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Abstract

Larger Language models (LLMs) often surpass their smaller counterparts
in reasoning tasks but fall short in inference efficiency, posing the need and
challenge of effectively transferring these capabilities from larger to smaller
models. Existing approaches heavily rely on extensive fine-tuning data
or continuous interactions with a superior teacher LLM during inference.
We introduce a principle-based teacher-student framework, Teaching via
Principle Discovery (TPD), to address these limitations. Inspired by human
learning mechanisms, TPD mimics the interaction between a teacher and
a student using a principle-based approach. The teacher LLM generates
problem-solving instructions and corrective principles based on the student
LLM’s errors. These principles guide the refinement of instructions and the
selection of instructive examples from a validation set. This enables the stu-
dent model to learn from both the teacher’s guidance and its own mistakes.
Once the student model begins making inferences, TPD requires no further
intervention from the teacher LLM. Through extensive experiments across
eight reasoning tasks, we demonstrate the effectiveness of TPD. Compared
to standard chain-of-thought prompting, TPD significantly improves the
student model’s performance, achieving an average improvement of 6.2%.

1 Introduction

Recent studies show that large language models (LLMs) can achieve impressive performance
in various reasoning tasks, such as analogical (Webb et al., 2023), arithmetic (Imani et al.,
2023), symbolic (Pan et al., 2023a), and commonsense reasoning (Wei et al., 2022b; Bang
et al., 2023). However, a noticeable performance gap can often be observed between stronger
LLMs such as GPT-4 and weaker LLMs such as GPT-3.5-turbo (Espejel et al., 2023; OpenAI,
2023; Cai et al., 2023). This disparity arises from factors such as training data size, model
capacity, and the methods by which LLMs learn and encode world knowledge. While
stronger LLMs exhibit superior performance, their practical application is hindered by the
high costs associated with training and inference. For instance, as of this writing, the cost of
using GPT-4 is over ten times higher compared to GPT-3.5-turbo. This raises the question:
how can we effectively transfer the advanced reasoning capabilities of stronger LLMs to
weaker ones?

Several approaches have been proposed to address this challenge. Some studies (Rajani
et al., 2019; Ho et al., 2023) curate datasets for specific downstream tasks using stronger
LLMs and then fine-tune weaker LLMs on these datasets to instill the necessary knowledge.
However, this fine-tuning process is time-consuming, and the resulting task-specific weaker
LLMs lack generalizability to other tasks. Wang & Li (2023) use an assistant language
model to provide guidelines and analysis for the student model, but this approach requires
constant involvement of the assistant model, which can be costly. To reduce teacher model
involvement, Saha et al. (2023) request teacher intervention only when the student model
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exhibits low confidence, where the confidence is computed from the token probability of
the answer. Such a measure may not accurately reflect the student model’s true confidence,
as the token probability of the answer is influenced by the preceding output, specifically the
chain-of-thought (CoT) explanations.

It is 4/19/1969 today. 
What is the date one year 
ago in MM/DD/YYYY?

Jane and John married on Jan 2, 
1958. Today is their golden 
wedding anniversary. What is the 
date today in MM/DD/YYYY?

Problem-solving method

Teacher Model Teacher Model Student model

Determine today's date 
based on ... Then Apply 
the time change ...

Principle List

1. Golden wedding anniversary is 
50 years anniversary. 
2. You should use ... to solve ...

1/2/1998

1/2/2008

Instruction generation Error summarization

Figure 1: Illustration of TPD. The teacher
model generates problem-solving instructions
and then summarizes principles based on er-
rors made by the student model on valida-
tion questions. During principle exploitation,
the problem-solving instruction and examples
that illustrate the principles are combined into
the prompt to guide student learning.

To address these limitations, we intro-
duce Teaching via Principle Discovery
(TPD), a principle-based teaching framework
that minimizes teacher model involvement,
thereby optimizing resource allocation and
efficiency. TPD draws inspiration from in-
structional strategies observed in natural
human teaching and learning processes
(Rosenshine, 2012; Henderson & Harper,
2009; Metcalfe, 2017), which follows a struc-
tured Demonstrate-Practice-Review process:
1) Demonstrate: The teacher introduces a
problem type and demonstrates how to
solve it. 2) Practice: The student engages
with practice questions. 3) Review: The
teacher reviews the student’s responses
to identify common errors. This review
process enables the teacher to extract fine-
grained corrective principles that guide the
student in rectifying errors and improv-
ing future problem-solving. TPD comprises
two stages: principle generation and princi-
ple exploitation. In the principle generation
stage, the teacher model generates problem-
solving instructions and summarizes prin-
ciples based on errors made by the student model on validation questions. In the principle
exploitation stage, the teacher model constructs instructive examples that illustrate the
principles and injects these instructions into the prompt to guide student learning. TPD
avoids teacher model involvement during inference, enabling the student model to operate
independently in offline scenarios.

We validate TPD on eight reasoning tasks covering symbolic and arithmetic reasoning.
Through principle generation and exploitation, TPD significantly improves the performance
of the student model without teacher model intervention during inference. Specifically,
our model achieves an absolute gain of up to 19% accuracy compared to chain-of-thought
prompting. Additionally, we explore different methods for injecting generated principles
into the student model and find that selecting new examples from practice questions
outperforms direct injection and the critique-revise method.

2 Related work

Teacher-student framework Traditional teacher-student frameworks employ fully super-
vised fine-tuning methods (Magister et al., 2022; Shridhar et al., 2022; Hendrycks et al.,
2021; Rajani et al., 2019). For instance, Ho et al. (2023) generate CoT reasoning steps by
GPT-3 (Brown et al., 2020) and fine-tune several relatively small models with these gener-
ated data. However, both the fine-tuning process and collecting task-specific fine-tuning
data are time-consuming and challenging. To overcome these limitations, there are several
prompting-based teacher-student frameworks recently (Pruthi et al., 2022; Saha et al., 2023;
Yu et al., 2023). In these frameworks, the teacher model is tasked with offering demon-
strations or explanations to the student model. However, these approaches require the
intervention of a teacher model on the test set. Hence, they are unsuitable for offline scenar-
ios, where the student model must solve problems independently, without assistance from
the teacher model.
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Eliciting LLM’s reasoning ability through prompting Emergent abilities bring a strong
few-shot learning ability for LLMs across various datasets via in-context learning (Wei et al.,
2022a;b). Many prompting-based methods are proposed to elicit the reasoning abilities of
the LLMs by injecting knowledge into prompts. For instance, chain of thought (CoT) (Wei
et al., 2022b) and its variants (Kojima et al., 2022; He et al., 2023) provide a few human
written examples or instructions to LLMs. We summarize more prompting methods in
Appendix B. These prompting methods are effective in eliciting the reasoning ability of
the LLMs. However, they are not suitable for direct adaptation within the teacher-student
framework, as they do not involve knowledge transfer from a teacher model. Another
pipeline of prompt engineering is automatic prompt searching, also known as prompt
optimization (Khattab et al., 2023; Yang et al., 2023a). These methods employ LLMs to
refine prompts iteratively in the zero-shot setting for a specific task. However, applying
automatic prompt searching methods for prompt optimization is time-consuming, as it
requires multiple rounds of inference on the training dataset; in contrast, TPD requires only
a single-round knowledge transfer. Moreover, TPD includes an error summarization stage,
which aligns with learning from feedback prompting methods. These methods initially
create a memory list. When a new query arises, they retrieve relevant information from this
memory to refine and enhance the current prompt. The retrieved information may consist
of successful trials from history (Majumder et al., 2023), the most similar questions with
user feedback (Madaan et al., 2022a), or summaries of previous failures (Shinn et al., 2024).

Principle discovery and exploitation Rule discovery is a popular technique in machine
learning and data mining (Tweney et al., 1980; Fürnkranz & Kliegr, 2015; Das et al., 1998).
In language models, rule discovery is often utilized in learning from feedback frameworks
(Zhang et al., 2022a; Pan et al., 2023b). In (Zhu et al., 2023), rules are generated by language
models and subsequently selected through self-verification. Yang et al. (2023b) propose a
framework where language models could generate rules by learning from previous mistakes.
However, the rules produced in these methods tend to be concrete facts, with the framework
functioning as a retrieval system. In contrast, a rule is a formal, broad statement that applies
to an indefinitely large set of objects. Unlike rules, principles are more abstract and open
to interpretation, offering high-level guidance without strict formatting. For instance, Bai
et al. (2022) predefine principles about helpfulness and harmfulness by human experts, then
ask the language model to evaluate the generation results to make RLAIF. One concurrent
work on principle discovery is LEAP (Zhang et al., 2024), which focuses on summarizing
both high-level and low-level principles based on a model’s previous mistakes. The key
distinction between TPD and LEAP is that we incorporate principle discovery within a
teacher-student framework, aiming to enhance knowledge transfer through these principles.
In contrast, LEAP primarily demonstrates that LLMs also discover principles from their
previous mistakes.

3 Method

3.1 Overview

In TPD, we consider a teacher model and a student model. The student is responsible for
solving reasoning problems based on the teacher model’s guidance. The primary goal
of our framework is to let the teacher model effectively teach the student model how to
solve these tasks. As shown in Fig. 2, the framework is divided into two stages: principle
generation and principle exploitation. During the principle generation stage, the teacher
model produces a problem-solving instruction based on sampled questions and identifies a
principle list P from the errors made by the student model. In the principle exploitation stage,
the principle list P is injected into the student model to improve its reasoning capabilities in
downstream tasks.

3.2 Principle generation

In this stage, we employ the teacher model to provide a high-level guideline to the student
model and help the student model identify its common errors from a few practice questions.
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GPT-4: Teacher Model GPT-3.5: Student Model

Sampled Question:

It is 4/19/1969 today. What is the date 
yesterday in MM/DD/YYYY?

Problem-solving Instruction:

First determine the specific date, then apply the 
time change to the date to calculate the new date.

Examples:
Question: …; Answers: …

Problem-solving Instruction: …

Practice Question:
Tomorrow is 11/12/2020. What is the 
date 24 hours later in MM/DD/YYYY?

Answer:

Today’s date is 11/12/2020. So 24 
hours later is 11/13/2020.

Practice Question: …
Incorrect Answer: …

Please identify the mistakes in the 
answer. Update the problem-solving 
instruction and select the most 
representative examples accordingly.

Principle List:

The given date may not be today's date. Calculate 
today's date based on the given information.

Modified Problem-solving Instruction:
1. Determine today's date based on the mentioned 
information.
2. Apply the time change to today’s date to calculate 
the new date.

Selected Examples:
Question: …; Answers: …

Modified Problem-solving 

Instructions: …

Selected Examples: …

Question:

Tomorrow is 11/12/2020. What is the 

date 24 hours later in MM/DD/YYYY?Answer:

Tomorrow date is 11/12/2020. So 

today's date is 11/11/2020, then 24 

hours later is 11/12/2020.

Step 1:
Problem-solving Instruction 
Generation

Step 2:
Student Practice

Step 3:
Error Summarization &
Principle Exploitation

Step 4:
Student Inference

Figure 2: TPD contains two stages: principle generation and principle exploitation. In
principle generation, the student model generates answers according to the problem-solving
instructions from the teacher model. Then, the teacher provides a list of principles based on
student’s practice errors. In principle exploitation, the teacher model refines the instruction
and chooses representative examples, which are used by the student for inference.

This principle generation stage comprises two sub-stages: 1. Problem-solving instruction
generation and initial practice and 2. Error summarization. The two-stage process mirrors
the traditional classroom learning model, where teachers provide instructions, students
practice, and teachers offer feedback based on observed errors.

3.2.1 Problem-solving instruction generation and initial practice

What is problem-solving instruction? The problem-solving instruction I consists of a
problem-solving method augmented with a few examples. To build the instruction, the
teacher model reviews a set of questions sampled from the training set, identifying what
type of questions the student model needs to solve. Then, the teacher model generates
a problem-solving method as an initial instruction in natural language. To enhance the
instruction, it is further enriched with examples that demonstrate the application of the
proposed method. These examples are derived from the same questions initially sampled.
We provide an example in Appendix C for a better understanding.

Why problem-solving instruction? Previous works (Saha et al., 2023; Wang & Li, 2023)
ask the teacher model to offer guidance for each test question, rendering the teaching
framework impractical for offline scenarios. To tackle this issue, we ask the teacher model
to provide high-level problem-solving instruction based on sampled questions and internal
knowledge. The problem-solving instruction is adaptable, making it suitable for offline
use as it generalizes across similar types of questions. Moreover, since many prompting
methods (Wei et al., 2022b; Gao et al., 2023b; Zhou et al., 2022) have shown that LLMs have
a strong capability to learn from examples, the problem-solving instruction includes a few
examples to help the student model understand and imitate the instruction. This process
also follows the Case Teaching Method paradigm (Herreid, 2005), where the teacher models
provide several cases, and the student model can imitate and learn from the examples. The
problem-solving instruction reflects the key principles to solve the type of problems, as it
provides fundamental guidance for addressing specific types of problems.

Initial practice for the student model With the problem-solving instruction, the student
model generates answers for the questions in the validation set. This step lets the student
model practice, allowing the teacher model to assess its comprehension of the problem-
solving instruction and its ability to apply it effectively.
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3.2.2 Error Summarization

Data filtering After the student practices over the validation set, we evaluate its responses
to build an error set E = {e1, e2, ..., en}, where each element ei in this set represents a pair
consisting of a question and the corresponding incorrect answer made by the student model.
Although the teacher model generally performs well on various tasks, it can make mistakes.
Hence, we need to assess the teacher model’s ability to accurately identify the incorrect
answers in E. Specifically, we check if the teacher model agrees with the student’s incorrect
answers, removing each ei that the teacher model can not identify to build a feasible error
set Ê. Due to the context length of the LLMs, we then develop an iterative framework to
summarize principles from each ei iteratively.

What is error summarization? In Algorithm 1, we denote the model response as M(p)
given the LLM M and the input p. The teacher model initially derives principles P from a
subset Ns of the feasible error set Ê. Then, we present the remaining set Nr to the teacher
model sequentially, prompting it to determine whether the established principle list P can
rectify the error. If the existing principle list P can not address the presented error Nr(i),
the teacher model will formulate a new principle p for it. The iterative process stops when
all the errors in Nr(i) are checked. Then, human reviewers will step in to assess the validity
of the principle list P created by the teacher model. The reviewers will simply delete any
that are found to be erroneous or confusing, ensuring the reliability and clarity of the final
principle list. We provide instructions for human reviewers in Appendix F.

Algorithm 1: Error summarization

Input: T: the teacher model; Ê: the
feasible error set

Output: P: the principle list
1 Sample a subset Ns from Ê;
2 Nr ← Ê\Ns;
3 P← Tsummarize(Ns);
4 for i ∈ {1, 2, 3, . . . , |Nr|} do
5 if Tevaluate(P, Nr(i)) = False then
6 p← Tsummarize(Nr(i));
7 P← P∪ p;
8 end
9 end

10 return P

Why error summarization? Making mis-
takes is a natural part of the learning process
and can be a powerful tool for growth and
understanding (Cyr & Anderson, 2018). Even
though students can solve simple tasks us-
ing the original problem-solving instruction
alone, they may have difficulty applying the
same knowledge and skills in complex situa-
tions (Klein et al., 2007). Therefore, it is also
important to let students learn from errors,
which can help them identify error patterns
and avoid similar mistakes in future practice
(Metcalfe, 2017). Learning from mistakes has
been explored in (Wang & Li, 2023; Yang et al.,
2023b), where knowledge from past failures
is stored in a memory list and retrieved for
each new query. However, these approaches

primarily focus on recording errors in detail without summarizing them into high-level
principles. In contrast, our approach emphasizes high-level principles, which are more
generalizable and can be effectively applied in offline scenarios. Additionally, TPD can also
be augmented by retrieval methods, as we can retrieve the most similar questions along
with the teacher model’s feedback from practice questions. Further analysis is provided in
Appendix D.

3.3 Principle exploitation

In the second stage, the student model’s role is to utilize the principle list P to solve various
instances of the task. There are multiple ways to utilize the principle list, which are explored
in Sec 4.4. Compared to directly injecting the principle list into the prompt and the critique-
revise method, we found that using the principle list P to curate new examples from the
validation set is more effective. Specifically, we define the violation score, which is the
number of violations against the principles in the list P. The teacher model evaluates
each error in Ê, using violation scores to rank them. The examples with the top k highest
violation scores are selected as the most informative examples. Then, the teacher model
generates correct answers for these examples to replace the incorrect answers from the
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student model. Besides, the teacher model also revises the problem-solving instruction
based on P. The overall instruction combines the revised problem-solving instruction and
the selected informative examples. For better illustration, we present the overall instruction
template below.

Overall Instruction Prompt

Revised Problem-solving Instruction: {method} + {original examples}
New Selected Examples: {question} + {answer}

The principle generation stage only needs to be performed once for each type of task. The
teacher model could then build a new prompt based on the principle list for the student
model. The prompt can then be reused for all instances of that task. This makes TPD
significantly more efficient than using a retriever or a teacher model’s intervention in each
query.

4 Experiments

4.1 Experiments Setup

Datasets. We evaluate our approach on eight datasets from diverse domains, including
four tasks from Big-bench (Srivastava et al., 2022): Tracking Shuffled Objects, Date Under-
standing, Navigate, and Matrixshapes. The other four datasets are GSM8K (Cobbe et al.,
2021), SVAMP (Patel et al., 2021), CoinFlip and Last Letter Concatenation (Kojima et al.,
2022; Wei et al., 2022b). We use the 5-object versions of the Tracking Shuffled Objects task in
the experiments, which we will refer to as Tracking Shuffled Objects (5). The CoinFlip, Last
Letter Concatenation and Tracking Shuffled Objects (5) are regarded as symbolic reasoning
tasks, and the remaining datasets are arithmetic reasoning tasks. The dataset split and the
detailed information about each dataset can be found in Appendix G.

Experiment settings. In the experiment, we use gpt-3.5-turbo-16k, LLama3-70B-Instruct
(AI@Meta, 2024) and Mixtral-8x7B-Instruct (Jiang et al., 2024) as student models, with gpt-4
(OpenAI, 2023) serving as the teacher model. In the following sections, we will denote them
as GPT3.5, LLama3, Mixtral, and GPT4, respectively. More detailed settings are given in H.2.

Baselines. We include Zero-Shot CoT (Kojima et al., 2022), few-shot CoT (Wei et al., 2022b),
and Auto-CoT (Zhang et al., 2022b) as baseline prompting methods. Specifically, we include
6-shot CoT as a baseline method, where all of the 6 examples are selected based on the
principle list from practice questions (there are 6 examples in the final prompt for the student
model). In contrast, 3-shot-CoT uses randomly selected examples from the training set.
More details of the baselines are given in H.3.

4.2 Symbolic reasoning

Symbolic reasoning entails the use of symbols and their relationships to execute logical
operations (MacColl, 1897). It gauges logical reasoning and rule-based decision-making abil-
ities, assessing a language model’s proficiency in simulating human-like reasoning. Table 1
presents the comparison results. As anticipated, 3-shot CoT and Auto-CoT surpass zero-shot
CoT by providing more examples and guidance to the language model, enabling it to gener-
ate higher-quality reasoning processes. Auto CoT achieves comparable performance across
all three datasets compared to 3-shot CoT, suggesting that it can match the performance
of the CoT paradigm that requires manual designs. Our method TPD outperforms 3-shot
CoT on CoinFlip and Last Letter Concatenation, and achieves comparable performance on
Tracking Shuffled Objects (5), demonstrating the potential effectiveness of problem-solving
instructions over merely presenting a sequence of language reasoning steps.

The error summarization stage appears to be less effective in symbolic reasoning tasks,
primarily because errors often stem from a lack of factual knowledge rather than the misap-
plication of principles. Principles serve as high-level guidelines, applicable to a broad range

6



Published as a conference paper at COLM 2024

Model Method Symbolic reasoning Arithmetic reasoning
Coin Letter Shuffled Date Navi. GSM8K Matrix SVAMP

GPT3.5

0-shot CoT/PoT 65.5 48.9 47.5 24.0 39.0 66.7 26.5 77.6
3-shot CoT/PoT 80.8 82.9 74.5 68.5 81.5 74.5 84.5 82.6
Auto CoT/PoT 80.6 81.5 75.5 71.0 83.0 73.9 83.5 82.8
6-shot CoT/PoT 92.8 83.5 75.0 74.0 93.0 74.8 89.5 82.8

TPD w/o ES 100.0 89.7 75.0 33.5 85.0 74.7 85.0 81.2
TPD w/ ES 100.0 89.9 75.0 76.5 97.5 75.4 93.5 82.9

Mixtral

0-shot CoT/PoT 45.6 15.2 24.5 18.0 47.0 51.4 8.5 69.9
3-shot CoT/PoT 78.4 58.7 42.0 35.5 72.5 57.2 64.5 79.4
Auto CoT/PoT 76.5 58.4 43.5 39.5 73.0 56.8 71.0 79.6
6-shot CoT/PoT 78.8 58.3 48.5 44.5 82.0 61.2 84.5 79.8

TPD w/o ES 67.2 49.3 51.5 54.0 76.0 63.6 68.0 84.2
TPD w/ ES 78.8 59.2 52.5 71.5 96.0 65.1 91.0 86.0

LLama3

0-shot CoT/PoT 100.0 82.2 63.0 31.0 83.0 81.3 61.0 82.5
3-shot CoT/PoT 97.6 85.6 99.0 52.0 58.5 87.5 86.5 91.2
Auto CoT/PoT 97.8 86.2 98.5 59.5 80.5 89.8 89.5 90.8
6-shot CoT/PoT 97.9 85.8 99.0 75.0 89.5 88.3 94.0 91.5

TPD w/o ES 94.6 84.7 98.0 74.5 68.5 87.7 82.5 89.7
TPD w/ ES 99.1 86.1 99.0 85.5 93.0 92.7 97.5 93.4

Table 1: Performance on symbolic reasoning and arithmetic tasks, measured in accuracy(%).
The teacher model is GPT4, and the student models are GPT3.5, Mixtral and LLama3. In
symbolic reasoning tasks, we utilize CoT as our base prompting method. In arithmetic
reasoning tasks, we utilize PoT as our base prompting method. We test the performance
with and without error summarization (ES).

of scenarios. They do not change with specific situations but offer a consistent approach to
problem-solving. In contrast, factual knowledge, which entails detailed, verifiable informa-
tion about the world, is crucial in addressing specific cases. It should be incorporated into
the model’s parameters during training or sourced from external databases when needed.
For instance, consider the Last Letter Concatenation task: the student model adheres to the
problem-solving instruction to identify and concatenate the last letters of words to form
a new string. The principle guides the process, but errors may occur due to inadequate
factual knowledge about the last letter of a particular word within the string.

4.3 Arithmetic reasoning

The results of arithmetic tasks are shown in Table 1. Zero-shot PoT results in the worst
performance in all datasets. The main issue for 0-shot PoT is the LLMs’ inability to utilize
their pre-trained knowledge to craft solutions for problems without explicit guidance,
thereby failing to tap into their potential for coding and logical reasoning with a basic
prompt alone. The Auto-PoT approach, which stratifies validation by setting questions
into three clusters and selecting the example closest to the center from each cluster to form
a 3-shot PoT, aims to introduce diversity into the examples. However, it only marginally
improves performance across three datasets and performs poorly on GSM8K, which suggests
that a mere variety in questions does not inherently lead to distinct reasoning pathways.
The original problem-solving instruction derived from the teacher model demonstrates
performance comparable with, and occasionally inferior to the 3-shot PoT, since manually
created examples may surpass those generated by LLMs in quality.

In comparison, TPD with error summarization outperforms other prompts significantly over
Date Understanding, Navigate, and Matrixshape tasks, which indicates that a principle
list, distilled from the analysis of errors in practice questions, is highly effective. It guides
the teacher model in refining the original problem-solving instruction and choosing the
most informative samples for few-shot prompts. However, it only achieves comparable
performance with 3-shot PoT on GSM8K and SVAMP, since the errors made by the student
model are diverse understanding errors caused by lack of factual knowledge and can not
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be well categorized in a high-level principle list. Moreover, 6-shot-PoT outperforms other
baselines, suggesting that examples selected based on the principle list are more informative
than those chosen randomly from the training set.

4.4 How to utilize the principle list

Method Date Nav. GSM8K Matrix SVAMP

No principle 68.5 81.5 74.5 84.5 82.6

Injecting
Into Prompt 71.5 83.5 74.8 86.5 82.6

Critique
+ Revise 61.5 74.5 71.4 79.5 74.8

Examples
Selection 76.5 97.5 75.4 93.5 82.9

Table 2: Performance of different principle injec-
tion methods on GPT3.5 on arithmetic reasoning
tasks, measured in accuracy(%).

With the principles identified by the
teacher model, we explored methods to
transfer this knowledge to the student
model effectively. One straightforward
approach involves directly appending
the list of principles to the prompt. Al-
ternatively, we can employ an iterative
learning process, where the student
model initially attempts to answer a
question, then provides feedback based
on its own understanding of the prin-
ciples, and then revises its initial re-
sponse. This critique-and-revise strat-
egy has been successfully used in var-
ious prompting methods (e.g., (Chen et al., 2023; Bai et al., 2022; Madaan et al., 2023)).
Our proposed method enhances this approach by selecting highly informative examples
from the validation set, guided by the principle list. This strategy capitalizes on the emerg-
ing capabilities of LLM, enabling the student model to learn effectively from exemplary
instances.

Model Error GSM8K Date

Gpt3.5
e1 85% 17%
e2 15% 47%
e3 0% 36%

Mixtral
e1 78% 16%
e2 22% 58%
e3 0% 26%

Table 3: Percentage of different error types in
TPD.

The experimental results presented in Ta-
ble 2 reveal that simply adding a principles
list to the prompt yields only a marginal
improvement over the base prompt. This
suggests that the student model faces chal-
lenges in effectively using high-level and
implicit principles expressed in natural lan-
guage. While retrieval methods gather spe-
cific factual knowledge and integrate it with
the initial prompt, the principles here are
more abstract and harder for LLMs to lever-
age. For instance, a principle might serve
as a directional guide for a specific step in the reasoning process. Additionally, LLMs tend
to lose information in longer contexts (Liu et al., 2023), which could further contribute to the
limited impact of the principles list. Surprisingly, the critique-and-revise method resulted
in a decrease in performance across all datasets. Our observations indicate that when
prompted to provide feedback or critique based on the list of principles, the LLM tends to
perceive the original answer as incorrect and significantly overhauls it. This behavior might
stem from the RLHF stage, where terms like feedback or critique could trigger the model to
question its previous outputs.

Using the principle lists to select examples from the validation set for in-context learning
achieves better performance across all datasets than the other two methods. The chosen
examples based on the principle list contain the most error-prone questions for the student
model, thus helping the student model learn from errors effectively. This also mirrors
real-world classroom dynamics, where providing students with practical examples often
proves more beneficial than solely relying on textbook knowledge (Shafto et al., 2014).

4.5 Error Analysis

Despite the guidance provided by the teacher model, the student model may still make
errors. In this section, we analyze the sources of these errors within the TPD framework.
Firstly, it is important to note that the teacher model has its own limitations, especially in
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complex reasoning tasks (Huang et al., 2023). As a result, it cannot detect all the errors
made by the student model. To address this, data filtering is necessary during the error
summarization stage. During the principle exploitation stage, errors can be categorized into
three types:

• e1: The principle provided is unhelpful.
• e2: The student model fails to answer correctly even with a helpful principle.
• e3: There are no relevant principles in the principle list for the given question.

We analyzed the errors made by GPT-3.5 and Mixtral on the GSM8K and Date Understand-
ing tasks, with the results shown in Table 3. In the GSM8K task, no e3 errors were observed
for either student model, as the teacher model provided highly general principles (e.g.,
"Ensure arithmetic operations are logically sound and mathematically correct"). While
these general principles are broadly applicable, they fall short when addressing specific
questions. This indicates that an effective principle should target a particular type of error
rather than rely on vague or general terms. In contrast, for the Mixtral model, e2 errors
were predominant. Even though the principle was helpful, the student model still failed to
answer correctly, highlighting the inherent limitations of the student model’s capabilities.
Regarding e3 errors, these arise when practice questions do not cover all possible question
types, leading to gaps in the principle list. This is a common limitation of learning from
feedback frameworks.

4.6 Ablation study

(a) (b) (c)

Figure 3: The test accuracy of different numbers of examples in the problem-solving in-
struction in (a) symbolic reasoning tasks and (b) arithmetic reasoning tasks. (c) An ablation
study on the number of examples selected based on the principle list. 0 example means
the prompt only contains the modified problem-solving instruction. The experiments are
conducted on GPT3.5.

Model GPT3.5 principles Mixtral principles
Date Navigation Date Navigation

GPT3.5 76.5 97.5 73.0 91.5
Mixtral 68.5 96.0 71.5 96.0

Table 4: Performance of student models with dif-
ferent sources of principles.

Effectiveness of examples in the
problem-solving instruction. We in-
vestigate the effectiveness of having
the teacher model simply describe a
problem-solving method in the instruc-
tion without including examples. The
results are shown in Fig. 3a and Fig. 3b.
There is a significant decrease in accu-
racy for both tasks when examples are
omitted from the problem-solving instruction, indicating the importance of incorporating
examples in the problem-solving instruction. In more complex tasks like Matrixshapes
and Navigate, we observed a notable increase in performance with the inclusion of the
first example, while subsequent examples contributed to less. This demonstrates that for
complex tasks, the student model struggles to learn from descriptions alone and relies on
concrete examples to comprehend the problem-solving instruction. Across all datasets,
more examples will help more, but the performance gain will be trivial as the number of
examples increases.
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Question: Multiply a matrix of shape (3,2,3,3) with a matrix of shape 
(3,2,3,4). Transpose the result.

Principles: Matrix Multiplication: In Python, the asterisk ('*') 
operator is utilized for  the Hadamard product. Use np.matmul for 
matrix multiplication.

3-shot CoT:
```python
def solution():

A = np.random.rand(3,2,3,3)
B = np.random.rand(3,2,3,4)
mul_result = A * B
transpose_result = 

np.transpose(mul_result)
return transpose_result.shape

```

Question: James decides to run 3 sprints 3 times a day.  He runs 60 
meters each sprint.  How many total meters does he run in January?

Principles: Logic flow: Ensure arithmetic operations are logically sound 
and mathematically correct.

3-shot CoT: 
```python
def solution():

total_days = 30
sprints_per_session = 3
sessions_per_day = 3
meters_per_sprint = 60
total_distance =

sprints_per_session *
meters_per_sprint * total_days

return total_distance
```

lack of guidance

lack of guidance

correction

correction

Factual errorFactual error

TPD student: 
```python
def solution():

total_days = 30
sprints_per_session = 3
sessions_per_day = 3
meters_per_sprint = 60
total_distance = 

sprints_per_session * 
sessions_per_day  * 
meters_per_sprint * total_days

return total_distance
```

TPD student:
```python
def solution():

A = np.random.rand(3,2,3,3)
B = np.random.rand(3,2,3,4)
mul_result = np.matmul(A, B)
transpose_result = 

np.transpose(mul_result)
return transpose_result.shape

```

Figure 4: The case study of TPD.

Generalization capability of principles. We further examine if the principles derived
from the errors of one student model can be effectively applied to another. As shown
in Table. 4, both student models achieve good performance when leveraging principles
deduced from the errors of the counterpart model. However, a slight performance drop
is observed when a model utilizes principles from the other model compared to its own.
This gap demonstrates that although there exist common mistakes between the two student
models, there are also some differences in their error patterns.

Numbers of examples selected in principle exploitation stage. To determine the mini-
mum number of examples required for effective learning, we conduct experiments with
different numbers of examples selected based on the violation score. The results are pre-
sented in Fig. 3c. Our findings reveal that the initial example provides the most significant
performance improvement across both datasets. This suggests that the initial example serves
as the most instructive instance for the student model. The minimum number of examples
required varies across datasets. For Matrixshapes, three examples are sufficient to achieve
stable performance. However, while three examples provide a substantial gain for Date Un-
derstanding, adding more examples continues to benefit the student model. For simplicity
and consistency across all datasets, we employ three examples in our experiments.

4.7 Case study

In Fig. 4, we present a comparative case study to show the success mode (left subfigure) and
the failure mode (right subfigure) of TPD. In both scenarios, the principles guide the student
model towards reasoning more effectively. This guidance becomes particularly evident in
the success mode, where it significantly enhances the student’s problem-solving capabilities.
However, the principles have their limitations, especially when confronted with the model’s
gaps in factual knowledge. For instance, as illustrated in the right subfigure, the student
model fails to accurately assign 31 days to January.

5 Conclusion

In this paper, we present a framework named Teaching via Principle Discovery (TPD).
This approach empowers teacher models to construct problem-solving instructions and
summarize key principles by analyzing example questions and student errors. The identified
principles are subsequently employed to refine the problem-solving instructions and select
the most informative examples from the validation set to create a tailored instruction prompt.
We validate the effectiveness of TPD on symbolic and arithmetic reasoning tasks, observing a
marked improvement in the performance of the student model. Our method introduces an
innovative approach, utilizing advanced LLMs to guide weaker agents in tackling reasoning
problems. In the future, we plan to study how to apply TPD to solve complex reasoning
tasks, such as serving as a web agent, where the principle list will be much longer.
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A Limitations

One limitation of the TPD is its inability to rectify common sense errors (lack of factual knowl-
edge), as evidenced by its marginal improvements in the GSM8K and SVAMP datasets in
Table 1, despite the teacher model’s high accuracy (97%, Zhou et al., 2023). This limitation
arises because the errors made by the student model predominantly relate to factual knowl-
edge, a category not effectively addressed by the generated principles and instructions.
High-level principles can resolve only a limited number of such errors. A potential solu-
tion for this challenge could involve fine-tuning the LLM to internalize a broader range of
common sense knowledge. Another constraint of TPD is the method for applying principles.
While selecting examples based on validation scores has proven more effective than other
strategies, this approach is not particularly efficient. The issue stems from the LLMs’ context
length limitations. This inefficiency poses an unresolved challenge: effectively integrating a
long list of principles into LLMs. Moreover, we do not check the overlap of the principles in
the principle list, hence there might be near-duplicate principles in the principle list.

B Additional related work

Madaan et al. (2022b); Gao et al. (2023a); Chen et al. (2022) find that using LLMs to generate
codes for reasoning tasks and then utilizing the codes by program interpreters to solve
the questions can achieve better performance. Another prompting method is the problem
decomposition (Zhou et al., 2022; Drozdov et al., 2022; Dua et al., 2022), which asks LLMs
to decompose the tasks into several subtasks and solve them individually. Yao et al. (2023)
propose Tree of Thoughts, which enables language models to self-evaluate intermediate
“thoughts" and decide whether to explore different ideas or reevaluate when needed to
provide the optimal solution. Self-refinement methods (Madaan et al., 2023) ask LLMs to
refine their original answers iteratively but will rely on the handwritten few shot examples.

C Problem-solving instruction example

The problem-solving instruction consists of a problem-solving method augmented with a
few examples. These examples are derived from the same questions initially sampled. Here
is an example.

Problem-solving Instruction:

To solve the problem where you are asked to take the last letters of each word in a given string
and concatenate them, you can follow these steps:
1. Identify and list each word in the string.
2. Locate the last letter of each word.
3. Concatenate these letters to form a new string. Provide the new string as the answer.
Examples: Question: Take the last letters of each word in "Jeremiah Kelley Josue Veronica"
and concatenate them.
Identify the words: Jeremiah, Kelley, Josue, Veronica.
Last letters: h, y, e, a.
Concatenate: "hyea".
Answer: hyea.

D TPD with retrieval augmentation

TPD leverages the teacher model to extract and summarize principles from the mistakes
made by the student model on practice questions. These principles operate at the task
level. In contrast, popular learning-from-feedback frameworks typically provide feedback
at the query level, where a retriever fetches relevant information for each query from a
memory module. This contrast led us to explore whether TPD could be further enhanced by
integrating a retrieval module. Specifically, we instructed the teacher model to generate a
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Figure 5: Ablation studies on how to utilize selected examples with the modified problem-
solving instruction.

textual analysis for each error within the feasible error set Ê. During the student’s inference
stage, a retriever identifies the most similar question from Ê and appends the retrieved
question along with the teacher model’s analysis to the student’s prompt.

model Date Matrix

TPD GPT3.5 76.5 93.5
Mixtral 71.5 91.0

TPD
+RAG

GPT3.5 81.0 94.0
Mixtral 78.5 91.0

Table 5: Performance of TPD and TPD aug-
mented with RAG (retrieval).

The results shown in Table 5 suggest that
TPD can indeed be improved with the addi-
tion of a retrieval module. This improve-
ment indicates that the task-level principles
and the directly retrieved examples are com-
plementary to some extent. However, in
the Matrix task, the Mixtral model’s per-
formance did not benefit from the retrieval
module. We believe that finding an opti-
mal method to combine task-level princi-
ples with query-level retrieved information could be a promising future direction for the
teacher-student framework.

E Additional ablation study

Can we replace the original examples in the problem-solving instruction with the newly
selected samples? Fig. 3c demonstrates the high informativeness of examples selected
based on violation scores. This raises an intriguing question: can we directly replace the
original examples in the modified problem-solving instruction with these newly chosen
ones? To explore this, Fig. 5 presents a comparison between two approaches: appending the
new selections to the original examples versus completely replacing them. Interestingly, the
appending method consistently outperforms the replacement approach across all datasets.
This superior performance can be attributed to the fact that the new selections specifically
address the errors encountered when the student model learns from the original examples.
Moreover, completely removing the original examples may inadvertently shift the student
model’s errors, rendering the newly selected examples less informative.

Methods description. Our study also investigates whether the teacher model should offer
a high-level reasoning method in problem-solving instruction. As illustrated in Fig. 6,
we observe a notable decline in problem-solving performance without an explicit method
description across three datasets. This suggests that while the student model can implicitly
learn and mimic reasoning from examples, it remains crucial for the teacher model to
provide a problem-solving method in natural language explicitly.

F Human intervention instructions

Regarding human intervention for quality checks on principles, since the principle lists in
our experiments are not very long, human reviewers can finish checking the principle list
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Figure 6: Ablation studies on whether the teacher model needs to provide problem-solving
methods in the problem-solving instruction.

within approximately 20 minutes per task. In TPD, human reviewers are responsible for
verifying each principle in the principle list for all tasks to ensure quality. They sequentially
review and remove any principles that are vague, erroneous, or confusing.

Human intervention instructions:

1.The principle should be written in simple, clear language that is easy to understand.
2.The principle should be specific enough to address a particular type of error or concept.
3.The principle should be factually correct and free from errors.
4.The principle should provide actionable guidance that helps the student avoid the error in
the future.
5.While specific, the principle should also be general enough to apply to similar errors or
situations.

G Datasets

The Coin Flip task (Wei et al., 2022b) requires the LLM to determine if a coin remains heads
up following a series of flips or non-flips. The Last Letter Concatenation task (Wei et al.,
2022b) requires the LLM to concatenate the last letters of each word in a given name list.
Both tasks have out-of-domain test sets, which include more complex examples than those
provided in the training exemplars. Specifically, for the Last Letter Concatenation task, the
training set contains the lists comprising only two names but the test set consists of the lists
with three and four names. A similar setting is adopted for the Coin Flip task.

Tracking shuffled objects (Srivastava et al., 2022) requires the LLM to determine the ultimate
state of a system based on its initial condition and a series of subsequent changes. In each
instance of this task, a collection of objects is initially associated with individual owners.
These objects are then exchanged in a sequence of swappings. The model’s objective is to
determine the final owner of each object.

Date Understanding (Srivastava et al., 2022) asks the LLM to infer the date from the given
context. The context is one or two sentences with date information.

Navigate (Srivastava et al., 2022) requires the LLM to infer the agent’s position after several
movements. Specifically, given a series of navigation steps, the LLM needs to determine
whether or not an agent would end up back at the starting point.

GSM8K (Cobbe et al., 2021) is a collection of grade-level mathematics problems by human
authors. These problems require 2 to 8 steps for resolution, primarily requiring a series of
fundamental computations employing basic arithmetic operations (addition, subtraction,
multiplication, and division) to arrive at the solution.

Matrixshapes (Srivastava et al., 2022) requires the LLM to predict the shape of the result of
a chain of matrix manipulations, given the inputs’ shapes.
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SVAMP (Patel et al., 2021) is a challenge set for elementary-level Math Word Problems. It
consists of questions that test a model across question sensitivity, reasoning ability, and
invariance to structural alterations.

For each dataset, we sample three questions as the training set. Subsequently, we partition
the remaining data into practice and test questions, maintaining a 1:4 ratio. Notice the
CoinFlip and GSM8K are already split into the training set and the test set. We use the
original test set and randomly sample 3 questions from the original training set to build our
training set. Regarding Date Understanding, Navigate, Matrixshapes, and Tracking shuffled
objects (5), we utilize data from (Cai et al., 2023). We divide each dataset into training,
validation, and test sets, containing 3, 47, and 200 instances, respectively. For Auto-CoT, we
select examples from the whole dataset in symbolic reasoning tasks and from the validation
set in arithmetic reasoning tasks. Table 6 shows the example questions for each dataset.

H Experiment Setup

H.1 Model Versions

In the experiments, we utilize two GPT models: gpt-3.5-turbo-16k and gpt-4. The gpt-3.5-16k
refers to the “gpt-3.5-turbo-16k” model and in the OpenAI API model with checkpoint
version 2023-06-13-preview webpage1 GPT-4 refers to the “gpt-4” model with checkpoint
version 2023-07-01-preview. All mentioned checkpoints are hosted on Microsoft Azure2. For
Mixtral-8x7B-Instruct, we utilize “Mixtral-8x7B-Instruct-v0.1” on huggingface. The model
temperature is 0 in all cases.

H.2 Implementation Details

We use the default temperature of 0.0 for all models. For symbolic reasoning tasks, we
utilize CoT as our base prompting method. For arithmetic tasks, we utilize the Program of
Thought (PoT) method as our base prompting method. This method involves having the
LLMs process natural language questions and create corresponding programs that represent
intermediate reasoning steps, with the actual computation of solutions being delegated
to a runtime environment, such as a Python interpreter. We avoid using CoT due to the
tendency of language models to produce erroneous mathematical operation results when
tackling arithmetic tasks (Ji et al., 2023). Our framework is designed to instruct the student
model in problem-solving strategies rather than in performing detailed decimal operations
with precision.

H.3 Baselines

Since our framework generates a prompt for the student model for the downstream task, we
compare several prompting methods in our experiments. Specifically, we adopt Zero-Shot
CoT (Kojima et al., 2022), few-shot CoT (Wei et al., 2022b), and Auto-CoT (Zhang et al.,
2022b) as baseline prompting methods. For the few-shot CoT, we use the questions in the
training set as exemplars for few-shot prompting. For Auto-CoT, we use Sentence-BERT
(Reimers & Gurevych, 2019) to compute a vector representation for each question and then
cluster practice questions by k-means. Following the original paper, we choose the question
closest to the center from each cluster and ask the teacher model to generate reasoning steps
with zero-shot CoT to build final examples for the student model.

H.4 Principle Lists

Table 7 and Table 8 show the principle list the teacher model finds in the error summarization
stage for GPT3.5. These principles provide high-level guidance applicable across various

1.https://platform.openai.com/docs/models
2 *.openai.azure.com
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Coin Flip

Q: A coin is heads up. Murraylee does not flip the coin. Meilich flips the coin. Is the coin
still heads up?
A: no

Last Letter Concatenation

Q: Take the last letters of each word in "Maritza Nana Loretta Eric" and concatenate them.
A: "aaac"

Tracking shuffled objects

Q: Alice, Bob, Claire, Dave, and Eve are dancers at a square dance. At the start of a
song, they each have a partner: Alice is dancing with Patrick, Bob is dancing with Sam,
Claire is dancing with Jamie, Dave is dancing with Lola, and Eve is dancing with Melissa.
Throughout the song, the dancers often trade partners. First, Dave and Eve switch
partners. Then, Dave and Alice switch partners. Then, Eve and Alice switch partners.
Then, Claire and Bob switch partners. Finally, Dave and Alice switch partners. At the
end of the dance, Alice is dancing with
Options:
(A) Patrick
(B) Sam
(C) Jamie
(D) Lola
(E) Melissa
A: (A)

Date Understanding

Q: Jane scheduled 3 appointments with 5 people for tomorrow (Tue, 7/9/1972). What is
the date a month ago in MM/DD/YYYY?
Options:
(A) 06/08/2059
(B) 06/22/1972
(C) 12/08/1971
(D) 06/08/2034
(E) 06/08/1972
(F) 06/07/1972
A: (E)

Navigate

Q: If you follow these instructions, do you return to the starting point? Always face
forward. Take 1 step backward. Take 9 steps left. Take 2 steps backward. Take 6 steps
forward. Take 4 steps forward. Take 4 steps backward. Take 3 steps right.
Options:
- Yes
- No
A: No

GSM8K

Q: Megan is an actress. She was the lead actress in 80% of her work. In total, Megan
participated in 100 plays. How many times was Megan not the lead actress?
A: 20.0

SVAMP

Q: In a school there are 308 girls and 318 boys. There are also 36 teachers. How many
pupils are there in that school?
A: 626.0

Matrixships

Q: Keep track of matrix shapes through various transformations. Transpose a matrix of
shape (2,3,2). Transpose the result. Compute the Hadamard product of the result with a
matrix of shape (2,3,2). Compute the Hadamard product of the result with a matrix of
shape (2,3,2). Sum the result over the second axis.
A: (2,2)

Table 6: Examples of questions in each dataset.
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scenarios. However, the principle lists for GSM8K and SVAMP are less clear compared to
others, since the errors in these tasks primarily relate to factual knowledge.

Svamp

1. Incorrect Mathematical Operations: Ensure that the correct mathematical operations
are used to solve the problem. Misinterpretation of the problem statement often leads to
incorrect operations.
2. Misinterpretation of Problem Requirements: Understand the core requirement of the
question.
3. Logical Errors in Variable Initialization: Be cautious when initializing variables. Make
sure the initial values correctly represent the situation described in the question.
4. Misapplication of Variables in Calculation: Ensure that the variables are applied
correctly in the calculation formula.
5. Understanding the Context of the Question: Contextual understanding is crucial. In
the question about pots, flowers, and sticks, it’s important to realize that the total number
of flowers and sticks is a cumulative count across all pots, requiring multiplication of the
per pot count by the total number of pots.

Date Understanding

1. Understanding Date Arithmetic and the ’datetime’ Module: Several examples demon-
strate a misunderstanding of how the ’datetime’ module works, especially in terms
of adding or subtracting days, months, and years. The ’timedelta’ function in Python
doesn’t support months or years directly, so programmers need to account for this
limitation when performing date arithmetic. Instead of using ’timedelta’ for date manip-
ulations, use ’dateutil.relativedelta’. This module provides more flexibility, especially for
operations involving months and years.
2. Accurate Date Initialization: Initialize dates correctly. In several examples, the initial
date is set without considering the context of the problem. Ensure that the starting point
of the calculation aligns with the scenario’s requirements.
3. Logical Consistency in Calculations: Maintain logical consistency in calculations. If
the problem states a historical or future date, ensure that the calculations reflect this
timeline accurately. Avoid mixing current dates (’datetime.now()’) with historical or
future scenarios unless it’s relevant.
4. Validating Against Given Options: When comparing calculated dates against multiple-
choice options, ensure that the options are correctly formatted and compared. It’s
essential to format the calculated date in the same format as the options for a valid
comparison.

Navigate

1. Understand the Problem: Recognize that the problem requires tracking movements in
two dimensions (horizontal and vertical). Understand that movements are influenced by
the current direction the subject is facing. Identify the need to interpret turns as changes
in direction, not just movement.
2. Initialize Variables: Define variables for horizontal and vertical movements, initializing
them to zero. Introduce a variable for current direction, initializing it to the starting
orientation (e.g., "north").
3. Extract and Interpret Instructions: Parse the given question to extract movement and
turning instructions.
4. Use control structures (if-else, loops) to handle each instruction: For movement
instructions (forward, backward), update the horizontal or vertical position based on
the current direction. For turning instructions (right, left, around), update the current
direction appropriately. 5. Handle Directional Changes: Implement logic to correctly
modify the direction state when turning. For example, turning right from north means
facing east.
6. Calculate Final Position: After processing all instructions, compare the final horizontal
and vertical positions with the initial position (0,0).
7. Return Result: Return the appropriate option ("Yes" or "No") based on whether the
final position matches the starting point.
8. Implement Directional Logic: Develop a mechanism to translate turning instructions
into directional changes, affecting subsequent movement calculations.
9. Consider Special Cases: Account for any special or compound instructions that may
require separate handling, ensuring all scenarios are covered.

Table 7: Examples of principle list.
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GSM8K

1. Incorrect Variable Assignment and Utilization: Ensure variable assignments accurately
reflect the values they are supposed to represent based on the question’s context.
2. Misinterpretation of Quantity Relationships: Accurately understand and interpret the
relationships between different quantities as described in the problem statement.
3. Incorrect Mathematical Formulas: Ensure the mathematical formulas used align with
the logical requirements of the problem.
4. Misinterpretation of Variable Values: Ensure variables are interpreted and utilized
accurately based on the problem’s context.
5. Omission of Critical Information: Incorporate all provided information and ensure no
critical details are omitted in the solution.
6. Incorrect Arithmetic Operations: Ensure arithmetic operations are logically sound and
mathematically correct.

Matrixships

1. Matrix Multiplication: Use np.matmul for matrix multiplication.
2. Hadamard Product: Use * (asterisk) for element-wise multiplication (Hadamard
product).
3. Transposition: Utilize np.transpose for matrix transposition. Do not specify the axes
parameter when using np.transpose.
4. Resultant Matrix Shape: Always return the shape of the resulting matrix after an
operation.

Table 8: Examples of principle list.

H.5 Problem-solving instruction examples

We provide an example of problem-solving instruction for a better understanding. The
problem-solving instruction consists of a problem-solving method and several examples
showing how to use the method. The questions in the examples are training questions.

H.6 Overall student prompt examples

We provide an example of the overall teacher model’s instruction for a better understanding.
The overall instruction prompt consists of the modified problem-solving instruction and
several newly selected examples from the validation set. Examples 1-3 are original examples
in the problem-solving instruction (from the training set). Examples 4-6 are newly selected
examples from the validation set.
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Listing 1: An example of problem-solving instructions provided by the teacher model.
1 ### Problem -solving instruction for CoinFlip task
2

3 Method to solve coin filp problems:
4 1. Start by reading the initial state of the coin (heads up or tails up).
5 2. Examine the actions of each person mentioned in the question in the

order they are mentioned. If a person flips the coin , the state of
the coin will change. If it was heads up, it will now be tails up,
and vice versa.

6 If a person does NOT flip the coin , the state remains unchanged. At the
end of the actions , state the final position of the coin as 'heads up
' or 'tails up '.

7 3. Answer the question based on the final state of the coin compared to
the state asked in the question.

8

9 Examples:
10

11 Question: A coin is heads up. sager does not flip the coin. zyheir flips
the coin. Is the coin still heads up?

12 Explanation:
13 The coin starts as heads up.
14 Sager does not flip the coin , so it remains heads up.
15 Zyheir flips the coin , changing its state. Now , it's tails up.
16 The final position of the coin is tails up.
17

18 Answer: No.
19

20 Question: A coin is heads up. mailey does not flip the coin. maurisa does
not flip the coin. Is the coin still heads up?

21 Explanation:
22 The coin starts as heads up.
23 Mailey does not flip the coin , so it remains heads up.
24 Maurisa also does not flip the coin , so it stays heads up.
25 The final position of the coin is heads up.
26

27 Answer: Yes.
28

29 Question: A coin is heads up. murraylee does not flip the coin. meilich
flips the coin. Is the coin still heads up?

30

31 Explanation:
32 The coin starts as heads up.
33 Murraylee does not flip the coin , so it remains heads up.
34 Meilich flips the coin , changing its state. Now , it's tails up.
35 The final position of the coin is tails up.
36 Answer: No.

Listing 2: An examples of overall prompt provided by the teacher model.
1 ### Overall prompts for 'Navigate ' task
2

3 To write Python functions to answer questions about returning to the
starting point after following a set of movement instructions , follow
these steps:

4

5 Understand the Problem:
6 Recognize that the problem requires tracking movements in two dimensions

(horizontal and vertical).
7 Understand that movements are influenced by the current direction the

subject is facing.
8 Identify the need to interpret turns as changes in direction , not just

movement.
9

10 Design the Function:
11

23



Published as a conference paper at COLM 2024

12 Initialize Variables:
13 Define variables for horizontal and vertical movements , initializing

them to zero.
14 Introduce a variable for current direction , initializing it to the

starting orientation (e.g., "north").
15 Extract and Interpret Instructions:
16 Parse the given question to extract movement and turning instructions

.
17 Use control structures (if-else , loops) to handle each instruction:
18 For movement instructions (forward , backward), update the horizontal

or vertical position based on the current direction.
19 For turning instructions (right , left , around), update the current

direction appropriately.
20 Handle Directional Changes:
21 Implement logic to correctly modify the direction state when turning.

For example , turning right from north means facing east.
22 Calculate Final Position:
23 After processing all instructions , compare the final horizontal and

vertical positions with the initial position (0,0).
24 Return Result:
25 Return the appropriate option ("Yes" or "No") based on whether the

final position matches the starting point.
26

27 Implement Directional Logic:
28 Develop a mechanism to translate turning instructions into directional

changes , affecting subsequent movement calculations.
29

30 Test the Function:
31 Write test cases to execute the function with different sets of

instructions.
32 Store and verify the result in a variable answer to ensure the function

behaves as expected.
33

34 Here are some examples:
35

36 Question: 'If you follow these instructions , do you return to the
starting point? Always face forward. Take 1 step backward. Take 9
steps left. Take 2 steps backward. Take 6 steps forward. Take 4 steps
forward. Take 4 steps backward. Take 3 steps right. Options: - Yes -
No '

37

38 Answer:
39 ```python
40 def do_you_return_to_starting_point ():
41 # Initial position and direction
42 horizontal , vertical = 0, 0
43 direction = "north"
44

45 # Movement instructions
46 instructions = [
47 (" backward", 1),
48 ("left", 9),
49 (" backward", 2),
50 (" forward", 6),
51 (" forward", 4),
52 (" backward", 4),
53 ("right", 3)
54 ]
55

56 # Process each instruction
57 for action , steps in instructions:
58 if action == "forward ":
59 if direction == "north":
60 vertical += steps
61 elif action == "backward ":
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62 if direction == "north":
63 vertical -= steps
64 elif action == "left":
65 if direction == "north":
66 horizontal -= steps
67 elif action == "right":
68 if direction == "north":
69 horizontal += steps
70

71 # Check if returned to the starting point
72 return "Yes" if horizontal == 0 and vertical == 0 else "No"
73

74 # Execute the function
75 answer = do_you_return_to_starting_point ()
76 ```
77 By using the python function above , you can get the answer of the

question.
78 ### END
79

80 Question: 'If you follow these instructions , do you return to the
starting point? Always face forward. Take 10 steps left. Take 10
steps forward. Take 7 steps forward. Take 2 steps forward. Options: -
Yes - No '

81

82 Answer:
83 ```python
84 def do_you_return_to_starting_point ():
85 # Initial position and direction
86 horizontal , vertical = 0, 0
87 direction = "north"
88

89 # Movement instructions
90 instructions = [
91 ("left", 10),
92 (" forward", 10),
93 (" forward", 7),
94 (" forward", 2)
95 ]
96

97 # Process each instruction
98 for action , steps in instructions:
99 if action == "forward ":

100 if direction == "north":
101 vertical += steps
102 elif action == "left":
103 if direction == "north":
104 horizontal -= steps
105

106 # Check if returned to the starting point
107 return "Yes" if horizontal == 0 and vertical == 0 else "No"
108

109 # Execute the function
110 answer = do_you_return_to_starting_point ()
111 ```
112 By using the python function above , you can get the answer of the

question.
113 ###END
114

115 Question: 'If you follow these instructions , do you return to the
starting point? Always face forward. Take 1 step right. Take 3 steps
left. Take 2 steps right. Options: - Yes - No '

116

117 Answer:
118 ```python
119 def do_you_return_to_starting_point ():
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120 # Initial position and direction
121 horizontal , vertical = 0, 0
122 direction = "north"
123

124 # Movement instructions
125 instructions = [
126 ("right", 1),
127 ("left", 3),
128 ("right", 2)
129 ]
130

131 # Process each instruction
132 for action , steps in instructions:
133 if action == "left":
134 if direction == "north":
135 horizontal -= steps
136 elif action == "right":
137 if direction == "north":
138 horizontal += steps
139

140 # Check if returned to the starting point
141 return "Yes" if horizontal == 0 and vertical == 0 else "No"
142

143 # Execute the function
144 answer = do_you_return_to_starting_point ()
145 ```
146 By using the python function above , you can get the answer of the

question.
147 ###END
148

149 Question: 'If you follow these instructions , do you return to the
starting point? Take 3 steps. Turn around. Take 3 steps. Turn right.\
nOptions :\n- Yes\n- No '

150

151 Answer:
152 ```python
153 def do_you_return_to_starting_point ():
154 # Initial position and direction
155 horizontal , vertical = 0, 0
156 direction = "north"
157

158 # Movement instructions
159 instructions = [
160 (" forward", 3),
161 ("turn", "around "),
162 (" forward", 3),
163 ("turn", "right")
164 ]
165

166 # Process each instruction
167 for action , value in instructions:
168 if action == "forward ":
169 if direction == "north":
170 vertical += value
171 elif direction == "south":
172 vertical -= value
173 elif direction == "east":
174 horizontal += value
175 elif direction == "west":
176 horizontal -= value
177 elif action == "turn":
178 if value == "around ":
179 direction = "south" if direction == "north" else "north"
180 elif value == "right":
181 if direction == "north":
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182 direction = "east"
183 elif direction == "east":
184 direction = "south"
185 elif direction == "south":
186 direction = "west"
187 elif direction == "west":
188 direction = "north"
189

190 # Check if returned to the starting point
191 return "Yes" if horizontal == 0 and vertical == 0 else "No"
192

193 # Execute the function
194 answer = do_you_return_to_starting_point ()
195 ```
196 By using the python function above , you can get the answer of the

question.
197 ###END
198

199 Question: 'If you follow these instructions , do you return to the
starting point? Take 3 steps. Turn around. Take 5 steps. Turn right.
Turn right. Take 1 step. Take 1 step.\ nOptions :\n- Yes\n- No '

200

201 Answer:
202 ```python
203 def do_you_return_to_starting_point ():
204 # Initial position and direction
205 horizontal , vertical = 0, 0
206 direction = "north"
207

208 # Movement instructions
209 instructions = [
210 (" forward", 3),
211 ("turn", "around "),
212 (" forward", 5),
213 ("turn", "right"),
214 ("turn", "right"),
215 (" forward", 1),
216 (" forward", 1)
217 ]
218

219 # Process each instruction
220 for action , value in instructions:
221 if action == "forward ":
222 if direction == "north":
223 vertical += value
224 elif direction == "south":
225 vertical -= value
226 elif direction == "east":
227 horizontal += value
228 elif direction == "west":
229 horizontal -= value
230 elif action == "turn":
231 if value == "around ":
232 direction = "south" if direction == "north" else "north"
233 elif value == "right":
234 if direction == "north":
235 direction = "east"
236 elif direction == "east":
237 direction = "south"
238 elif direction == "south":
239 direction = "west"
240 elif direction == "west":
241 direction = "north"
242

243 # Check if returned to the starting point
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244 return "Yes" if horizontal == 0 and vertical == 0 else "No"
245

246 # Execute the function
247 answer = do_you_return_to_starting_point ()
248 ```
249 By using the python function above , you can get the answer of the

question.
250 ###END
251

252 Question: 'If you follow these instructions , do you return to the
starting point? Take 1 step. Take 5 steps. Turn around. Turn around.
Turn around. Take 6 steps.\ nOptions :\n- Yes\n- No '

253

254 Answer:
255 ```python
256 def do_you_return_to_starting_point ():
257 # Initial position and direction
258 horizontal , vertical = 0, 0
259 direction = "north"
260

261 # Movement instructions
262 instructions = [
263 (" forward", 1),
264 (" forward", 5),
265 ("turn", "around "),
266 ("turn", "around "),
267 ("turn", "around "),
268 (" forward", 6)
269 ]
270

271 # Process each instruction
272 for action , value in instructions:
273 if action == "forward ":
274 if direction == "north":
275 vertical += value
276 elif direction == "south":
277 vertical -= value
278 elif direction == "east":
279 horizontal += value
280 elif direction == "west":
281 horizontal -= value
282 elif action == "turn":
283 if value == "around ":
284 direction = "south" if direction == "north" else "north"
285

286 # Check if returned to the starting point
287 return "Yes" if horizontal == 0 and vertical == 0 else "No"
288

289 # Execute the function
290 answer = do_you_return_to_starting_point ()
291 ```
292 By using the python function above , you can get the answer of the

question.
293 ###END
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