 2.02 9.77

Table 8: Performance comparison with SOTA methods on the MOT20 test set. The best/second
results are shown in bold/underlined.

Methods HOTA ↑ AssA ↑ IDF1 ↑ DetA ↑ MOTA ↑ IDs ↓ FP (104 ) ↓ FN (104 ) ↓

ByteTrack (Zhang et al., 2022) 61.3 59.6 75.2 63.4 77.8 1223 2.62 8.76
OC-SORT (Cao et al., 2023) 62.1 62.0 75.9 - 75.5 913 1.80 10.80
BPMTrack (Gao et al., 2024) 62.3 60.9 76.7 63.9 78.3 1314 2.86 8.25
BUSCA (Vaquero et al., 2024) 61.8 63.5 76.3 60.3 72.7 1006 1.38 12.63
TOPICTrack (Cao et al., 2025) 62.6 65.4 77.6 60.0 72.4 869 1.10 13.11
MeMoSORT (ours) 61.9 63.8 75.7 60.2 72.5 1200 1.26 12.83

The results in Tables 7 and 8 indicate MeMoSORT achieves results comparable to established base-
lines on standard benchmarks. Notably, on MOT17, our method achieves the best AssA score,
outperforming leading baselines like TOPICTrack and BUSCA, while maintaining a competitive
HOTA score.

Our MeMoSORT shows significant performance gains on DanceTrack and SportsMOT, but only
modest improvements on MOT17 and MOT20, revealing a performance discrepancy across datasets.
We attribute this discrepancy on MOT17/20 to their distinct motion patterns and occlusion charac-
teristics, which interact differently with our MeKF and Mo-IoU modules.

At first, pedestrians in MOT17/20 typically move in a linear and stable manner, making standard
KFs based on the Markovian assumption sufficient for motion prediction. Conversely, targets in
DanceTrack and SportsMOT exhibit long-term dependencies, a complexity that our MeKF is ex-
plicitly designed to handle. Consequently, the distinct advantage of our MeKF in modeling complex
motion is not fully exploited on MOT17/20, resulting in performance marginally superior to standard
KF-based methods.

Secondly, the motion characteristics of targets during occlusion in MOT17/20 significantly differ
from those in DanceTrack and SportsMOT. For example, targets in the latter datasets often interact
with complex and rapid movements during occlusion, whereas occluded pedestrians in MOT17/20
typically remain in a slow-motion. When targets within the surveillance area move slowly, the
dynamic adaptability of Mo-IoU to varying speeds yields only limited gains.
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Overall, despite these limiting factors on MOT17/20, MeMoSORT still outperforms several trackers
that do not utilize NNs. This demonstrates that MeKF and Mo-IoU effectively solve the complex
MOT problem without overfitting to the simplified scenarios in traditional benchmarks.

D.2 GENERALITY ON OTHER BASELINE TRACKERS

We applied the key components of MeMoSORT on other representative TBD trackers as baselines,
including SORT, BoT-SORT and DeepSORT. They utilize KF as state estimation methods, while ap-
plying different association strategies in consideration of spatial and appearance information. From
Table 9, significant improvements can be observed from all these baseline trackers after applying
MeKF or Mo-IoU, demonstrating the generality of the proposed key components.

Table 9: Generality experiments of applying MeKF and Mo-IoU to other baseline trackers on the
DanceTrack validation set.

Baseline tracker MeKF Mo-IoU HOTA ↑ AssA ↑ IDF1 ↑ DetA ↑ MOTA ↑

BoT-SORT (Aharon et al., 2022)
58.68 37.11 50.22 92.87 96.50

✓ 68.28 50.72 66.40 91.97 97.40
✓ 68.62 51.26 67.39 91.91 97.62

SORT (Bewley et al., 2016)
55.57 33.26 46.22 92.94 96.19

✓ 63.64 43.48 56.55 93.21 96.95
✓ 67.11 49.04 66.39 91.89 97.58

DeepSORT (Wojke et al., 2017)
53.68 31.02 44.14 92.97 95.98

✓ 62.12 41.45 54.38 93.16 96.83
✓ 64.18 44.15 57.31 93.36 97.07

E ADDITIONAL EXPERIMENTS OF MEKF

E.1 SENSITIVITY ANALYSIS OF MEKF’S TRAINING DATA VOLUME

We conduct experiments on the DanceTrack validation set to investigate the data effciency of MeM-
oSORT by varying the training data volume for MeKF. The results shown in Table 10 demonstrate
remarkable data efficiency: even when the training data is restricted to only 5%, MeMoSORT main-
tains a robust HOTA score, exhibiting negligible degradation compared to the full-data baseline.
This confirms that our MeKF possesses strong robustness, relying on the physical prior and the
Bayesian framework as inductive bias to maintain high performance even when training samples are
scarce.

Table 10: Performance comparison under varying training data volume on the DanceTrack validation
set. The best/second results are shown in bold/underlined.

Percentage of training data HOTA ↑ AssA ↑ IDF1 ↑ DetA ↑ MOTA ↑
5% 65.56 46.15 58.18 93.19 96.79

10% 66.13 46.81 59.27 93.32 96.94
25% 66.62 47.77 61.07 92.97 97.24
50% 67.13 48.53 61.89 92.91 97.26
100% 67.41 49.58 66.41 91.69 97.55

E.2 SENSITIVITY ANALYSIS OF MEKF’S MEMORY DIMENSION

Table 11: Sensitivity analysis of MeKF’s memory dimension on the DanceTrack validation set. The
best/second results are shown in bold/underlined.

Dimension HOTA ↑ AssA ↑ IDF1 ↑ DetA ↑ MOTA ↑
8 60.47 39.32 52.34 93.07 96.68
16 63.67 43.55 56.81 93.10 96.92
32 67.41 49.58 66.41 91.69 97.55
64 67.11 49.04 66.39 91.89 97.58
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As shown in Table 11, we analyze the sensitivity of MeKF’s memory dimension. HOTA, AssA
and IDF1 achieve their highest values at the dimension of 32. However, further increasing the
dimension to 64 leads to a slight degradation in performance. This trend suggests that choosing
32 as the dimension of memory provides an optimal trade-off, offering sufficient capacity to model
complex motions without introducing overfitting.

E.3 GENERALIZATION EXPERIMENTS OF MEKF

To assess the generalization capability of MeKF, we conduct a cross-dataset evaluation on Dance-
Track and SportsMOT. The experiments focus on training MeKF on one dataset’s training set and
testing it on the other dataset’s validation set, with the results detailed in Table 12.

As expected, MeKF achieves its best performance when trained and tested on the same dataset, with
only a slight degradation observed in cross-dataset experiments. The minimal performance gap in
these experiments validate that MeKF learns robust and transferable motion patterns, highlighting
its strong generalization capability.

Table 12: Generalization experiments of MeKF on DanceTrack and SportsMOT

Training Dataset Testing Dataset HOTA ↑ AssA ↑ IDF1 ↑ DetA ↑ MOTA ↑
DanceTrack DanceTrack 67.41 49.58 66.41 91.69 97.55
SportsMOT DanceTrack 65.83 46.53 59.93 93.20 97.21

SportsMOT SportsMOT 79.77 68.18 78.84 93.35 98.43
DanceTrack SportsMOT 78.70 66.57 77.80 93.09 97.79

F ADDITIONAL EXPERIMENTS OF MO-IOU

F.1 DISCUSSION ON THE DESIGN OF MAT FORMULATIONS

We introduce two continuous baselines based on tanh(·) and sigmoid(·) functions to evaluate robust-
ness against velocity noise. This comparison aims to verify whether continuous mappings propagate
minor jitters compared to the stable discrete design. The formulations are defined as follows:

tanh(·) function form:

pt =
1 + tanh(α(ċt−1 −Θcenter))

2
(Mfast −Mslow) +Mslow, (44)

qt =
1 + tanh(α(ḣt−1 −Θheight))

2
(Nfast −Nslow) +Nslow, (45)

sigmoid(·) function form:

pt = sigmoid
(
α(ċt−1 −Θcenter)

)
(Mfast −Mslow) +Mslow, (46)

qt = sigmoid
(
α(ḣt−1 −Θheight)

)
(Nfast −Nslow) +Nslow, (47)

where α is a scalar controlling the transition rate of the functions. Specific results are presented in
the Table 13.

Table 13: Sensitivity analysis of continuous MAT functions on DanceTrack validation set. Values
represent HOTA scores, with deviations from the original binary form in parentheses.

α 1 10 102 103 104 105

tanh(·) 76.96
(-0.58)

77.16
(-0.38)

77.21
(-0.33)

77.47
(-0.07)

77.54
(-0.00)

77.54
(-0.00)

sigmoid(·) 76.91
(-0.63)

77.25
(-0.29)

76.94
(-0.60)

77.27
(-0.27)

77.54
(-0.00)

77.54
(-0.00)

As illustrated in Table 13, the HOTA score exhibits a consistent upward trend as the scaling factor
α increases. The performance reaches its optimum when α is large (104 ∼ 105), at which point
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the continuous functions approximate the original discrete binary form. Conversely, smoother tran-
sitions (smaller α) lead to performance degradation. This empirical evidence validates that discrete
binary switching is superior to continuous tuning for this application.

Overall, the discrete design functions as a parameter quantizer, which forces all targets within a
binary speed level (“fast” or “slow”) to utilize the same association parameters (pt and qt), ignoring
minor speed fluctuations. This parameter consistency yields a stable and uniform association cost
matrix, which is critical for the Hungarian algorithm to find global optima without flickering.

F.2 SENSITIVITY ANALYSIS OF MO-IOU’S THRESHOLDS
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Figure 5: Sensitivity analysis of Mo-IoU’s thresholds, Θheight and Θcenter, on the (a) DanceTrack
validation set and (b) SportsMOT validation set. The heatmap displays the HOTA improvement (in
points) relative to fixed parameters. The analysis reveals a peak performance gain at the configura-
tion of Θheight=50% and Θcenter=70%. The broad area of significant improvement demonstrate the
robustness of our proposed Motion-Adaptive Technique (MAT) to hyperparameter variations.

To evaluate the sensitivity on the threshold of our proposed Mo-IoU, we conduct an analysis on
Θheight and Θcenter. As depicted in Figure 5, we explore various parameter combinations and report
the resulting HOTA improvement over the static parameter setting. The values for both thresholds
are determined based on the percentile of the target speed distribution observed in the training set;
for instance, a 50% setting corresponds to the median speed.

The results indicate that the optimal configuration (Θheight=50%, Θcenter=70%) achieves a peak
HOTA gain on both datasets. More importantly, the heatmap reveals a large contiguous region
where performance gains consistently exceed the fixed parameter setting. This demonstrates that
Mo-IoU is not highly sensitive to the precise choice of thresholds, validating the robustness and
practical applicability of MAT.

F.3 SENSITIVITY ANALYSIS OF MO-IOU’S PARAMETER

To evaluate the sensitivity on the threshold of our proposed Mo-IoU, we have added a sensitivity
analysis for the MAT parameters (Mslow, Mfast, Nslow, and Nfast) to verify their impact on tracking
performance. The results are summarized in Table 14.

As illustrated in the table, the MAT demonstrates a significant performance margin across diverse pa-
rameter configurations. Specifically, even under suboptimal settings where parameters significantly
deviate from the optimal values (e.g., the most extreme case of Mslow=0.3, Mfast=0.4 combined with
Nslow=4,Nfast=3), the HOTA score remains above 75. This wide operating range of the system’s per-
formance stems from the intrinsic physical consistency of the MAT, rather than relying on fine-tuned
heuristics.
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Table 14: Sensitivity analysis of MAT parameters on DanceTrack validation set. Values represent
HOTA scores, with rows denote expansion parameters (Mslow, Mfast) and columns denote height
parameters (Nslow, Nfast).

HOTA ↑ (Nslow, Nfast)

(2,1) (3,2) (4,3)

(M
sl

ow
,M

fa
st

) (0.3,0.4) 77.02 76.34 75.59
(0.4,0.5) 77.51 76.46 75.77
(0.5,0.6) 77.54 76.46 75.91
(0.6,0.7) 77.48 76.59 75.85
(0.7,0.8) 77.01 76.27 75.60

G CASE ANALYSIS

To provide an intuitive understanding of the tracking behavior, we present several representative
cases that illustrate how the algorithms perform under challenging scenarios. These examples are se-
lected from different sequences to highlight typical situations where identity preservation is difficult,
such as temporary occlusions or group separation. By examining these cases, we aim to complement
the quantitative results, offering a clearer picture of the strengths of our proposed MeMoSORT.

G.1 CASE 1: OCCLUSION

We analyze a video segment from the DanceTrack dataset where two targets cross paths, leading to a
temporary occlusion. As shown in Figure 6, each subfigure contains a tracking results plot (left) and
representative frames (right). In the tracking results plot, each ground truth (GT) identity is shown
as a vertical line, while colors denote tracking identities. Frames where the GT identity has been
missed are left blank, and thick dots mark the temporal positions where ID switches occur. Dashed
arrows connect the temporal positions in the tracking results plot to the corresponding frames. In
the DiffMOT algorithm, the IDs of the two targets are swapped when encountering occlusion during
crossing. In contrast, our proposed MeMoSORT successfully maintains consistent IDs throughout
the occlusion, demonstrating its robustness in handling occlusions and interactions.

(a) DiffMOT (b) MeMoSORT

Figure 6: Comparison of DiffMOT and MeMoSORT in a crossing scenario. (a) DiffMOT shows
ID switch when two targets cross paths. (b) MeMoSORT preserves consistent IDs, demonstrating
stronger robustness in handling interactions.
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G.2 CASE 2: GROUP SEPARATION

To further assess the robustness of the tracker, we examine a group separation scenario from the
SportsMOT dataset. In this sequence, three targets move closely together, merging and separating,
with frequent interactions and occlusions making identity tracking particularly challenging. As
shown in Figure 7, DiffMOT fails to maintain ID consistency during separation, resulting in swapped
IDs. In contrast, MeMoSORT effectively preserves stable IDs, showing its advantage in recovering
from occlusion and maintaining robustness in group interaction scenarios.

(a) DiffMOT (b) MeMoSORT

Figure 7: Comparison of DiffMOT and MeMoSORT in a group separation scenario. (a) DiffMOT
shows ID switch when three targets separate. (b) MeMoSORT preserves consistent IDs, demonstrat-
ing stronger robustness in handling group interactions and occlusion recovery.

G.3 ADDITIONAL VISUALIZATIONS

Fig. 8 presents additional qualitative comparisons between our method and DiffMOT on the Dance-
Track and SportsMOT validation sets. Similar to the sequences shown earlier, these cases highlight
challenging scenarios such as frequent occlusions and complex interactions, where our approach
demonstrates more stable identity preservation. These results further validate the effectiveness of
our method under real-world challenges.

H THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, a Large Language Model (LLM) was utilized to assist
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methodology, experiments, and conclusions, is the original work of the authors.
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(a) DiffMOT (b) MeMoSORT

(c) dancetrack0058 timeline

(d) DiffMOT (e) MeMoSORT

(f) v 00HRwkvvjtQ c008 timeline

(g) DiffMOT (h) MeMoSORT

(i) v cC2mHWqMcjk c007 timeline

Figure 8: Tracking results visualizations on supplementary videos from the DanceTrack and
SportsMOT validation sets. (a-c) video dancetrack0058 from DanceTrack. (d-f) video
v 00HRwkvvjtQ c008 from SportsMOT. (g-i) video v cC2mHWqMcjk c007 from SportsMOT.
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