
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Scalable Graph Kernels with Continuous At-
tributes

Anonymous authors
Paper under double-blind review

Abstract

We introduce the Neighborhood Subgraph Pairwise Path Kernel (NSPPK),
a scalable and interpretable graph kernel for attributed graphs. NSPPK
compares neighborhoods connected through unions of shortest paths and
directly integrates continuous node features without discretization. This
yields explicit, sparse embeddings where graph similarities reduce to a single
dot product. Feature extraction scales near-linearly in |V |, parallelizes
efficiently, and is fully deterministic. Across six benchmarks with continuous
attributes, NSPPK achieves the best average rank among graph kernels and
frequently matches or outperforms modern GNNs—without any training
or hyperparameter tuning. By combining scalability, interpretability, and
expressive power, NSPPK offers a practical alternative for graph learning in
low-data or reproducibility-critical settings. Its advantage lies in working
robustly when data is scarce, yet scaling efficiently to hundreds of thousands
of graphs when data is abundant.

1 Introduction

Graphs are a fundamental data structure for modeling relationships among entities, with
applications in social networks (Newman, 2003), bioinformatics (Borgwardt et al., 2005),
cheminformatics (Dobson & Doig, 2003), recommender systems (Ying et al., 2018), and cyber-
security (Huang et al., 2022). Unlike images or sequences embedded in regular grids, graphs
capture irregular, non-Euclidean structures with variable neighborhoods and complex topolo-
gies (Bronstein et al., 2017). In many domains, nodes and edges carry attributes—categorical
(e.g., atom types) or continuous (e.g., charges, coordinates, behavioral metrics).

A central challenge in graph learning is how to compare such rich structures both effectively
and efficiently. Two main families of methods have emerged. Graph kernels provide a
classical and well-founded approach: they decompose graphs into substructures and measure
similarity through carefully designed comparisons. Kernels are deterministic, interpretable,
and often perform well in low-data settings. However, most classical kernels assume
discrete labels, relying on exact matches. Applied to continuous data, they typically require
discretization (Neumann et al., 2016b), which discards fine-grained information and may
distort similarity. Empirically, kernels that integrate continuous features directly (Feragen
et al., 2013b) outperform those based on discretization, but many variants still struggle with
scalability, especially on larger graphs.

In contrast, Graph Neural Networks (GNNs) (Kipf &Welling, 2017; Xu et al., 2019b) naturally
process continuous attributes and have achieved strong benchmark performance. Yet they
usually demand large labeled datasets, intensive training, and extensive hyperparameter
tuning, while their internal representations remain difficult to interpret (Errica et al., 2020;
Hu et al., 2020b). These drawbacks limit their applicability in low-data regimes or in settings
where reproducibility and transparency are critical.

This trade-off motivates the search for approaches that combine the sample-efficiency and
interpretability of kernels with the expressive power and flexibility of neural methods. Several
recent kernels have moved in this direction by incorporating continuous features through
embeddings (Feragen et al., 2013b), propagation (Neumann et al., 2016a), or WL-style

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

extensions (Shervashidze et al., 2009a; Rieck et al., 2019). While more expressive, these
methods often face scalability challenges, leaving room for further improvement.

Our Contribution We introduce the Neighborhood Subgraph Pairwise Path Kernel
(NSPPK), a new graph kernel designed to combine scalability, interpretability, and sup-
port for continuous attributes. Our method builds on the Neighborhood Subgraph Pairwise
Distance Kernel (NSPDK) (Costa & De Grave, 2010), a well-known kernel that compares
fixed-radius neighborhoods around pairs of nodes. While NSPDK has proven effective in
capturing structural information, it is limited to discrete labels and cannot directly exploit
real-valued node features.

NSPPK extends NSPDK in three key ways:

• Kernel design. We replace fixed-radius neighborhoods alone with unions of shortest-
path neighborhoods between node pairs, capturing dependencies that go beyond the
reach of classical NSPDK features.

• Continuous attributes. Real-valued node (and edge) features are integrated
directly into the kernel without discretization, preserving fine-grained information
that would otherwise be lost.

• Efficiency. NSPPK yields explicit, sparse graph-level embeddings. Kernel eval-
uation reduces to a single dot product in O(|E|) time, and feature extraction
scales near-linearly in |V |, is trivially parallelizable, and requires only a few integer
hyperparameters.

• Empirical results. Across six benchmarks with continuous attributes, NSPPK
attains the best average rank among graph kernels and often matches or outperforms
GNN baselines, all without any training, hyperparameter tuning, or randomness.

2 Related Work

Most graph kernels follow the R-convolution framework (Haussler, 1999), which decomposes
structured objects into substructures and sums kernel evaluations. Examples include the
graphlet kernel (Shervashidze et al., 2009b), Weisfeiler–Lehman (WL) subtree kernel (Sher-
vashidze et al., 2011a), and NSPDK (Costa & De Grave, 2010). WL kernels are powerful
but limited by the 1-WL test, while NSPDK counts fixed-radius neighborhoods around
node pairs. To handle continuous attributes, early kernels such as marginalized random
walk (Kashima et al., 2003; Gärtner et al., 2003; Vishwanathan et al., 2010) and subgraph-
matching (Kriege & Mutzel, 2012) are expressive but computationally heavy. Propagation
kernels (Neumann et al., 2016a) scale efficiently but rely on discretization. Shortest-path-
based kernels (Borgwardt & Kriegel, 2005; Feragen et al., 2013b) capture long-range structure
but suffer from high complexity. Recent work relaxes exact label matches via optimal trans-
port, e.g., Wasserstein WL (Togninalli et al., 2019) and fused Gromov–Wasserstein (Vayer
et al., 2019), though at high cost. Hybrid approaches integrate kernels with neural models,
such as Deep Graph Kernels (Yanardag & Vishwanathan, 2015) and Graph Neural Tangent
Kernels (Du et al., 2019). NSPPK builds on NSPDK but introduces two key innovations:
(i) unions of shortest-path neighborhoods capture richer multi-scale dependencies, and (ii)
continuous attributes are integrated directly without discretization. Unlike graph invariant
kernels (Orsini et al., 2015), NSPPK avoids explicit subgraph matching, and its explicit
embeddings allow O(|E|) similarity computation while retaining interpretability.

3 Definitions

A graph is a pair G = (V,E), where V is a finite set of vertices (or nodes) and E ⊆ V × V is
a set of edges connecting pairs of vertices. A labeled graph is a graph G = (V,E) equipped
with a labeling function ` : V ∪ E → Σ that assigns each vertex and edge a label from a
discrete alphabet Σ. An attributed graph is a graph G = (V,E) endowed with an attribute
function f : V ∪ E → Rd that assigns each vertex and edge a d-dimensional real-valued
feature vector.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

For a vertex v ∈ V , the degree of v is the number of edges incident to it, deg(v) =
|{u ∈ V | (v, u) ∈ E}|, and its (immediate) neighborhood is N(v) = {u ∈ V | (v, u) ∈
E}. Optionally, a degree cutoff parameter τ can be introduced, restricting neighborhood
expansions to min(deg(v), τ).

A path in G is a sequence of vertices (v1, v2, . . . , vk) such that (vi, vi+1) ∈ E for all 1 ≤ i < k.
The length of the path is the number of edges in the sequence, i.e., k − 1.

A shortest path from v to u is a path with the smallest possible length among all paths
connecting v and u. The distance between v and u, denoted d(v, u), is the length of a shortest
path between them; if no path exists, d(v, u) is defined to be infinite.

The union of shortest paths between vertices v and u, denoted U(v, u), is the subgraph
consisting of all vertices and edges that belong to at least one shortest path from v to u (i.e.,
the union over all equally-short paths).

The r-hop neighborhood of a vertex v, denoted Nr(v), is the set of vertices whose distance
from v is at most r, namely Nr(v) = {u ∈ V | d(v, u) ≤ r}. Similarly, the r-hop neighborhood
of a subgraph S ⊆ G is the subgraph induced by all vertices u ∈ V such that ∃w ∈ S with
d(w, u) ≤ r.
Anchors and connector path. Given an (unordered) anchor pair {u, v} ⊆ V with u 6= v and
distance d(u, v), define the connector path of radius r′ ≥ 0 by Cr′(u, v) := Nr′

(
U(u, v)

)
, where

U(u, v) is the union of all shortest u↔v paths (as defined above). Thus C0(u, v) = U(u, v)
(only path nodes/edges), while r′ > 0 “thickens” the connector by including all vertices
within r′ hops of U(u, v) (induced subgraph). If u and v are disconnected, set Cr′(u, v) = ∅
and ignore the pair. Unless stated otherwise, anchor pairs are unordered to avoid double
counting.

Notation summary. Unless otherwise specified, we denote by |V | and |E| the numbers
of vertices and edges, respectively; K = maxv∈V deg(v) is the maximum degree and τ an
optional degree cutoff. Distances are d(u, v), Nr(v) is the r-hop neighborhood of v, U(u, v)
the union of all shortest u↔ v paths, and Cr′(u, v) = Nr′(U(u, v)) the connector of radius r′.
Lowercase r, d, r′ denote per-feature radii and distances, while uppercase R,D,R′ are their
maximal values. The resulting feature vector for a graph G under parameters θ = (R,D,R′)
is fθG.

4 Method

A widely used strategy for defining kernels between structured objects is to decompose them
into constituent substructures and compare all possible substructure pairs using a base kernel.
Kernels designed this way fall under the R-convolution framework (Haussler, 1999), which
includes most classical graph kernels.

4.1 From NSPDK to NSPPK

The Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) (Costa & De Grave,
2010) instantiates this framework by counting pairs of fixed-radius neighborhoods at a given
distance. However, NSPDK has two main limitations: (i) it only supports discrete node
labels, and (ii) it uses only fixed-radius neighborhoods, missing richer structural patterns.

We propose the Neighborhood Subgraph Pairwise Path Kernel (NSPPK), which extends
NSPDK in three ways:

1. A scalable, parallel graph kernel whose feature extraction runs in near-linear time in
|V | for fixed (R,D) (and optional degree cap τ), yielding explicit sparse embeddings
so similarities reduce to a single O(|E|) dot product.

2. A new feature family that pairs symmetric r-hop anchor neighborhoods Nr(u), Nr(v)
with a union-of-shortest-path connector Cr′(u, v) = Nr′(U(u, v)), capturing long-
range topological interactions (with r′ = 0 recovering the bare shortest-path union).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3. A principled integration of continuous node (and optionally edge) attributes directly
into the hashing/aggregation pipeline—no discretization—preserving fine-grained
information in deterministic, interpretable features.

The complete NSPPK feature set is obtained by enumerating all parameter configurations:

ru, rv ∈ {0, . . . , R}, d ∈ {0, . . . , D}, r′ ∈ {0, . . . , R′} ∪ {∅},
where R,D,R′ are small positive integers chosen for tractability. We denote by r′ the
connector radius for any given feature and by R′ the maximal connector radius considered
during extraction, so r′ ∈ {0, . . . , R′}.

4.2 NSPPK Definition

Let θ = (R,D,R′) denote the maximal radii and distances for feature extraction. For a
graph G, let fθG be the vector counting occurrences of each subgraph pattern in the NSPPK
family. The kernel between G and G′ is kθ(G,G′) = fθG

>
fθG′ . Because NSPPK features are

defined per node, this can be written as fθG =
∑
v∈V f

θ
G,v, where f

θ
G,v counts only features in

which v is one of the neighborhood centers or path endpoints.

4.3 Feature Hashing Pipeline

We represent each subgraph pattern by a unique integer in {0, . . . , 2n − 1} using a hierarchy
of hash functions. This provides constant-time indexing into the feature vector and avoids
explicit subgraph isomorphism checks.

Base hash functions. For any element x, Hn(x) = sha256(x) mod 2n is the n-bit base
hash. From Hn we define: - Hq(I): sequence hash of an ordered tuple I = (x1, . . . , xk), -
Ht(S): multiset hash of S, computed after lexicographic sorting to ensure order invariance.

Node hash. For each node v (labels and neighborhoods as in Section 3) we set Nh(v) =
Ht
(
{Hq([Hn(`(u)), Hn(`(ev,u))]) : u ∈ N(v) }

)
and NH(v) = Hq([Hn(`(v)), Nh(v)]).

Rooted graph hash. For radius r, set Cvj = Ht({NH(u) : u ∈ Dv
j }) with Dv

j = {u |
d(v, u) = j } and GrH(v) = Hq([Cv0 , C

v
1 , . . . , C

v
r]).

Neighborhood pair hash. For nodes u, v at distance d we compute P ru,rv,dH (u, v) =
Hq([Hn(d), Ht({GruH (u), GrvH (v)})]).

Union-of-shortest-paths hash. Let U(u, v) be the union of all shortest paths between
u and v. For each j ∈ {0, . . . , d} we set Cvj,r = Ht({GrH(w) : w ∈ Dv

j }) and Ur,dH (u, v) =

Hq([Cv0,r, . . . , C
v
d,r]).

Final feature vector. The NSPPK vector fθG is the histogram of all PH and UH hash
values from G.

4.4 Why the connector path disambiguates: an illustrative example

Figure 1 contrasts NSPDK and NSPPK features for two graphs that share the same r=1
anchor neighborhoods around u and v and the same distance d(u, v)=5, but differ in how u
and v are connected. In the top row there is a unique shortest u↔v path; in the bottom row
there are two distinct shortest paths of equal length (their union forms a “ladder”).

NSPDK collapses the two cases. NSPDK features only depend on
(Nr(u), d(u, v), Nr(v)). Since N1(u), N1(v), and d(u, v) are identical in both graphs, the
NSPDK hash coincides: φ

(r=1,d=5)
u,v = hash

(
N1(u), d(u, v), N1(v)

)
, so NSPDK cannot

distinguish them.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: NSPDK vs. NSPPK on anchors u, v with r=1, d=5. Left: NSPDK features
for the case with a single shortest path (top) and two equal-length shortest paths (bottom).
Because NSPDK uses only (Nr(u), d(u, v), Nr(v)), both cases produce the same feature.
Right: NSPPK includes the connector Cr′(u, v) = Nr′(U(u, v)) (shown in green). The
connector is a simple path in the top graph but a two-path union in the bottom graph, so
NSPPK assigns different features (already for r′=0; here r′=1 is shown).

NSPPK separates them. NSPPK augments the pair of neighborhoods with the connector
Cr′(u, v) = Nr′(U(u, v)), where U(u, v) is the union of all shortest u↔v paths. The structural
feature becomes ψ(r=1,d=5,r′=1)

u,v = hash
(
N1(u), C1(u, v), N1(v)

)
. In the top graph, U(u, v) is

a simple path; in the bottom graph, U(u, v) contains two parallel shortest paths. Consequently
Cr′(u, v) differs (already for r′=0; r′=1 merely “thickens” the union), and the NSPPK hashes
are distinct. This is precisely the extra resolution provided by the connector.

4.5 Attribute Integration

For graphs with continuous node attributes A ∈ Rn×p, let F ∈ Rn×f be the binary
node–feature incidence matrix, where f = 2n is the number of hash buckets. We com-
pute x = vec(A>F) ∈ Rp·f so that each feature index stores the sum of attributes of all
nodes in subgraphs contributing to that feature. Node weights can be incorporated by
replacing A with diag(w)A, and the same approach extends to edge attributes.

4.6 Complexity Analysis

The main cost in NSPPK is extracting subgraphs via breadth-first search (BFS) up to depth
B = max(R,D). A single BFS explores at most O(KB) vertices in the worst case (with
K = maxv∈V deg(v)), and repeating this over all |V | centers gives O(|V |KB). With a degree
cutoff τ , the branching factor becomes Keff = min(K, τ), yielding O(|V |KB

eff). Incorporating
d-dimensional attributes adds only a multiplicative factor of d.

Kernel evaluation. Once features are extracted, kernel computation reduces to a sparse
dot product k(G,G′) = f>G fG′ with cost O(nnz(fG) + nnz(fG′)), scaling near-linearly with
the number of edges |E|.
In summary, under realistic settings where K and B are small (often . 6), NSPPK achieves
near-linear scaling in |V | (and thus |E|), with attribute integration adding only a linear
factor in d.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The number of hash bits directly determines the dimensionality of the feature space. Using
fewer bits increases the probability of hash collisions—different substructures mapping to
the same index—which introduces noise and can reduce predictive accuracy. Conversely,
very large bit sizes (e.g., n ≥ 20) yield millions of potential features, inflating dimensionality
and memory usage. While sparse representations mitigate storage overhead, excessively large
codomains may still become impractical for downstream learning models.

4.7 Balancing Feature Size and Hash Collisions

Figure 2: Predictive performance vs.
number of hash bits.

To examine this trade-off, we trained a random
forest classifier on 1,300 molecular graphs from
PubChem AID 463230 (pPAFAH inhibition assay),
excluding node attributes. As shown in Figure 2,
predictive performance declines only gradually as
the bit size decreases. In particular, accuracy re-
mains stable even at ∼14 bits (about 16k features),
despite collision rates exceeding 10%. This sug-
gests that collisions involving infrequent features
are largely tolerated by the model, enabling com-
pact yet effective representations.

5 Experiments

5.1 Small-Scale Datasets

We evaluate NSPPK against kernel and neural
baselines on six node-attributed graph classification benchmarks (Nikolentzos et al., 2021;
Errica et al., 2020): ENZYMES and PROTEINS_full (Borgwardt et al., 2005), BZR and
COX2 (molecular activity) (Sutherland et al., 2003), Synthie (Morris et al., 2016), and
SYNTHETICnew (Feragen et al., 2013a). These cover biological, molecular, and synthetic
graphs.

Baselines. Kernel methods: GraphHopper (GH) (Feragen et al., 2013b), Propagation Kernel
(PK) (Neumann et al., 2016a), Subgraph Matching (SM) (Kriege & Mutzel, 2012), Multiscale
Laplacian (ML) (Kondor & Pan, 2016), Shortest Path (SP) (Borgwardt & Kriegel, 2005),
HSSPK-SP/WL (Morris et al., 2016), WWL (Togninalli et al., 2019), linearFGW (Nguyen
& Tsuda, 2023), and NP (Fang et al., 2023), plus discretized NSPPK and WL. All kernels
use SVM classifiers (LIBSVM (Chang & Lin, 2011)).

Neural baselines: DGCNN (Zhang et al., 2018), GraphSAGE (Hamilton et al., 2017),
InfoGraph (Sun et al., 2019), GIN (Xu et al., 2019b), GraphCL (You et al., 2020), AttentiveFP
(FNP) (Gasteiger et al., 2020), PNA (Corso et al., 2020), and PDF (Yang et al., 2023a).

Protocol. We follow the fair evaluation setup of (Errica et al., 2022): 10-fold cross-validation
with 10% validation from training data. Kernels: SVM with C tuned on validation; multiple
hyperparameter configurations tested; kernel computation times reported for best models.
GNNs: trained up to 1000 epochs with early stopping; tuned via validation. NSPPK: fixed
configuration across all datasets (R=1, D=4, R′=1, τ=8, 16-bit hashing); no per-dataset
tuning. For comparison with kernels we use LIBSVM, and for GNNs we use NSPPK features
with XGBoost.

Runtime. Kernel methods run on a single CPU core; GNNs run on CPUs with library-level
multithreading. All experiments used a SLURM-managed cluster with NVIDIA A100 GPUs,
Intel Xeon Gold 5317 CPUs (24 cores), and 64 GB RAM. Kernels exceeding 24h per fold are
reported as timeouts.

Controls. We also test (i) attributes only, where graphs are represented by summed node
attributes, and (ii) structure only, where attributes are removed (Appendix G).

Results. Against kernels, NSPPK achieves the best accuracy on three of six benchmarks
(SYNTHETICnew, BZR, COX2) and the best overall average rank (2.25 vs. 3.50 for WWL).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

While it does not win every dataset, it consistently attains the strongest aggregate rank
across kernel competitors, showing broad reliability rather than isolated peaks. It scales
reliably, unlike some kernels that time out on attribute-rich data. Against neural networks,
NSPPK+XGBoost achieves the best accuracy on four datasets and the best overall rank
(2.00), outperforming strong GNNs such as GIN, GraphCL, and PDF. Even where specific
architectures edge out NSPPK on an individual dataset, it still delivers the top average
rank across neural baselines, underscoring robustness across diverse tasks. Even in the
structure-only setting, NSPPK remains competitive, indicating that it captures complemen-
tary structural and attribute information robustly across domains.

Table 1: Classification accuracy (%) with node attributes (+) with Avg Rank.

Method SYNTHETIC
new Synthie BZR COX2 ENZYMES PROTEINS Avg Rank

SM TIMEOUT TIMEOUT 83.96± 3.85 78.81± 4.49 TIMEOUT TIMEOUT 8.75
SP TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT –
ML 50.33± 9.00 59.38± 4.38 82.96± 5.24 77.53± 5.53 36.33± 4.33 72.06± 3.60 11.08
PK 54.33± 10.11 71.75± 6.43 78.77± 1.01 78.16± 8.07 20.67± 2.70 59.70± 0.16 11.75
HSPPK_WL 60.33± 6.74 90.75± 8.66 85.67± 3.46 80.30± 4.67 60.17± 6.26 72.96± 4.84 5.08
HSPPK_SP 57.00± 7.81 91.25± 3.01 84.49± 5.04 80.31± 5.70 58.50± 5.55 68.55± 5.24 6.42
GH 77.33± 7.42 72.75± 8.32 85.94± 5.17 78.90± 2.95 66.50± 6.17 72.06± 3.64 5.42
NP 99.00± 2.13 29.00± 5.72 86.18± 5.53 78.16± 4.47 43.00± 5.76 64.62± 5.13 7.83
linearFGW-RAW 62.00± 8.46 58.00± 7.05 76.34± 5.68 77.93± 3.68 56.67± 7.07 69.47± 0.91 11.58
linearFGW-WL1 72.33± 8.70 73.00± 5.34 78.52± 3.99 72.13± 7.40 47.00± 4.70 59.66± 0.38 10.58
linearFGW-WL2 71.33± 7.48 61.75± 7.50 78.51± 2.98 75.16± 3.34 41.00± 7.57 59.75± 0.43 11.50
WL (disc.) 88.33± 5.63 74.75± 7.86 83.71± 4.83 77.10± 5.59 50.67± 7.03 71.16± 4.03 7.58
WLOA 85.33± 5.62 75.50± 10.50 84.20± 4.47 74.54± 5.40 66.33± 5.21 71.16± 1.97 5.92
WWL 58.33± 7.78 97.00± 3.12 86.45± 4.50 79.03± 3.84 73.67± 5.26 77.18± 5.27 3.50
NSPDK (disc.) 96.33± 3.14 83.75± 4.64 85.70± 3.90 80.30± 4.15 52.67± 4.67 72.87± 1.51 4.75
NSPPK (ours) 99.00± 1.52 86.75± 4.75 87.17± 3.58 81.16± 2.30 60.50± 5.38 74.66± 3.81 2.25

Attributes only 54.33± 9.55 53.00± 4.30 78.77± 1.01 78.16± 8.07 55.67± 5.38 62.80± 2.52 11.25

Note: “Attributes only” participates in Avg Rank like any other method.

Table 2: Neural networks: classification accuracy (%) with node attributes (+) and Avg
Rank.

Method SYNTHETIC
new Synthie BZR COX2 ENZYMES PROTEINS Avg Rank

DGCNN 46.67± 5.63 50.00± 5.70 79.40± 3.32 77.15± 0.06 33.33± 9.37 73.86± 3.56 9.00
GraphSAGE 76.67± 7.70 85.00± 3.45 83.70± 4.44 80.93± 0.07 65.00± 5.73 75.02± 3.29 4.33
InfoGraph 65.00± 16.05 85.75± 8.50 79.01± 3.42 77.77± 14.20 53.33± 7.84 66.37± 6.25 7.58
GIN 83.67± 5.92 97.50± 2.50 84.17± 6.14 81.80± 6.14 68.30± 5.43 62.10± 5.26 3.75
GraphCL 67.00± 9.48 78.75± 7.18 84.17± 3.62 80.34± 6.95 48.17± 6.93 75.82± 2.73 5.08
GNN 64.67± 7.92 85.00± 5.92 85.66± 4.60 79.92± 7.08 65.17± 8.41 66.57± 6.10 5.08
FNP 53.33± 11.16 36.00± 8.60 79.49± 3.94 78.22± 7.01 32.17± 12.98 70.17± 3.15 8.75
PNA 55.67± 20.66 92.50± 3.71 79.01± 4.33 78.22± 7.02 20.83± 7.12 75.11± 3.60 6.83
PDF 97.67± 2.60 64.25± 7.50 83.68± 3.81 82.23± 7.00 65.00± 4.65 72.14± 4.48 4.58
NSPPK feat. (XGBoost) 98.67± 2.21 87.75± 3.94 88.66± 2.89 82.90± 4.39 60.17± 6.30 77.37± 4.80 2.00

Attributes only 54.33± 9.55 53.00± 4.30 78.77± 1.01 78.16± 8.07 55.67± 5.38 62.80± 2.52 9.00

In the neural setting, the explicit NSPPK+XGBoost pipeline achieves an average run-
time rank of 4.83. It is clearly faster than heavyweight architectures such as GIN
and DGCNN, while remaining competitive with mid-range models like FNP and PDF.

Figure 3: Vectorization time vs. CPU cores.

Runtime analysis. Detailed runtime ta-
bles are reported in Appendix F. Although it
does not match the extreme speed of very
lightweight self-supervised baselines (e.g.,
GraphCL, PNA), NSPPK+XGBoost simulta-
neously delivers the best accuracy overall, un-
derlining its strong efficiency–accuracy trade-
off. For comparability, kernel runtimes there
are measured on a single CPU core, which
also applies to NSPPK. Under this constraint,
NSPPK is not the absolute fastest (average
rank 6.33), but it remains substantially more
efficient than expressive kernels such as GH
or HSPPK, while achieving higher accuracy.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

This positions NSPPK as a favorable compro-
mise: slower than the simplest structure-only
kernels, but far more accurate, and significantly faster than heavier graph kernels.

5.2 Ablation Study

Importantly, Figure 3 demonstrates that NSPPK is perfectly parallelizable: vectorization
scales nearly linearly with the number of CPU cores. Thus, while our tables reflect conserva-
tive single-core timings for fairness, NSPPK can in practice achieve much faster wall-clock
runtimes on multi-core systems.

NSPPK consistently achieves state-of-the-art accuracy without the need for dataset-specific
training or hyperparameter tuning. Compared to existing kernels, it offers a substantially
better balance between expressivity and efficiency, and when paired with XGBoost, it often
surpasses neural baselines in predictive performance. While the runtime tables report
conservative single-core measurements for fairness, Figure 3 shows that NSPPK scales nearly
linearly with the number of CPU cores, enabling much faster wall-clock runtimes in practice.

We assessed the impact of three components of NSPPK: the distance feature, the union-of-
shortest-paths connector, and the high-degree thresholding heuristic. All runs used fixed
parameters (R = 1, D = 4, R′ = 1) and a RandomForestClassifier.

Table 3: Ablation study: Accuracy (%) ± Std.

Setting ENZYMES BZR PROTEINS SYNTHIE SYNTHETICnew COX2

No Distance 57.17 ± 6.99 85.69 ± 5.52 76.37 ± 3.85 69.00 ± 6.24 98.33 ± 2.24 81.16 ± 2.45
No Path 52.83 ± 6.28 86.98 ± 3.72 76.10 ± 4.11 79.81 ± 1.53 98.67 ± 1.63 80.73 ± 2.30
No Threshold 55.50 ± 4.48 87.42 ± 2.25 75.92 ± 5.05 79.00 ± 5.15 99.00 ± 1.53 81.81 ± 3.78
Full NSPPK 57.83 ± 5.43 87.90 ± 3.56 76.20 ± 3.74 85.50 ± 4.85 99.00 ± 1.53 82.46 ± 3.74

Results show that each component contributes depending on the dataset, with the full
model consistently matching or exceeding the ablations. The degree-threshold heuristic, in
particular, provides a robust improvement across datasets.

5.3 Larger-Scale Dataset Experiment

We further evaluated NSPPK on the large-scale ogbg-molpcba benchmark from the Open
Graph Benchmark suite (Hu et al., 2020a), which contains 437,929 molecular graphs with
node attributes and 128 binary classification tasks.

Using a single fixed configuration (R = 1, D = 4, R′ = 1, nbits = 16), we computed explicit
NSPPK features for the entire dataset in under one hour on CPU. Across all 128 tasks,
NSPPK achieved an average validation AP of 0.2186 and an average test AP of 0.2079,
without any hyperparameter tuning or GPU acceleration.

On the OGB leaderboard, state-of-the-art neural architectures such as Graphormer (Ying
et al., 2021), PDF (Yang et al., 2023b), and HyperFusion (Zhang et al., 2024) achieve ∼0.30–
0.32 test AP, typically relying on extensive pretraining, careful hyperparameter tuning, and
GPU acceleration. Tuned mid-range models such as PNA (Corso et al., 2020), GIN (Xu
et al., 2019a), and AttentiveFP (FNP) (Xiong et al., 2019) reach ∼0.25–0.30. By contrast,
NSPPK attains 0.2079 test AP without any hyperparameter tuning, pretraining, or GPU
usage, computing explicit features for all 438k graphs in under one hour on CPU.

This positions NSPPK not as a replacement for the very best neural models, but as a
complementary approach: it offers deterministic, training-free baselines that are highly
competitive given their simplicity and efficiency. In practice, NSPPK fills a unique niche:
when compute budgets are limited, when reproducibility is paramount, or when only small
amounts of labeled data are available, it provides a strong, interpretable alternative that
scales easily to hundreds of thousands of graphs.

A case study on task 95 (Figure 4) shows that NSPPK exhibits strong sample efficiency:
it outperforms neural baselines at small training sizes and remains substantially faster
in the sparse variant. At scale, high-capacity models such as PDF eventually overtake

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Learning curves on ogbg-molpcba (task 95). NSPPK (red) compared with neural
baselines including GIN, GAT, PNA, PDF, and FNP.

NSPPK in absolute accuracy, but the gap remains modest given NSPPK’s simplicity. Further
implementation details and hyperparameter settings are provided in Appendix I.

6 Conclusion

We presented the Neighborhood Subgraph Pairwise Path Kernel (NSPPK), a scalable
and interpretable extension of NSPDK that enriches neighborhood features with union-of-
shortest-path connectors and integrates continuous attributes without discretization. NSPPK
produces explicit embeddings, enabling efficient, deterministic, and training-free similarity
computation.

Across six node-attributed benchmarks and a large-scale molecular dataset, NSPPK con-
sistently outperforms classical kernels and often rivals or surpasses graph neural networks
without training or hyperparameter tuning, providing strong baselines when compute, data,
or reproducibility budgets are tight and complementing resource-intensive neural pipelines.
While it is not the top performer on every dataset, it repeatedly secures the best overall ranks
against both kernel and neural baselines, highlighting dependable, across-the-board strength.
Its versatility spans low-data and large-scale regimes, maintaining predictable CPU-only
runtimes and near-linear scalability in |V | for transparent, easy-to-deploy solutions.

In summary, NSPPK bridges classical kernel methods and neural approaches by favoring
deterministic, efficient feature extraction over end-to-end training while retaining enough
expressive power to stay competitive. Future work will explore hybrid kernel–neural models,
automatic feature selection, and domain-specific adaptations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Acknowledgements

For the purpose of open access, the authors have applied a Creative Commons Attribution
(CC BY) licence to any Author Accepted Manuscript version arising from this submission.

References
L. C. Blum and J.-L. Reymond. 970 million druglike small molecules for virtual screening in

the chemical universe database GDB-13. Journal of the American Chemical Society, 131:
8732, 2009.

Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth
IEEE International Conference on Data Mining (ICDM), pp. 8–pp. IEEE, 2005.

Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alexan-
der J. Smola, and Hans-Peter Kriegel. xfxaxs. In Proceedings of the IEEE International
Conference on Computational Systems Bioinformatics, pp. 49–58, 2005.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2(3), 2011.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lió, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. In Advances in Neural Information Processing
Systems (NeurIPS), volume 33, pp. 13260–13271, 2020.

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel.
In Proceedings of the 27th International Conference on Machine Learning (ICML), pp.
255–262, 2010.

Paul D. Dobson and Andrew J. Doig. Distinguishing active from inactive compounds using
carhart structural fingerprints. Journal of Chemical Information and Computer Sciences,
43(1):34–43, 2003.

Simon S. Du, Keyulu Hou, Ruslan Salakhutdinov, Barnabas Poczos, Ruosong Wang, and
Keyulu Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels.
In Advances in Neural Information Processing Systems (NeurIPS), pp. 5723–5733, 2019.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of
graph neural networks for graph classification. In International Conference on Learning
Representations (ICLR), 2020. URL https://openreview.net/forum?id=HygDF6NFPB.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of
graph neural networks for graph classification. Machine Learning, 111(1):239–281, 2022.

Yujun Fang, Daokun Zhang, S. Yu Philip, and Jundong Li. Neighborhood preserving kernels
for attributed graphs. In Proceedings of the 40th International Conference on Machine
Learning (ICML), 2023.

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten Borgwardt.
Scalable kernels for graphs with continuous attributes. In Advances in Neural Information
Processing Systems (NeurIPS), volume 26, 2013a.

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten Borgwardt.
Scalable kernels for graphs with continuous attributes. In Advances in Neural Information
Processing Systems, volume 26, 2013b.

Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and
efficient alternatives. In Learning Theory and Kernel Machines, pp. 129–143, 2003.

10

https://openreview.net/forum?id=HygDF6NFPB

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs, 2020.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on
large graphs, 2017.

David Haussler. Convolution kernels on discrete structures. Technical report, University of
California, Santa Cruz, 1999.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. arXiv preprint arXiv:2005.00687, 2020a.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. In Advances in Neural Information Processing Systems (NeurIPS), volume 33, pp.
22118–22133, 2020b.

W. Huang, T. Zhang, X. Dai, et al. Graph neural networks for cyber security: A survey.
IEEE Transactions on Knowledge and Data Engineering, 2022.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized kernels between labeled
graphs. In International Conference on Machine Learning (ICML), pp. 321–328, 2003.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann.
Benchmark data sets for graph kernels, 2016. Dataset report.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. In International Conference on Learning Representations (ICLR), 2017.
arXiv:1609.02907.

Risi Kondor and Horace Pan. The multiscale laplacian graph kernel, 2016.

Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In
International Conference on Machine Learning (ICML), pp. 291–298, 2012.

Christopher Morris, Nils M. Kriege, Kristian Kersting, and Petra Mutzel. Faster kernels for
graphs with continuous attributes via hashing, 2016.

Christopher Morris, Nils M Kriege, Fabian Bause, Kristian Kersting, Petra Mutzel, and
Marion Neumann. Tudataset: A collection of benchmark datasets for learning with graphs.
In ICML Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020.

Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. Propagation
kernels: Efficient graph kernels from propagated information. Machine Learning, 102(2):
209–245, 2016a.

Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. A scalable
graph kernel approach for learning from large attributed graphs. In Proceedings of the
25th International Conference on Artificial Intelligence (IJCAI), pp. 2015–2021, 2016b.

M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):
167–256, 2003.

Dinh-Hoa Nguyen and Koji Tsuda. On a linear fused gromov–wasserstein distance for graph
structured data. Pattern Recognition, 142:109108, 2023.

Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels: A survey.
Journal of Artificial Intelligence Research, 72:943–1027, 2021.

Francesco Orsini, Paolo Frasconi, and Luc De Raedt. Graph invariant kernels. In International
Joint Conference on Artificial Intelligence (IJCAI), 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bastian Rieck, Christian Bock, and Karsten Borgwardt. A persistent weisfeiler–lehman
procedure for graph classification. In International Conference on Machine Learning
(ICML), pp. 5448–5458, 2019.

Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten M.
Borgwardt. Efficient graphlet kernels for large graph comparison. In Artificial Intelligence
and Statistics (AISTATS), pp. 488–495, 2009a.

Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten M.
Borgwardt. Efficient graphlet kernels for large graph comparison. Journal of Machine
Learning Research, 5:488–495, 2009b.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler–lehman graph kernels. Journal of Machine Learning Research, 12:
2539–2561, 2011a.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. In Journal of Machine Learning Research,
volume 12, pp. 2539–2561, 2011b.

Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization.
In International Conference on Learning Representations (ICLR), 2019.

Jeffrey J. Sutherland, Lee A. O’Brien, and Donald F. Weaver. Spline-fitting with a genetic
algorithm: A method for developing classification structure–activity relationships. Journal
of Chemical Information and Computer Sciences, 43(6):1906–1915, 2003.

Matteo Togninalli, Gary Bécigneul, Stefan Grünewälder, Pietro Lió, and Michaël Defferrard.
Wasserstein weisfeiler–lehman graph kernels. In Advances in Neural Information Processing
Systems (NeurIPS), volume 32, 2019.

Titouan Vayer, Laetitia Chapel, Rémi Flamary, Romain Tavenard, and Nicolas Courty.
Optimal transport for structured data with application on graphs. In International
Conference on Machine Learning (ICML), pp. 6275–6284, 2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. In ICLR, 2018.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borgwardt.
Graph kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.

Zhenqin Xiong, Daochen Wang, Xiaohong Liu, Fangping Zhong, Xiang Wan, Xin Li, Zhitao
Li, Xiangfeng Luo, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Pushing the
boundaries of molecular representation for drug discovery with the graph attention
mechanism. In J. Med. Chem., 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019a.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019b.

Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In Proceedings of the 21st
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1365–1374, New York, NY, USA, 2015. ACM. doi: 10.1145/2783258.2783417.

Mingqi Yang, Wenjie Feng, Yanming Shen, and Bryan Hooi. Towards better graph
representation learning with parameterized decomposition & filtering, 2023a. URL
https://arxiv.org/abs/2305.06102.

Mingqi Yang et al. Pdf: Pre-training with diffusion for molecular property prediction. In
ICLR, 2023b.

12

https://arxiv.org/abs/2305.06102

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? In
NeurIPS, 2021.

Rex Ying, Ruining He, Kaifeng Chen, Pakapon Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 974–983, 2018. doi: 10.1145/3219819.3219890.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. In Advances in Neural Information
Processing Systems, 2020.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep
learning architecture for graph classification. In AAAI, 2018.

Xinwei Zhang et al. Hyperfusion: Hypergraph fusion networks for molecular property
prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

A Datasets

The graphs are undirected, with nodes labeled, attributed, or both. All datasets are publicly
accessible Kersting et al. (2016); Morris et al. (2020) and have been widely used in comparative
studies of graph kernels and GNNs Nikolentzos et al. (2021).

BZR consists of 405 chemical compounds represented as graphs, where nodes correspond to
atoms and edges to chemical bonds. The task is to predict whether a compound acts as a
ligand for the benzodiazepine receptor Dobson & Doig (2003).

COX2 contains 467 molecules represented as graphs, labeled according to their activity
against the cyclooxygenase-2 enzyme (COX-2 inhibitor classification) Dobson & Doig (2003).

ENZYMES consists of 600 protein tertiary structures from the BRENDA database. Each
protein belongs to one of six top-level enzyme commission (EC) classes, and the task is to
predict the correct class Borgwardt et al. (2005).

PROTEINS and PROTEINS_full represent proteins as graphs, where vertices corre-
spond to secondary structure elements. Edges connect vertices that are adjacent in the
amino acid sequence or in 3D space. The classification task is to distinguish enzymes from
non-enzymes Borgwardt et al. (2005).

SYNTHETICnew contains 300 synthetic graphs evenly split into two classes. Each graph
has 100 vertices and 196 edges with normally distributed node attributes. Class 1 graphs are
generated by rewiring 5 edges and permuting 10 node attributes; Class 2 graphs by rewiring
10 edges and permuting 5 attributes. Gaussian noise is added to all attributes Shervashidze
et al. (2011b).

SYNTHIE contains 400 synthetic graphs across four classes, each with 15 real-valued node
attributes. Graphs are constructed from perturbed Erdős–Rényi base graphs and combined
with two distinct attribute distributions Morris et al. (2016).

B Hyperparameters used for model selection in the graph
classification task

For some kernels, only a subset of the hyperparameters was optimized, while the rest of the
hyperparameters were kept fixed.
Table 4: Hyperparameters used for model selection in the graph classification experiments .

Model Layers Convs
per layer

Batch
size

Learning
rate

Hidden
units Epochs L2 Dropout Patience

(loss, acc) Optimizer Scheduler Dense
dim

Embed.
dim

Neighbors
Aggregation

DGNN 2,3,4 1 16 1e−4 32, 64 1000 – 0.5 500, 500 Adam – 128 – mean, max, sum

GIN see
hidden units 1 32, 128 1e−2

32 (5 layers),
64 (5 layers),
64 (2 layers),
32 (3 layers)

1000 – 0, 0.5 500, 500 Adam StepLR
(step 50, γ=0.5) – – sum

GraphSAGE 3, 5 1 16 1e−2, 1e−3, 1e−4 32, 64 1000 – 0 500, 500 Adam – – – mean, max, sum

InfoGraph 3, 5 – 16, 32 1e−2, 1e−3 32, 64, 128 100 0, 1e−4 0, 0.1, 0.3 500, 500 Adam ReduceLROnPlateau
(γ=0.5) – – sum

GNN 3, 5 1 16 1e−2, 1e−3, 1e−4 32, 64 1000 – 0, 0.5 500, 500 Adam StepLR
(step 50, γ=0.5) – – mean, max, sum

GraphCL 2, 3 1 32 1e+3 64, 128 200 – 0 500, 500 Adam – – – mean, max, sum
FNP 2, 3, 4 1 32 1e−3 32, 64 1000 – 0.0, 0.2, 0.5 500, 500 Adam – – – sum
PNA 2, 3, 2 1 32 1e−3 32, 64 1000 – 0 500, 500 Adam – – – max

PDF 2, 3 1 32 5e−4 64, 129 300 1e−2 0 500, 500 Adam StepLR
(step 50, γ=0.5) – – mean

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Hyperparameters used in the kernels for model selection in the graph classification
task.

Kernel Fixed Validation-tuned

SM k = 3 –
SP – –
ML γ = 0.01, η = 0.01, p̂ =

10
lmax ∈ {0, . . . , 5}, c̃ ∈ {50, 100, 200, 300}

PK w = 10−5 T ∈ {1, . . . , 6}
HSPPK-WL Iterations = 20 (100 for

Synthie)
h ∈ {0, . . . , 5}

HSPPK-SP Iterations = 20 (100 for
Synthie)

h ∈ {0, . . . , 5}

GH – Linear kernel / Gaussian kernel
linearFGW-RAW RBF kernel, γ = 0.1 α ∈ {0.1, 0.5, 0.9}, GWB layers = 5, OT layers ∈ {3, 5}, Iter

∈ {1, 2, 3}, γkernel ∈ {0.01, 0.1, 1.0}
linearFGW-WL1 RBF kernel, γ = 0.1 same as above
linearFGW-WL2 RBF kernel, γ = 0.1 same as above
WL (disc) – Iterations ∈ {0, . . . , 5}
WLOA – Iterations ∈ {0, . . . , 5}
WWL – Iterations ∈ {0, . . . , 7}, Sinkhorn ∈ {False, True}, γ ∈

{0.01, 0.1, 1, 10}
NP – Iterations ∈ {0, . . . , 5}, Linear / Gaussian kernel
NSPDK D = 1, R = 4 –
NSPDK (disc) D = 1, R = 4 –
NSPPK D = 1, R = 4, R′ = 1, threshold t = 8, nbits n = 16

B.1 Robustness Study Hyperparameters

Table 6 summarizes the configurations used for the diagonal dominance / robustness experi-
ments (Section 5.2). Neural baselines (GIN-Random, GraphCL, InfoGraph) were run with
a common lightweight setup , while classical kernels (GraphHopper, Propagation Kernel)
followed their standard definitions. NSPPK used the same fixed configuration as in the main
experiments.

Table 6: Hyperparameters for robustness / diagonal dominance analysis.

Method Configuration

NSPPK R = 1, D = 4, R′ = 1, t = 8, nbits = 12
GIN-Random 3 layers GIN, hidden dim=32, MLP layers=2, pooling=sum,

epochs=200, lr=0.01, seed=42, orthogonal init, no supervision
GraphCL Same GIN backbone as above, contrastive pretraining with

augmentations, 200 epochs, lr=0.01
InfoGraph Same GIN backbone as above, maximizing mutual information,

200 epochs, lr=0.01
GraphHopper Shortest-path kernel, weight decay w = 10−5, tmax ∈

{1, 2, 3, 4, 5}
Propagation Ker-
nel

Attribute propagation with M = L1 distance, 5 iterations

For Infograph,GraphCl and Gin-Random, we generate a dataset of 50000 graphs similar to
G but the number of nodes was set to range from 50 to 250(as for the model to be able to
detect node dropping).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C Large scale embedding experiment: QM9

Figure 5: NSPPK vectorization time for QM9 dataset as a function of number of bits.

Figure 5 illustrates the time required for NSPPK to vectorize the QM9 Blum & Reymond
(2009) dataset as a function of the number of bits hyperparameter (nbits). As the number
of bits increases, the vectorization time rises accordingly, though the rate of increase is
not uniform. Up to 11 bits, the computation time remains within a small range (under 7
minutes), demonstrating NSPPK’s efficiency in handling large-scale datasets.

However, a sharp increase in computation time occurs from 12 to 14 bits due to memory
swapping, where the system resorts to using slower secondary storage instead of RAM. This
significantly degrades performance, further emphasizing the importance of efficient memory
usage when handling high-bit representations in large-scale datasets.

At 15 bits, the vectorization process fails due to excessive memory allocation requirements.
This is a consequence of the exponential growth of the feature space: 15 bits corresponds to
a 215 -dimensional representation per graph, resulting in an immense memory footprint when
applied to over 129,000 molecular graphs. While this represents a practical upper bound
for single-machine processing, it highlights the need for optimized memory management
strategies for ultra-high-dimensional embeddings.

Despite this limitation, NSPPK remains an effective and scalable approach for graph learning
tasks, provided that memory usage is carefully managed when selecting the number of bits.
Additionally, potential optimizations such as sparse representations, dimensionality reduction,
or distributed processing could further enhance its applicability to even larger datasets.

The QM9 dataset itself consists of over 129,000 molecular graphs with 16 continuous
node attributes, making it a computationally intensive benchmark. The results confirm
that NSPPK successfully processes datasets of this magnitude while maintaining practical
computation times, reinforcing its utility for real-world graph-based applications.

D Scalability of NSPPK Vectorization

To evaluate NSPPK’s scalability, we vectorized the QM9 dataset (~112,000 graphs) using
a fixed configuration: 12-bit hash size, maximum radius = 1, distance = 4, and
connector path = 1. This setup balances expressiveness and efficiency, making it suitable
for large-scale benchmarks. As shown in Figure 6, the total vectorization time decreases
almost linearly with the number of CPU cores, completing in under 10 minutes on 112 cores.
This confirms NSPPK’s efficient parallelization and practicality for large datasets.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 6 presents the results on a log-log scale. The x-axis indicates the number of CPU
cores, and the y-axis shows the total vectorization time. The observed trend is close to ideal
linear scaling: doubling the number of cores results in approximately half the runtime. This
demonstrates that NSPPK’s feature extraction process incurs minimal synchronization or
coordination overhead.

Experiments were conducted on a dual-socket Intel server equipped with 2× Intel Xeon Gold
6330 CPUs @ 2.00 GHz, each providing 28 physical cores (56 threads), for a total of 112
logical CPU cores. The machine had 2 NUMA nodes, 70 MB of shared L2 cache, and 84
MB of L3 cache. Despite relying solely on CPU resources, NSPPK scaled efficiently across
all available cores. For example, complete vectorization of the QM9 dataset was achieved
in under 10 minutes, demonstrating the method’s practicality for real-world, large-scale
deployment.

Figure 6: Vectorization time vs. number of CPU cores on QM9 (log-log scale). NSPPK
demonstrates excellent parallel scalability, reducing total vectorization time from over an
hour (using a single core) to under 10 minutes with 112 CPU cores. This shows near-linear
performance gains with increased parallelization.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E Further Visualization: Accuracy–Time Trade-off

(a) ENZYMES (b) PROTEINS (c) SYNTHETICnew

(d) Synthie (e) BZR (f) COX2

(g) Overall (average across datasets)
Figure 7: Accuracy–time trade-off (log time). Markers: green star = NSPPK, blue circle =
other kernels, orange square = neural nets. Dashed line = Pareto front.

Summary. Figure 7 shows that, for most datasets, NSPPK (green star) is on or close to the
Pareto front. Methods spread along the efficiency–accuracy spectrum: several are faster but
less accurate, while others gain accuracy at a higher computational cost. On the aggregated
panel, NSPPK remains on the global frontier, indicating a favorable accuracy–time balance
overall.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F Runtime Results for the small-scale datasets experiments
reported in the main paper

Table 7: Runtime (seconds) with node attributes (lower is better).

Method SYNTH SYNTHIE BZR COX2 ENZ PROT Avg Rank

SM TIMEOUT TIMEOUT 12274.00 s 25927.96 s TIMEOUT TIMEOUT 190100.98 s 16.00
SP TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT – –
ML 1777.93 s 1848.90 s 849.20 s 1155.49 s 1295.99 s 3628.70 s 1759.70 s 13.83
PK 1.81 s 2.73 s 0.79 s 1.13 s 3.14 s 4.48 s 2.51 s 2.33
HSPPK_WL 49.54 s 93.86 s 8.63 s 16.38 s 25.20 s 89.90 s 47.59 s 10.67
HSPPK_SP 249.75 s 353.70 s 16.52 s 29.22 s 28.35 s 119.32 s 132.81 s 12.67
GH 242.05 s 274.63 s 112.43 s 132.63 s 365.25 s 3647.21 s 1129.03 s 14.67
NP 41.57 s 40.84 s 42.32 s 69.80 s 17.69 s 49.58 s 43.63 s 9.67
linearFGW-RAW 6.82 s 7.00 s 6.63 s 9.84 s 8.73 s 69.67 s 18.11 s 6.67
linearFGW-WL1 6.94 s 7.33 s 5.89 s 10.75 s 8.29 s 67.19 s 17.07 s 6.00
linearFGW-WL2 5.95 s 8.09 s 7.02 s 10.92 s 10.26 s 71.63 s 18.98 s 6.33
WL (disc.) 12.33 s 12.00 s 4.00 s 14.00 s 9.00 s 20.00 s 11.22 s 1.67
WLOA 0.99 s 2.47 s 0.83 s 3.27 s 4.24 s 12.67 s 4.41 s 3.17
WWL 29.96 s 45.00 s 14.71 s 40.89 s 32.54 s 134.95 s 49.84 s 11.67
NSPDK (disc.) 6.50 s 8.71 s 4.69 s 2.64 s 3.18 s 6.13 s 5.64 s 3.17
NSPPK (ours) 34.81 s 44.97 s 12.75 s 12.75 s 26.45 s 5.73 s 22.41 s 6.33

Table 8: Neural runtimes (seconds) with node attributes (lower is better).

Method SYNTH SYNTHIE BZR COX2 ENZ PROT Avg Rank

DGCNN 443.59 s 551.36 s 304.88 s 704.74 s 948.88 s 1512.29 s 744.29 s 9.83
GraphSAGE 139.94 s 117.92 s 175.30 s 118.97 s 317.84 s 394.02 s 210.66 s 7.33
InfoGraph 39.25 s 109.14 s 40.40 s 111.40 s 59.95 s 85.72 s 74.31 s 5.00
GIN 474.24 s 535.34 s 302.44 s 579.86 s 369.06 s 742.46 s 500.57 s 9.17
GraphCL 11.33 s 6.83 s 4.10 s 5.11 s 15.51 s 20.04 s 10.49 s 1.17
GNN 165.92 s 148.83 s 100.28 s 153.89 s 207.18 s 371.30 s 191.23 s 7.50
FNP 49.97 s 31.88 s 18.72 s 22.23 s 60.51 s 57.51 s 40.14 s 4.17
PNA 16.67 s 12.87 s 4.38 s 3.86 s 17.33 s 22.14 s 12.88 s 1.83
PDF 20.59 s 80.49 s 21.10 s 20.13 s 61.43 s 76.70 s 46.74 s 4.17
NSPPK feat. (XGB) 39.35 s 142.70 s 19.38 s 20.62 s 39.54 s 131.96 s 65.59 s 4.83

G Additional Results: No-Attribute Setting

Tables 9 and 10 report kernel and neural network accuracy, respectively, when node attributes
are removed. This isolates the structural contribution of the methods. We observe that
NSPPK maintains strong relative performance even without attributes, underscoring its
robustness.

Table 9: Classification accuracy (%) without node attributes (-) with Avg Rank.

Method SYNTHETIC
new Synthie BZR COX2 ENZYMES PROTEINS Avg Rank

SM TIMEOUT TIMEOUT 79.02± 1.10 78.16± 0.81 TIMEOUT TIMEOUT 8.75
SP TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT –
ML 67.22± 9.51 58.00± 13.85 86.63± 3.81 77.95± 4.63 33.66± 5.31 72.80± 3.80 4.33
PK 61.33± 7.33 38.75± 7.60 78.77± 1.01 78.16± 8.07 18.33± 5.22 58.48± 4.29 11.17
HSPPK_WL 50.00± 0.00 54.25± 1.14 80.26± 3.02 72.41± 17.06 16.50± 2.73 63.80± 5.76 11.92
HSPPK_SP 58.00± 7.18 47.75± 6.75 76.26± 9.39 77.31± 4.70 21.00± 5.92 46.20± 4.70 12.17
GH 59.33± 9.28 52.25± 4.10 81.25± 2.40 77.30± 3.14 25.17± 3.98 71.61± 4.32 7.33
NP 97.00± 3.15 47.60± 0.00 84.16± 5.65 80.29± 3.42 36.70± 0.53 69.99± 3.88 5.50
linearFGW-RAW 57.33± 6.29 44.75± 8.91 80.52± 3.76 76.24± 4.74 23.00± 4.88 71.35± 4.56 10.33
linearFGW-WL1 56.00± 11.72 54.50± 8.28 80.99± 5.24 76.45± 1.86 24.50± 4.78 70.17± 4.81 9.00
linearFGW-WL2 48.67± 7.33 51.75± 4.19 79.48± 5.48 74.74± 5.12 22.33± 5.59 69.54± 3.12 11.67
WL (disc.) 79.00± 12.39 54.75± 3.94 87.90± 3.92 78.17± 3.48 40.17± 7.54 69.00± 4.08 4.00
WLOA 81.00± 6.16 50.75± 4.62 83.71± 8.36 78.16± 2.75 42.67± 4.84 74.49± 3.53 4.75
WWL 50.00± 0.00 27.50± 0.00 78.77± 1.01 78.16± 0.80 16.67± 0.00 55.57± 0.17 12.58
NSPDK 95.33± 3.72 51.25± 5.01 85.68± 4.04 77.09± 3.84 35.67± 9.22 71.33± 3.06 6.50
NSPDK (disc.) 95.33± 3.72 51.25± 5.01 85.68± 4.04 77.09± 3.84 35.67± 9.22 71.33± 3.06 6.50
NSPPK (ours) 98.00± 3.93 53.00± 4.30 87.65± 4.54 77.73± 3.96 33.17± 5.80 71.34± 4.06 4.67

Note: Avg Rank averaged over available cells; lower is better. TIMEOUT/N/A omitted per dataset.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: Neural networks: classification accuracy (%) without node attributes (-) and Avg
Rank.

Method SYNTHETIC
new Synthie BZR COX2 ENZYMES PROTEINS Avg Rank

DGCNN 44.67± 6.86 25.25± 8.69 81.98± 2.20 78.22± 0.07 26.80± 7.09 73.22± 3.48 6.83
GraphSAGE 43.33± 5.58 33.00± 8.20 83.70± 5.59 80.30± 0.03 48.17± 7.58 74.93± 2.82 4.92
InfoGraph 67.33± 21.54 42.75± 13.53 75.05± 15.04 69.02± 0.20 53.33± 4.79 63.07± 4.69 6.17
GIN 53.00± 9.71 43.25± 12.53 73.95± 3.30 79.91± 0.08 42.67± 7.68 65.77± 5.02 6.17
GraphCL 50.00± 8.69 27.00± 7.40 79.99± 3.62 81.38± 3.79 37.50± 5.12 71.43± 3.92 6.08
GNN 43.33± 5.58 23.25± 7.34 84.66± 4.60 81.60± 5.54 48.50± 5.80 71.79± 3.61 5.42
FNP 50.00± 8.69 51.25± 10.56 81.73± 3.52 78.22± 3.94 35.83± 7.79 72.41± 3.70 5.33
PNA 46.00± 7.72 48.25± 6.71 78.76± 4.33 78.22± 7.01 18.83± 7.07 70.62± 3.69 7.33
PDF 50.00± 8.69 24.75± 7.02 84.43± 4.63 81.38± 3.79 52.00± 5.26 74.75± 2.28 4.08
NSPPK feat. (XGBoost) 91.00± 4.73 50.00± 6.12 89.60± 3.29 82.76± 4.25 41.83± 5.55 71.60± 3.15 2.83

H Additional Runtimes: No-Attribute Setting

Tables 11 and 12 report computation times for kernels and neural networks without node
attributes. While runtimes are generally shorter in this simplified setting, the relative ranking
remains consistent: NSPPK achieves strong efficiency while preserving accuracy.

Table 11: Neural runtimes (seconds) without node attributes (lower is better).

Method SYNTH SYNTHIE BZR COX2 ENZ PROT Avg Rank

DGCNN 428.69 s 562.06 s 571.26 s 237.85 s 887.36 s 1611.41 s 716.10 s 9.83
GraphSAGE 124.81 s 161.54 s 126.21 s 140.69 s 248.03 s 395.38 s 199.44 s 7.33
InfoGraph 65.27 s 104.54 s 100.00 s 87.92 s 144.01 s 241.47 s 123.54 s 5.00
GIN 388.95 s 360.00 s 358.57 s 392.46 s 440.30 s 884.01 s 470.38 s 9.17
GraphCL 3.58 s 2.09 s 4.23 s 5.42 s 13.28 s 17.61 s 6.03 s 1.17
GNN 81.93 s 103.93 s 28.95 s 122.86 s 247.42 s 403.82 s 164.49 s 7.50
FNP 7.69 s 22.24 s 63.45 s 15.82 s 70.24 s 38.84 s 36.05 s 4.17
PNA 3.32 s 10.28 s 3.83 s 2.80 s 8.59 s 23.63 s 8.41 s 1.83
PDF 13.12 s 25.58 s 17.80 s 23.45 s 63.85 s 67.34 s 35.86 s 4.17
NSPPK feat. (XGB) 32.91 s 59.78 s 4.28 s 6.25 s 7.43 s 60.64 s 28.38 s 4.83

Table 12: Runtime (seconds) without node attributes (lower is better).

Method SYNTH SYNTHIE BZR COX2 ENZ PROT Avg Rank

SM TIMEOUT TIMEOUT 11853.30 s 25478.50 s TIMEOUT TIMEOUT 18665.90 s 16.00
SP TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT – –
ML 978.86 s 1953.89 s 158.40 s 1509.62 s 1792.43 s 5661.68 s 2009.15 s 15.00
PK 0.59 s 0.92 s 0.23 s 0.33 s 0.78 s 2.11 s 0.83 s 2.00
HSPPK_WL 38.74 s 57.69 s 8.76 s 11.30 s 19.83 s 76.69 s 35.50 s 10.50
HSPPK_SP 285.63 s 320.39 s 18.33 s 25.21 s 31.37 s 121.37 s 133.72 s 12.33
GH 178.47 s 375.02 s 99.82 s 132.87 s 365.25 s 791.82 s 323.21 s 13.83
NP 66.93 s 53.05 s 44.90 s 97.51 s 69.69 s 240.32 s 95.07 s 12.50
linearFGW-RAW 6.21 s 8.21 s 6.17 s 8.75 s 12.91 s 76.17 s 19.07 s 7.83
linearFGW-WL1 7.00 s 8.44 s 6.24 s 10.22 s 8.51 s 52.96 s 15.23 s 7.83
linearFGW-WL2 6.17 s 7.53 s 5.21 s 11.27 s 11.82 s 74.40 s 19.73 s 7.17
WL (disc.) 0.14 s 0.11 s 0.05 s 0.12 s 0.13 s 0.34 s 0.15 s 1.00
WLOA 0.96 s 1.02 s 0.95 s 1.37 s 3.32 s 8.19 s 2.63 s 3.83
WWL 13.19 s 23.60 s 11.17 s 29.40 s 24.10 s 90.97 s 32.41 s 10.83
NSPDK 5.78 s 7.00 s 3.07 s 2.81 s 2.24 s 3.11 s 3.67 s 4.17
NSPDK (disc.) 5.78 s 7.00 s 3.07 s 2.81 s 2.24 s 3.11 s 3.67 s 4.17
NSPPK (ours) 11.31 s 13.33 s 6.09 s 6.09 s 5.58 s 4.72 s 7.85 s 7.00

I Large-Scale Experiment: MolPCBA Learning Curves and
Efficiency

We evaluated NSPPK on the large-scale ogbg-molpcba benchmark from the Open Graph
Benchmark suite Hu et al. (2020a), which includes 437,929 node attributed molecular graphs
and 128 binary classification tasks. In practice, many of these tasks are both sparse (due to
missing labels) and highly imbalanced.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

I.1 Case Study: Target 95 from ogbg-molpcba

We further examined task 95, which provides 48,853 positive examples, 293,968 negatives,
and 95,108 molecules with missing labels. To analyze sample efficiency, we subsampled
balanced datasets up to 78,164 labeled graphs (positives and negatives in equal proportion)
and varied the training set size from 100 to 250k examples. Each experiment was repeated
with five random seeds, and average precision (AP) was reported. In parallel, we also
trained each baseline once on the full OGB scaffold split (249,715 train, 29,826 validation,
29,427 test).

We compared NSPPK in combination with different downstream classifiers—logistic regres-
sion, random forest, and XGBoost—using both sparse and dense feature representations,
against neural baselines including GIN, GAT, PNA, PDF, a generic GNN, and AttentiveFP
(FNP). The distinction between sparse and dense refers only to feature storage: sparse
matrices retain only nonzeros and are CPU-efficient, while dense mode expands full vectors
(more memory, but occasionally favorable for GPU kernels).

For NSPPK, we fixed a single configuration (R = 1, D = 4, R′ = 1, nbits = 16) across all
runs. (see Appendix I.2 for full implementation details of the graph neural netowks models
used within this experiment).

Figure 8 summarizes the results. NSPPK shows strong sample efficiency, achieving higher AP
than all neural baselines at small training sizes. Its runtime is also favorable: sparse variants
in particular remain substantially faster to train than graph neural networks. At scale, PDF
overtakes NSPPK in predictive performance, though the gap remains small. Interestingly,
NSPPK combined with logistic regression can take as long as a GNN to train, but still
delivers superior AP on small data regimes. Overall, NSPPK offers a simple, lightweight
alternative that competes directly with neural methods. Figure 8 shows the resulting learning
curves, with all NSPPK variants highlighted in red.

Figure 8: Learning curves on ogbg-molpcba (task 95). NSPPK (red) paired with different
downstream classifiers is compared against neural baselines including GIN, GAT, PNA, PDF,
and AttentiveFP (FNP).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

I.2 Implementation Details for Task 95 Experiments

NSPPK Configuration. For all NSPPK experiments we fixed the parameters across
classifiers:

R = 1, D = 4, R′ = 1, nbits = 16.

Both sparse and dense representations were evaluated. Sparse mode stores only nonzero
entries and is efficient on CPU-based models, while dense mode expands the full vectors,
sometimes favorable for GPU-accelerated tree methods.

Downstream Classifiers. The exact settings for the classifiers paired with NSPPK
features are given in Table 13.

Table 13: Classifiers used with NSPPK features on ogbg-molpcba (task 95).

Classifier Features Configuration

Logistic Regression Sparse saga, max_iter=1000, L2, njobs = 64
Random Forest Sparse 500 trees, depth=5, njobs = 64, seed=42
XGBoost Dense 1000 trees, depth=6, LR=0.03, subsample=0.8, colsample=0.8
XGBoost Sparse Same as above, hist backend

Neural Baselines. For comparison, we trained common GNN baselines with published
hyperparameters. Table 14 summarizes their main configurations.

Table 14: Neural baselines and their configurations for task 95.

Model Main hyperparameters Source

PNA 2 layers, dim 64→32, batch 64/256, LR=0.001, Adam Corso et al. (2020)
PDF (Basis-DGL) 8 layers, dim 384, batch 64/256, LR=5e-4, AdamW Yang et al. (2023b)
GAT 2 layers, 64→32, 4/1 heads, LR=0.001, Adam Veličković et al. (2018)
AttentiveFP (FNP) 4 layers, dim 64, dropout=0.2, LR=0.001, Adam Xiong et al. (2019)
GIN 2 layers, dim 64→32, LR=0.001, Adam Xu et al. (2019a)
GCN (OGB baseline) 2 layers, dim 64→32, LR=0.001, Adam Hu et al. (2020a)

Shared Training Setup. All neural baselines were trained on the official OGB scaffold
split (train: 249,715; validation: 29,826; test: 29,427). Loss: binary cross-entropy with
logits (BCEWithLogitsLoss). Metrics: AP and ROC-AUC. Unless otherwise stated, all
experiments were executed on CPU.

Reproducibility. Balanced-data experiments were repeated with five random seeds. Both
feature extraction time and training time are reported in the main text.

22

	Introduction
	Related Work
	Definitions
	Method
	From NSPDK to NSPPK
	NSPPK Definition
	Feature Hashing Pipeline
	Why the connector path disambiguates: an illustrative example
	Attribute Integration
	Complexity Analysis
	Balancing Feature Size and Hash Collisions

	Experiments
	Small-Scale Datasets
	Ablation Study
	Larger-Scale Dataset Experiment

	Conclusion
	Datasets
	Hyperparameters used for model selection in the graph classification task
	Robustness Study Hyperparameters

	Large scale embedding experiment: QM9
	Scalability of NSPPK Vectorization
	Further Visualization: Accuracy–Time Trade-off
	Runtime Results for the small-scale datasets experiments reported in the main paper
	Additional Results: No-Attribute Setting
	Additional Runtimes: No-Attribute Setting
	Large-Scale Experiment: MolPCBA Learning Curves and Efficiency
	Case Study: Target 95 from ogbg-molpcba
	Implementation Details for Task 95 Experiments

