
Pointing Gesture Understanding via Visual Prompting and Visual
Question Answering for Interactive Robot Navigation

Kosei Tanada1, Shigemichi Matsuzaki1, Kazuhito Tanaka1,
Shintaro Nakaoka1, Yuki Kondo1, and Yuto Mori1

Abstract— In this paper, we explore a method of visual robot
navigation that interprets human’s gesture pointing toward
desired directions and moves following the instructions with
Vision Language Models (VLMs). In this method, we provide
rating scales for Visual Question Answering (VQA) in visual
or text prompts to VLMs to measure ambiguous pointing
gestures. A VLM takes prefix texts and an observation image
of a human’s pointing with visual prompts and outputs the
pointing scale that can be utilized for robot navigation. We
validate two gesture rating scales and three visual clues with a
pointing gesture dataset. The results demonstrate the difficulty
of reliably accomplishing the targeted tasks and show the future
direction of our research.

I. INTRODUCTION

Large Language Models (LLMs) and Vision-Language
Models (VLMs) have made significant progress and demon-
strate broad capabilities using their adaptability via in-
context learning in a variety of robotic tasks. The existing
work has shown that LLMs and VLMs can ground robot-
specific concepts from text instructions and visual represen-
tations, such as map or scene graph constructions and scene
navigation [1]. However, an interpretation of interactive
visual instruction has not been broadly considered, remaining
a challenge to understand ambiguous spatial instructions,
such as pointing gestures. In this study, we seek effective
methods to exploit common knowledge of VLMs to infer
the pointing direction with text and visual prompts.

Our ultimate goal is to achieve a general visual navigation
policy that translates spatial and semantic cues, such as
human gestures and arrow signs, into robot actions. We
believe a combination of low-level control policy and high-
level decision-making is effective. As an initial step towards
this goal, we explore how to help the VLMs understand
ambiguous gesture instructions of humans and generate plau-
sible high-level reasoning, enabling intuitive and interactive
robot control by users.

A challenge for this goal is quantifying ambiguous point-
ing directions and making it understandable for VLMs. To
this challenge, we search for prompting methods to give
discrete degrees that enable the evaluation of spatial pointing.
We introduce the discrete scales to measure the distinctive-
ness of pointing gestures by text or text and visual prompting.
We examine two types of rating scales with the state-of-the-
art (SOTA) VLMs and investigate their performances.

Recent studies show that visual prompting enhances not
only 2D scene understanding [2] but also the spatial rea-
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soning capabilities of VLMs [3]. Inspired by those findings,
we introduce some visual clues that represent abstracted
information of human’s pointing in a given image.

In this paper, we validate two gesture scales and further
explore three visual prompts on one of them. We use text
prompts with visual question answering (VQA) and some
visual prompts to express gesture scales and visual clues. We
demonstrate success rates and failure cases in our experiment
with SOTA VLMs and provide future directions to our
ultimate goal.

II. RELATED WORK

A. Large Language Models and Vision-Language Models

Large Language Models (LLMs) and Vision-Language
Models (VLMs) have achieved significant progress [4], [5],
and adapt to various domains and real-world applications,
such as an embodied agent [6] and scene graph under-
standing [7]. However, more advanced capabilities, such
as spatial gesture understanding in a zero-shot manner are
still challenging. Existing work has shown that text [8] and
visual [2], [9] prompting techniques encourage LLMs or
VLMs to improve their reasoning performance. Inspired by
these studies, we investigate what types of visual and text
prompting are effective in understanding spatial pointing
gestures.

B. Robot Navigation with Foundation Models

Recently, machine learning models trained with a variety
and huge amount of data, called Foundation Models, are
introduced to various robotic navigation from high-level
reasoning [1], [10], [11] to low-level control[12]. Some
pieces of existing work apply the general knowledge of
LLMs and VLMs to robot navigation [1]. Recently, Nasiriany
et al. [3] proposed a prompting method that applies iterative
optimization of visual representation pre-processed on the
image, and showed that their approach enables general
robotic control including navigation in a zero-shot manner.
While these methods reveal that SOTA VLMs contain rich
knowledge for robotic tasks, effective visual prompting is
still less explored, especially for the interpretation of visual
semantics in robot navigation.

C. Gesture-based robot control

Gesture-based robot control has long been investigated
[13], [14]. Lin et al. [15] proposed a framework to inter-
pret gestures and language instructions with LLMs in the
table-top manipulation setting. Cuan et al. [16] proposed
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Fig. 1. Overview of the proposed method

an imitation learning method to train gesture-aware social
navigation policies. In contrast, we aim to explore the zero-
shot capabilities of VLMs to handle various spatially and
semantically meaningful gestures.

III. METHODOLOGY

A. Overall architecture

In this paper, we consider the problem of understanding
visual instruction given by human pointing gestures using
VLMs. Fig. 1 shows the overview of our method. Formally,
a VLM F takes a text sequence T i and an image Ii ∈
RH×W×3, and outputs text sequences T o.

T o = F(Ii, T i). (1)

In our method, T i is given by a prefix text prompt ppre. ppre
contains a role pr of the embodied agent, an output example
pe, and a request to complete contexts composed of caption
part and VQA part. Ii is given by an observation image ot
with a human representing visual instruction with a pointing
gesture gi ∈ G at the current time t . Here, ot = f(gi),
where f is a function embedded in a camera sensor. The
camera captures the scene in front of a robot, and f maps
the scene with a human’s pointing gi to RGB image ot. In
our method, Eq. 1 is defined as follows:

T o = F(f(gi),ppre) (2)

To provide rating scales of the pointing, we use additional
visual and text prompts described in the next subsection.

B. Visual and Text Prompting for Gesture Understanding.

1) Rating Scales: We introduce two types of rating scales,
Ordinal Scale and Numerical Scale.

(i) Ordinal Scale (OS) represents how gesture instruction
is strongly indicated. The scale is given by a text prompt as
follows:

The following three scales are available when you
answer "Yes" for each question:

1. Strongly True
2. True
3. Weekly True
Select a scale after answering "Yes" for the given

question.

This metric is similar to Likert scale [17], which generally
has five or seven points, while we set a 3-point ordinal
scale to quantify a degree of the answer ”Yes”. The ordinal
scale is intended to recognize the pointing direction while
keeping the ambiguity of the instruction to ensure the safety
of subsequent behaviors of the robot.

(ii) Numerical Scale (NS) is given by text and visual
prompts. Fig. 2 shows visual prompts providing numerical
scales on an image. We use three types of numerical scales,
axes (Fig. 2(a)) and horizontal scales (Fig. 2(b), 2(c)). The
axes prompt overlays a 2.5D axis that represents a 2D coor-
dinate with a depth axis with RGB colors. The axes prompt
is inspired by [9], where they investigate the effectiveness of
3DAxiesPrompts on the objects for spatial reasoning tasks.
Unlike [9], we use the 2D yz coordinate with the depth
axis x at the origin of the coordinate, which needs less
human annotation than a 3D axis along the object structure.
The horizontal scale prompts show a scale with a range of
either [0, 6] or [−3, 3] on the image. These approaches are
less informative for 3D than the axes prompt, while they
express minimum measures to measure horizontal pointing.
The axes and horizontal scale prompts are also described by
corresponding text prompts as well. For example, the axes
prompt is explained as follows:

A human indicates a direction to move in the given
image by a hand.

The red x-axis goes along the depth direction of
the image.

The green y-axis extends across the left side of
the image.

Do not consider the direction from the person's
perspective.

The blue z-axis represents the height of the image.

To overlay a numerical scale on the image, we use an open-
vocabulary detector [18] and get a ”human face” position on
the image. The origin or the center of the scale is determined
by the center of x-pixel position of the human face.

2) Visual Clues for Pointing Gestures: Fig. 3 shows all vi-
sual clues that we explore in this paper. We investigate three
types of visual prompts, visual controller, hand detection, and
human pose detection that give clues to understand the am-
biguous pointing gesture. (i) Visual controller shows triangles



(a) Axes. (b) Scale [−3, 3] (c) Scale [0, 6]

Fig. 2. Visual prompting for numerical rating scales.

(a) Controller. (b) Human hand. (c) Human pose.

Fig. 3. Visual clues for pointing gestures.

and texts that represent the right and left direction in camera
perspective, helping VLMs understand the concept of the
directions. (ii) Hand and (iii) human pose detection overlay
a detected hand or human pose on the image. Humans easily
infer the pointed direction so that they identify where to
pay attention (e.g. a directed hand or a rough representation
of the gesture). Based on this consideration, we seek how
VLMs can enhance their capabilities to understand spatial
pointing with abstract representations of the body parts.
These three visual clues are indicated by text prompts as
well. For example, the human pose prompt is explained as
follows:

A human indicates a direction to move in the given
image by a hand.

The results of human pose detection are overwritten
on the image.

We use open-vocabulary detector [18] to get the ”human
hand” position, and MediaPipe [19] to detect the human pose.

IV. EXPERIMENTS

A. Setup

We test our approach to verify the inference performance
with rating scales and visual clues described in Sec. III.
We examine one ordinal scale and three numerical scales
shown in Sec. III-B.1. To evaluate these methods, we collect
images of a person making a pointing gesture in three office
environments and apply each visual pre-processing to the
images. We use ZED Mini (CM429) to capture images with a
resolution of 1920×1080. We process raw RGB images with
visual clues to validate the ordinal scale and visual prompts
to validate the numerical scales. To check the effectiveness
of the visual clues, we also use raw RGB images for the
evaluation of the ordinal scale. To avoid confusion caused by
visual information overload, we do not adapt the visual clues
to the numerical scales. We use GPT-4V [4] and Gemini Pro
[5] that are broadly utilized as SOTA VLMs. We define cases
of ”successful inference” for each rating scale as follows:

• For the ordinary scale, we make human-annotated
image-and-text pairs that serve as the ground truth for
inference results.

TABLE I
SUCCESS RATES OF OS AND VC

Visual Clue Success Rate

GPT Gemini

None 21.7% 32.2%
Hand 32.8% 26.7%
Pose 33.3% 25.6%

Controller 27.8% 27.2%

TABLE II
SUCCESS RATES OF NS

Numerical Scale Success Rate

GPT Gemini

Axes 31.0% 43.0%
Scale [−3, 3] 60.0% 40.0%
Scale [0, 6] 6.6% 44.8%

• For the numerical scale, we set that the correct scale
is the nearest scale of minimum and maximum x-
pixel value derived from human-hand detection. For
example, if the minimum and maximum x-pixel value
of a pointing hand are the nearest to scales 4 and 5,
the correct scales are set to 4 and 5. We use an open-
vocabulary detector [18] to obtain the area of the x-pixel
of a pointing hand.

B. Results

1) Gesture scale validations: Table I shows success rates
of inference with an ordinal scale and visual clues. Visual
prompt overlaying pose detection gets the highest success
rate (33.3%) with GPT-4V. The visual representation that
abstracts a human’s body state can help VLMs understand
the pointing gesture. This perspective can be applied to hand
detection as well, where it relatively shows a higher success
rate (32.8%). However, we do not detect reliable success
rates for a real-world robot application with each VLM and
visual clue.

Table II shows inference success rates with numerical
scales. The scale [−3, 3] gets the highest success rate
(60.0%). Compared with the axes prompt, since each scale
from −3 to +3 is clearly expressed in the image, the scale
[−3, 3] provides understandable marks that help to clarify
where the finger is pointing. In contrast, the scale [0, 6] gets
the lowest score with GPT-4V. We assume it is easier for
VLMs to connect the concepts of left/right and +/−.

2) Failure case analysis: We further investigate the failure
cases to understand how VLMs capture the pointing gesture
in the image. We define two types of failure cases, wrong
direction and wrong labels. (i) Wrong direction means that
the direction indicated by the response is opposite to the
actual direction. (ii) Wrong label shows the direction in the
response is correct, while the scale in the response is different
from the labeled scale. Tables III, IV show the result of the
analysis. While both cases are similarly observed for the
ordinal scale, wrong direction is detected more than wrong
label ones about numerical scales.

C. Discussions

The validations with the VLMs commonly revealed that
neither the ordinal nor the numerical scale is performing
adequately for real-world robotic applications. GPT-4V got
a higher score in the experiment of the ordinary scale than
Gemini Pro, while Gemini Pro is more promising in some
results of the numerical scales, such as the axes prompt.



TABLE III
FAILURE CASES OF AS AND VC

Visual Clues
Failure Cases

GPT Gemini

WD WL WD WL

Hand 43.6% 56.4% 51.1% 48.9%
Pose 52.5% 47.5% 40.3% 59.7%

Controller 46.2% 53.8% 32.1% 67.9%

TABLE IV
FAILURE CASES WITH NS

Numerical Scale
Failure Cases

GPT Gemini

WD WL WD WL

Axes 65.0% 25.0% 88.2% 11.8%
Scale [−3, 3] 66.7% 33.3% 75.9% 24.1%
Scale [0, 6] 88.2% 11.8% 72.9% 27.1%

However, we found that all approaches were far from a safe
and reliable application. The results suggest that the SOTA
VLMs do not adapt their latent knowledge to the pointing
direction or the discrete scale interpretation in a zero-shot
manner. The result of failure case analysis demonstrates
that half and more misunderstanding cases are derived from
wrong direction ones. This means that VLMs output opposite
directions with less consideration of the gesture instruction,
which can have less interactive navigation in real-world
situations.

Qualitatively, we observed that GPT-4V understood am-
biguous metrics better than Gemini Pro, as shown in Ta-
ble III, while the scores of an ordinal scale were relatively
unstable for numerical representation in the image. In con-
trast, Gemini Pro’s outputs depend on where the person is
pointing. If the person on the image points to the right side of
the image, the output of Gemini is relatively reliable, while
if the person is pointing to the left side of the image, the
answer is relatively incorrect. This aspect affects the result
of failure cases with ”wrong direction” that most of them
are derived from the images pointing to the left side.

V. CONCLUSIONS AND FUTURE WORK

We explored the effectiveness of rating scales and visual
clues to understand human’s pointing discretely, enabling
intuitive control of the visual navigation of the robot. The
preliminary results showed that it is still challenging for
SOTA VLMs to understand human pointing gestures with
visual discrete scales and VQA-based text prompts.

Our ultimate goal is a visual navigation policy that can
interpret more diverse visual semantic cues, such as signs
with arrows. We expect that VLMs can handle such arbitrary
visual information and that this capability will be a crucial
direction of our approach. Our future work is to enhance
the capability of high-level decision-making to a variety of
semantic information using common sense knowledge of
VLMs and connect it to the low-level control policy, such

as NoMaD[20], enabling robots to plan where to go and
understand the environments more interactively.
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