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ABSTRACT

We introduce the Neighborhood Subgraph Pairwise Path Kernel (NSPPK), a scal-
able and interpretable graph kernel for node-attributed graphs. NSPPK compares
neighborhoods connected through unions of shortest paths and directly integrates
continuous node features without discretization. This yields explicit, sparse em-
beddings where graph similarities reduce to a single dot product. Feature extrac-
tion scales near-linearly in |V'|, parallelizes efficiently, and is fully deterministic.
Across six benchmarks with continuous attributes, NSPPK achieves the best av-
erage rank among graph kernels and frequently matches or outperforms modern
GNNs—without any training or hyperparameter tuning. By combining scalability,
interpretability, and expressive power, NSPPK offers a practical alternative for
graph learning in low-data or reproducibility-critical settings. Its advantage lies
in working robustly when data is scarce, yet scaling efficiently to hundreds of
thousands of graphs when data is abundant.

1 INTRODUCTION

Graphs are a fundamental data structure for modeling relationships among entities, with applications in
social networks (Newman, 2003)), bioinformatics (Borgwardt et al.,|2005)), cheminformatics (Dobson
& Doigl, [2003)), recommender systems (Ying et al.l [2018)), and cybersecurity (Huang et al., [2022]).
Unlike images or sequences embedded in regular grids, graphs capture irregular, non-Euclidean
structures with variable neighborhoods and complex topologies (Bronstein et al.,[2017)). In many
domains, nodes and edges carry attributes—categorical (e.g., atom types) or continuous (e.g., charges,
coordinates, behavioral metrics).A central challenge in graph learning is how to compare such rich
structures both effectively and efficiently. Two main families of methods have emerged. Graph kernels
provide a classical and well-founded approach: they decompose graphs into substructures and measure
similarity through carefully designed comparisons. Kernels are deterministic, interpretable, and often
perform well in low-data settings. However, most classical kernels assume discrete labels, relying
on exact matches. Applied to continuous data, they typically require discretization (Neumann et al.|
2016b)), which discards fine-grained information and may distort similarity. Empirically, kernels that
integrate continuous features directly (Feragen et al.,2013b)) outperform those based on discretization,
but many variants still struggle with scalability, especially on larger graphs.In contrast, Graph Neural
Networks (GNNs) (Kipf & Welling, [2017b; Xu et al.l 2019b) naturally process continuous attributes
and have achieved strong benchmark performance. Yet they usually demand large labeled datasets,
intensive training, and extensive hyperparameter tuning, while their internal representations remain
difficult to interpret (Errica et al., [2020; [Hu et al., |2020b). These drawbacks limit their applicability
in low-data regimes or in settings where reproducibility and transparency are critical. This trade-off
motivates the search for approaches that combine the sample-efficiency and interpretability of kernels
with the expressive power and flexibility of neural methods. Several recent kernels have moved
in this direction by incorporating continuous features through embeddings (Feragen et al., 2013b)),
propagation (Neumann et al.l [2016a), or WL-style extensions (Shervashidze et al., 2009a; |Rieck
et al.| 2019). While more expressive, these methods often face scalability challenges, leaving room
for further improvement.

Our Contribution We introduce the Neighborhood Subgraph Pairwise Path Kernel (NSPPK),
a new graph kernel designed to combine scalability, interpretability, and support for continuous
node attributes. Our method builds on the Neighborhood Subgraph Pairwise Distance Kernel
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(NSPDK) (Costa & De Gravel} 2010), a well-known kernel that compares fixed-radius neighborhoods
around pairs of nodes. While NSPDK has proven effective in capturing structural information, it is
limited to discrete labels and cannot directly exploit real-valued node features.

NSPPK extends NSPDK in three key ways: Kernel design. We replace fixed-radius neighborhoods
alone with unions of shortest-path neighborhoods between node pairs, capturing dependencies that
go beyond the reach of classical NSPDK features. Continuous attributes. Real-valued node (and
edge) features are integrated directly into the kernel without discretization, preserving fine-grained
information that would otherwise be lost. Efficiency. NSPPK yields explicit, sparse graph-level
embeddings. Kernel evaluation reduces to a single dot product in O(| E'|) time, and feature extraction
scales near-linearly in | V|, is trivially parallelizable, and requires only a few integer hyperparameters.

Empirical results. Across six benchmarks with continuous attributes, NSPPK attains the best average
rank among graph kernels and often matches or outperforms GNN baselines, all without any training,
hyperparameter tuning, or randomness.

2 RELATED WORK

Most graph kernels follow the R-convolution framework (Haussler, [1999), which decomposes struc-
tured objects into substructures and sums kernel evaluations. Examples include the graphlet ker-
nel (Shervashidze et al., 2009b), Weisfeiler—Lehman (WL) subtree kernel (Shervashidze et al.,[2011al),
and NSPDK (Costa & De Gravel [2010). WL kernels are powerful but limited by the 1-WL test, while
NSPDK counts fixed-radius neighborhoods around node pairs. To handle continuous attributes, early
kernels such as marginalized random walk (Kashima et al.l 2003} |Géartner et al., [2003; |Vishwanathan
et al.,[2010) and subgraph-matching (Kriege & Mutzel, [2012)) are expressive but computationally
heavy. Propagation kernels (Neumann et al., [2016a) scale efficiently but rely on discretization.
Shortest-path-based kernels (Borgwardt & Kriegell 2005; Feragen et al.,[2013b) capture long-range
structure but suffer from high complexity. Recent work relaxes exact label matches via optimal
transport, e.g., Wasserstein WL (Togninalli et al.;, 2019) and fused Gromov—Wasserstein (Vayer et al.,
2019), though at high cost. Hybrid approaches integrate kernels with neural models, such as Deep
Graph Kernels (Yanardag & Vishwanathan, 2015)) and Graph Neural Tangent Kernels (Du et al.|
2019). NSPPK builds on NSPDK but introduces two key innovations: (i) unions of shortest-path
neighborhoods capture richer multi-scale dependencies, and (ii) continuous attributes are integrated
directly without discretization. Unlike graph invariant kernels (Orsini et al.,[2015), NSPPK avoids
explicit subgraph matching, and its explicit embeddings allow O(|E|) similarity computation while
retaining interpretability.Recent graph kernels have sought to handle continuous node attributes by
comparing distributions of node- or substructure-level representations,rather than relying on discrete
label matching. MMD-GK (Sun & Fan, 2024)) represents each graph as a distribution over node
embeddings obtained via Laplacian smoothing of node features and measures similarity via maximum
mean discrepancy (MMD) between these distributions. As this comparison is performed implicitly
through pairwise kernel evaluations over nodes, MMD-GK does not produce an explicit, sparse graph-
level feature map as in substructure based graph kernels.The Sliced Wasserstein Weisfeiler—Lehman
(SWWL) kernel (Carpintero Perez et al.| 2024)) extends WL-style aggregation to continuous attributes
by comparing distributions of node embeddings using sliced Wasserstein distances. SWWL achieves
favorable scalability by replacing full optimal transport with random projections and quantile em-
beddings, but still represents each graph as a global distribution of node features, thereby discarding
explicit structural subgraph correspondence and yielding dense graph-level embeddings. Most closely
related to path-based methods, the Distributional Shortest-Path (DSP) graph kernel (Ye et al.,2025)
augments classical shortest-path kernels by learning embeddings of shortest paths via neural language
models. DSP captures both within-graph and dataset-wide distributional information by combining
Transformer-based path embeddings, a partition kernel, and kernel mean embeddings. While highly
expressive, DSP relies on learned substructure embeddings, repeated partitioning or clustering of
node representations, and dense RKHS feature maps, resulting in substantial computational and
memory overhead.In contrast to these distributional kernels, NSPPK constructs an explicit and sparse
feature map based on combinatorial subgraphs defined by pairs of local neighborhoods connected
through unions of shortest paths. Continuous node attributes are integrated deterministically by
aggregating node attribute values within each hashed structural bucket, and graph similarity reduce to
a single sparse dot product. This avoids neural representation learning, optimal transport, MMD, and
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dataset-wide partitioning, while retaining strong discriminative power and near-linear complexity in
the number of edges under small radii and degree cutoffs.

3 DEFINITIONS

A graph is a pair G = (V, E), where V is a finite set of vertices (or nodes) and £ C V x Visa
set of edges connecting pairs of vertices. A labeled graph is a graph G = (V, E) equipped with a
labeling function ¢ : VU E — ¥ that assigns each vertex and edge a label from a discrete alphabet
Y. An attributed graph is a graph G = (V, E) endowed with an attribute function f : V U E — R?
that assigns each vertex and edge a d-dimensional real-valued feature vector.

For a vertex v € V, the degree of v is the number of edges incident to it, deg(v) =
H{u e V| (v,u) € E}|, and its (immediate) neighborhood is N(v) = {u € V | (v,u) € E}.
Optionally, a degree cutoff parameter 7 can be introduced, restricting neighborhood expansions to
min(deg(v), 7).

A path in G is a sequence of vertices (v, va, ..., vg) such that (v;,v;41) € E forall 1 <i < k. The
length of the path is the number of edges in the sequence, i.e., kK — 1.

A shortest path from v to w is a path with the smallest possible length among all paths connecting v
and u. The distance between v and u, denoted d(v, ), is the length of a shortest path between them;
if no path exists, d(v, ) is defined to be infinite.

The union of shortest paths between vertices v and u, denoted U (v, u), is the subgraph consisting
of all vertices and edges that belong to at least one shortest path from v to u (i.e., the union over all
equally-short paths).

The r-hop neighborhood of a vertex v, denoted N,.(v), is the set of vertices whose distance from v is
at most r, namely N, (v) = {u € V' | d(v,u) < r}. Similarly, the r-hop neighborhood of a subgraph
S C @ is the subgraph induced by all vertices u € V such that Jw € S with d(w,u) < r.

Anchors and connector path. Given an (unordered) anchor pair {u,v} C V with « # v and distance
d(u,v), define the connector path of radius ' > 0 by Cy(u,v) == Np(U(u,v)), where U(u, v)
is the union of all shortest u<»v paths (as defined above). Thus Cy(u,v) = U(u,v) (only path
nodes/edges), while ' > 0 “thickens” the connector by including all vertices within ' hops of
U(u,v) (induced subgraph). If v and v are disconnected, set C,/(u,v) = & and ignore the pair.
Unless stated otherwise, anchor pairs are unordered to avoid double counting.

Notation summary. Unless otherwise specified, we denote by |V| and | E| the numbers of vertices
and edges, respectively; K = max,cy deg(v) is the maximum degree and 7 an optional degree
cutoff. Distances are d(u,v), N, (v) is the r-hop neighborhood of v, U (u, v) the union of all shortest
u > v paths, and C, (u,v) = N,/ (U(u,v)) the connector of radius /. Lowercase r,d,r’ denote
per-feature radii and distances, while uppercase R, D, r’ are their maximal values. The resulting
feature vector for a graph G under parameters § = (R, D, ') is fg.

4 METHOD

A widely used strategy for defining kernels between structured objects is to decompose them into
constituent substructures and compare all possible substructure pairs using a base kernel. Kernels
designed this way fall under the R-convolution framework (Haussler, 1999)), which includes most
classical graph kernels.

The Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) (Costa & De Grave, 2010) instanti-
ates this framework by counting pairs of fixed-radius neighborhoods at a given distance. However,
NSPDK has two main limitations: (i) it only supports discrete node labels, and (ii) it uses only
fixed-radius neighborhoods, missing richer structural patterns.

We propose the Neighborhood Subgraph Pairwise Path Kernel (NSPPK), which extends NSPDK in
three ways:



Under review as a conference paper at ICLR 2026

1. A scalable, parallel graph kernel whose feature extraction runs in near-linear time in |V| for
fixed (R, D) (and optional degree cap 7), yielding explicit sparse embeddings so similarities
reduce to a single O(|E|) dot product.

2. A new feature family that pairs symmetric r-hop anchor neighborhoods N,.(u), N;.(v)
with a union-of-shortest-path connector C (u,v) = N,»(U(u,v)), capturing long-range
topological interactions (with 7’ = 0 recovering the bare shortest-path union).

3. A principled integration of continuous node (and optionally edge) attributes directly into the
hashing/aggregation pipeline—no discretization—preserving fine-grained information in
deterministic, interpretable features.

The complete NSPPK feature set is obtained by enumerating all parameter configurations:
TusTo €{0,...,R}, d€{0,...,D}, " €{0,...,R'}U{2},

where R, D, R’ are small positive integers chosen for tractability. We denote by r’ the connector

radius for any given feature and by R’ the maximal connector radius considered during extraction, so
/ /

r €{0,...,R'}.

4.1 NSPPK DEFINITION

Let # = (R, D, R’) denote the maximal radii and distances for feature extraction. For a graph
G, let fg; be the vector counting occurrences of each subgraph pattern in the NSPPK family. The
kernel between G and G’ is kg (G, G’) = gT f&,. Because NSPPK features are defined per node,

this can be written as f& = Y i, f& . where f¢  counts only features in which v is one of the
neighborhood centers or path endpoints.

4.2 FEATURE HASHING PIPELINE

We represent each subgraph pattern by a unique integer in {0, ..., 2" — 1} using a hierarchy of hash
functions. This provides constant-time indexing into the feature vector and avoids explicit subgraph
isomorphism checks.

Base hash functions. For any element ;, H,,(x) = sha256(z) mod 2" is the n-bit base hash. From
H,, we define: - H9(I): sequence hash of an ordered tuple [ = (x1,...,xy), - H'(S): multiset hash
of .S, computed after lexicographic sorting to ensure order invariance.

Node hash. For each node v (labels and neighborhoods as in Section we set Np(v) =
HY({ H([Hn (0(w)), Hn(£(ev,u))]) s w € N(v)}) and Npg(v) = HU([H,,(¢(v)), Np(v)]).

Rooted graph hash. For radius r, set CY = H'({ Ng(u) : uw € D} }) with DY = {u | d(v,u) = j }
and G%;(v) = HI([C¥, CY, ..., CY]).

Neighborhood pair hash. For nodes u,v at distance d we compute P w) =
HI([Hy(d), H'({G (u), G (v)})]).

Union-of-shortest-paths hash. Let U(u,v) be the union of all shortest paths between u and
v. For each j € {0,...,d} weset 7, = H'({Gy(w) : w € D}j}) and U (u,v) =

HY([CY,. ..., CF]).

Final feature vector. The NSPPK vector fg is the histogram of all Py and Up hash values from G.

4.3 NODE ATTRIBUTE INTEGRATION

For graphs with continuous node attributes A € R"*?, let F € R™*/ be the binary node—feature
incidence matrix, where f = 2" is the number of hash buckets. We compute x = vec(ATF) c Rrf
so that each feature index stores the sum of attributes of all nodes in subgraphs contributing to that
feature. Node weights can be incorporated by replacing A with diag(w)A, and the same approach
extends to edge attributes.
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4.4 WHY THE CONNECTOR PATH DISAMBIGUATES: AN ILLUSTRATIVE EXAMPLE

Figure [T] contrasts NSPDK and NSPPK features for two graphs that share the same r=1 anchor
neighborhoods around u and v and the same distance d(u,v)=>5, but differ in how » and v are
connected. In the top row there is a unique shortest u<>v path; in the bottom row there are two
distinct shortest paths of equal length (their union forms a “ladder”).

NSPDK collapses the two cases. NSPDK features only depend on (N, (u), d(u,v), N(v)). Since
Ni(u), N1(v), and d(u, v) are identical in both graphs, the NSPDK hash coincides: qﬁgffl’d:& =

hash(Ny (u), d(u,v), N1(v)), so NSPDK cannot distinguish them.

NSPPK separates them. NSPPK augments the pair of neighborhoods with the connector C. (u, v) =
N, (U(u,v)), where U (u, v) is the union of all shortest u<»>v paths. The structural feature becomes

(rsbd=s.ri=1) - hash(Ni (u), Cy(u,v), Ni(v)). In the top graph, U (u, v) is a simple path; in the
bottom graph, U (u, v) contains two parallel shortest paths. Consequently C,./ (u, v) differs (already
for 7'=0; ’=1 merely “thickens” the union), and the NSPPK hashes are distinct. This is precisely

the extra resolution provided by the connector.
NSPDK: r=1, d=5 NSPPK: r=1, d=5, r=1
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Figure 1: NSPDK vs. NSPPK on anchors u, v with r=1, d=5. Left: NSPDK features for the case
with a single shortest path (top) and two equal-length shortest paths (bottom). Because NSPDK
uses only (N,-(u), d(u,v), N-(v)), both cases produce the same feature. Right: NSPPK includes the
connector C,/ (u,v) = N, (U(u,v)) (shown in green). The connector is a simple path in the top
graph but a two-path union in the bottom graph, so NSPPK assigns different features (already for
r'=0; here r'=1 is shown).

4.5 COMPLEXITY ANALYSIS

The main cost in NSPPK is extracting subgraphs via breadth-first search (BFS) up to depth
B = max(R,D). A single BFS explores at most O(K?) vertices in the worst case (with
K = max,cy deg(v)), and repeating this over all |V| centers gives O(|V|KZ). With a degree
cutoff 7, the branching factor becomes K = min(K, 1), yielding O(|V|KZ%). Incorporating
d-dimensional attributes adds only a multiplicative factor of d.Once features are extracted, kernel
computation reduces to a sparse dot product k(G,G') = f/ fa: with cost O(nnz(fe) + nnz(far)),
scaling near-linearly with the number of edges |E|.In summary, under realistic settings where K and
B are small (often < 6), NSPPK achieves near-linear scaling in |V| (and thus |E|), with attribute
integration adding only a linear factor in d.
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4.6 GRAPH ISOMORPHISM
(b)

@VAM

Figure 2: Two 1-WL/MP-GNN indistinguishable pairs that NSPPK separates. (a) Cs (6 nodes-cycle
graph) vs. K3 U K3 (two disconnected triangles). (b) Bow-tie vs. 2 x 3 grid (“ladder”).

Distinguishing non-isomorphic graphs is essential for expressive graph kernels. Two graphs
G = (Vg,Eg) and H = (Vy, Ey) are isomorphic, denoted G = H, if a bijection ¢ : Vg — Vg
preserves adjacency. While Graph Isomorphism (GI) resides in a nuanced complexity class (recently
shown to admit a quasi-polynomial-time algorithm (Babai, [2016)), valid graph kernels must at least
satisfy isomorphism-invariance. More valuable, though, is isomorphism-discrimination: ensuring
k(G,H) < k(G,G) for G 2 H.The expressive power of many classical kernels and message-
passing GNNss is limited by the /-dimensional Weisfeiler—Lehman (1-WL) test, which iteratively
aggregates hashed neighborhood label multisets (Shervashidze et al., [2011a; Morris et al., |2019).
If two graphs cannot be distinguished by 1-WL, neither can any derived WL kernel. Likewise,
standard MP-GNNss align with 1-WL in distinguishing power (Xu et al.| 2019b).Higher-order WL
variants (like k-WL) and their GNN instantiations do surpass 1-WL but often suffer steep com-
putational costs (Morris et al., [2019).Figure 2] illustrates graph pairs that are non-isomorphic yet
indistinguishable by 1-WL or MP-GNNs due to identical local neighborhoods and degree sequences.
NSPPK incorporates shortest-path connectivity between rooted neighborhoods by constructing fea-
tures of the form (N, (v), Cy (v, u), Ny(u)) for all anchor pairs (v, u) at distance d(v, u), where
Crr(v,u) = N (U(v,u)) encodes the union of all shortest v <+ u paths. This allows NSPPK to
distinguish graphs that are indistinguishable for 1-WL kernels and message-passing GNNs but differ
in global connector structure, such as the pairs shown in Figure[2] Consequently, NSPPK achieves
strictly higher discriminative power than 1-WL-based kernels and MP-GNNs, while remaining
computationally efficient.

NSPPK vs. NSPDK. As formalised in Proposi-
tion|[CJin the Appendix, NSPPK is strictly more ®) A

expressive than NSPDK under any fixed finite 3 5 3 s
anchor-radius budget. Specifically, there ex-
ists an infinite family of non-isomorphic graph
pairs (G, H,) and a constant Ry > 1 such
that NSPDK produces identical feature vectors
for all parameter choices (R, D) with R < Ry,
whereas NSPPK with the same anchor radius
R < Ry and some connector radius R’ > 0

(a) 4

Figure 3: NSPPK vs. NSPDK on a 6-cycle with
distinct connectors. Both graphs share the same

assigns distinct feature vectors, assuming ide-
alised, isomorphism-aware hashing. Figure 3|
shows a concrete instance of such a pair. The
two graphs are locally indistinguishable: all
r-hop neighborhoods N, (v) match for every
r < Ry, and all pairwise distances d(u, v) are
identical. Consequently, NSPDK—which only
encodes pairs of local neighborhoods together
with the distance between them—collapses the

outer 6-cycle and identical r-hop neighborhoods for
all » < Ry (here Ry = 1), so NSPDK produces iden-
tical features for any (R, D) with R < Ry. (a) Inner
square on nodes {2, 3,5, 6}. (b) Inner cross via diag-
onals (2,5) and (3, 6). The union-of-shortest-paths
connector between nodes 1 and 4 forms a cycle in
(a) and two node-disjoint paths in (b). Under ide-
alised isomorphism-aware hashing, NSPPK captures
this connector structure and separates the graphs;
NSPDK does not.

two graphs under any (R, D) with R < Ry.
The difference lies solely in the connector region between opposite corners of the 6-cycle (nodes 1
and 4). In the square graph, the union of all shortest 1¢+4 paths, U (1, 4), induces a cycle; in the cross
graph, U(1, 4) consists of two internally node-disjoint diagonal paths forming an “X”. Since NSPPK
explicitly incorporates the connector C, (1,4) = N,»(U(1,4)) into its feature representation, these
two non-isomorphic connectors yield distinct feature hashes under idealised hashing.
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4.7 BALANCING FEATURE SIZE AND HASH COLLISIONS

The number of hash bits directly determines the di- ROC AUC and Probability of Collisions vs. Number of Bits
mensionality of the feature space. Using fewer bits "o
increases the probability of hash collisions—different
substructures mapping to the same index—which intro-
duces noise and can reduce predictive accuracy. Con-
versely, very large bit sizes (e.g., n > 20) yield millions
of potential features, inflating dimensionality and mem-
ory usage. While sparse representations mitigate stor-
age overhead, excessively large codomains may still be- 060
come impractical for downstream learning models. To -00
examine this trade-off, we trained a random forest clas- 2 4 umberotei bty
sifier on 1,300 molecular graphs from PubChem AID

463230 (pPAFAH inhibition assay), excluding node at- Figure 4: Predictive performance vs. number
tributes. As shown in Figure ] predictive performance of hash bits.

declines only gradually as the bit size decreases. In

particular, accuracy remains stable even at ~14 bits (about 16k features), despite collision rates
exceeding 10%. This suggests that collisions involving infrequent features are largely tolerated by
the model, enabling compact yet effective representations.

o
<

AUC ROC
o
3
=)

o
o
&

Prob of Collisions

5 EXPERIMENTS

5.1 SMALL-SCALE DATASETS

We evaluate NSPPK against kernel and neural baselines on six node-attributed graph classification
benchmarks (Nikolentzos et al., 2021} [Errica et al.,[2020): ENZYMES and PROTEINS_full (Borgwardt;
et al., [2005), BZR and COX2 (molecular activity) (Sutherland et al., [2003)), Synthie (Morris et al.,
2016)), and SYNTHETICnew (Feragen et al.,[2013a)). These cover biological, molecular, and synthetic
graphs.

Baselines. Kernel methods: GraphHopper (GH) (Feragen et al.l [2013b)), Propagation Kernel
(PK) (Neumann et al., [2016a)), Subgraph Matching (SM) (Kriege & Mutzel, |2012), Multiscale
Laplacian (ML) (Kondor & Panl 2016)), Shortest Path (SP) (Borgwardt & Kriegel, [2005), HSSPK-
SP/WL (Morris et al., 2016), WWL (Togninalli et al., [2019), linearFGW (Nguyen & Tsuda, [2023)),
and NP (Fang et al.| 2023)), plus discretized NSPPK and WL. All kernels use SVM classifiers
(LIBSVM (Chang & Lin, 2011)).

Neural baselines: DGCNN (Zhang et al.,[2018)), GraphSAGE (Hamilton et al.,|2017), InfoGraph (Sun
et al.,|2019), GIN (Xu et al.|[2019b), GraphCL (You et al.|[2020), AttentiveFP (FNP) (Gasteiger et al.|
2020), PNA (Corso et al.,[2020), and PDF (Yang et al., 2023a)).

Protocol. We follow the fair evaluation setup of (Errica et al., [2022)): 10-fold cross-validation
with 10% validation from training data. Kernels: SVM with C' tuned on validation; multiple
hyperparameter configurations tested; kernel computation times reported for best models. GNNs:
trained up to 1000 epochs with early stopping; tuned via validation. Controls. We also test (i)
attributes only, where graphs are represented by summed node attributes, and (ii) structure only,
where attributes are removed (Appendix [J).

NSPPK: fixed configuration across all datasets (R=1, D=4, R'=1, 16-bit hashing); no per-dataset
tuning. For comparison with kernels we use LIBSVM, and for GNNs we use NSPPK features with
XGBoost.

Runtime. Kernel methods run on a single CPU core; GNNs run on CPUs with library-level
multithreading. All experiments used a SLURM-managed cluster with NVIDIA A100 GPUs, Intel
Xeon Gold 5317 CPUs (24 cores), and 64 GB RAM. Kernels exceeding 24h per fold are reported as
timeouts.

Results. Against kernels, NSPPK achieves the best accuracy on three of six benchmarks (SYNTHET-
ICnew, BZR, COX2) and the best overall average rank (2.25 vs. 3.50 for WWL). While it does not win
every dataset, it consistently attains the strongest aggregate rank across kernel competitors, showing
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broad reliability rather than isolated peaks. It scales reliably, unlike some kernels that time out on
attribute-rich data. Against neural networks, NSPPK+XGBoost achieves the best accuracy on four
datasets and the best overall rank (2.00), outperforming strong GNNs such as GIN, GraphCL, and
PDF. Even where specific architectures edge out NSPPK on an individual dataset, it still delivers
the top average rank across neural baselines, underscoring robustness across diverse tasks. Even in
the structure-only setting, NSPPK remains competitive, indicating that it captures complementary
structural and attribute information robustly across domains.
Table 1: Classification accuracy (%) with node attributes (+) with Avg Rank.

Method SYNISETIC Synthie BZR Ccox2 ENZYMES PROTEINS Avg Rank
SM TIMEOUT TIMEOUT 83.96+3.85 78811449 TIMEOUT TIMEOUT 8.75
Sp TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT -

ML 50.3349.00 59.38+438 82961524 77.53+553 36331433 72061360  11.08
PK 54.334+10.11 71754643 78.7741.01 78.16£8.07 20.67+£270 59.70+0.16  11.75
HSPPK_WL 6033674 90.75E8.66 85.67E3.46 80.30+4.67 60.171626 72.96+4.84 5.08
HSPPK_SP 57.00£7.81 91254301 8449504 8031+570 58501555 68.5545.24 6.42
GH 77334742 72754832 85944517 78901295 6650+6.17 72061364 542
NP 99.00 £2.13 29.001+5.72 86.18£5.53 78.16£4.47 43.001576 64.6215.13 7.83
linearFGW-RAW  62.00£8.46 58.007.05 76.34£5.68 77.931+3.68 56.6717.07 69.47+£0.91 11.58

linearFGW-WL1 72334870 73.001534 78524399 7213740 47.00£4.70 59.661+038  10.58
linearFGW-WL2  7133£748 6175750 78513298 75.1613.34 41.000£7.57 59.754043  11.50

WL (disc.) 88.3315.63 74751786 83.711+4.83 77.10£5.59 50.67+£7.03 71.16+£4.03 7.58
WLOA 85331+5.62 7550£10.50 84.20+4.47 7454+540 6633+£521 71.16+£1.97 5.92
WWL 5833+£7.78 97.00E3.12 86451450 79.031+3.84 73.671+526 77181527 3.50

NSPDK (disc.) 96.33+£3.14 83.75+E4.64 8570390 80.30t4.15 52.6714.67 72.87E1.51 475
NSPPK (ours)  99.00£1.52 86751475 87.17+3.58 81.16:2.30 60.50=5.38 74.6613.81 2.25

Attributes only 54331+9.55 53004430 78771101 78.161+8.07 55671538 62804252  11.25

Note: “Attributes only” participates in Avg Rank like any other method.
Table 2: Neural networks: classification accuracy (%) with node attributes (+) and Avg Rank.

Method SYN:SIETIC Synthie BZR COX2 ENZYMES PROTEINS Avg Rank
DGCNN 46.671+563 50.001570 79.40+£3.32 77.15+£0.06 33.33+£9.37 73.86+3.56 9.00
GraphSAGE 76.67£7.70 8500345 8370+ 4.44 80931007 6500%573 75021329 433
InfoGraph 65.00£16.05 8575850 79.01+t3.42 777711420 5333+784 66371625  7.58
GIN 83.67+£5.92 9750250 84.1716.14 81.8016.14 68301543 62104526  3.75
GraphCL 67.0019.48 78.75£7.18 84.1713.62 80.34+£695 48.171693 7582+2.73 5.08
GNN 64.67£7.92 8500592 85661460 79921708 6517+841 66.5716.10 5.08
FNP 53331 11.16 36.00£8.60 79.491+3.94 78224701 321741298 70.1713.15 8.75
PNA 55.67£20.66 92.50£3.71 79.01 433 78221+7.02 2083+7.12 75111360 683
PDF 97.67+£2.60 6425+£7.50 83.681+3.81 822317.00 6500+4.65 72141448 458
NSPPK feat. (XGBoost) 98.67 +2.21 87.751+3.94 88.6612.89 82901439 60.171+630 77.37+4.80 2.00
Attributes only 54.33+9.55 5300430 7877+ 101 78.161+8.07 55671538 62801252 9.00

In the neural setting, the explicit NSPPK+XGBoost pipeline achieves an average run-
time rank of 4.83. It is clearly faster than heavyweight architectures such as GIN
and DGCNN, while remaining competitive with mid-range models like FNP and PDF.

Runtime analysis. Detailed runtime tables are reported
in Appendix [l Although it does not match the extreme
speed of very lightweight self-supervised baselines (e.g.,
GraphCL, PNA), NSPPK+XGBoost simultaneously deliv-
ers the best accuracy overall, underlining its strong effi-
ciency—accuracy trade-off. For comparability, kernel run-
times there are measured on a single CPU core, which
also applies to NSPPK. Under this constraint, NSPPK is
not the absolute fastest (average rank 6.33), but it remains
substantially more efficient than expressive kernels such Number o CPU Cores
as GH or HSPPK, while achieving higher accuracy. This

positions NSPPK as a favorable compromise: slower than Figure 5: Vectorization time vs. CPU
the simplest structure-only kernels, but far more accurate, cores.

and significantly faster than heavier graph kernels.

1000

Vectorization Time (s)
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5.2 ABLATION STUDY

Importantly, Figure [5|demonstrates that NSPPK is parallelizable: vectorization scales nearly linearly
with the number of CPU cores. Thus, while our tables reflect conservative single-core timings for
fairness, NSPPK can in practice achieve much faster wall-clock runtimes on multi-core systems.

NSPPK consistently achieves state-of-the-art accuracy without the need for dataset-specific training or
hyperparameter tuning. Compared to existing kernels, it offers a substantially better balance between
expressivity and efficiency, and when paired with XGBoost, it often surpasses neural baselines in
predictive performance. While the runtime tables report conservative single-core measurements for
fairness, Figure 5] shows that NSPPK scales nearly linearly with the number of CPU cores, enabling
much faster wall-clock runtimes in practice.

We assessed the impact of three components of NSPPK: the distance feature, the union-of-shortest-
paths connector, and the high-degree thresholding heuristic. All runs used fixed parameters (R = 1,

D =4,7" =1)and aRandomForestClassifier.
Table 3: Ablation study: Accuracy (%) + Std.

Setting ENZYMES BZR PROTEINS SYNTHIE SYNTHETICnew COX2
No Distance ~ 57.17 £ 6.99 85.69 £5.52 76.37 £3.85 69.00 £+ 6.24 98.33 £2.24 81.16 £ 2.45
No Path 5283 +£6.28 8698 £3.72 76.10+4.11 79.81 £1.53 98.67 &+ 1.63 80.73 £2.30

No Threshold  55.50 =4.48 87.42+£225 7592£5.05 79.00£5.15 99.00 & 1.53 81.81 £3.78
FullNSPPK  57.83 =543 87.90 £3.56 76.20 +3.74 85.50 & 4.85 99.00 + 1.53 82.46 + 3.74

Results show that each component contributes depending on the dataset, with the full model consis-
tently matching or exceeding the ablations. The degree-threshold heuristic, in particular, provides a
robust improvement across datasets.

5.3 SENSITIVITY ANALYSIS

We study how predictive performance varies Table 4: Sensitivity of NSPPK accuracy to structural pa-
with the anchor radius R, distance param- rameters on COX2 (stratified 10-fold cross-validation).
eter D, and connector radius r’. On the Each column varies one hyperparameter while fixing
COX2 dataset, we perform a stratified 10- the others at (R,D,R') = (1,4,1).

fold cross-validation experiment, varying

one parameter at a time while keeping the Value Radius R Distance D Connector 7’

other two fixed at (R, D,R’) = (1,4,1).
Table [ reports the average accuracy and
standard deviation. Across all three sweeps,
accuracy remains very stable: performance
fluctuates by only about 1-2 percentage
points across the entire range. This matches
intuition for small, sparse molecular graphs,
where large radii tend to add redundant, quasi-global patterns rather than genuinely new substructures.
In practice, NSPPK therefore does not require fine-grained tuning of (R, D, R') on such datasets.

0 0.81 £0.05 0.81+£0.05 0.81+0.05
0.81 £0.05 0.81£0.05 0.81£0.05
0.80 £0.03 0.80£0.04 0.79£0.03
0.80 £0.05 0.80£0.05 0.80=£0.03
0.80 £0.03 0.81+0.05 0.80+0.04
0.80 £0.03 0.80+£0.04 0.79 +0.04
0.79 £0.03 0.80£0.04 0.80£0.04

NN B W —

5.4 LARGER-SCALE DATASET EXPERIMENT

We further evaluated NSPPK on the large-scale ogbg-molpcba benchmark from the Open Graph
Benchmark suite (Hu et al.,[2020a)), which contains 437,929 molecular graphs with node attributes and
128 binary classification tasks. Using a single fixed configuration (R = 1, D = 4, R’ = 1, npys = 16),
we computed explicit NSPPK features for the entire dataset in under one hour on CPU. Across
all 128 tasks, NSPPK achieved an average validation AP of 0.2186 and an average test AP of
0.2079, without any hyperparameter tuning or GPU acceleration. On the OGB leaderboard, state-
of-the-art neural architectures such as Graphormer (Ying et al.| [2021), PDF (Yang et al., 2023b),
and HyperFusion (Zhang et al., [2024) achieve ~0.30-0.32 test AP, typically relying on extensive
pretraining, careful hyperparameter tuning, and GPU acceleration. Tuned mid-range models such
as PNA (Corso et al.} 2020), GIN (Xu et al., 2019a), and AttentiveFP (FNP) (Xiong et al., [2019)
reach ~0.25-0.30. By contrast, NSPPK attains 0.2079 test AP without any hyperparameter tuning,
pretraining, or GPU usage, computing explicit features for all 438k graphs in under one hour
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Figure 6: Learning curves on ogbg-molpcba (task 95). NSPPK (red) compared with neural
baselines including GIN, GAT, PNA, PDF, and FNP.

on CPU.This positions NSPPK not as a replacement for the very best neural models, but as a
complementary approach: it offers deterministic, training-free baselines that are highly competitive
given their simplicity and efficiency. In practice, NSPPK fills a unique niche: when compute
budgets are limited, when reproducibility is paramount, or when only small amounts of labeled
data are available, it provides a strong, interpretable alternative that scales easily to hundreds of
thousands of graphs.A case study on task 95 (Figure[6) shows that NSPPK exhibits strong sample
efficiency: it outperforms neural baselines at small training sizes and remains substantially faster
in the sparse variant. At scale, high-capacity models such as PDF eventually overtake NSPPK in
absolute accuracy, but the gap remains modest given NSPPK’s simplicity. Further implementation
details and hyperparameter settings are provided in Appendix [[}

6 CONCLUSION

We presented the Neighborhood Subgraph Pairwise Path Kernel (NSPPK), a scalable and interpretable
extension of NSPDK that enriches neighborhood features with union-of-shortest-path connectors and
integrates continuous node attributes without discretization. NSPPK produces explicit embeddings,
enabling efficient, deterministic, and training-free similarity computation. Across six node-attributed
benchmarks and a large-scale molecular dataset, NSPPK consistently outperforms classical kernels
and often rivals or surpasses graph neural networks without training or hyperparameter tuning, pro-
viding strong baselines when compute, data, or reproducibility budgets are tight and complementing
resource-intensive neural pipelines. While it is not the top performer on every dataset, it repeatedly
secures the best overall ranks against both kernel and neural baselines, highlighting dependable,
across-the-board strength. Its versatility spans low-data and large-scale regimes, maintaining pre-
dictable CPU-only runtimes and near-linear scalability in | V| for transparent, easy-to-deploy solutions.
In summary, NSPPK bridges classical kernel methods and neural approaches by favoring determinis-
tic, efficient feature extraction over end-to-end training while retaining enough expressive power to
stay competitive. Future work will explore hybrid kernel-neural models, automatic feature selection,
and domain-specific adaptations.

10
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APPENDIX

A  DATASETS

The graphs are undirected, with nodes labeled, attributed, or both. All datasets are publicly accessible
Kersting et al.|(2016); Morris et al.| (2020) and have been widely used in comparative studies of graph
kernels and GNNs [Nikolentzos et al.|(2021).

BZR consists of 405 chemical compounds represented as graphs, where nodes correspond to atoms
and edges to chemical bonds. The task is to predict whether a compound acts as a ligand for the
benzodiazepine receptor Dobson & Doig| (2003).

COX2 contains 467 molecules represented as graphs, labeled according to their activity against the
cyclooxygenase-2 enzyme (COX-2 inhibitor classification) Dobson & Doig| (2003)).

ENZYMES consists of 600 protein tertiary structures from the BRENDA database. Each protein
belongs to one of six top-level enzyme commission (EC) classes, and the task is to predict the correct
class [Borgwardt et al.| (2005).

PROTEINS and PROTEINS_full represent proteins as graphs, where vertices correspond to sec-
ondary structure elements. Edges connect vertices that are adjacent in the amino acid sequence or
in 3D space. The classification task is to distinguish enzymes from non-enzymes Borgwardt et al.
(2005).

SYNTHETICnew contains 300 synthetic graphs evenly split into two classes. Each graph has
100 vertices and 196 edges with normally distributed node attributes. Class 1 graphs are generated
by rewiring 5 edges and permuting 10 node attributes; Class 2 graphs by rewiring 10 edges and
permuting 5 attributes. Gaussian noise is added to all attributes Shervashidze et al.|(2011b).

SYNTHIE contains 400 synthetic graphs across four classes, each with 15 real-valued node attributes.
Graphs are constructed from perturbed Erdés—Rényi base graphs and combined with two distinct

attribute distributions Morris et al.|(2016).
Table 5: Dataset statistics.

Dataset #Graphs #Classes / Tasks  Avg. IVl Avg.|El Avg.deg. Maxdeg. Attr. dim.
BZR 405 2 35.75 38.36 2.15 4 3
COx2 467 2 41.23 43.45 2.11 4 3
ENZYMES 600 6 32.63 62.14 3.86 9 18
PROTEINS_full 1113 2 39.06 72.82 3.74 25 1
SYNTHETICnew 300 2 100.00  196.25 3.93 9 1
Synthie 400 4 95.00 172.93 3.62 20 15
ogbg-molpcba 437,929 128 25.96 28.10 2.16 4 9

B HYPERPARAMETERS USED FOR MODEL SELECTION IN THE GRAPH
CLASSIFICATION TASK

For some kernels, only a subset of the hyperparameters was optimized, while the rest of the hyperpa-
rameters were kept fixed.
Table 6: Hyperparameters used for model selection in the graph classification experiments .

Model Layers ~ Comvs  Batch Learning Hidden oo hs L2 Dropout THMCC G imizer  Scheduler  Dense Embed. - Neighbors
per layer  size rate units (loss, acc) dim  dim  Aggregation
DGNN 234 1 16 le—4 32,64 1000 - 05 500,500  Adam - 128 ~ mean, max, sum
32.(5 layers),
y see . B 64 (5 layers), - ) StepLR - - .
GIN niddenunits ! 32,128 le—2 640 layeryy, 1000 0.05 500,500 Adam PR sum
32 (3 layers)
GraphSAGE 3,5 1 16 le—2, le=3, le—4 32,64 1000 - 0 500,500  Adam - - ~ mean, max, sum
InfoGraph 3,5 - 16,32 le—2, le—3 32,64,128 100 0,le—4 0,0.1,03 500,500  Adam R“'“"(i]{“fg’;ﬁ'“‘““ - - sum
) . StepLR
GNN 3,5 1 16 le—2, le—=3, le—4 32,64 1000 - 0,05 500,500  Adam P - ~ mean, max, sum
(step 50, v=0.5)
GraphCL 2,3 1 32 le+3 64,128 200 - 0 500,500  Adam - - ~ mean, max, sum
FNP 2,3,4 1 2 le—3 32,64 1000 ~00,02,05 500,500  Adam - - - sum
PNA 2,32 1 k) le—3 32,64 1000 - 0 500,500  Adam - - - max
PDF 2,3 1 2 Se—4 64,129 300 le—2 0 500,500  Adam SteplR - - mean
(step 50, v=0.5)
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Table 7: Hyperparameters used in the kernels for model selection in the graph classification task.

Kernel Fixed Validation-tuned
SM k=3 -
SP - -
ML v =0.01,n =001, p = Imax € {0,...,5}, ¢ € {50,100,200, 300}
10
PK w=10"° Te{l,...,6}
HSPPK-WL Iterations = 20 (100 for h € {0,...,5}
SYNTHIE)
HSPPK-SP Iterations = 20 (100 for h € {0,...,5}
SYNTHIE)
GH - Linear kernel / Gaussian kernel
lineartFGW-RAW  RBF kernel, v = 0.1 a € {0.1,0.5,0.9}, GWB layers = 5, OT layers € {3,5}, Iter
€ {1,2,3}, Ykemet € {0.01,0.1,1.0}
lineartFGW-WL1  RBF kernel, v = 0.1 same as above
lineartFGW-WL2  RBF kernel, v = 0.1 same as above
WL (disc) - Iterations € {0,...,5}
WLOA - Iterations € {0,...,5}
WWL - Iterations € {0,...,7}, Sinkhorn € {False,True}, v €
{0.01,0.1,1, 10}
NP - Iterations € {0, ..., 5}, Linear / Gaussian kernel
NSPDK D=1,R=4 -
NSPDK (disc) D=1R=14 -
NSPPK D=1,R=4,R =1,threshold ¢t = 8, nbits n = 16

B.1 ROBUSTNESS STUDY HYPERPARAMETERS

Table [§] summarizes the configurations used for the diagonal dominance / robustness experiments
(Section @) Neural baselines (GIN-Random, GraphCL, InfoGraph) were run with a common
lightweight setup , while classical kernels (GraphHopper, Propagation Kernel) followed their standard
definitions. NSPPK used the same fixed configuration as in the main experiments.

Table 8: Hyperparameters for robustness / diagonal dominance analysis.

Method Configuration

NSPPK R=1,D=4,R =1,t =8, npys = 12

GIN-Random 3 layers GIN, hidden dim=32, MLP layers=2, pooling=sum,
epochs=200, 1r=0.01, seed=42, orthogonal init, no supervision

GraphCL Same GIN backbone as above, contrastive pretraining with augmen-
tations, 200 epochs, 1r=0.01

InfoGraph Same GIN backbone as above, maximizing mutual information, 200
epochs, Ir=0.01

GraphHopper Shortest-path kernel, weight decay w = 1075, tay € {1,2,3,4,5}

Propagation Kernel Attribute propagation with M = L1 distance, 5 iterations

For Infograph,GraphCl and Gin-Random, we generate a dataset of 50000 graphs similar to G but the
number of nodes was set to range from 50 to 250(as for the model to be able to detect node dropping).

C NSPPK RELATION TO NSPDK

In this section we formalise the separation between NSPPK and NSPDK under a realistic, bounded-
radius regime. Throughout, we adopt an idealised hashing model: each finite rooted (labelled)
subgraph is mapped to a unique identifier that is invariant under isomorphism and never collides for
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non-isomorphic subgraphs. This allows us to reason directly at the level of isomorphism types; the
practical finite-bit SHA-based implementation only approximates this assumption.

(NSPPK strictly dominates NSPDK under a fixed anchor radius). There exists an infinite family of
pairs of non-isomorphic, discretely labelled graphs (G,,, H,,) and a constant anchor radius Ry € N,
Ry > 1, such that:

1. For every n and every choice of NSPDK parameters (R, D) with 0 < R < Ry, the NSPDK
feature vectors of (¢,, and H,, are identical.

2. For every n there exists a connector radius R’ > 0 such that NSPPK with anchor radius
R < Ry and connector radius at most R’ assigns distinct feature vectors to G,, and H,.

Hence, under a fixed anchor-radius budget, NSPPK is strictly more expressive than NSPDK.

We give an explicit separating construction. In the construction below one can take Ry = 1, so the
above statement holds for some finite Ry that does not grow with n.

Construction. For n > 6, let G,, and H,, be graphs obtained from a cycle C,, by adding edges
only between nodes lying on shortest paths between a fixed pair of antipodal vertices (u, v). In G,
add edges so that the union of all shortest u<+v paths induces a single cycle. In H,,, add edges so that
the union of all shortest u«>v paths induces two internally node-disjoint shortest paths. All nodes
carry the same discrete label.

Step 1: NSPDK collapses (G,,, H,,) for all R < R,. For this construction, fix Ry = 1. By
construction, for every n and every vertex x, the r-hop neighborhoods N,.(z) in G,, and H,, are
isomorphic for all 0 < r < Ry, and the pairwise graph distances d(z, y) coincide for every vertex
pair (z,y). Therefore, for any NSPDK parameter choice (R, D) with R < Ry, each feature of the
form

(Nr(2), d(z,y), Ni(y)), 0<r<R<Ry,

occurs with identical multiplicity in both graphs. Under idealised isomorphism-aware hashing, the
NSPDK feature vectors for G, and H,, are therefore identical for all (R, D) with R < Rg. This
proves the first item with a concrete finite choice of Ry.

Step 2: NSPPK distinguishes (G,,, H,,) with local radii. Consider the anchor pair (u,v). The
unions of all shortest u<>v paths,

Ug, (u,v) and Upg, (u,v),

are non-isomorphic: in G,, this union induces a cycle, whereas in H,, it induces two parallel paths.
Hence, for every connector radius ' > 0, the connector subgraphs

CS" (u,v) = N (Ug,, (u,v)), CHm (u,v) = Ny (Un, (u,v))
are non-isomorphic.
NSPPK includes features of the form
(No(u), Cpr (w,0), Ni(v),  0<r < R< Ry

Since N,-(u) and N, (v) are identical across (G,,, H,,) for all » < Ry, the non-isomorphism of the
connector subgraphs C, (u, v) forces distinct feature identifiers under idealised hashing, already for
r’ = 0 (i.e., using the bare union of shortest paths). Thus NSPPK separates (G,,, H,,) even when
restricted to the same finite anchor-radius budget Ry.

Remark (large-radius NSPDK). If R were allowed to grow with n so that R > diam(G,,), then
Ng(zx) would equal the entire graph, enabling NSPDK to distinguish the pair under idealised hashing.
The proposition therefore compares NSPDK and NSPPK under a fixed, finite anchor-radius budget
Ry that does not scale with the graph size n, which is the practically relevant regime.
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D LARGE SCALE EMBEDDING EXPERIMENT: QM9

N
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Figure 7: NSPPK vectorization time for QM9 dataset as a function of number of bits.

Figure [7)illustrates the time required for NSPPK to vectorize the QM9 Blum & Reymond| (2009)
dataset as a function of the number of bits hyperparameter (nbits). As the number of bits increases,
the vectorization time rises accordingly, though the rate of increase is not uniform. Up to 11 bits, the
computation time remains within a small range (under 7 minutes), demonstrating NSPPK’s efficiency
in handling large-scale datasets.

However, a sharp increase in computation time occurs from 12 to 14 bits due to memory swapping,
where the system resorts to using slower secondary storage instead of RAM. This significantly
degrades performance, further emphasizing the importance of efficient memory usage when handling
high-bit representations in large-scale datasets.

At 15 bits, the vectorization process fails due to excessive memory allocation requirements. This is a
consequence of the exponential growth of the feature space: 15 bits corresponds to a 2! -dimensional
representation per graph, resulting in an immense memory footprint when applied to over 129,000
molecular graphs. While this represents a practical upper bound for single-machine processing,
it highlights the need for optimized memory management strategies for ultra-high-dimensional
embeddings.

Despite this limitation, NSPPK remains an effective and scalable approach for graph learning tasks,
provided that memory usage is carefully managed when selecting the number of bits. Additionally,
potential optimizations such as sparse representations, dimensionality reduction, or distributed
processing could further enhance its applicability to even larger datasets.

The QM9 dataset itself consists of over 129,000 molecular graphs with 16 continuous node attributes,
making it a computationally intensive benchmark. The results confirm that NSPPK successfully
processes datasets of this magnitude while maintaining practical computation times, reinforcing its
utility for real-world graph-based applications.

E DENSITY-SENSITIVITY EXPERIMENT

To explicitly study the impact of graph density on runtime, we conducted a controlled density-
sensitivity experiment on synthetic Erd6s—Rényi graphs. This experiment complements our theoretical
complexity analysis by measuring how NSPPK feature extraction scales as the average node degree
increases.
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Experimental setup. We generated graphs according to the Erdés—Rényi model G(n,p) with a
fixed number of nodes n = 300 and varying expected average degree k. For each value of &, the
edge probability was set to p = k/(n — 1). All graphs were assigned trivial, identical labels and no
node attributes so as to isolate the effect of graph density. We measured the time required to extract
NSPPK features using our standard configuration (R =1, D = 4, R’ = 1,nbits = 11) Foreach k, a
single graph instance was generated and timed.

Results. Table|9|reports NSPPK feature extraction time as a function of the average degree.
Table 9: NSPPK feature extraction time vs. average graph degree on Erd6s—Rényi graphs (n = 300).

Avg. Degree  Time (s)

2 2.29
27 66.11
52 102.40
71 150.75
102 202.39
127 256.25
152 308.38
177 355.59
202 388.98
227 412.80
252 425.54
277 429.48

Discussion. As the average degree increases from 2 to 277, the feature extraction time grows from
approximately 2.3 s to 430 s. The observed trend is close to linear in the number of edges |E|, which
is consistent with the theoretical O(]E|) scaling of the NSPPK hashing procedure for fixed radii and
degree cutoff. Notably, even in the near-complete regime (average degree ~ 277 out of a maximum
of 299), NSPPK remains computationally practical, requiring only a few minutes to process a dense
300-node graph.

F ADDITIONAL EXPERIMENTS ON CITATION NETWORKS

To assess the robustness of NSPPK beyond molecular graphs, on node classification tasks, we
additionally evaluated it on three widely used citation network benchmarks with fundamentally
different structural properties: Cora, CiteSeer, and PubMed. These graphs exhibit higher-degree
outliers, broader graph diameters, and citation-style connectivity patterns, in contrast to the small and

sparse molecular graphs considered elsewhere in this paper.
Table 10: NSPPK performance on citation networks (80/20 split, seed 42).

Dataset #Nodes #Edges AvgDeg. Max Deg. Encoding Time (s)

Cora 2,708 5,278 3.90 168 0.7897
Citeseer 3,327 4,552 2.74 99 0.7447
PubMed 19,717 44,324 4.50 171 0.8747

We compared NSPPK against a set of commonly used graph neural network architectures for node
classification: GCN (Kipf & Welling, [2017a)), GAT (Velickovic et al.,[2018)), GraphSAGE (Hamilton
et al.;2017), GIN (Xu et al.,2019b), SGC (Wu et al., 2019), APPNP (Klicpera et al.,[2019), and a
feature-only MLP.

All GNN models were trained directly on the original citation graphs using the same 80/20 train—test
split as NSPPK. For GCN, GIN, GraphSAGE, and GAT, we used two-layer architectures with a
hidden dimension of 64, ReLU activations, and dropout applied between layers. GAT employed
eight attention heads in the first layer. APPNP was implemented as a two-layer MLP followed by
personalized PageRank propagation with K =10 steps and teleport probability a=0.1. SGC used
a single linear classifier with K'=2 propagation steps. The MLP baseline consisted of a two-layer
feed-forward network operating solely on node features, without using graph structure.

All models were trained using the Adam optimizer (learning rate 0.01, weight decay 5 x 10~%) for 200
epochs. Model selection relied solely on the fixed training split, without tuning hyperparameters per
dataset. Performance is reported on the held-out test nodes in terms of macro-averaged ROC-AUC
(one-vs-rest).
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For NSPPK, followed a standard node classification setup with an 80/20 train—test split and a fixed
random seed of 42. Crucially, we used exactly the same NSPPK hyperparameters as for all molecular
datasets (R = 1, D = 4, R’ = 0, 11-bit hashing), without any dataset-specific tuning. Continuous
node attributes were projected to 24 dimensions using SVD. Discrete node labels required by NSPPK
were obtained by running k-means clustering on the node attributes with k = 5, assigning each node
its cluster membership as a discrete label.

Table 11: Test ROC-AUC (macro, one-vs-rest) on citation networks with an 80/20 node classification
split.

Dataset GraphSAGE GAT APPNP GCN SGC NSPPK+XGB MLP GIN

CiteSeer 0.9422 0.9454 0.9310 0.9257 0.9432 0.9253 0.9247 0.9084
Cora 0.9846 0.9874 0.9884 0.9840 0.9874 0.9636 0.9502 0.9669
PubMed 0.9759 0.9615 0.9622 0.9659 0.9396 0.9686 0.9714 0.9663

Overall, these results demonstrate that NSPPK generalizes well to non-molecular domains and
heterogeneous graph topologies, while retaining its deterministic nature and predictable runtime
under a single, fixed hyperparameter configuration.

G SCALABILITY OF NSPPK VECTORIZATION

To evaluate NSPPK’s scalability, we vectorized the QM9 dataset (~112,000 graphs) using a fixed
configuration: 12-bit hash size, maximum radius = 1, distance = 4, and connector path = 1. This
setup balances expressiveness and efficiency, making it suitable for large-scale benchmarks. As
shown in Figure[§] the total vectorization time decreases almost linearly with the number of CPU
cores, completing in under 10 minutes on 112 cores. This confirms NSPPK'’s efficient parallelization
and practicality for large datasets.

Figure 8] presents the results on a log-log scale. The x-axis indicates the number of CPU cores, and
the y-axis shows the total vectorization time. The observed trend is close to ideal linear scaling:
doubling the number of cores results in approximately half the runtime. This demonstrates that
NSPPK'’s feature extraction process incurs minimal synchronization or coordination overhead.

Experiments were conducted on a dual-socket Intel server equipped with 2x Intel Xeon Gold 6330
CPUs @ 2.00 GHz, each providing 28 physical cores (56 threads), for a total of 112 logical CPU
cores. The machine had 2 NUMA nodes, 70 MB of shared L2 cache, and 84 MB of L3 cache. Despite
relying solely on CPU resources, NSPPK scaled efficiently across all available cores. For example,
complete vectorization of the QM9 dataset was achieved in under 10 minutes, demonstrating the
method’s practicality for real-world, large-scale deployment.
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Figure 8: Vectorization time vs. number of CPU cores on QM9 (log-log scale). NSPPK demonstrates
excellent parallel scalability, reducing total vectorization time from over an hour (using a single core)
to under 10 minutes with 112 CPU cores. This shows near-linear performance gains with increased
parallelization.
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H FURTHER VISUALIZATION: ACCURACY-TIME TRADE-OFF
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Figure 9: Accuracy-time trade-off (log time). Markers: green star = NSPPK, blue circle = other kernels,
orange square = neural nets. Dashed line = Pareto front.

Summary. FigureEl shows that, for most datasets, NSPPK (green star) is on or close to the Pareto

front. Methods spread along the efficiency—accuracy spectrum: several are faster but less accurate,
while others gain accuracy at a higher computational cost. On the aggregated panel, NSPPK remains

on the global frontier, indicating a favorable accuracy—time balance overall.
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I RUNTIME RESULTS FOR THE SMALL-SCALE DATASETS EXPERIMENTS
REPORTED IN THE MAIN PAPER

Table 12: Runtime (seconds) with node attributes (lower is better).

Method SYNTH SYNTHIE BZR COX2 ENZ PROT Avg Rank
SM TIMEOUT TIMEOUT 12274.00s 25927.96s TIMEOUT TIMEOUT 190100.98s 16.00
SP TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT - -
ML 1777.93 s 1848.90 s 849.20s 1155.49s 1295.99 s 3628.70s 1759.70s  13.83
PK 1.81s 2.73s 0.79s 1.13s 3.14s 4.48s 2.51s 2.33
HSPPK_WL 49.54s 93.86s 8.63s 16.38s 25.20s 89.90s 47.59s 10.67
HSPPK_SP 249.75s 353.70s 16.52s 29.225 28.35s 119.32s 132.81s 12.67
GH 242.05s 274.63s 112.43s 132.63s 365.25s 3647.21s 1129.03s  14.67
NP 41.57s 40.84s 42.32s 69.80s 17.69 s 49.58s 43.63s 9.67
linearFGW-RAW 6.82s 7.00s 6.63s 9.84s 8.73s 69.67 s 18.11s 6.67
linearFGW-WL1 6.94s 7.33s 5.89s 10.75s 8.29s 67.19s 17.07s 6.00
linearFGW-WL2 595s 8.09s 7.02s 10.92s 10.26s 71.63s 18.98s 6.33
WL (disc.) 12.33s 12.00s 4.00s 14.00s 9.00s 20.00s 11.22s 1.67
WLOA 0.99s 2.47s 0.83s 3.27s 4245 12.67 s 441s 3.17
WWL 29.96s 45.00s 14.71s 40.89s 32.54s 134.95s 49.84s 11.67
NSPDK (disc.) 6.50s 8.71s 4.69s 2.64s 3.18s 6.13s 5.64s 3.17
NSPPK (ours) 34.81s 44.97s 12.75s 12.75s 26.45s 5.73s 22.41s 6.33

Table 13: Neural runtimes (seconds) with node attributes (lower is better).

Method SYNTH SYNTHIE BZR COXx2 ENZ PROT Avg  Rank
DGCNN 443.59s  551.36s  304.88s 704.74s 948.88s 1512.29s 744.29s 9.83
GraphSAGE 139.94s  117.92s  17530s 118.97s 317.84s 394.02s 210.66s 7.33
InfoGraph 39.25s 109.14's 40.40s 111.40s 59.95s  85.72s  74.31s  5.00
GIN 474.24s  53534s  302.44s 579.86s 369.06s 742.46s 500.57s 9.17
GraphCL 11.33s 6.83s 4.10s 5.11s 15.51s 20.04s 1049s 117
GNN 16592s  148.83s  100.28s 153.89s 207.18s 371.30s 191.23s 7.50
FNP 49.97s 31.88s 18.72s  22.23s  60.51s  57.51s  40.14s 4.17
PNA 16.67 s 12.87s 4.38s 3.86s 17.33s  22.14s 12.88s  1.83
PDF 20.59s 80.49s 21.10s  20.13s  61.43s  76.70s  46.74s  4.17

NSPPK feat. (XGB) 39.35s 142.70s 19.38s  20.62s  39.54s  131.96s  65.59s 4.83

J ADDITIONAL RESULTS: NO-ATTRIBUTE SETTING

Tables [I4] and [T5]report kernel and neural network accuracy, respectively, when node attributes are
removed. This isolates the structural contribution of the methods. We observe that NSPPK maintains
strong relative performance even without attributes, underscoring its robustness.

Table 14: Classification accuracy (%) without node attributes (-) with Avg Rank.

SYNTHETIC

Method s Synthie BZR Cox2 ENZYMES PROTEINS Avg Rank
SM TIMEOUT TIMEOUT 79.02+1.10 78.16+0.81 TIMEOUT TIMEOUT 8.75
SP TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT -
ML 67.2249.51 58001385 86.6313.81 77.95+4.63 33.66+£531 72.8013.80 433
PK 61334733 38754760 78.7741.01 7816807 1833+£522 5848+429  11.17
HSPPK_WL 50.0040.00 542541.14 802643.02 7241+£17.06 1650£2.73 63.80+576  11.92
HSPPK_SP 58.00£7.18 47751675 76261939 77311470 21.004592 46201470 1217
GH 59.3349.28 52.2544.10 81254240 77.30£3.14 2517398 7161432 7.33
NP 97.00 =315 47.6010.00 84161565 80.29+3.42 36.70£0.53 69.99 +3.88 5.50

linearFGW-RAW  57.33 1629 44754891 80.5243.76 76244474 23.00+£4.88 71351456 1033
linearFGW-WL1 56.00 £ 11.72 54.50 1828 80.99+524 76454186 24501478 70.17 1+ 4.81 9.00

linearFGW-WL2  48.67+£7.33 51.7514.19 79481548 7474512 22334559 69.54+3.12  11.67
WL (disc.) 79.00£1239 54754394 87.904+3.92 78.17+£3.48 40.17£7.54 69.00 % 4.08 4.00
WLOA 81.00£6.16 50.75+£4.62 83711836 78161275 42671484 74491353 475
WWL 50.0040.00 27504000 78.7741.01 78.16£0.80 16.67£0.00 55571+0.17 1258
NSPDK 95334372 51254501 85681404 77.094384 35671922 71.33+3.06 6.50

NSPDK (disc.) 95334372 51254501 8568+4.04 77.09+3.84 35671922 71.3313.06 6.50
NSPPK (ours) 98.003.93 53.0014.30 87.65+4.54 7773396 33.17£5.80 71.3414.06 4.67

Note: Avg Rank averaged over available cells; lower is better. TIMEOUT/N/A omitted per dataset.
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Table 15: Neural networks: classification accuracy (%) without node attributes (-) and Avg Rank.

Method SYNE;IVETIC Synthie BZR cox2 ENZYMES PROTEINS Avg Rank
DGCNN 44671686 25251869 81981220 782240.07 2680+E7.09 73.22+3.48 6.83
GraphSAGE 4333+£558 33.001820 83704559 80.3010.03 48.17+£7.58 74931282 4.92
InfoGraph 67.33+£21.54 427751353 75051504 69.02£0.20 53.33+4.79 63.07=4.69 6.17
GIN 53.00£9.71 432541253 73954330 79.91£0.08 42.67+£7.68 65771502 6.17
GraphCL 50.00£8.69 27004740 79994362 81.3843.79 3750+£5.12 71431392  6.08
GNN 43334558 23254734 84661460 81.601554 4850580 71.79+3.61 5.42
FNP 50.00£8.69 512541056 81734352 78224394 35831779 72411370 5.33
PNA 46.001+7.72 48254671 7876+433 78224701 18.83£7.07 70.62+3.69 7.33
PDF 50.00E£8.69 24.7547.02 84431463 81.38E3.79 5200526 74.7512.28 4.08

NSPPK feat. (XGBoost) 91.00£4.73  50.0016.12 89.60£3.29 82.76+4.25 41.83+£555 71.60%3.15 2.83

K ADDITIONAL RUNTIMES: NO-ATTRIBUTE SETTING

Tables [T6]and [T7]report computation times for kernels and neural networks without node attributes.
While runtimes are generally shorter in this simplified setting, the relative ranking remains consistent:
NSPPK achieves strong efficiency while preserving accuracy.

Table 16: Neural runtimes (seconds) without node attributes (lower is better).

Method SYNTH SYNTHIE BZR COX2 ENZ PROT Avg  Rank
DGCNN 428.69s  562.06s  571.26s 237.85s 887.36s 1611.41s 716.10s 9.83
GraphSAGE 124.81s  161.54s  126.21s 140.69s 248.03s 395.38s 199.44s 7.33
InfoGraph 65.27s 104.54s  100.00s 87.92s 144.01s 241.47s 123.54s 5.00
GIN 388.95s  360.00s  358.57s 392.46s 440.30s 884.0ls 470.38s 9.17
GraphCL 3.58s 2.09s 4.23s 542s 13.28s 17.61s 6.03s 1.17
GNN 81.93s 103.93s 28.95s 122.86s 247.42s 403.82s 164.49s 7.50
FNP 7.69s 22.24s 63.45s 15.82s 70.24s  38.84s  36.05s 4.17
PNA 3.32s 10.28 s 3.83s 2.80s 8.59s 23.63s 8.41s 1.83
PDF 13.12s 25.58s 17.80s  23.45s 63.85s  67.34s  35.86s 4.17

NSPPK feat. (XGB) 32915 59.78s 4.28s 6.25s 7.43s 60.64s  28.38s 4.83

Table 17: Runtime (seconds) without node attributes (lower is better).

Method SYNTH SYNTHIE BZR COx2 ENZ PROT Avg Rank
SM TIMEOUT TIMEOUT 11853.30s 25478.50s TIMEOUT TIMEOUT 18665.90s 16.00
SP TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT - -

ML 978.86s 1953.89s 158.40s 1509.62s 1792.43s 5661.68s  2009.15s  15.00
PK 0.59s 0.92s 0.23s 0.33s 0.78s 2.11s 0.83s 2.00
HSPPK_WL 38.74s 57.69 s 8.76s 11.30s 19.83s 76.69 s 35.50s 10.50
HSPPK_SP 285.63s 320.39s 18.33s 25.21s 31.37s 121.37s 133.72s  12.33
GH 178.47s 375.02s 99.82s 132.87s 365.25s 791.82s 32321s  13.83
NP 66.93 s 53.05s 44.90s 97.51s 69.69's 240.32s 95.07 s 12.50
linearFGW-RAW 6.21s 8.21s 6.17s 8.75s 1291s 76.17s 19.07 s 7.83
linearFGW-WL1 7.00s 8.44s 6.24s 10.22s 8.51s 52.96s 15.23s 7.83
linearFGW-WL2 6.17s 7.53s 5.21s 11.27s 11.825s 74.40s 19.73s 7.17
WL (disc.) 0.14s 0.11s 0.05s 0.12s 0.13s 0.34s 0.15s 1.00
WLOA 0.96s 1.02s 0.95s 1.37s 3.32s 8.19s 2.63s 3.83
WWL 13.19s 23.60s 11.17s 29.40s 24.10s 90.97 s 3241s 10.83
NSPDK 5.78s 7.00s 3.07s 2.81s 2.24s 3.11s 3.67s 4.17
NSPDK (disc.) 5.78s 7.00s 3.07s 2.81s 2.24s 3.11s 3.67s 4.17
NSPPK (ours) 11.31s 13.33s 6.09s 6.09s 5.58s 4.72s 7.85s 7.00

LL LARGE-SCALE EXPERIMENT: MOLPCBA LEARNING CURVES AND
EFFICIENCY

We evaluated NSPPK on the large-scale ogbg—molpcba benchmark from the Open Graph Bench-
mark suite Hu et al.| (2020a), which includes 437,929 node attributed molecular graphs and 128 binary
classification tasks. In practice, many of these tasks are both sparse (due to missing labels) and highly
imbalanced.
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L.1 CASE STUDY: TARGET 95 FROM 0GBG—MOLPCBA

We further examined task 95, which provides 48,853 positive examples, 293,968 negatives, and
95,108 molecules with missing labels. To analyze sample efficiency, we subsampled balanced datasets
up to 78,164 labeled graphs (positives and negatives in equal proportion) and varied the training
set size from 100 to 250k examples. Each experiment was repeated with five random seeds, and
average precision (AP) was reported. In parallel, we also trained each baseline once on the full OGB
scaffold split (249,715 train, 29,826 validation, 29,427 test).

We compared NSPPK in combination with different downstream classifiers—logistic regression,
random forest, and XGBoost—using both sparse and dense feature representations, against neural
baselines including GIN, GAT, PNA, PDF, a generic GNN, and AttentiveFP (FNP). The distinction
between sparse and dense refers only to feature storage: sparse matrices retain only nonzeros and are
CPU-efficient, while dense mode expands full vectors (more memory, but occasionally favorable for
GPU kernels).

For NSPPK, we fixed a single configuration (R = 1, D = 4, R’ = 1, nyj;s = 16) across all runs. (see
Appendix [C.2]for full implementation details of the graph neural netowks models used within this
experiment).

Figure 10| summarizes the results. NSPPK shows strong sample efficiency, achieving higher AP than
all neural baselines at small training sizes. Its runtime is also favorable: sparse variants in particular
remain substantially faster to train than graph neural networks. At scale, PDF overtakes NSPPK in
predictive performance, though the gap remains small. Interestingly, NSPPK combined with logistic
regression can take as long as a GNN to train, but still delivers superior AP on small data regimes.
Overall, NSPPK offers a simple, lightweight alternative that competes directly with neural methods.
Figure[I0|shows the resulting learning curves, with all NSPPK variants highlighted in red.
Test AP
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Figure 10: Learning curves on ogbg-molpcba (task 95). NSPPK (red) paired with different
downstream classifiers is compared against neural baselines including GIN, GAT, PNA, PDF, and
AttentiveFP (FNP).

L.2 IMPLEMENTATION DETAILS FOR TASK 95 EXPERIMENTS
NSPPK Configuration. For all NSPPK experiments we fixed the parameters across classifiers:

R= 1, D= 47 R/ = 1, Npits = 16.
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Both sparse and dense representations were evaluated. Sparse mode stores only nonzero entries and
is efficient on CPU-based models, while dense mode expands the full vectors, sometimes favorable
for GPU-accelerated tree methods.

Downstream Classifiers. The exact settings for the classifiers paired with NSPPK features are
given in Table[T§]
Table 18: Classifiers used with NSPPK features on ogbg-molpcba (task 95).

Classifier Features Configuration

Logistic Regression  Sparse saga, max_iter=1000, La, njobs = 64

Random Forest Sparse 500 trees, depth=35, njq,s = 64, seed=42

XGBoost Dense 1000 trees, depth=6, LR=0.03, subsample=0.8, colsample=0.8
XGBoost Sparse Same as above, hist backend

Neural Baselines. For comparison, we trained common GNN baselines with published hyperpa-
rameters. Table|19|summarizes their main configurations.
Table 19: Neural baselines and their configurations for task 95.

Model Main hyperparameters Source

PNA 2 layers, dim 64—32, batch 64/256, LR=0.001, Adam |Corso et al.[(2020)
PDF (Basis-DGL) 8 layers, dim 384, batch 64/256, LR=5e-4, AdamW Yang et al.[ (2023b))
GAT 2 layers, 64—32, 4/1 heads, LR=0.001, Adam Velickovic et al.| (2018)
AttentiveFP (FNP) 4 layers, dim 64, dropout=0.2, LR=0.001, Adam Xiong et al. (2019)
GIN 2 layers, dim 64—32, LR=0.001, Adam Xu et al.| (2019a)

GCN (OGB baseline) 2 layers, dim 64—32, LR=0.001, Adam Hu et al.| (2020a)

Shared Training Setup. All neural baselines were trained on the official OGB scaffold split
(train: 249,715; validation: 29,826; test: 29,427). Loss: binary cross-entropy with logits
(BCEWithLogitsLoss). Metrics: AP and ROC-AUC. Unless otherwise stated, all experiments
were executed on CPU.

Reproducibility. Balanced-data experiments were repeated with five random seeds. Both feature
extraction time and training time are reported in the main text.
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