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ABSTRACT

We introduce the Neighborhood Subgraph Pairwise Path Kernel (NSPPK),
a scalable and interpretable graph kernel for attributed graphs. NSPPK
compares neighborhoods connected through unions of shortest paths and
directly integrates continuous node features without discretization. This
yields explicit, sparse embeddings where graph similarities reduce to a single
dot product. Feature extraction scales near-linearly in |V|, parallelizes
efficiently, and is fully deterministic. Across six benchmarks with continuous
attributes, NSPPK achieves the best average rank among graph kernels and
frequently matches or outperforms modern GNNs—without any training
or hyperparameter tuning. By combining scalability, interpretability, and
expressive power, NSPPK offers a practical alternative for graph learning in
low-data or reproducibility-critical settings. Its advantage lies in working
robustly when data is scarce, yet scaling efficiently to hundreds of thousands
of graphs when data is abundant.

1 INTRODUCTION

Graphs are a fundamental data structure for modeling relationships among entities, with
applications in social networks (Newman, 2003), bioinformatics (Borgwardt et al., [2005),
cheminformatics (Dobson & Doig, [2003), recommender systems (Ying et al., 2018), and cyber-
security (Huang et all 2022)). Unlike images or sequences embedded in regular grids, graphs
capture irregular, non-Euclidean structures with variable neighborhoods and complex topolo-
gies (Bronstein et al,[2017). In many domains, nodes and edges carry attributes—categorical
(e.g., atom types) or continuous (e.g., charges, coordinates, behavioral metrics).

A central challenge in graph learning is how to compare such rich structures both effectively
and efficiently. Two main families of methods have emerged. Graph kernels provide a
classical and well-founded approach: they decompose graphs into substructures and measure
similarity through carefully designed comparisons. Kernels are deterministic, interpretable,
and often perform well in low-data settings. However, most classical kernels assume
discrete labels, relying on exact matches. Applied to continuous data, they typically require
discretization (Neumann et al., [2016b), which discards fine-grained information and may
distort similarity. Empirically, kernels that integrate continuous features directly (Feragen
et al.| |2013b) outperform those based on discretization, but many variants still struggle with
scalability, especially on larger graphs.

In contrast, Graph Neural Networks (GNNs) (Kipf & Welling}, |2017;|Xu et al., [2019b) naturally
process continuous attributes and have achieved strong benchmark performance. Yet they
usually demand large labeled datasets, intensive training, and extensive hyperparameter
tuning, while their internal representations remain difficult to interpret (Errica et al.l |2020;
Hu et al.,|2020b)). These drawbacks limit their applicability in low-data regimes or in settings
where reproducibility and transparency are critical.

This trade-off motivates the search for approaches that combine the sample-efficiency and
interpretability of kernels with the expressive power and flexibility of neural methods. Several
recent kernels have moved in this direction by incorporating continuous features through
embeddings (Feragen et al., |2013b)), propagation (Neumann et al., [2016a), or WL-style
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extensions (Shervashidze et al., 2009aj; Rieck et al. [2019). While more expressive, these
methods often face scalability challenges, leaving room for further improvement.

Our Contribution We introduce the Neighborhood Subgraph Pairwise Path Kernel
(NSPPK), a new graph kernel designed to combine scalability, interpretability, and sup-
port for continuous attributes. Our method builds on the Neighborhood Subgraph Pairwise
Distance Kernel (NSPDK) (Costa & De Grave, [2010), a well-known kernel that compares
fixed-radius neighborhoods around pairs of nodes. While NSPDK has proven effective in
capturing structural information, it is limited to discrete labels and cannot directly exploit
real-valued node features.

NSPPK extends NSPDK in three key ways:

o Kernel design. We replace fixed-radius neighborhoods alone with unions of shortest-
path neighborhoods between node pairs, capturing dependencies that go beyond the
reach of classical NSPDK features.

e Continuous attributes. Real-valued node (and edge) features are integrated
directly into the kernel without discretization, preserving fine-grained information
that would otherwise be lost.

o Efficiency. NSPPK yields explicit, sparse graph-level embeddings. Kernel eval-
uation reduces to a single dot product in O(|E|) time, and feature extraction
scales near-linearly in |V, is trivially parallelizable, and requires only a few integer
hyperparameters.

e Empirical results. Across six benchmarks with continuous attributes, NSPPK
attains the best average rank among graph kernels and often matches or outperforms
GNN baselines, all without any training, hyperparameter tuning, or randomness.

2 RELATED WORK

Most graph kernels follow the R-convolution framework (Haussler} 1999), which decomposes
structured objects into substructures and sums kernel evaluations. Examples include the
graphlet kernel (Shervashidze et al. [2009b), Weisfeiler-Lehman (WL) subtree kernel (Sher{
vashidze et al., 2011a)), and NSPDK (Costa & De Grave, |2010). WL kernels are powerful
but limited by the 1-WL test, while NSPDK counts fixed-radius neighborhoods around
node pairs. To handle continuous attributes, early kernels such as marginalized random
walk (Kashima et al., [2003; |Gartner et al., |2003; [Vishwanathan et al., [2010) and subgraph-
matching (Kriege & Mutzel, 2012)) are expressive but computationally heavy. Propagation
kernels (Neumann et al., [2016a)) scale efficiently but rely on discretization. Shortest-path-
based kernels (Borgwardt & Kriegel, [2005} [Feragen et al., [2013b)) capture long-range structure
but suffer from high complexity. Recent work relaxes exact label matches via optimal trans-
port, e.g., Wasserstein WL (Togninalli et al., [2019)) and fused Gromov—Wasserstein (Vayer
et al., 2019)), though at high cost. Hybrid approaches integrate kernels with neural models,
such as Deep Graph Kernels (Yanardag & Vishwanathan| |2015) and Graph Neural Tangent
Kernels (Du et al.} 2019). NSPPK builds on NSPDK but introduces two key innovations:
(i) unions of shortest-path neighborhoods capture richer multi-scale dependencies, and (ii)
continuous attributes are integrated directly without discretization. Unlike graph invariant
kernels (Orsini et al.} [2015), NSPPK avoids explicit subgraph matching, and its explicit
embeddings allow O(|F|) similarity computation while retaining interpretability.

3 DEFINITIONS

A graph is a pair G = (V, E), where V is a finite set of vertices (or nodes) and E CV x V' is
a set of edges connecting pairs of vertices. A labeled graph is a graph G = (V, E') equipped
with a labeling function ¢ : V U E — X that assigns each vertex and edge a label from a
discrete alphabet 3. An attributed graph is a graph G = (V, E) endowed with an attribute
function f : VU E — R? that assigns each vertex and edge a d-dimensional real-valued
feature vector.
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For a vertex v € V, the degree of v is the number of edges incident to it, deg(v) =
Hu eV | (v,u) € E}, and its (immediate) neighborhood is N(v) = {u € V | (v,u) €
E}. Optionally, a degree cutoff parameter 7 can be introduced, restricting neighborhood
expansions to min(deg(v), 7).

A path in G is a sequence of vertices (v1,va, ..., vy) such that (v;,v,41) € E forall 1 <i < k.
The length of the path is the number of edges in the sequence, i.e., k — 1.

A shortest path from v to u is a path with the smallest possible length among all paths
connecting v and u. The distance between v and u, denoted d(v, u), is the length of a shortest
path between them; if no path exists, d(v,«) is defined to be infinite.

The union of shortest paths between vertices v and u, denoted U(v,u), is the subgraph
consisting of all vertices and edges that belong to at least one shortest path from v to u (i.e.,
the union over all equally-short paths).

The r-hop neighborhood of a vertex v, denoted N,.(v), is the set of vertices whose distance
from v is at most 7, namely N,.(v) = {u € V' | d(v,u) < r}. Similarly, the r-hop neighborhood
of a subgraph S C @ is the subgraph induced by all vertices u € V such that Jw € S with
d(w,u) <.

Anchors and connector path. Given an (unordered) anchor pair {u,v} C V with v # v and
distance d(u,v), define the connector path of radius ' > 0 by C, (u,v) = NT/(U(u7 v)), where
U(u,v) is the union of all shortest u<+v paths (as defined above). Thus Cy(u,v) = U(u,v)
(only path nodes/edges), while ' > 0 “thickens” the connector by including all vertices
within 7" hops of U(u,v) (induced subgraph). If u and v are disconnected, set C,s (u,v) = &
and ignore the pair. Unless stated otherwise, anchor pairs are unordered to avoid double
counting.

Notation summary. Unless otherwise specified, we denote by |V| and |E| the numbers
of vertices and edges, respectively; K = max,cy deg(v) is the maximum degree and 7 an
optional degree cutoff. Distances are d(u,v), N,(v) is the r-hop neighborhood of v, U(u,v)
the union of all shortest u < v paths, and Cy (u,v) = N, (U (u,v)) the connector of radius r’.
Lowercase r,d, " denote per-feature radii and distances, while uppercase R, D, R’ are their
maximal values. The resulting feature vector for a graph G under parameters § = (R, D, R’)

is f2.
4 METHOD

A widely used strategy for defining kernels between structured objects is to decompose them
into constituent substructures and compare all possible substructure pairs using a base kernel.
Kernels designed this way fall under the R-convolution framework (Haussler,|1999), which
includes most classical graph kernels.

4.1 FroMm NSPDK 10 NSPPK

The Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) (Costa & De Grave,
2010) instantiates this framework by counting pairs of fixed-radius neighborhoods at a given
distance. However, NSPDK has two main limitations: (i) it only supports discrete node
labels, and (ii) it uses only fixed-radius neighborhoods, missing richer structural patterns.

We propose the Neighborhood Subgraph Pairwise Path Kernel (NSPPK), which extends
NSPDK in three ways:

1. A scalable, parallel graph kernel whose feature extraction runs in near-linear time in
|V| for fixed (R, D) (and optional degree cap 7), yielding explicit sparse embeddings
so similarities reduce to a single O(|E|) dot product.

2. A new feature family that pairs symmetric r-hop anchor neighborhoods N,.(u), N,.(v)
with a union-of-shortest-path connector C,(u,v) = N, (U(u,v)), capturing long-
range topological interactions (with ' = 0 recovering the bare shortest-path union).
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3. A principled integration of continuous node (and optionally edge) attributes directly
into the hashing/aggregation pipeline—no discretization—preserving fine-grained
information in deterministic, interpretable features.

The complete NSPPK feature set is obtained by enumerating all parameter configurations:
rusTw €{0,...,R}, de€{0,...,D}, " €{0,...,R'}yu{go},

where R, D, R’ are small positive integers chosen for tractability. We denote by r’ the
connector radius for any given feature and by R’ the maximal connector radius considered
during extraction, so r’ € {0,...,R'}.

4.2 NSPPK DEFINITION

Let 8 = (R, D, R’) denote the maximal radii and distances for feature extraction. For a
graph G, let fg be the vector counting occurrences of each subgraph pattern in the NSPPK
family. The kernel between G and G’ is kg(G,G’) = g—rfg/. Because NSPPK features are
defined per node, this can be written as fg =D eV fg,v, where fce;,v counts only features in
which v is one of the neighborhood centers or path endpoints.

4.3 FEATURE HASHING PIPELINE

We represent each subgraph pattern by a unique integer in {0,...,2" — 1} using a hierarchy
of hash functions. This provides constant-time indexing into the feature vector and avoids
explicit subgraph isomorphism checks.

Base hash functions. For any element =, H,(x) = sha256(x) mod 2" is the n-bit base
hash. From H,, we define: - H4(I): sequence hash of an ordered tuple I = (x1,...,xx), -
H'(S): multiset hash of S, computed after lexicographic sorting to ensure order invariance.

Node hash. For each node v (labels and neighborhoods as in Section [3)) we set Nj,(v) =
H ({ H([Hy (£(w), Hy((ev))]) 1 u € N(v) }) and Ny (v) = HY([Hn(((v)), Ni(v)))-

Rooted graph hash. For radius r, set C} = H'({ Ny (u) : v € D} }) with D} = {u |
d(v,u) = j} and G (v) = HY([CY, CY, ..., C)).

Neighborhood pair hash. For nodes u,v at distance d we compute P};,“’T”’d(

HY([Hy(d), H'({G (u), G (0)})])-

u,v) =

Union-of-shortest-paths hash. Let U(u,v) be the union of all shortest paths between
u and v. For each j € {0,...,d} we set C7, = H'({Gy(w) : w € DY }) and U}}d(u,v) =

Hq([cg,ﬂ tet C}i),r])

Final feature vector. The NSPPK vector fg; is the histogram of all Py and Uy hash
values from G.

4.4 WHY THE CONNECTOR PATH DISAMBIGUATES: AN ILLUSTRATIVE EXAMPLE

Figure [I] contrasts NSPDK and NSPPK features for two graphs that share the same r=1
anchor neighborhoods around u and v and the same distance d(u,v)=>5, but differ in how «
and v are connected. In the top row there is a unique shortest u<»v path; in the bottom row
there are two distinct shortest paths of equal length (their union forms a “ladder”).

NSPDK collapses the two cases. NSPDK features only depend on
(N (u), d(u,v), Np(v)). Since Nyi(u), N1(v), and d(u,v) are identical in both graphs, the

NSPDK hash coincides: ¢\ 4= = hash(Ny (u), d(u,v), N1(v)), so NSPDK cannot
distinguish them.
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Figure 1: NSPDK vs. NSPPK on anchors u,v with r=1, d=5. Left: NSPDK features
for the case with a single shortest path (top) and two equal-length shortest paths (bottom).
Because NSPDK uses only (N, (u),d(u,v), N,.(v)), both cases produce the same feature.
Right: NSPPK includes the connector C,/(u,v) = N, (U(u,v)) (shown in green). The
connector is a simple path in the top graph but a two-path union in the bottom graph, so
NSPPK assigns different features (already for '=0; here r'=1 is shown).

NSPPK separates them. NSPPK augments the pair of neighborhoods with the connector
Cy(u,v) = Ny (U(u,v)), where U(u, v) is the union of all shortest u<+v paths. The structural

feature becomes mﬂfil’d:&“:” = hash(Ny (u), Ci(u,v), N1(v)). In the top graph, U(u,v) is
a simple path; in the bottom graph, U (u, v) contains two parallel shortest paths. Consequently

Cyr(u,v) differs (already for r'=0; =1 merely “thickens” the union), and the NSPPK hashes
are distinct. This is precisely the extra resolution provided by the connector.

4.5 ATTRIBUTE INTEGRATION

For graphs with continuous node attributes A € R"*P, let F € R"*f be the binary
node—feature incidence matrix, where f = 2™ is the number of hash buckets. We com-
pute z = vec(AT F) € RP"f so that each feature index stores the sum of attributes of all
nodes in subgraphs contributing to that feature. Node weights can be incorporated by
replacing A with diag(w)A, and the same approach extends to edge attributes.

4.6 COMPLEXITY ANALYSIS

The main cost in NSPPK is extracting subgraphs via breadth-first search (BFS) up to depth
B = max(R, D). A single BFS explores at most O(K?) vertices in the worst case (with
K = max,cy deg(v)), and repeating this over all |V| centers gives O(|V|K ). With a degree
cutoff 7, the branching factor becomes K¢ = min(K, 7), yielding O(|V|K%). Incorporating
d-dimensional attributes adds only a multiplicative factor of d.

Kernel evaluation. Once features are extracted, kernel computation reduces to a sparse
dot product k(G,G") = fl for with cost O(nnz(fg) + nnz(fgr)), scaling near-linearly with
the number of edges |E|.

In summary, under realistic settings where K and B are small (often < 6), NSPPK achieves
near-linear scaling in |V (and thus |E|), with attribute integration adding only a linear
factor in d.
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The number of hash bits directly determines the dimensionality of the feature space. Using
fewer bits increases the probability of hash collisions—different substructures mapping to
the same index—which introduces noise and can reduce predictive accuracy. Conversely,
very large bit sizes (e.g., n > 20) yield millions of potential features, inflating dimensionality
and memory usage. While sparse representations mitigate storage overhead, excessively large
codomains may still become impractical for downstream learning models.

4.7 BALANCING FEATURE Si1ZE AND HASH COLLISIONS

TO examine thlS trade—oﬂ, we trained a random ROC AUC and Probability of Collisions vs. Number of Bits
forest classifier on 1,300 molecular graphs from -10

PubChem AID 463230 (pPAFAH inhibition assay), **
excluding node attributes. As shown in Figure [2]
predictive performance declines only gradually as
the bit size decreases. In particular, accuracy re-
mains stable even at ~14 bits (about 16k features),
despite collision rates exceeding 10%. This sug-
gests that collisions involving infrequent features
are largely tolerated by the model, enabling com-

pact yet effective representations. T4 6 6 10 12 14 16 18 20
Number of Bits (n_bits)

AUC ROC
o 1) o o
Y o S S
S & S &
o ° ° )
o 'S o @
Prob of Collisions

=)
5}

5  EXPERIMENTS Figure 2: Predictive performance vs.
number of hash bits.

5.1 SMALL-SCALE DATASETS

We evaluate NSPPK against kernel and neural

baselines on six node-attributed graph classification benchmarks (Nikolentzos et al.| 2021
[Errica et all, [2020): ENZYMES and PROTEINS full (Borgwardt et al., [2005), BZR and
COX2 (molecular activity) (Sutherland et al., |2003), Synthie (Morris et al., 2016), and
SYNTHETICnew (Feragen et al.,|2013a)). These cover biological, molecular, and synthetic
graphs.

Baselines. Kernel methods: GraphHopper (GH) (Feragen et al.| [2013b)), Propagation Kernel
(PK) (Neumann et al.| 2016a), Subgraph Matching (SM) (Kriege & Mutzell, 2012)), Multiscale
Laplacian (ML) (Kondor & Pan| [2016), Shortest Path (SP) (Borgwardt & Kriegel, 2005)),
HSSPK-SP/WL (Morris et al., 2016), WWL (Togninalli et al., 2019), linearFGW (Nguyen
& Tsudal 2023), and NP (Fang et al., |2023), plus discretized NSPPK and WL. All kernels
use SVM classifiers (LIBSVM (Chang & Lin, [2011))).

Neural baselines: DGCNN (Zhang et all 2018]), GraphSAGE (Hamilton et al., [2017
InfoGraph (Sun et al.,[2019), GIN (Xu et al.L[2019b), GraphCL (You et al.L[2020), AttentiveF
(FNP) (Gasteiger et al., 2020), PNA (Corso et al.,|2020), and PDF (Yang et al., |2023a)).

0

Protocol. We follow the fair evaluation setup of (Errica et al.,[2022): 10-fold cross-validation
with 10% validation from training data. Kernels: SVM with C tuned on validation; multiple
hyperparameter configurations tested; kernel computation times reported for best models.
GNNs: trained up to 1000 epochs with early stopping; tuned via validation. NSPPK: fixed
configuration across all datasets (R=1, D=4, R'=1,7=8, 16-bit hashing); no per-dataset
tuning. For comparison with kernels we use LIBSVM, and for GNNs we use NSPPK features
with XGBoost.

Runtime. Kernel methods run on a single CPU core; GNNs run on CPUs with library-level
multithreading. All experiments used a SLURM-managed cluster with NVIDIA A100 GPUs,
Intel Xeon Gold 5317 CPUs (24 cores), and 64 GB RAM. Kernels exceeding 24h per fold are
reported as timeouts.

Controls. We also test (i) attributes only, where graphs are represented by summed node
attributes, and (ii) structure only, where attributes are removed (Appendix [G)).

Results. Against kernels, NSPPK achieves the best accuracy on three of six benchmarks
(SYNTHETICnew, BZR, COX2) and the best overall average rank (2.25 vs. 3.50 for WWL).
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While it does not win every dataset, it consistently attains the strongest aggregate rank
across kernel competitors, showing broad reliability rather than isolated peaks. It scales
reliably, unlike some kernels that time out on attribute-rich data. Against neural networks,
NSPPK+XGBoost achieves the best accuracy on four datasets and the best overall rank
(2.00), outperforming strong GNNs such as GIN, GraphCL, and PDF. Even where specific
architectures edge out NSPPK on an individual dataset, it still delivers the top average
rank across neural baselines, underscoring robustness across diverse tasks. Even in the
structure-only setting, NSPPK remains competitive, indicating that it captures complemen-
tary structural and attribute information robustly across domains.

Table 1: Classification accuracy (%) with node attributes (+) with Avg Rank.

Method SYN IEWETIC Synthie BZR COX2  ENZYMES PROTEINS Avg Rank
SM TIMEOUT TIMEOUT 83.96+£3.85 78.81+4.49 TIMEOUT TIMEOUT 8.75
SP TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT

ML 50.331+9.00 59.38+4.38 82.96+E5.24 77.531+5.53 36.331+4.33 72.06+3.60 11.08
PK 54.33+£10.11 71.75+£6.43 78.77+£1.01 78.1618.07 20.67*2.70 59.70£0.16 11.75
HSPPK_WL 60.331+6.74 90.75+8.66 85.6713.46 80.3014.67 60.171+6.26 72.96+4.84 5.08
HSPPK_SP 57.0017.81 91.25+3.01 84.49+5.04 80.31%E570 5850+555 68.55+5.24 6.42
GH N 77.33+7.42 72.75+£832 85.94£5.17 78901295 66.50+6.17 72.06+3.64 5.42
NP 99.00 +2.13 29.00%+5.72 86.18+5.53 78.16+4.47 43.00E5.76 64.62+5.13 7.83
linearFGW-RAW  62.00+8.46 58.00£7.05 76.341+5.68 77.93+3.68 56.67£7.07 69.4710.91 11.58
linearFGW-WL1 72.33+8.70 73.00£5.34 7852+3.99 72.13+7.40 47.00£4.70 59.66+0.38 10.58
linearFGW-WL2 71.33+7.48 61.75+£7.50 7851+£298 75.16+£3.34 41.00£7.57 59.75+0.43 11.50
WL (disc.) 88.33+£5.63 74.75+7.86 83.711+4.83 77.10%+559 50.67+E7.03 71.16+4.03 7.58
WLOA 85.33£5.62 75.50£10.50 84.204+4.47 74.54+540 66.331+5.21 71.16+1.97 5.92
WWL 58.33£7.78 97.001+3.12 86.454+4.50 79.031+3.84 73.67+5.26 77.18+5.27 3.50
NSPDK (disc.) 96.331+3.14 83.75+t4.64 85.70£3.90 80.30+4.15 52.67+4.67 72.87E1.51 4.75
NSPPK (ours) 99.00+1.52 86.75+4.75 87.17+3.58 81.16 £2.30 60.50£5.38 74.66%3.81 2.25
Attributes only 54.334+9.55 53.00£4.30 78.77£1.01 78.16%8.07 55.67+538 62.80E£2.52 11.25

Note: “Attributes only” participates in Avg Rank like any other method.

Table 2: Neural networks: classification accuracy (%) with node attributes (+) and Avg
Rank.

SYNTHETIC

Method new Synthie BZR COX2 ENZYMES PROTEINS Avg Rank
DGCNN 46.67+£5.63 50.0015.70 79.40+3.32 77.15+0.06 33.331+9.37 73.86+£3.56 9.00
GraphSAGE 76.6717.70 85.001+3.45 83.7014.44 80.9310.07 65.00+5.73 75.02+3.29 4.33
InfoGraph 65.00 = 16.05 85.754+8.50 79.01+£3.42 77.771+14.20 53.331E7.84 66.37+6.25 7.58
GIN 83.67+5.92 97.50+£2.50 84.17+6.14 81.801+6.14 68.30£543 62.10+5.26 3.75
GraphCL 67.00+£9.48 78.751+7.18 84.171+3.62 80.34+6.95 48.17+6.93 75.82+£2.73 5.08
GNN 64.67£7.92 85.001+5.92 85.66+4.60 79.92+7.08 65171841 66.57£6.10 5.08
FNP 53.33+£11.16 36.00+£8.60 79.49+3.94 78.22+7.01 321741298 70.17£3.15 8.75
PNA 55.67+£20.66 92.50+3.71 79.01+£4.33 78.22+7.02 20.83+7.12 75.11£3.60 6.83
PDF 97.67£2.60 64.251+7.50 83.681+3.81 82.23+7.00 65.00+4.65 72.14+4.48 4.58
NSPPK feat. (XGBoost) 98.67 +2.21 87.751+3.94 88.66 = 2.89 82.90+4.39 60.171+6.30 77.371+4.80 2.00
Attributes only 54.334+9.55 53.0014.30 78.7741.01 78.1618.07 55.671+5.38 62.80£2.52 9.00

In the neural setting, the explicit NSPPK+XGBoost pipeline achieves an average run-
time rank of 4.83. It is clearly faster than heavyweight architectures such as GIN
and DGCNN, while remaining competitive with mid-range models like FNP and PDF.
Runtime analysis. Detailed runtime ta-
bles are reported in Appendix [F] Although it
does not match the extreme speed of very
lightweight self-supervised baselines (e.g.,
GraphCL, PNA), NSPPK-+XGBoost simulta-
neously delivers the best accuracy overall, un-
derlining its strong efficiency—accuracy trade-
off. For comparability, kernel runtimes there
are measured on a single CPU core, which
also applies to NSPPK. Under this constraint,
NSPPK is not the absolute fastest (average
rank 6.33), but it remains substantially more
efficient than expressive kernels such as GH
or HSPPK, while achieving higher accuracy.

1000

Vectorization Time (s)

10 100
Number of CPU Cores

Figure 3: Vectorization time vs. CPU cores.
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This positions NSPPK as a favorable compro-
mise: slower than the simplest structure-only
kernels, but far more accurate, and significantly faster than heavier graph kernels.

5.2 ABLATION STUDY

Importantly, Figure [3] demonstrates that NSPPK is perfectly parallelizable: vectorization
scales nearly linearly with the number of CPU cores. Thus, while our tables reflect conserva-
tive single-core timings for fairness, NSPPK can in practice achieve much faster wall-clock
runtimes on multi-core systems.

NSPPK consistently achieves state-of-the-art accuracy without the need for dataset-specific
training or hyperparameter tuning. Compared to existing kernels, it offers a substantially
better balance between expressivity and efficiency, and when paired with XGBoost, it often
surpasses neural baselines in predictive performance. While the runtime tables report
conservative single-core measurements for fairness, Figure [3] shows that NSPPK scales nearly
linearly with the number of CPU cores, enabling much faster wall-clock runtimes in practice.

We assessed the impact of three components of NSPPK: the distance feature, the union-of-
shortest-paths connector, and the high-degree thresholding heuristic. All runs used fixed
parameters (R =1, D =4, R’ = 1) and a RandomForestClassifier.

Table 3: Ablation study: Accuracy (%) + Std.

Setting ENZYMES BZR PROTEINS SYNTHIE SYNTHETICnew COX2

No Distance 57.17 + 6.99 85.69 + 5.52 76.37 + 3.85 69.00 + 6.24 98.33 + 2.24 81.16 + 2.45
No Path 52.83 £+ 6.28 86.98 + 3.72 76.10 + 4.11 79.81 + 1.53 98.67 + 1.63 80.73 £ 2.30
No Threshold 55.50 & 4.48 87.42 + 2.25 75.92 & 5.05 79.00 £ 5.15 99.00 &+ 1.53 81.81 £ 3.78

Full NSPPK 57.83 + 5.43 87.90 + 3.56 76.20 &+ 3.74 85.50 + 4.85 99.00 + 1.53 82.46 + 3.74

Results show that each component contributes depending on the dataset, with the full
model consistently matching or exceeding the ablations. The degree-threshold heuristic, in
particular, provides a robust improvement across datasets.

5.3 LARGER-SCALE DATASET EXPERIMENT

We further evaluated NSPPK on the large-scale ogbg-molpcba benchmark from the Open
Graph Benchmark suite (Hu et al., |2020al), which contains 437,929 molecular graphs with
node attributes and 128 binary classification tasks.

Using a single fixed configuration (R =1,D =4, R’ = 1, npits = 16), we computed explicit
NSPPK features for the entire dataset in under one hour on CPU. Across all 128 tasks,
NSPPK achieved an average validation AP of 0.2186 and an average test AP of 0.2079,
without any hyperparameter tuning or GPU acceleration.

On the OGB leaderboard, state-of-the-art neural architectures such as Graphormer (Ying
et al,|2021), PDF (Yang et al., 2023b)), and HyperFusion (Zhang et al.| [2024) achieve ~0.30—
0.32 test AP, typically relying on extensive pretraining, careful hyperparameter tuning, and
GPU acceleration. Tuned mid-range models such as PNA (Corso et al., 2020)), GIN (Xu
et al., |2019a)), and AttentiveFP (FNP) (Xiong et al., [2019)) reach ~0.25-0.30. By contrast,
NSPPK attains 0.2079 test AP without any hyperparameter tuning, pretraining, or GPU
usage, computing explicit features for all 438k graphs in under one hour on CPU.

This positions NSPPK not as a replacement for the very best neural models, but as a
complementary approach: it offers deterministic, training-free baselines that are highly
competitive given their simplicity and efficiency. In practice, NSPPK fills a unique niche:
when compute budgets are limited, when reproducibility is paramount, or when only small
amounts of labeled data are available, it provides a strong, interpretable alternative that
scales easily to hundreds of thousands of graphs.

A case study on task 95 (Figure [4)) shows that NSPPK exhibits strong sample efficiency:
it outperforms neural baselines at small training sizes and remains substantially faster
in the sparse variant. At scale, high-capacity models such as PDF eventually overtake
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Figure 4: Learning curves on ogbg-molpcba (task 95). NSPPK (red) compared with neural
baselines including GIN, GAT, PNA, PDF, and FNP.

NSPPK in absolute accuracy, but the gap remains modest given NSPPK’s simplicity. Further
implementation details and hyperparameter settings are provided in Appendix [[}

6 CONCLUSION

We presented the Neighborhood Subgraph Pairwise Path Kernel (NSPPK), a scalable
and interpretable extension of NSPDK that enriches neighborhood features with union-of-
shortest-path connectors and integrates continuous attributes without discretization. NSPPK
produces explicit embeddings, enabling efficient, deterministic, and training-free similarity
computation.

Across six node-attributed benchmarks and a large-scale molecular dataset, NSPPK con-
sistently outperforms classical kernels and often rivals or surpasses graph neural networks
without training or hyperparameter tuning, providing strong baselines when compute, data,
or reproducibility budgets are tight and complementing resource-intensive neural pipelines.
While it is not the top performer on every dataset, it repeatedly secures the best overall ranks
against both kernel and neural baselines, highlighting dependable, across-the-board strength.
Its versatility spans low-data and large-scale regimes, maintaining predictable CPU-only
runtimes and near-linear scalability in |V| for transparent, easy-to-deploy solutions.

In summary, NSPPK bridges classical kernel methods and neural approaches by favoring
deterministic, efficient feature extraction over end-to-end training while retaining enough
expressive power to stay competitive. Future work will explore hybrid kernel-neural models,
automatic feature selection, and domain-specific adaptations.
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APPENDIX

A DATASETS

The graphs are undirected, with nodes labeled, attributed, or both. All datasets are publicly
accessible Kersting et al.| (2016)); Morris et al (2020)) and have been widely used in comparative
studies of graph kernels and GNNs Nikolentzos et al.| (2021)).

BZR consists of 405 chemical compounds represented as graphs, where nodes correspond to
atoms and edges to chemical bonds. The task is to predict whether a compound acts as a
ligand for the benzodiazepine receptor Dobson & Doig| (2003)).

COX2 contains 467 molecules represented as graphs, labeled according to their activity
against the cyclooxygenase-2 enzyme (COX-2 inhibitor classification) [Dobson & Doig| (2003)).

ENZYMES consists of 600 protein tertiary structures from the BRENDA database. Each
protein belongs to one of six top-level enzyme commission (EC) classes, and the task is to
predict the correct class Borgwardt et al.| (2005).

PROTEINS and PROTEINS full represent proteins as graphs, where vertices corre-
spond to secondary structure elements. Edges connect vertices that are adjacent in the
amino acid sequence or in 3D space. The classification task is to distinguish enzymes from
non-enzymes Borgwardt et al.| (2005).

SYNTHETICnew contains 300 synthetic graphs evenly split into two classes. Each graph
has 100 vertices and 196 edges with normally distributed node attributes. Class 1 graphs are
generated by rewiring 5 edges and permuting 10 node attributes; Class 2 graphs by rewiring
10 edges and permuting 5 attributes. Gaussian noise is added to all attributes

et al] (2011)

SYNTHIE contains 400 synthetic graphs across four classes, each with 15 real-valued node
attributes. Graphs are constructed from perturbed Erdés—Rényi base graphs and combined
with two distinct attribute distributions Morris et al| (2016).

B HYPERPARAMETERS USED FOR MODEL SELECTION IN THE GRAPH
CLASSIFICATION TASK

For some kernels, only a subset of the hyperparameters was optimized, while the rest of the
hyperparameters were kept fixed.

Table 4: Hyperparameters used for model selection in the graph classification experiments .

Model Layers Convs  Batch Learning Hidden g chs L2 Dropout F2HONCC o iiizer Scheduler Dense Embed.  Neighbors
per layer  size rate units (loss, acc) dim  dim  Aggregation
DGNN 2,34 1 16 le—4 32, 64 1000 0.5 500, 500 Adam 128 mean, max, sum
32 (5 layers,
see . : ). o0 = StepLR B B
GIN iddon units 1 32, 128 le—2 1000 - 0,05 500, 500 Adam (step 50, ~=0.5) sum
32 (3 layers)
GraphSAGE 3,5 1 16 le—2, le—3, le—4 32,64 1000 - 0 500, 500 Adam - - ~ mean, max, sum
InfoGraph 3,5 16, 32 le—2, le—3 32, 64, 128 100 0,le—4 0,0.1,03 500, 500 Adam Rec‘““j?}g‘;ﬁ'me““
, . ) . 4 6 - StepLR
GNN 3,5 1 16 le—2, le—3, le—4 32,64 1000 0,05 500, 500 Adam et mean, max, sum
(step 50, v=0.5)
GraphCL 2,3 1 32 le+3 64, 128 200 - 0 500, 500 Adam - - -
FNP 2,3,4 1 32 le—3 32, 64 1000 0.0,0.2,0.5 500, 500 Adam
PNA 3, 1 32 le-3 32, 64 1000 - 0 500, 500 Adam - - -
PDF 2,3 1 32 Se—4 64, 129 300 le—2 0 500, 500 Adam StepLR nean

(step 50, v=0.5)
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Table 5: Hyperparameters used in the kernels for model selection in the graph classification

task.

Kernel Fixed Validation-tuned

SM k=3 -

SP - -

ML v7=0.01,7n=0.01,5=Ilmx €{0,...,5}, ¢ € {50,100, 200,300}
10

PK w=10"5 Te{l,...,6}

HSPPK-WL Iterations = 20 (100 for h € {0,...,5}
SYNTHIE)

HSPPK-SP Iterations = 20 (100 for h € {0,...,5}
SYNTHIE)

GH - Linear kernel / Gaussian kernel

linearFGW-RAW

linearFGW-WL1
linearFGW-WL2

RBF kernel, v = 0.1

RBF kernel, v = 0.1
RBF kernel, v = 0.1

a € {0.1,0.5,0.9}, GWB layers = 5, OT layers € {3,5}, Iter
€ {1,2,3}, Yerner € {0.01,0.1,1.0}

same as above

same as above

WL (disc) - Iterations € {0,...,5}
WLOA - Iterations € {0,...,5}
WWL - Iterations € {0,...,7}, Sinkhorn € {False,True}, v €
{0.01,0.1,1,10}
NP - Iterations € {0,...,5}, Linear / Gaussian kernel
NSPDK D=1,R=4 -
NSPDK (disc) D=1,R=4 -
NSPPK D=1, R=4, R =1, threshold t = 8, nbits n = 16
B.1 ROBUSTNESS STUDY HYPERPARAMETERS

Table @

summarizes the configurations used for the diagonal dominance / robustness experi-

ments (Section[5.2). Neural baselines (GIN-Random, GraphCL, InfoGraph) were run with
a common lightweight setup , while classical kernels (GraphHopper, Propagation Kernel)
followed their standard definitions. NSPPK used the same fixed configuration as in the main

experiments.

Table 6: Hyperparameters for robustness / diagonal dominance analysis.

Method Configuration

NSPPK R=1,D=4, R =1,t=38, npits = 12

GIN-Random 3 layers GIN, hidden dim=32, MLP layers=2, pooling=sum,
epochs=200, Ir=0.01, seed=42, orthogonal init, no supervision

GraphCL Same GIN backbone as above, contrastive pretraining with
augmentations, 200 epochs, 1r=0.01

InfoGraph Same GIN backbone as above, maximizing mutual information,
200 epochs, Ir=0.01

GraphHopper Shortest-path kernel, weight decay w = 107°, tp. €

Propagation Ker-
nel

{1,2,3,4,5}
Attribute propagation with M = L1 distance, 5 iterations

For Infograph,GraphCl and Gin-Random, we generate a dataset of 50000 graphs similar to
G but the number of nodes was set to range from 50 to 250(as for the model to be able to

detect node dropping).
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C LARGE SCALE EMBEDDING EXPERIMENT: QM9
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Figure 5: NSPPK vectorization time for QM9 dataset as a function of number of bits.

Figure [5] illustrates the time required for NSPPK to vectorize the QM9 Blum & Reymond
(2009)) dataset as a function of the number of bits hyperparameter (nbits). As the number
of bits increases, the vectorization time rises accordingly, though the rate of increase is
not uniform. Up to 11 bits, the computation time remains within a small range (under 7
minutes), demonstrating NSPPK’s efficiency in handling large-scale datasets.

However, a sharp increase in computation time occurs from 12 to 14 bits due to memory
swapping, where the system resorts to using slower secondary storage instead of RAM. This
significantly degrades performance, further emphasizing the importance of efficient memory
usage when handling high-bit representations in large-scale datasets.

At 15 bits, the vectorization process fails due to excessive memory allocation requirements.
This is a consequence of the exponential growth of the feature space: 15 bits corresponds to
a 2! -dimensional representation per graph, resulting in an immense memory footprint when
applied to over 129,000 molecular graphs. While this represents a practical upper bound
for single-machine processing, it highlights the need for optimized memory management
strategies for ultra-high-dimensional embeddings.

Despite this limitation, NSPPK remains an effective and scalable approach for graph learning
tasks, provided that memory usage is carefully managed when selecting the number of bits.
Additionally, potential optimizations such as sparse representations, dimensionality reduction,
or distributed processing could further enhance its applicability to even larger datasets.

The QM9 dataset itself consists of over 129,000 molecular graphs with 16 continuous
node attributes, making it a computationally intensive benchmark. The results confirm
that NSPPK successfully processes datasets of this magnitude while maintaining practical
computation times, reinforcing its utility for real-world graph-based applications.

D ScALABILITY OF NSPPK VECTORIZATION

To evaluate NSPPK’s scalability, we vectorized the QM9 dataset (7112,000 graphs) using
a fixed configuration: 12-bit hash size, maximum radius = 1, distance = 4, and
connector path = 1. This setup balances expressiveness and efficiency, making it suitable
for large-scale benchmarks. As shown in Figure [6] the total vectorization time decreases
almost linearly with the number of CPU cores, completing in under 10 minutes on 112 cores.
This confirms NSPPK’s efficient parallelization and practicality for large datasets.
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Figure [0] presents the results on a log-log scale. The x-axis indicates the number of CPU
cores, and the y-axis shows the total vectorization time. The observed trend is close to ideal
linear scaling: doubling the number of cores results in approximately half the runtime. This
demonstrates that NSPPK’s feature extraction process incurs minimal synchronization or
coordination overhead.

Experiments were conducted on a dual-socket Intel server equipped with 2x Intel Xeon Gold
6330 CPUs @ 2.00 GHz, each providing 28 physical cores (56 threads), for a total of 112
logical CPU cores. The machine had 2 NUMA nodes, 70 MB of shared L2 cache, and 84
MB of L3 cache. Despite relying solely on CPU resources, NSPPK scaled efficiently across
all available cores. For example, complete vectorization of the QM9 dataset was achieved
in under 10 minutes, demonstrating the method’s practicality for real-world, large-scale
deployment.

1000

Vectorization Time (s)

10 100
Number of CPU Cores

Figure 6: Vectorization time vs. number of CPU cores on QM9 (log-log scale). NSPPK
demonstrates excellent parallel scalability, reducing total vectorization time from over an
hour (using a single core) to under 10 minutes with 112 CPU cores. This shows near-linear
performance gains with increased parallelization.
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E FURTHER VISUALIZATION: ACCURACY-TIME TRADE-OFF
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Figure 7: Accuracy—time trade-off (log time). Markers: green star = NSPPK, blue circle =
other kernels, orange square = neural nets. Dashed line = Pareto front.

Summary. Figurem shows that, for most datasets, NSPPK (green star) is on or close to the
Pareto front. Methods spread along the efficiency—accuracy spectrum: several are faster but
less accurate, while others gain accuracy at a higher computational cost. On the aggregated
panel, NSPPK remains on the global frontier, indicating a favorable accuracy—time balance

overall.
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F RUNTIME RESULTS FOR THE SMALL-SCALE DATASETS EXPERIMENTS
REPORTED IN THE MAIN PAPER

Table 7: Runtime (seconds) with node attributes (lower is better).

Method SYNTH SYNTHIE BZR COX2 ENZ PROT Avg Rank
SM TIMEOUT TIMEOUT 12274.00s 25927.96s TIMEOUT TIMEOUT 190100.98s 16.00
SP TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT - —
ML 1777.93s 1848.90s 849.20s 1155.49s 1295.99s 3628.70s 1759.70s 13.83
PK 1.81s 2.73s 0.79s 1.13s 3.14s 4.48s 2.51s 2.33
HSPPK_WL 49.54s 93.86s 8.63s 16.38s 25.20s 89.90s 47.59s 10.67
HSPPK_SP 249.75s 353.70s 16.52s 29.22s 28.35s 119.32s 132.81s 12.67
GH 242.05s 274.63s 112.43s 132.63s 365.25s 3647.21s 1129.03s 14.67
NP 41.57s 40.84s 42.32s 69.80s 17.69s 49.58's 43.63s 9.67
linearFGW-RAW 6.82s 7.00s 6.63s 9.84s 8.73s 69.67s 18.11s 6.67
linearFGW-WL1 6.94s 7.33s 5.89s 10.75s 8.29s 67.19s 17.07s 6.00
linearFGW-WL2 5.95s 8.09s 7.02s 10.92s 10.26s 71.63s 18.98s 6.33
WL (disc.) 12.33s 12.00s 4.00s 14.00s 9.00s 20.00s 11.22s 1.67
WLOA 0.99s 2.47s 0.83s 3.27s 4.24s 12.67s 4.41s 3.17
WWL 29.96 s 45.00s 14.71s 40.89s 32.54s 134.95s 49.84s 11.67
NSPDK (disc.) 6.50s 8.71s 4.69s 2.64s 3.18s 6.13s 5.64s 3.17
NSPPK (ours) 34.81s 44.97s 12.75s 12.75s 26.45s 5.73s 22.41s 6.33

Table 8: Neural runtimes (seconds) with node attributes (lower is better).

Method SYNTH SYNTHIE BZR COX2 ENZ PROT Avg Rank
DGCNN 443.59s 551.36s 304.88s 704.74s 948.88s 1512.29s 744.29s 9.83
GraphSAGE 139.94 s 117.92s 175.30s 118.97s 317.84s 394.02s 210.66s 7.33
InfoGraph 39.25s 109.14s 40.40s 111.40s 59.95s 85.72s 74.31s 5.00
GIN 474.24s 535.34s 302.44s 579.86s 369.06s 742.46s 500.57s 9.17
GraphCL 11.33s 6.83s 4.10s 5.11s 15.51s 20.04s 10.49s  1.17
GNN 165.92s 148.83 s 100.28s 153.89s 207.18s 371.30s 191.23s  7.50
FNP 49.97s 31.88s 18.72s  22.23s  60.51s 57.51s 40.14 s 4.17
PNA 16.67s 12.87s 4.38s 3.86s 17.33s 22.14s 12.88s 1.83
PDF 20.59s 80.49s 21.10s  20.13s 61.43s 76.70s 46.74s 4.17
NSPPK feat. (XGB) 39.35s 142.70s 19.38s  20.62s 39.54s 131.96s 65.59s 4.83

G ADDITIONAL RESULTS: NO-ATTRIBUTE SETTING

Tables [9 and [I0] report kernel and neural network accuracy, respectively, when node attributes
are removed. This isolates the structural contribution of the methods. We observe that
NSPPK maintains strong relative performance even without attributes, underscoring its
robustness.

Table 9: Classification accuracy (%) without node attributes (-) with Avg Rank.

Method SYNTHETIC gynthie BZR COX2 ENZYMES PROTEINS Avg Rank
SM TIMEOUT TIMEOUT 79.024+1.10 78.16£0.81 TIMEOUT TIMEOUT 8.75
SP TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT -
ML 67.224+9.51 58.001+13.85 86.6313.81 77.95+£4.63 33.6615.31 72.8013.80 4.33
PK 61.334+7.33 38.75+£7.60 78774+1.01 78.16£8.07 18.331+5.22 58.48+4.29 11.17
HSPPK WL 50.00£0.00 54.251+1.14 80.26+3.02 72.41+£17.06 16.50£2.73 63.8015.76 11.92
HSPPK SP 58.00+7.18 47.75+6.75 76.261+9.39 77.31+£4.70 21.00£5.92 46.20 £ 4.70 12.17
GH - 59.334+9.28 52.25+4.10 81.254+2.40 77.30£3.14 25.171+3.98 71.611+4.32 7.33
NP 97.00 +3.15 47.60+£0.00 84.16£5.65 80.29+3.42 36.70£0.53 69.99+3.88 5.50
linearFGW-RAW  57.331+6.29 44.75+£8.91 80.5213.76 76.24+4.74 23.0014.88 71.3514.56 10.33
linearFGW-WL1 56.00£11.72 54.50+£8.28 80.99+5.24 76.45+1.86 24.50+4.78 70.17+4.81 9.00
linearFGW-WL2 48.67+7.33 51.75£4.19 79.484+5.48 74.74+5.12 22.33+5.59 69.541+3.12 11.67
WL (disc.) 79.00£12.39 54.751+3.94 87.901+3.92 78.17+£3.48 40.17F7.54 69.00F4.08 4.00
WLOA 81.00+6.16 50.751+4.62 83.711+8.36 78.16+£2.75 42.67+t4.84 74.49+3.53 4.75
WWL 50.004+0.00 27.50£0.00 78.774+1.01 78.16£0.80 16.6710.00 55.571+0.17 12.58
NSPDK 95.334+3.72 51.25+£5.01 85.6844.04 77.09+£3.84 35.6719.22 71.331+3.06 6.50
NSPDK (disc.) 95.33+3.72 51.251+5.01 85.68+4.04 77.0913.84 35.67+£9.22 71.331+3.06 6.50
NSPPK (ours) 98.00+3.93 53.001+4.30 87.65+4.54 77.73+3.96 33.17£580 71.341+4.06 4.67

Note: Avg Rank averaged over available cells; lower is better. TIMEOUT /N/A omitted per dataset.
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Table 10: Neural networks: classification

accuracy (%) without node attributes (-) and Avg

Rank.

Method SYN:EV;ETIC Synthie BZR CcOX2 ENZYMES PROTEINS Avg Rank
DGCNN 44.671+6.86 25.251+8.69 81.98+£2.20 78.22+0.07 26.80+£7.09 73.22+3.48 6.83
GraphSAGE 43.33+5.58 33.0018.20 83.70£5.59 80.301+0.03 48.17+7.58 74.93+2.82 4.92
InfoGraph 67.33+£21.54 42.75+13.53 75.051+15.04 69.021+0.20 53.331+4.79 63.07 = 4.69 6.17
GIN 53.00£9.71 43.25+12.53 73.95+3.30 79.91+£0.08 42.67+7.68 65.7715.02 6.17
GraphCL 50.00£8.69 27.00E7.40 79.99+3.62 81.38+£3.79 37.50+5.12 71.4343.92 6.08
GNN 43.33+5.58 23.251+7.34 84.66+E4.60 81.60+5.54 48.50+5.80 71.79+3.61 5.42
FNP 50.00£8.69 51.25+10.56 81.73+3.52 78.22+3.94 35.83+7.79 72.4143.70 5.33
PNA 46.00£7.72 48.251+6.71 78.76+£4.33 78.22+7.01 18.831+7.07 70.62=3.69 7.33
PDF 50.00 £8.69 24.75+7.02 84.43+4.63 81.38£3.79 52.0015.26 74.7512.28 4.08
NSPPK feat. (XGBoost) 91.00£4.73 50.0016.12 89.60£3.29 82.764+4.25 41.831+5.55 71.60+3.15 2.83

H ADDITIONAL RUNTIMES: NO-ATTRIBUTE SETTING

Tables [11] and [12| report computation times for kernels and neural networks without node
attributes. While runtimes are generally shorter in this simplified setting, the relative ranking
remains consistent: NSPPK achieves strong efficiency while preserving accuracy.

Table 11: Neural runtimes (seconds) without node attributes (lower is better).

Method SYNTH SYNTHIE BZR COX2 ENZ PROT Avg Rank
DGCNN 428.69s 562.06 s 571.26s 237.85s 887.36s 1611.41s 716.10s 9.83
GraphSAGE 124.81s 161.54s 126.21s 140.69s 248.03s 395.38s 199.44s 7.33
InfoGraph 65.27s 104.54 s 100.00s 87.92s 144.01s 241.47s 123.54s 5.00
GIN 388.95s 360.00s 358.57s 392.46s 440.30s 884.01s 470.38s 9.17
GraphCL 3.58s 2.09s 4.23s 5.42s 13.28s 17.61s 6.03s 1.17
GNN 81.93s 103.93s 28.95s 122.86s 247.42s 403.82s 164.49s 7.50
FNP 7.69s 22.24s 63.45s 15.82s 70.24s 38.84s 36.05s  4.17
PNA 3.32s 10.28 s 3.83s 2.80s 8.59s 23.63s 8.41s 1.83
PDF 13.12s 25.58's 17.80s 23.45s 63.85s 67.34s 35.86s  4.17
NSPPK feat. (XGB) 32.91s 59.78 s 4.28s 6.25s 7.43s 60.64 s 28.38s  4.83

Table 12: Runtime (seconds) without node attributes (lower is better).

Method SYNTH SYNTHIE BZR COX2 ENZ PROT Avg Rank
SM TIMEOUT TIMEOUT 11853.30s 25478.50s TIMEOUT TIMEOUT 18665.90s 16.00
SP TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT - -
ML 978.86s 1953.89s 158.40s 1509.62's 1792.43s 5661.68 s 2009.15s  15.00
PK 0.59s 0.92s 0.23s 0.33s 0.78s 2.11s 0.83s 2.00
HSPPK_ WL 38.74s 57.69s 8.76s 11.30s 19.83s 76.69 s 35.50s 10.50
HSPPK_SP 285.63 s 320.39s 18.33s 25.21s 31.37s 121.37s 133.72s  12.33
GH 178.47s 375.02s 99.82s 132.87s 365.25s 791.82s 323.21s 13.83
NP 66.93s 53.05s 44.90s 97.51s 69.69s 240.32s 95.07s 12.50
linearFGW-RAW 6.21s 8.21s 6.17s 8.75s 12.91s 76.17s 19.07s 7.83
linearFGW-WL1 7.00s 8.44s 6.24s 10.22s 8.51s 52.96s 15.23s 7.83
linearFGW-WL2 6.17s 7.53s 5.21s 11.27s 11.82s 74.40s 19.73s 717
WL (disc.) 0.14s 0.11s 0.05s 0.12s 0.13s 0.34s 0.15s 1.00
WLOA 0.96s 1.02s 0.95s 1.37s 3.32s 8.19s 2.63s 3.83
WWL 13.19s 23.60s 11.17s 29.40s 24.10s 90.97s 32.41s 10.83
NSPDK 5.78s 7.00s 3.07s 2.81s 2.24s 3.11s 3.67s 4.17
NSPDK (disc.) 5.78s 7.00s 3.07s 2.81s 2.24s 3.11s 3.67s 4.17
NSPPK (ours) 11.31s 13.33s 6.09s 6.09s 5.58s 4.72s 7.85s 7.00

|

LARGE-SCALE EXPERIMENT: MOLPCBA LEARNING CURVES AND

EFFICIENCY

We evaluated NSPPK on the large-scale ogbg-molpcba benchmark from the Open Graph
Benchmark suite [Hu et al.| (2020a)), which includes 437,929 node attributed molecular graphs
and 128 binary classification tasks. In practice, many of these tasks are both sparse (due to
missing labels) and highly imbalanced.
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I.1 CASE STUDY: TARGET 95 FROM 0GBG-MOLPCBA

We further examined task 95, which provides 48,853 positive examples, 293,968 negatives,
and 95,108 molecules with missing labels. To analyze sample efficiency, we subsampled
balanced datasets up to 78,164 labeled graphs (positives and negatives in equal proportion)
and varied the training set size from 100 to 250k examples. Each experiment was repeated
with five random seeds, and average precision (AP) was reported. In parallel, we also
trained each baseline once on the full OGB scaffold split (249,715 train, 29,826 validation,
29,427 test).

We compared NSPPK in combination with different downstream classifiers—logistic regres-
sion, random forest, and XGBoost—using both sparse and dense feature representations,
against neural baselines including GIN, GAT, PNA, PDF, a generic GNN, and AttentiveFP
(FNP). The distinction between sparse and dense refers only to feature storage: sparse
matrices retain only nonzeros and are CPU-efficient, while dense mode expands full vectors
(more memory, but occasionally favorable for GPU kernels).

For NSPPK, we fixed a single configuration (R =1, D =4, R' = 1, nypits = 16) across all
runs. (see Appendix for full implementation details of the graph neural netowks models
used within this experiment).

Figure [§]summarizes the results. NSPPK shows strong sample efficiency, achieving higher AP
than all neural baselines at small training sizes. Its runtime is also favorable: sparse variants
in particular remain substantially faster to train than graph neural networks. At scale, PDF
overtakes NSPPK in predictive performance, though the gap remains small. Interestingly,
NSPPK combined with logistic regression can take as long as a GNN to train, but still
delivers superior AP on small data regimes. Overall, NSPPK offers a simple, lightweight
alternative that competes directly with neural methods. Figure [§shows the resulting learning
curves, with all NSPPK variants highlighted in red.
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Figure 8: Learning curves on ogbg-molpcba (task 95). NSPPK (red) paired with different
downstream classifiers is compared against neural baselines including GIN, GAT, PNA, PDF,
and AttentiveFP (FNP).
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1.2 IMPLEMENTATION DETAILS FOR TASK 95 EXPERIMENTS

NSPPK Configuration. For all NSPPK experiments we fixed the parameters across
classifiers:

R=1, D=4, R =1, npys=16.
Both sparse and dense representations were evaluated. Sparse mode stores only nonzero
entries and is efficient on CPU-based models, while dense mode expands the full vectors,
sometimes favorable for GPU-accelerated tree methods.

Downstream Classifiers. The exact settings for the classifiers paired with NSPPK
features are given in Table

Table 13: Classifiers used with NSPPK features on ogbg-molpcba (task 95).

Classifier Features Configuration

Logistic Regression  Sparse saga, max_ iter=1000, Lj, njobs = 64

Random Forest Sparse 500 trees, depth=>5, njons = 64, seed=42

XGBoost Dense 1000 trees, depth=6, LR=0.03, subsample=0.8, colsample=0.8
XGBoost Sparse Same as above, hist backend

Neural Baselines. For comparison, we trained common GNN baselines with published
hyperparameters. Table [T4] summarizes their main configurations.

Table 14: Neural baselines and their configurations for task 95.

Model Main hyperparameters Source

PNA 2 layers, dim 64—32, batch 64/256, LR=0.001, Adam |Corso et al.| (2020)
PDF (Basis-DGL) 8 layers, dim 384, batch 64/256, LR=5e-4, AdamW Yang et al.| (2023b)
GAT 2 layers, 64—32, 4/1 heads, LR=0.001, Adam Velickovic et al.| (2018)
AttentiveFP (FNP) 4 layers, dim 64, dropout=0.2, LR=0.001, Adam Xiong et al.| (2019
GIN 2 layers, dim 64—32, LR=0.001, Adam Xu et al.| (2019al)
GCN (OGB baseline) 2 layers, dim 64—32, LR=0.001, Adam Hu et al.| (2020a)

Shared Training Setup. All neural baselines were trained on the official OGB scaffold
split (train: 249,715; validation: 29,826; test: 29,427). Loss: binary cross-entropy with
logits (BCEWithLogitsLoss). Metrics: AP and ROC-AUC. Unless otherwise stated, all
experiments were executed on CPU.

Reproducibility. Balanced-data experiments were repeated with five random seeds. Both
feature extraction time and training time are reported in the main text.
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