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ABSTRACT

Decomposing geometry, materials and lighting from a set of images, namely in-
verse rendering, has been a long-standing problem in computer vision and graph-
ics. Recent advances in neural rendering enable photo-realistic and plausible in-
verse rendering results. The emergence of 3D Gaussian Splatting has boosted it
to the next level by showing real-time rendering potentials. An intuitive finding is
that the models used for inverse rendering do not take into account the dependency
of opacity w.r.t. material properties, namely cross section, as suggested by optics.
Therefore, we develop a novel approach that adds this dependency to the modeling
itself. Inspired by radiative transfer, we augment the opacity term by introducing
a neural network that takes as input material properties to provide modeling of
cross section and a physically correct activation function. The gradients for mate-
rial properties are therefore not only from color but also from opacity, facilitating
a constraint for their optimization. Therefore, the proposed method incorporates
more accurate physical properties compared to previous works. We implement
our method into 3 different baselines that use Gaussian Splatting for inverse ren-
dering and achieve significant improvements universally in terms of novel view
synthesis and material modeling.

1 INTRODUCTION

Inverse rendering, a long-standing problem in computer vision and graphics, aims to recover
physical properties such as geometry, materials and lighting conditions from a set of images (Barron
& Malik, 2013; Debevec, 2008). These properties are essential to downstream applications such
as material editing, relighting and, from a broader perspective, real-to-sim transfer. However,
it is well-known to be challenging and ill-posed because of the inherent ambiguity of the task:
Different combinations of illumination, materials and geometry may lead to similar rendering
results. Recent success in novel view synthesis (Mildenhall et al., 2021; Barron et al., 2021; Chen
et al., 2022; Müller et al., 2022; Barron et al., 2023; 2022) inspired the use of implicit neural
fields (NeRF-like methods) for inverse rendering (Zhang et al., 2021b; Yao et al., 2022; Boss
et al., 2021; Jin et al., 2023; Srinivasan et al., 2021; Zhang et al., 2021a). On the other hand, 3D
Gaussian Splatting (3DGS) (Kerbl et al., 2023) emerged as a recent, high-performance alternative
to these slower architectures for novel view synthesis by introducing a much more compact scene
representation and real-time rendering ability. Naturally, recent works combine 3DGS with inverse
rendering (Liang et al., 2024; Gao et al., 2023; Jiang et al., 2024), taking advantage of its high-speed
nature and compact geometry. By adding additional parameters that act as material properties for
each Gaussian, they are able to provide physically plausible material modeling and novel view
synthesis results using physically-based rendering (PBR) thanks to the explicit nature of 3DGS.
While it is intuitive to take advantage of 3DGS for fast training and rendering with high quality,
directly applying 3DGS for inverse rendering may result in sub-optimal modeling. Specifically, the
correlation between the material attributes of each Gaussian (e.g., opacity, albedo, roughness, etc.)
remains under-explored, leading to under-constrained modeling of the scene properties. Therefore,
the inverse rendering results remain to be improved.

Observing the disentangled nature of 3DGS-based methods, our work, inspired by the Bouguer-
Beer-Lambert law in radiative transfer, reveals the missing correlation between materials and
opacity, two sets of parameters that are essential for physically-based rendering using 3D Gaussian
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Splatting. By doing so, our work introduces constraints at model level to align the model better with
the physical world. Specifically, we propose to model opacity in 3DGS-based inverse rendering
methods strictly following the form derived from the Bouguer-Beer-Lambert law, which states
that the intensity of light should decrease exponentially when passing through an absorbing body.
Intuitively speaking, the decrease rate depends not only on the path length that a light travels, but
also on the material and number density of the absorbing body. An illustration of the law can be
found in Fig. 1. Consider two different translucent materials glass and gas in Fig. 1. They react
differently when hit by light. For instance, red light would be terminated by the gas while it’s
able to pass through the glass nearly unaffected as illustrated by Fig. 1. In other words, opacity
varies between different materials. When designing the model, 3DGS-based inverse rendering
methods (Liang et al., 2024; Jiang et al., 2024; Gao et al., 2023) overlook the fact that because
of the disentangled representation, opacity is a standalone parameter that has no dependency on
the material properties. As for NeRF-based methods that use alpha blending implicitly model
the dependencies of opacity (volume density) and materials by using the same neural network to
output different attributes. Therefore, for 3DGS-based methods, we propose to multiply the original
opacity term with a material-dependent term and apply a physically correct activation function to
give a better modeling of the physical property opacity itself. The material properties therefore
serve as input for PBR as well as input for alpha-blending and receive gradients from both sides,
facilitating a physically informed regularization to the model.

Figure 1: An illustration of the motivation that opacity
depends on materials. Consider two translucent materials
gas and glass. Left: a glass body that is hit by a light lets the
light pass through with little reduction in intensity. Right: a
gas that is hit by the same light make the light extinct inside
it by absorbing it completely. This comparisons motivate
our work. We perceive each Gaussian blob, paired with
material properties, as an absorbing body that has its own
absorption coefficient represented by opacity, which should
consider material properties as influencing factors.

To verify the correctness and effec-
tiveness of the proposed formulation,
we analytically conduct Taylor ex-
pansion to our approach and compare
the difference w.r.t. the original way
of computing opacity. The takeaway
message is that the original way is
actually an approximation of our
approach. Empirically, we apply the
modification to 3 state of the art base-
lines, namely GaussianShader (Jiang
et al., 2024), GS-IR (Liang et al.,
2024) and R3DG (Gao et al., 2023)
and conduct experiments on both
synthetic and real-world data.
The experimental results on Syn-
thetic4Relight (Zhang et al., 2022),
Shiny Blender (Verbin et al., 2022),
Glossy Synthetic (Liu et al., 2023)
and MIP-NeRF 360 (Barron et al.,
2022) show that our approach enables
universal performance improvement
in terms of across different baselines
and different data. The improve-
ments on material modeling, i.e., albedo estimation and roughness estimation, lead to better novel
view synthesis and relighting results in terms of PSNR, SSIM and LPIPS. Our experimental results
indicate the significance of incorporating physically correct priors and constraints into the model.

2 RELATED WORK

2.1 NEURAL SCENE REPRESENTATION

Recent trends in neural rendering (Mildenhall et al., 2021; Yu et al., 2021; Fridovich-Keil et al.,
2022; Sitzmann et al., 2021; Yariv et al., 2021; Miller et al., 2024; Huang et al., 2024) have demon-
strated impressive success in addressing visual computing problems like novel view synthesis.
NeRF (Mildenhall et al., 2021) stands out as a representative by modeling the scene using an MLP
to output volume density and color in a continuous space, which requires massive repeated queries
for volume rendering during training and inference to synthesize images. Efforts have been made
to improve the efficiency of NeRF by introducing additional data structures (Garbin et al., 2021;
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Figure 2: Pipeline overview. We add an additional block to 3DGS-based inverse rendering meth-
ods (Liang et al., 2024; Kerbl et al., 2023; Jiang et al., 2024; Gao et al., 2023). Specifically, instead
of modeling opacity as a standalone parameter as done by previous works, we augment it against
material. By introducing a neural network that takes material properties as input and output cross
section and multiplying the opacity with it, we are able to incorporate the Bouguer-Beer-Lambert
law into the model. During optimization, material properties not only receive the gradients from
color through differentiable PBR, but also the gradients from alpha enforced by the neural network.
By doing so, we add an additional constraint to material properties that makes the overall pipeline
strictly follow the Bouguer-Beer-Lambert law.

Müller et al., 2022; Hedman et al., 2021; Yu et al., 2021; Fridovich-Keil et al., 2022; Chen et al.,
2022). However, the discretized nature of the data structures reduces the image quality to some
extent. Recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) comes out and is able to achieve
fast rendering speed while maintaining the rendering quality, therefore drawing the community’s
interest. Plenty of works focus on improving 3DGS by reducing the memory footprint (Fan et al.,
2023; Navaneet et al., 2023; Niedermayr et al., 2024), speeding up the training pipeline (Mallick
et al., 2024; Höllein et al., 2024) and removing the heuristic designs for optimization (Kheradmand
et al., 2024; Bulò et al., 2024). Another direction is on the application side, works have been done
to apply 3DGS to different domains such as semantic understanding (Qin et al., 2024; Guo et al.,
2024), time sequence modeling (Luiten et al., 2024; Lin et al., 2024) and robotic manipulation (Lu
et al., 2024; Shorinwa et al., 2024), etc. The wide range of domains for application encouraged the
focus of our work on inverse rendering techniques that use 3DGS as the backbone.

2.2 INVERSE RENDERING

Inverse rendering aims to decompose image observations into geometry, material and lighting condi-
tions (i.e., scene properties) that support a myriad of downstream tasks, such as material editing and
relighting (Li et al., 2023; Zhang et al., 2022; Kanamori & Endo, 2019; Yang et al., 2022). Normally,
it is tackled by combining physically-based rendering with a differentiable renderer for optimization-
based decomposition of scene properties (Kajiya, 1986; Chen et al., 2019). While being an inher-
ently ambiguous problem, many works assume different constraints at input level, such as known
lighting conditions (Bi et al., 2020; Srinivasan et al., 2021; Zhang et al., 2022), fixed lighting (Dong
et al., 2014), unintended shadow (Verbin et al., 2024) or absence of shadow simulation (Zhang et al.,
2021a). The combination of differentiable volume rendering and physically-based rendering has
enabled modeling more complex conditions towards more realistic cases thanks to the emergence
of neural scene representation (Zhang et al., 2021b; Yao et al., 2022; Liu et al., 2023; Verbin et al.,
2022; Jin et al., 2023; Attal et al., 2024; Boss et al., 2021; Munkberg et al., 2022). Recently, 3DGS
has revolutionized the field of neural scene representation. It is natural to expect inverse rendering
could be tackled by 3DGS-based methods to incorporate fast and precise approximation of mate-
rials, geometry and lighting (Liang et al., 2024; Jiang et al., 2024; Gao et al., 2023). Despite the
rapid success of providing plausible material estimation, the results remain to be improved, mainly
because the constraints that a model should have for inverse rendering have been overlooked.
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3 PRELIMINARIES

In this section, We will cover the basic concepts of 3D Gaussian Splatting, inverse rendering and
the Bouguer-Beer-Lambert law as our work is built upon them.

3.1 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) uses a set of points represented by 3D Gaussian
primitives to model the 3D scene. Formally, each Gaussian Gi is represented by a mean µi, a
covariance matrix Σi, an opacity oi and a view-dependent outgoing radiance ci. Additionally, the
covariance matrix is factorized into a quaternion qi and a scale si and the outgoing radiance is
treated as a set of spherical harmonics coefficients. For the inverse rendering problem, 3DGS-based
methods (Liang et al., 2024; Jiang et al., 2024; Gao et al., 2023) assign material properties mi and
normals ni to each Gaussian to support physically-based rendering. These sets of parameters are
used to produce PBR color, which serves as ci in the original formulation.

After projecting the 3D Gaussians to 2D space using camera parameters θ, 3DGS adopts
alpha-blending for rendering the final color of a specific pixel location x following

Ĉ(x) =

N∑
i=1

ciαi(x)Ti(x),

Ti(x) =

i−1∏
j=1

(1− αj(x)),

(1)

where N represents the sorted N Gaussian points, Ti is the accumulated transmittance of the first
i− 1 Gaussians and αi(x) is computed using

αi(x) = oi exp(−
1

2
(x−R(µi; θ))

TRθ(Σi)
−1(x−R(µi; θ))), (2)

in which R stands for the camera projection operation, Rθ is the operation of applying the camera
projection to the covariance matrix and opacity oi is weighted by the probability determined by
the distance of the pixel location to the mean of the projected Gaussian. Afterwards, color loss is
computed between the rendered image and the ground truth:

L = ||C − Ĉ||2, (3)

3.2 THE RENDERING EQUATION

In inverse rendering, the outgoing radiance Co(x,v) at a specific surface point x from viewing
direction v is determined by the rendering equation (Kajiya, 1986):

Co(x,v) =

∫
Ω

Li(x, l)f(l,v, x)(l · n)dl, (4)

where Li(x, l) is the incoming light from direction l at point x, n is the surface normal direction
and f is the Bidirectional Reflectance Distribution Function (BRDF). The integral is computed in
the upper hemisphere of the surface.

3.3 THE BOUGUER-BEER-LAMBERT LAW

The Bouguer-Beer-Lambert law states the following (Mayerhöfer et al., 2020; Bouguer, 1729; Lam-
bert, 1760; Beer, 1852): Consider a radiation of intensity I , i.e., a light of intensity I passing through
an absorbing body, the change of its intensity is governed by the following differential equation:

dIν = −ανIνds, (5)

where subscript ν means that the term depends on the frequency of light and αν is called the
extinction coefficient, an attribute that determines how energy is dampened in the absorbing body.

Solving for intensity Iν , we get
Iν(s) = Iν(0)e

−ανs, (6)

4
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here e−ανs is the transmittance of region s, meaning that the light intensity is exponentially
decreasing when traveling through the absorbing body. If the attenuation of light in the body doesn’t
contain scattering effects, the extinction coefficient can be computed as

αν = nσν , (7)

where n is the number density and σν is cross section. These two terms often appear in chemistry,
n describes the degree of concentration of countable objects (usually particles) and σν models the
the probability that two particles will collide, which is determined by the types of the particles. An
illustration of the Bouguer-Beer-Lambert law can be found in Fig. 3, the intensity of a light passing
through a region filled with particles is reduced when “hit” with particles (normally the affecting
area is bigger than the particle size). Intuitively speaking, the reduction in intensity is determined by
the number of particles in the region that the light hits and the affecting area of the specific particle
type, which corresponds to Eq. 7 and Eq. 6.

4 METHOD

Figure 3: An illustration of the Bouguer-
Beer-Lambert law. Consider a ray passing
through an absorbing body consists of parti-
cles of some type. The cross section depends
on the area that each particle would affect
(usually bigger than the size of the particle
and equals the size of the particle if treated
as a hard sphere). When traveling, the inten-
sity of the light would be reduced by the ar-
eas that each particle affected. The reduction
in intensity is therefore affected by the area
around the particles and the number of par-
ticles, corresponding to cross section σ and
number density n in the main paper.

We start by introducing the intuition behind our
method. It is well-known that different materials re-
act differently when hit by a beam of light, e.g., a
wooden plank would diffuse the light and let noth-
ing pass through, while a glass pane may allow light
to travel inside with no dampening. In physics,
this phenomenon is described by the Bouguer-Beer-
Lambert law, suggesting that the opacity of an object
depends on its material. Motivated by this, we do
a series of derivation and propose a plug-and-play
solution suggesting that opacity should be a func-
tion of material and the computation of transmit-
tance should follow the exponential decay rate as in
the Bouguer-Beer-Lambert law.

4.1 GAUSSIAN BLOBS AS ABSORBING BODY

Our approach arises from the Bouguer-Beer-
Lambert law. Recall in Eq. 1, Ti stands for the accu-
mulated transmittance of the first (i− 1) Gaussians,
indicating the reduction of light intensity of the i-th
Gaussian when observed from the camera perspec-
tive. For each Gaussian Gi, the transmittance is cal-
culated by 1 − αi(x). According to the Bouguer-
Beer-Lambert law, the transmittance of an absorbing
body should follow the form e−ανs or e−nσνs as in
Eq. 6. Therefore we have

1− αi(x) = e−nσνs,

αi(x) = 1− e−nσνs.
(8)

A natural question then arises: what is n, σν and s
in the context of Gaussian Splatting?

To answer this question, recall the definition of αi(x) in Eq. 2. The term oi indicates how “dense”
the Gaussian is, and the exponential term suggests that the Gaussian is densest at the center and
becomes lighter when away from it as shown in Fig. 2. Since each Gaussian blob is not solid, it is
natural to think of it as a blob of gas with its density following a Gaussian distribution. Notice that
in this formulation, the density corresponds to the number density n in Eq. 8. Formally, we have

ni = oi exp(−
1

2
(x−R(µi; θ))

TRθ(Σi)
−1(x−R(µi; θ))). (9)

5
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As for path length s, since each Gaussian is “splatted” to a 2D plane, i.e. density is marginalized
along the viewing axis, the distance of the light passing through each Gaussian can be set as a
constant 1. In fact, the blending algorithm omits the depth of the Gaussians into the formulation of
the opacity value at the pixel location. We therefore observed that we can treat this opacity value
as the density and since there is no concept of depth on the 2D plane, each Gaussian is then treated
equally from this perspective, therefore it is reasonable to treat the path length to constant 1.

4.2 MATERIAL NETWORK FOR CROSS SECTION MODELING

After deciding on the correspondence of existing terms, we found that there is still one term missing
from the Bouguer-Beer-Lambert law, namely the cross section σν . Cross section, by definition, is
determined by the type of particle that fills the region as illustrated in Fig. 3, namely the material
of the region. On a macro level, cross section affects the color that one can perceive from the
region. Since in inverse rendering, material properties, i.e., albedo, metalness and roughness, are
explicitly included in the model (for 3DGS-based method they’re set as additional parameters for
each Gaussian), we can directly use the parameter for representing the cross section. In practice,
a neural network f(·) that takes as input the material properties m and outputs cross section σν is
introduced, namely

σν = f(m). (10)

In summary, we have now determined the three terms suggested by the Bouguer-Beer-Lambert law
in the context of Gaussian Splatting. Therefore, we can compute αi(x) in Eq. 2 differently as

αi(x) = 1− e−ni(x)σνi

= 1− e−oiGi(x)f(mi),
(11)

where oi is the original opacity term for the i-th Gaussian, Gi(x) is the normal distribution in Eq. 2,
f is the neural network that produces cross section and mi is the material property.

4.3 GRADIENT FLOW

Consider ci in Eq. 1, in inverse rendering: it is computed using the material properties in Eq. 4.
Therefore, our formulation of material takes gradients not only from the color term itself, but also
from the α term. In this case,

∂L

∂mi
=

∂ci
∂mi

∂L

∂C
αiTi + ci

∂L

∂C
Ti

∂αi

∂mi
−

N∑
j=i+1

cj
∂L

∂C
Tjαj

1

1− αi

∂αi

∂mi
, (12)

where L stands for loss. Our formulation augments the gradient for material learning, allowing
the gradient to flow from opacity to serve as an additional constraint in a physics-inspired way, as
illustrated by Fig. 2.

4.4 ANALYSIS

Apart from the derivation of our formulation from the Bouguer-Beer-Lambert law, we found that
our formulation could also be interpreted from two other perspectives, indicating the correctness of
our approach.

NeRF. The alpha-blending algorithm in NeRF (Mildenhall et al., 2021) takes the form

C(r) =

N∑
i=1

ci(1− exp(−σiδi))Ti,

Ti = exp(−
i−1∑
j=1

σjδj),

(13)

in which r stands for the ray direction, ci is a view-dependent color of the sampled points, σi is
volume density and δi is the distance between two sampled points. In this formulation, αi = 1 −

6
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Table 1: Quantitative results on Synthetic4Relight dataset (Zhang et al., 2022). Our method is able
to provide significant improvements universally. The improvements in novel view synthesis and
relighting can be attribute to the improved estimation of albedo and roughness thanks to the correct
modeling we use for constraining material properties.

Novel View Synthesis Relighting Albedo Roughness
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓

R3DG 34.07 0.975 0.047 32.87 0.967 0.052 28.70 0.952 0.064 0.011
R3DG + Ours 34.47 0.977 0.046 33.21 0.969 0.050 29.31 0.954 0.059 0.007

exp(−σiδi), which takes exactly the same form as our derivation from the Bouguer-Beer-Lambert
law. Neural field-based methods (Bi et al., 2020; Boss et al., 2021) that use ray marching in a
particle-based manner for inverse rendering handle cross section implicitly by using the same MLP
for modeling volume density and material, suggesting the necessity of introducing cross section into
the disentangled representation of 3DGS-based methods.

Taylor Expansion. Through Taylor expansion w.r.t. the function α(t) = 1− exp(−t), we have

α(t) = 1− e−t

= 1− (1− t+ o(t))

= t+ o(t),

(14)

where o(t) is the little-o notation. This indicates that Eq. 2 is an approximation to the function
αi(x) = 1−exp(−oiGi(x)), which is the exact same form as Eq. 11, omitting the newly introduced
cross section f(mi). This derivation indicates the mathematical correctness of the newly introduced
activation function.

5 EXPERIMENTS

We discuss the implementation details to show the experimental design and present experimental
results on synthetic and real-world data to provide a comprehensive understanding of our method.

5.1 IMPLEMENTATION DETAILS

Since our proposed method is independent of the underlying model for inverse rendering, we can
freely plug it into three state-of-the-art baselines, namely GaussianShader (Jiang et al., 2024),
GS-IR (Liang et al., 2024) and R3DG (Gao et al., 2023) for evaluation. All the experiments are
conducted on a single NVIDIA RTX 6000 Ada Generation GPU and we report the reproduced
baseline results for fair comparison. We use an MLP that has 2 hidden layers with size 128 for the
hidden dimension and ReLU as activation function for cross section and the output activation is a
sigmoid function. The input to the MLP is designed as follows: for GaussianShader, an end-to-end
trained material modeling pipeline, we directly input the albedo, roughness and specular tint terms
as in their original model for MLP input. For GS-IR and R3DG, since they follow a two-stage
training pipeline, in which the first stage uses normal rendering for geometry reconstruction
and second stage uses physically-based rendering for material modeling, we input the material
properties as well as the SH coefficients used for color in the first stage to the MLP. The logic
behind this design is to make the optimization of the MLP in the first stage meaningful. We follow
the experimental settings as provided by the original baselines. GaussianShader is evaluated on
Shiny Blender (Verbin et al., 2022) and Glossy Synthetic (Liu et al., 2023) as in the orignal work.
For R3DG, Synthetic4Relight dataset (Zhang et al., 2022) is used for getting material modeling
evaluation results. GS-IR is evaluated on MIP-NeRF 360 dataset (Barron et al., 2022) to provide
insights on real-world data. For albedo and relighting evaluation, we follow the standard practice to
standardize the albedo prediction against the ground truth.

5.2 RESULTS ON SYNTHETIC DATA

Material Modeling. We first evaluate our proposed module on top of R3DG (Gao et al., 2023)
for material modeling evaluation. As can be seen from Tab. 1, with the help of our modeling,

7
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Figure 4: Qualitative comparison of albedo, relighting and roughness on Synthetic4Relight
dataset (Zhang et al., 2022). Our method is able to decouple specular effects from albedo compared
to R3DG, the baseline we implemented our method on. It is also capable of providing roughness
estimation more precisely.

Table 2: Quantitative results when combined with GaussianShader (Jiang et al., 2024). We compare
with GaussianShader on Shiny Blender (Verbin et al., 2022) and Glossy Synthetic datasets (Liu
et al., 2023). Our method is able to outperform GaussianShader on novel view synthesis in tems of
all three standard image error metrics.

Shiny Blender Glossy Synthetic
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

GaussianShader 30.77 0.953 0.081 27.25 0.925 0.083
GaussianShader + Ours 31.07 0.957 0.076 27.68 0.929 0.081

R3DG is able to produce much better results universally. Our method outperforms the baseline on
novel view synthesis by 0.4 db PSNR, as well as on two other metrics. The relighting results shares
similar performance boosts as novel view synthesis, which could be attributed to the significant
improvements in albedo (∼ 0.6 db PSNR boost) and roughness estimation. Qualitatively speaking,
as can be seen from the visualization in Fig. 4, our method is capable of producing albedo estimation
with less specular effects and roughness estimation that aligns better with the ground truth, resulting
in pleasing relighting results.

Novel View Synthesis on Synthetic Data Other than the results on Synthetic4Relight, we also
implemented our method on top of GaussianShader (Jiang et al., 2024) to get more insights on how
our model would perform on synthetic data. Tab. 2 showcases the result on Shiny Blender (Verbin
et al., 2022) and Glossy Synthetic (Liu et al., 2023). Our method is able to produce significant
improvement in terms of novel view synthesis when built on top of GaussianShader (specifically
∼ 0.3 db PSNR boost on Shiny Blender and ∼ 0.4 db boost on Glossy Synthetic). Fig. 5 showcases
some qualitative comparisons of our model with the GaussianShader baseline. While we did not
add any constraint to how the model predicts normals, our method is able to produce much more
satisfactory normal estimation compared to the baseline as well as better modeling of light reflection.
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Figure 5: Qualitative comparison on Shiny Blender (Verbin et al., 2022) and Glossy Syn-
thetic (Liu et al., 2023) datasets. Our method is able to provide satisfactory normal estimation
compared to the baseline. Notice that our method does not include any additional supervision or
constraints for normal estimation. Our method is also able to provide much more accurate view
synthesis results when doing physically-based rendering. These results suggest the significance of
introducing the physically correct model for inverse rendering.

5.3 RESULTS ON REAL-WORLD DATA

Apart from the results on synthetic data, we also analyze the effect of our method when applied to
real-world data. To verify the plug-and-play attribute of our method, we apply it to GS-IR (Liang
et al., 2024) and conduct experiments on the MIP-NeRF 360 dataset (Barron et al., 2022). The
experimental results shown in Tab. 3 indicate a significant universal improvement in terms of novel
view synthesis thanks to the correct modeling and better estimation of materials as indicated by
the results in Sec. 5.2. Qualitatively speaking, our method is able to produce less blurry images
compared to the GS-IR baseline as shown by the bicycle scene in the first row in Fig. 6.

Analysis. Since our method augments opacity with a material-dependent term, it turns the opacity
from a purely geometry-indicator to a combined representative of geometry and material. That being
said, the optimization of geometry is also affected by our method. This is obvious if we consider the
gradient of αi w.r.t. oi:

∂αi

∂oi
= Gif(mi)(1− αi), (15)

pixel location x is omitted for simplicity. We hypothesize that since MIP-NeRF 360 supports SfM
initialization, it helps our method by easing the burden for geometry reconstruction, therefore lead-
ing to more improvements compared to synthetic data which uses random initialization.

6 CONCLUSION
In this work, we propose OMG, a plug-and-play module for inverse rendering based on Gaussian
Splatting. Inspired by the Bouguer-Beer-Lambert law, we derive the exact form of how opacity
should be modeled in a particle-based model. We analyze the proposed formulation against
NeRF-based methods and from a mathematical perspective, providing more insights in the right

9
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Figure 6: Qualitative Comparison of GS-IR on MIP-NeRF 360 (Barron et al., 2022). Our
method is able to provide much more accurate novel view synthesis results compared to the baseline
GS-IR (Liang et al., 2024) in which we plugged our model. The blurriness in the Bicycle scene in
the first row predicted by GS-IR is overcome by our approach. The second row showcase that our
approach is able to provide much more fine-grained and accurate normal estimation.

Mip-NeRF 360 Avg. Bicycle Flowers Garden Stump Treehill Room Counter Kitchen Bonsai

PSNR↑ GS-IR 25.38 23.31 20.43 25.76 25.46 21.75 28.32 26.31 28.66 28.44
Ours 25.85 24.09 20.16 26.24 25.54 21.97 29.64 26.85 28.92 29.27

SSIM↑ GS-IR 0.760 0.688 0.542 0.808 0.717 0.583 0.874 0.847 0.877 0.901
Ours 0.767 0.720 0.510 0.824 0.720 0.586 0.897 0.859 0.884 0.905

LPIPS↓ GS-IR 0.265 0.269 0.368 0.154 0.256 0.367 0.281 0.255 0.179 0.254
Ours 0.254 0.230 0.401 0.140 0.245 0.368 0.247 0.244 0.168 0.243

Table 3: Quantatitive Comparison on Mip-NeRF 360 (Barron et al., 2022). The results show
that our approach, when combined with GS-IR, can significantly improve the novel view synthesis
results of real-world scenes on MIP-NeRF 360 (Barron et al., 2022). Thanks to the constraint we
add to opacity, our method is able to produce ∼ 0.5 db PSNR gains along with SSIM and LPIPS
improvements.

modeling for inverse rendering. Our method also reveals again the similarity between NeRF-based
methods and 3D Gaussian Splatting. To validate the effectiveness and the plug-and-play nature
of the proposed modeling, we implement it on top of three different state-of-the-art baselines and
conduct comprehensive experiments on synthetic and real-world data. The significant improve-
ments showcased by the experiments indicate the correctness of the modeling and point out the
significance of the right prior and modeling for visual computing. We believe our work could inspire
the community to pay more attention to developing the physically correct model and introducing
right priors for modeling the 3D world.

Limitation. In OMG, the dependency of cross section on the frequency of light is not included in
the modeling. Future work could introduce the correct dependency of cross section on frequency of
light to provide more accurate modeling of the physical world.

10
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Our work focuses on incorporating physically correct priors to improve inverse rendering results,
aiming to bring new insights to visual computing community. Our research does not involve human
subjects, sensitive data, or any practices that pose privacy or security concerns.

REPRODUCIBILITY STATEMENT

The baselines used in our experiments, such as GaussianShader and GS-IR, are open-source and
publicly available. We have detailed our experimental setup, and other design choices, in Section 5
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that the code implementation of this work will be made publicly accessible upon the acceptance of
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OMG: OPACITY MATTERS IN MATERIAL MODELING
WITH GAUSSIAN SPLATTING

APPENDIX

A HYPERPARAMETERS

The neural network introduced uses 0.001, 0.0001, 0.0005 and 0.007 as learning rate respectively
for Synthetic4Relight, Shiny Blender, Glossy Synthetic and MIP-NeRF 360 datasets.The neural
network is implemented as a fully-connected MLP with two hidden layers, 128 as hidden dimension
and ReLU as activation function. We directly feed the material properties into the MLP without any
encoding such as positional embedding.

B FULL DERIVATION OF EQUATIONS

Here we give the full derivation of Eq. 12.

∂L

∂mi
=

∂L

∂C

∂C

∂mi
=

∂L

∂C

N∑
j=1
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∂L
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∂mi
]

=
∂L

∂C
[
∂ci
∂mi

αiTi + ciTi
∂αi

∂mi
+

N∑
j=i+1

cjαj
∂

∂mi

j−1∏
k=1

(1− αk)]

=
∂L

∂C
[
∂ci
∂mi

αiTi + ciTi
∂αi

∂mi
+

N∑
j=i+1

cjαj
∂

∂mi
exp(

j−1∑
k=1

(1− αk))]

=
∂ci
∂mi

∂L

∂C
αiTi + ci

∂L

∂C
Ti

∂αi

∂mi
−

N∑
j=i+1

cj
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∂mi
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(16)

C ADDITIONAL RESULTS

We present the full results on Synthetic4Relight (Zhang et al., 2022), Shiny Blender (Verbin et al.,
2022) and Glossy Synthetic (Liu et al., 2023). All the baseline results are reproduced by us as in the
main paper. More visualization results can be found in Fig. C1, Fig. C2 and Fig. C4.

D VISUALIZATION OF CROSS SECTION

To understand what the cross section network is learning, we visualize some examples in Fig. D6.
In the figure, the darker region indicates a lower cross section, meaning that it lets more light pass
through whereas the brighter regions stands for the regions that have a higher cross section. The
example shows that the windows as well as the plastic bag on the floor actually have a lower cross
section assigned to them, which corresponds to human intuition.
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Scene Method
Novel View Synthesis Albedo Relight Roughness

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MAE ↓

Balloons R3DG 31.90 0.967 0.072 24.82 0.923 0.070 31.38 0.965 0.078 0.0009
Ours 32.11 0.968 0.072 25.84 0.926 0.055 32.50 0.967 0.071 0.0011

Hotdog R3DG 32.61 0.972 0.050 26.53 0.956 0.089 29.04 0.954 0.067 0.0357
Ours 33.59 0.975 0.047 26.95 0.957 0.085 28.73 0.955 0.066 0.0217

Chair R3DG 34.72 0.978 0.039 30.55 0.963 0.046 33.07 0.966 0.041 0.0036
Ours 35.00 0.979 0.040 30.82 0.964 0.045 33.46 0.968 0.041 0.0039

Jugs R3DG 37.03 0.984 0.027 32.88 0.967 0.064 37.98 0.984 0.023 0.0032
Ours 37.17 0.984 0.027 33.64 0.968 0.049 38.16 0.984 0.023 0.0074

Table C1: Per-scene results on Synthetic4Relight dataset. For albedo reconstruction results, we
follow the standard practice (Zhang et al., 2021b; Gao et al., 2023) and scale each RGB channel by
a global scalar.

Shiny Blender Avg. Ball Car Coffee Helmet Teapot Toaster

PSNR↑ GaussianShader 30.77 29.05 28.51 31.55 28.91 43.57 23.05
Ours 31.07 29.65 28.14 31.29 28.79 43.48 25.07

SSIM↑ GaussianShader 0.953 0.955 0.940 0.970 0.956 0.996 0.902
Ours 0.957 0.961 0.939 0.969 0.955 0.996 0.924

LPIPS↓ GaussianShader 0.081 0.146 0.047 0.085 0.086 0.011 0.110
Ours 0.076 0.137 0.050 0.086 0.085 0.011 0.089

Table C2: Per-scene results on Shiny Blender dataset.

Glossy Synthetic Avg. Angel Bell Cat Horse Luyu Potion Tbell Teapot

PSNR↑ GaussianShader 27.25 26.92 29.73 31.43 26.38 27.31 29.54 23.41 23.25
Ours 27.68 28.24 29.91 31.00 26.62 27.32 29.40 24.67 24.31

SSIM↑ GaussianShader 0.925 0.923 0.939 0.961 0.934 0.917 0.936 0.897 0.895
Ours 0.929 0.929 0.940 0.959 0.934 0.916 0.935 0.907 0.909

LPIPS↓ GaussianShader 0.083 0.071 0.085 0.058 0.056 0.066 0.096 0.136 0.098
Ours 0.081 0.066 0.084 0.059 0.057 0.067 0.097 0.125 0.091

Table C3: Per-scene results on Glossy Synthetic dataset.
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Figure C1: More qualitative example in comparison to GaussianShader on Glossy Synthetic dataset.
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Figure C2: More qualitative example in comparison to GS-IR on MIP-NeRF 360 dataset.
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Figure C3: More qualitative example in comparison to R3DG on Synthetic4Relight dataset.
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Figure C4: More qualitative example in comparison to R3DG on Synthetic4Relight dataset.
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Figure C5: More qualitative example in comparison to GaussianShader on Glossy Synthetic and
Shiny Blender datasets.
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Figure D6: Visulization of the learned cross section on Mip-NeRF 360 dataset. Dark indicates the
lower cross section (meaning it lets more light pass through) and bright stands for the higher cross
section. The example shows that the windows as well as the plastic bag on the floor actually have a
lower cross section assigned to them, which corresponds to human intuition.
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