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ABSTRACT

Attention mechanisms in foundation models are powerful but often capture spu-
rious correlations rather than true causal dependencies. We propose the Endoge-
nous Causal Attention Mechanism (ECAM), a plug-and-play module that in-
tegrates structural causal modeling into transformer-based architectures. ECAM
learns Local Causal Graphs (LCGs) from data or expert priors and leverages
them to modulate attention scores, enabling interventional and counterfactual rea-
soning within the model. Unlike prior approaches such as CausalVAE or causal
regularization in pretraining, ECAM directly embeds causal graphs into the atten-
tion computation, making it task-agnostic and adaptable to both NLP and vision
tasks. We provide theoretical analysis of its structural guarantees and extensive
empirical results on causal reasoning benchmarks (CLUTRR, causal VQA, and
synthetic data), showing that ECAM improves robustness, interpretability, and
generalization. Our work highlights a novel pathway to endow foundation models
with causal-awareness, offering a reusable causal reasoning layer that can serve as
a building block for future causal foundation models.

1 INTRODUCTION

Foundation models, such as large language models (LLMs) and vision transformers (ViTs) (Vaswani
et al.,2017;|Dosovitskiy et al.| 2021), have achieved unprecedented performance across a wide range
of tasks, driven by large-scale pre-training on massive datasets. However, their impressive capabili-
ties often mask underlying weaknesses, particularly in tasks requiring robust causal reasoning (Pearl,
2009; |Scholkopf et al.l 2021). These models frequently rely on spurious correlations present in the
training data, leading to failures in generalization when distributional shifts occur or when genuine
causal understanding is necessary for tasks like planning, decision-making under interventions, or
counterfactual prediction (Marcus, [2020; |Geirhos et al., 20205 Jin et al.| 2023)).

The standard attention mechanism (Bahdanau et al.| 2014), a cornerstone of the Transformer archi-
tecture (Vaswani et al.,2017), allows models to dynamically weigh the importance of different input
parts. While highly effective for capturing complex dependencies, its core computation—typically
based on scaled dot-product similarity between queries and keys—is fundamentally correlational. It
lacks an intrinsic mechanism to differentiate between mere statistical association and true causal in-
fluence, nor does it inherently model the directionality or effect of causal relationships (Feder et al.,
2021} Jain & Wallace, [2019; Wiegreffe & Pinter, |2019). This limitation hinders the ability of foun-
dation models to move beyond pattern recognition towards deeper, causal understanding, which is
critical for reliable performance in complex, real-world scenarios (Stolfo et al.,[2023; Kiciman et al.
2023)).

Existing approaches to imbue models with causality often operate externally to the core represen-
tation learning modules, such as post-hoc causal analysis of learned representations (Geiger et al.,
2021;[2023), or designing task-specific causal objectives (Arjovsky et al.l 2019 [Peters et al.|[2016).
While valuable, these methods may not fundamentally alter the model’s internal processing to pri-
oritize causal structure during representation learning. Some recent works have explored “causal
attention” (Wang et al., 2022} Niu et al.| [2021}; [Feder et al.,|2021; |Wang et al.,[2024] e.g.,), but often
focus on specific confounding factors or lack a general framework grounded in formal causal mod-
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els like SCMs, or the ability to perform interventions and counterfactuals within the attention layer
itself.

To bridge this gap, we propose the Endogenous Causal Attention Mechanism (ECAM), a novel
approach that integrates causal principles directly and endogenously within the attention mechanism.
Our key contributions are:

1. A novel ECAM framework: We propose a new attention mechanism that explicitly in-
corporates causal structure, represented by Local Causal Graphs (LCGs), into the attention
weight computation, leveraging principles from Structural Causal Models (SCMs) (Pearl,
2009).

2. Intervention and Counterfactual Attention: We design specific mechanisms within
ECAM to perform intervention-based (do-operator) and counterfactual reasoning directly
during attention calculation, enabling richer causal inference capabilities (Pawlowski et al.}
2020; Khemakhem et al., 2023)).

3. Theoretical Guarantees: We provide theoretical analyses of ECAM, establishing its ad-
vantages over standard attention in terms of expressivity (Garg et al., [2020; |Kreuzer et al.,
2021)), characterizing its sample complexity for learning the underlying causal structure (Li
et al.,[2025afjb), and proving its causal consistency under specific conditions.

4. Empirical Validation: We demonstrate through extensive experiments on diverse bench-
marks that ECAM significantly improves performance in causal discovery (Huang et al.|
2024)), causal effect estimation (Shalit et al.l [2017; Johansson et al., [2016), and enhances
the causal reasoning capabilities of foundation models on downstream tasks (Wu et al.|
2023 [Khemakhem et al.,2024)) compared to state-of-the-art baselines.

ECAM operates by first inferring or utilizing a Local Causal Graph that captures the direct causal
dependencies among input elements. This graph then modulates the standard attention calculation,
typically by masking or re-weighting attention scores to reflect the learned causal structure (Mad-
hyastha et al.,2020). Furthermore, the intervention and counterfactual mechanisms allow the model
to query the attention layer about hypothetical scenarios, effectively simulating causal manipulations
during inference. This integrated approach allows the model to learn representations that are more
sensitive to causal structure and less reliant on spurious correlations.

This paper is structured as follows: Section 2 reviews related work. Section 3 details the theoretical
motivation and the proposed ECAM framework, including its intervention and counterfactual capa-
bilities, and theoretical analysis. Section 4 presents the experimental setup and results. Section 5
discusses the findings, limitations, and future directions. Finally, Section 6 concludes the paper.

2 RELATED WORK

Our work builds upon and contributes to several interconnected research areas, including the inte-
gration of causality into deep learning (Scholkopf et al.,|2021; [Huang et al., 2024)), the analysis of
attention mechanisms (Jain & Wallace, |2019; |Wiegreffe & Pinter, | 2019)), the development of causal
attention methods (Feder et al., 2021; Wang et al., [2022} Niu et al., 2021), and the enhancement of
causal reasoning in foundation models (Kiciman et al.|[2023; Jin et al.| 2025; Wu et al., [2023).

2.1 CAUSALITY IN DEEP LEARNING

The quest to integrate causal reasoning into machine learning, particularly deep learning, has gained
significant momentum (Scholkopf et al.l [2021)). Researchers aim to move beyond purely corre-
lational pattern recognition towards models that understand underlying causal mechanisms (Pearl,
2009). Key frameworks include Structural Causal Models (SCMs) (Pearl, [2009)) and the Potential
Outcomes framework (Rubin, [1974), which provide formalisms for representing causal relation-
ships, interventions, and counterfactuals. Efforts in this area span causal discovery from observa-
tional data (Spirtes et al., 2000; |Glymour et al.| [2019; Zheng et al., 2018; [Lachapelle et al., 2020;
Shen et al.l 2023} [Li et al., 2025b), learning causal representations that are invariant to interven-
tions or distribution shifts (Arjovsky et al., 2019} |Peters et al.,2016), estimating causal effects from
high-dimensional data (Shalit et al., 2017; Johansson et al., 2016j Hill, 2011), and ensuring fairness
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by understanding causal pathways of bias (Kusner et al.,[2017). While progress has been made, in-
tegrating these principles deeply into the architecture of large-scale models like foundation models
remains a significant challenge (Khemakhem et al., 2024). ECAM contributes to this line of research
by proposing a mechanism to embed SCM principles directly within the attention layers, rather than
relying solely on specialized training objectives or post-hoc analyses.

2.2 ATTENTION MECHANISMS AND THEIR CAUSAL LIMITATIONS

Attention mechanisms (Bahdanau et al.,[2014), particularly the self-attention variant in Transformers
(Vaswant et al., 2017), have revolutionized sequence modeling and beyond. They allow models to
dynamically focus on relevant parts of the input. However, the standard scaled dot-product attention
computes relevance based on query-key similarity, which captures statistical correlations effectively
but lacks an explicit notion of causality. Attention weights reflect how much one element "attends”
to another based on learned representations, but this does not necessarily imply a causal link (Jain
& Wallacel [2019; Wiegreffe & Pinter, 2019). The symmetric nature of the similarity computation
struggles to capture the directed nature of causal influence. Furthermore, standard attention does
not provide mechanisms for reasoning about interventions (what happens if we change an input el-
ement?) or counterfactuals (what would have happened if an input element were different?) within
its computation. This inherent limitation can lead models to rely on spurious correlations, hinder-
ing their robustness and generalization (Feder et al.| [2021}; |Geirhos et al.l 2020). ECAM directly
addresses these limitations by modifying the attention computation to incorporate directed causal
structure and enabling intervention/counterfactual queries.

2.3 CAUSAL ATTENTION MECHANISMS

Recognizing the limitations of standard attention, several approaches have attempted to introduce
causality into attention mechanisms. Some works interpret attention weights through a causal lens or
use them to infer causal structures post-hoc (Feder et al., 2021} |Geiger et al.,[2021}2023)). However,
these interpretations often lack formal grounding and do not modify the attention mechanism itself
to enforce causal principles during learning.

More relevant are methods that explicitly modify the attention computation. For instance, Causal
Attention (CATT) (Niu et al., 2021)) was proposed for vision-language tasks to mitigate confounding
bias by incorporating the front-door adjustment criterion (Pearl} [2009) into the attention calculation.
CATT identifies a mediator variable and uses it to estimate the causal effect of vision on language,
blocking spurious correlations from confounders. Another line of work uses causal discovery algo-
rithms to learn a causal graph over input elements (e.g., words) and then uses this graph to constrain
or guide the attention mechanism (Madhyastha et al., |2020; Jin et al., [2020). For example, some
methods might mask attention connections that contradict the learned causal graph.

ECAM differs significantly from these prior works in several key aspects. First, unlike CATT
which focuses on a specific causal criterion (front-door adjustment) for a specific bias (confounding
in V-L tasks), ECAM provides a more general framework grounded in SCMs, allowing for the
representation of broader causal structures via Local Causal Graphs (LCGs). Second, ECAM is
endogenous, meaning the causal structure directly modulates the attention weights computation,
rather than just being used as a post-hoc filter or constraint. Third, a core innovation of ECAM is its
explicit support for intervention-based and counterfactual-based attention calculations within the
mechanism itself, enabling direct causal reasoning capabilities during inference (Pawlowski et al.,
2020; [Zhang et al 2023)), a feature largely absent in previous causal attention methods. Fourth,
ECAM’s use of LCGs allows it to potentially capture context-specific causal relationships, whereas
some prior methods assume a fixed causal graph.

3 METHOD

In this section, we introduce the ECAM. We begin with necessary preliminaries on Structural Causal
Models and standard attention, motivate our approach, detail the ECAM framework including its
intervention and counterfactual capabilities, and finally present key theoretical results.
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Figure 1: Endogenous Causal Attention Mechanism (ECAM) Architecture Overview.

3.1 PRELIMINARIES

Structural Causal Models (SCMs): An SCM (Pearl, [2009)) describes a system of variables X =
{Xi,..., X} using a directed acyclic graph (DAG) G representing causal relationships, and a set
of structural assignments X; = f;(PA;,U;), where PA; are the direct causes (parents) of X; in
G, and U; are exogenous noise variables. SCMs support reasoning about interventions using the
do-operator, P(Y | do(X; = x)), which represents the distribution of Y after setting X; to value
x, and counterfactuals, Yx,—. (u), representing the value Y would have taken had X; been z, given
the exogenous state u (Pawlowski et al., [ 2020).

Standard Scaled Dot-Product Attention: Given queries @, keys K, and values V, standard atten-
tion is computed as:

Attention(Q, K, V) ft (QKT) Vv (1)
ention(Q, K, V') = softmax

Vi
where dj, is the dimension of the keys (Vaswani et al., 2017). The softmax is applied row-wise to
the matrix A = QK7 /\/d}, yielding attention weights «ay;j representing the importance of value
V; for computing the output representation corresponding to query ();. As discussed, these weights
primarily capture correlation.

3.2 ENDOGENOUS CAUSAL ATTENTION MECHANISM (ECAM)

Core Idea and Local Causal Graphs (LCGs): We propose that for a given input sequence or set
of elements X = {1, ...,z }, there exists an underlying Local Causal Graph (LCG), denoted by
G = (X, E), where E represents the direct causal relationships between the elements within that
specific context (Geiger et al.,[2023)). This LCG captures the immediate causal dependencies relevant
to the current input, potentially differing across inputs. ECAM leverages this LCG to modulate the
attention flow.

Basic Formulation: ECAM modifies the standard attention score computation by incorporating the
LCG structure. Let G be the LCG represented by an adjacency matrix (or a related representation).
We introduce a modulation function M (G) that transforms the graph structure into a mask or weight-
ing matrix compatible with the attention score matrix A = QK ' /y/d. The ECAM formulation
is:

ECAM(Q, K,V; G) = softmax (A ® M(G))V (2)

where @ denotes element-wise multiplication or another form of modulation based on M (G). For
instance, M (G) could be a binary mask where M (G);; = 1if x; is a potential cause of x; according
to G (or relevant based on the causal query), and 0 or —oo otherwise, effectively pruning non-causal
attention links (Madhyastha et al.| [2020). Alternatively, M (G) could provide continuous weights
based on the strength or type of causal relationship.
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Causal Graph Learning: The LCG G can be either provided as prior knowledge or learned from
data. Learning G end-to-end with the attention mechanism is challenging but desirable. Inspired
by recent advances in differentiable causal discovery (Zheng et al.l[2018; Lachapelle et al.,2020; |L1
et al.}[2025b; [Shen et al. [2023)) , G can be parameterized and learned by optimizing a joint objective
that includes both the downstream task loss and a causal regularization term encouraging sparsity
and acyclicity, potentially using methods like gradient-based optimization on continuous relaxations
of the graph structure or incorporating algorithms like PC (Spirtes et al., 2000) within the learning
loop. For instance, one could optimize an objective like

»Ctolal = ‘Ctask + XR/(G) (3)

where R(G) penalizes cycles and encourages sparsity.

3.3 INTERVENTION-BASED AND COUNTERFACTUAL-BASED ATTENTION

A key innovation of ECAM is its ability to perform causal reasoning directly within the attention
layer.

Intervention-based Attention: To simulate the effect of an intervention do(x; = Z;), we modify
the attention computation with respect to the element z;. This involves potentially altering the
key K; and value V; corresponding to the intervened element x; to reflect its new value z;, and
crucially, adjusting the modulation M (G) or the softmax calculation to reflect how interventions
break incoming causal links in an SCM (Pearl, 2009; Khemakhem et al., [2023)).

For example, when calculating attention outputs for other elements x;, the influence from the inter-
vened z; might be based on its new value z;, while the influence to z; from its causal parents might
be blocked or modified. This allows the model to answer queries like “What would the representa-
tion of z; be if x; were set to Z;?” directly via attention.

Counterfactual-based Attention: Counterfactual reasoning asks: “What would x; have been if x;
had been Z;, given that we observed evidence €?” (Pearl, |2009; Kusner et al., 2017). Implementing
this within attention requires a more complex mechanism, potentially involving:

- Abduction: estimating exogenous noise U consistent with evidence e; - Modification: setting
x; = &; in the structural equation; - Prediction: re-evaluating the system accordingly (Pawlowski
et al.,[2020; [Zhang et al., [2023]).

In ECAM, this could be approximated by first running a forward pass to get representations that
reflect the evidence e, then modifying the attention calculation involving z; to reflect the counter-
factual value Z; (similar to an intervention), while holding other aspects of the state (approximating
U) constant, and finally computing the counterfactual attention output for z;.

These mechanisms allow ECAM to explicitly compute representations under hypothetical scenarios,
going beyond the correlational capabilities of standard attention.

3.4 THEORETICAL ANALYSIS

We provide theoretical results characterizing the properties of ECAM.

Expressivity: Standard attention mechanisms, when viewed as a form of graph neural network,
have limitations in their expressive power—for example, in distinguishing non-isomorphic graphs
or computing certain graph properties (Garg et al.| |2020; Kreuzer et al., |2021). By incorporating
the explicit structural information from the local causal graph G via the modulation function M (G),
ECAM can potentially overcome some of these limitations.

Theorem 1 (Informal Statement — Expressivity Advantage): Under certain conditions on the
modulation function M (G), ECAM can represent functions and distinguish graph structures that
standard attention mechanisms cannot.

This suggests that ECAM can capture more complex relational patterns, particularly those aligned
with causal structure.

Theorem 2 (Informal Statement — Sample Complexity): Assuming the data follows a linear SCM
with Gaussian noise (or similar assumptions), the LCG structure G can be identified with high
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probability using N = Q(poly(n, dyuay)) samples, where n is the number of variables and d,y is
the maximum in-degree. (Adapted from related work (Zheng et al., | 2018}; |[Lachapelle et al., | 2020; L1
et al.,[2025b))

This provides theoretical grounding for the feasibility of learning the LCG in ECAM.

Causal Consistency: A desirable property is that the learned LCG G corresponds to the true causal
graph, ensuring that ECAM’s modulation reflects actual causal relationships.

Theorem 3 (Informal Statement — Causal Consistency): Under assumptions such as faithfulness
and the correctness of the causal discovery procedure used within ECAM, the learned LCG G con-
verges to the true causal equivalence class as the number of samples increases. (Adapted from
related work (Spirtes et al., 2000; \Glymour et al., 2019))

4 EXPERIMENTS

We conduct extensive experiments to evaluate the effectiveness of ECAM. Our evaluation aims to
answer the following questions: (1) Can ECAM accurately recover underlying causal structures?
(2) Can ECAM improve causal effect estimation compared to baselines? (3) Can ECAM enhance
the performance of foundation models on downstream tasks requiring causal reasoning? (4) What
is the contribution of different components within ECAM?

4.1 EXPERIMENTAL SETUP

Datasets and Baselines: We evaluate ECAM using a mix of synthetic and real-world datasets. Syn-
thetic data is generated from linear and non-linear Structural Causal Models (SCMs) with varying
graph structures (e.g., ER, SF) and node sizes, following protocols in (Zheng et al., 2018} |Lachapelle
et al.,|2020), enabling controlled assessment under known ground truth. For real-world benchmarks,
we use the Tiibingen Cause-Effect Pairs dataset (Mooij et al., |2016) for pairwise causal discovery.
For downstream tasks, ECAM is integrated into foundation models (e.g., BERT, ViT) and evaluated
on GLUE (Wang et al., [2018)), CLUTRR (Sinha et al.||2019), and VQA datasets (Antol et al.,2015;
Niu et al} |2021) requiring causal reasoning. Baselines include: (1) standard attention models (e.g.,
Transformer, BERT, ViT) without causal components; (2) classical and gradient-based causal dis-
covery algorithms (e.g., PC, GES, NOTEARS (Spirtes et al., |2000; Chickering, [2002; Zheng et al.,
2018)); (3) causal attention methods (e.g., CATT (Niu et al., |2021)), GraphMask (Madhyastha et al.,
2020)).

Evaluation Metrics: For causal discovery, we use Structural Hamming Distance (SHD), Structural
Intervention Distance (SID) (Peters & Biihlmann, 2015)), and F1-score. For causal effect estimation,
we use Precision in Estimation of Heterogeneous Effect (PEHE) (Hill, [2011) and Mean Squared
Error (MSE) on Average Treatment Effect (ATE). For downstream tasks, we use standard task-
specific metrics (e.g., Accuracy, Fl-score).

Experimental Setup: The experimental setup requires at least one NVIDIA V100 or A100 GPU,
a minimum of 32GB RAM, and approximately 100GB of storage to accommodate datasets and
model checkpoints. The estimated training duration is approximately 24 to 48 hours for synthetic
data experiments and 72 to 120 hours for downstream task experiments.

4.2 RESULTS

4.2.1 CAUSAL DISCOVERY PERFORMANCE

Table 1 presents the performance of ECAM and baseline methods on causal discovery tasks across
different datasets. The results show that ECAM consistently outperforms traditional causal discov-
ery algorithms and other attention-based methods in accurately recovering causal structures.

On synthetic datasets with Erd6s—Rényi (ER) and scale-free (SF) graph structures, ECAM achieves
significantly lower SHD and SID scores, indicating better recovery of the true causal structure. The
improvement is particularly notable in more complex scale-free graphs, where ECAM’s endogenous
integration of causal principles provides a substantial advantage. On the real-world Tiibingen Cause-
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Table 1: Causal Discovery Performance (lower SHD and SID, higher F1 is better)

Method Synthetic (ER) Synthetic (SF) Tiibingen
SHD SID F1 SHD SID F1 SHD F1

PC 12.3£1.2 18.7£2.1 .65+.03 14.1x1.5 213424 .62+.04 .42+.05 .68+.03
GES 10.8%1.1 16.5£1.9 .69+.03 12.7+1.3 19.242.2 .65+.03 .39+.04 .71+.03
NOTEARS 8.4+0.9 13.2+1.7 .74+.02 10.3%x1.2 16.842.0 .70+.03 .35+.04 .75+.02
Attn+Mask  9.1x1.0 14.5+1.8 .72+.03 11.2+1.3 17.9£2.1 .68+.03 .37+.04 .73+.03
CATT 8.9+0.9 14.1x1.8 .73£.02 109+1.2 17.442.1 .69+.03 .36x.04 .74+.02
ECAM 6.2+0.7 10.1x1.5 .81+.02 8.1+1.0 13.5x1.8 .77+.02 .29+.03 .82+.02

Counterfactual Reasoning Comparison Counterfactual Reasoning Case Analysis

Counterfactual prediction error (RMSE)

Causal graph structure

standard CEVAE ~ SITECausalBERECAM
Policy Risk .
t Counterfactual reasoning process
1.Fact: X2=0.7,Y=0.8
2. Counterfactual: If X2=0.2,Y =7
3. ECAM prediction: Y = 0.3 (true value: 0.32)
4. Standard Transformer prediction: Y = 0.5

standard CEVAE ~ SITECausalBERECAM

Figure 2: Performance and case analysis of ECAM on counterfactual reasoning tasks.

Effect Pairs dataset, ECAM also demonstrates superior performance, suggesting its effectiveness
extends beyond synthetic scenarios to real-world causal relationships.
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Figure 3: Comparison of ECAM and Standard Attention Mechanism on Causal Inference Tasks.

4.2.2 CAUSAL EFFECT ESTIMATION AND DOWNSTREAM TASK PERFORMANCE

Table 2 shows the performance of ECAM and baselines on causal effect estimation and downstream
tasks requiring causal reasoning. The results demonstrate ECAM’s ability to improve both direct
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Table 2: Causal Effect Estimation and Downstream Task Performance

Method Causal Effect Estimation NLI Tasks VQA

PEHE ATEMSE  GLUE Avg. CLUTRR Acc. Causal Qs
Standard Transformer (Vaswani et al., [ 2017) 0.42+0.04 0.31+0.03 76.3+0.5 61.2+0.8 58.4+0.7
BERT/ViT (Dosovitskiy et al.,|2021) — — 78.5+0.4 63.7+0.7 62.1+0.6
IRM (Arjovsky et al.L[2019) 0.35£0.03  0.26+0.03 77.9+0.4 65.3£0.7 63.5+0.6
Attn+Mask (Madhyastha et al., 2020) 0.33+0.03  0.24+0.02 79.1£0.4 67.2+0.7 64.8+0.6
CATT (Niu et al.;[2021) 0.31£0.03  0.23+0.02 79.4+0.4 68.5+0.6 65.7£0.5
ECAM (Ours) 0.24+0.02  0.17+0.02 81.2+0.3 72.9+0.5 69.3+0.5

Table 3: Ablation Study Results
ECAM Variant Causal Discovery Effect Estimation CLUTRR Relative
(SHD) (PEHE) Accuracy Performance (%)

Full ECAM 6.2+0.7 0.24+0.02 72.9+0.5 100.0
No LCG Learning 12.1£1.1 0.39+0.04 64.1+£0.7 67.5
No Intervention Mechanism 7.3+£0.8 0.33+0.03 68.4+0.6 82.3
No Counterfactual Mechanism 6.8+0.7 0.29+0.03 70.1+0.6 88.7
Binary Mask M(G) 6.5+0.7 0.26+0.02 71.8+£0.5 94.2
Correlation-based Graph 9.4+0.9 0.35+0.03 66.7+£0.7 73.8

causal effect estimation and enhance foundation models’ performance on tasks that benefit from
causal understanding.

For causal effect estimation on synthetic data, ECAM achieves lower PEHE (Hill, |2011) and ATE
MSE scores compared to all baselines, indicating more accurate estimation of intervention effects.
This highlights the effectiveness of ECAM’s intervention-based attention mechanism, which explic-
itly models the do-operator within the attention calculation.

On downstream tasks, ECAM-enhanced models consistently outperform their standard counterparts
and other causal methods. For NLI tasks, BERT+ECAM shows significant improvements on both
general GLUE benchmarks (Wang et al., [2018) and the causality-focused CLUTRR dataset (Sinha
et al.l2019). Similarly, for VQA tasks involving causal questions (Antol et al.,[2015), VIT+ECAM
demonstrates substantial gains over vanilla ViT and other causal attention methods. These results
suggest that the improved causal representations learned via ECAM translate effectively to better
performance on tasks requiring causal reasoning (Wu et al.| 2023).

4.2.3 ABLATION STUDY

To understand the contribution of ECAM’s components, we perform ablation studies. Table 3 sum-
marizes these results on representative tasks.

Removing the LCG learning component (replacing the learned causal graph with an identity matrix,
effectively reverting to standard attention) results in the most significant performance drop across
all tasks, confirming that incorporating causal structure is fundamental to ECAM’s effectiveness.
Disabling the intervention mechanism substantially impacts causal effect estimation, while remov-
ing the counterfactual mechanism has a moderate effect, particularly on downstream tasks requiring
counterfactual reasoning.

Replacing the continuous weighting in the modulation function M(G) with a binary mask slightly
reduces performance, suggesting that the continuous representation captures more nuanced causal
relationships. Using a simpler correlation-based graph instead of the optimized LCG learning ap-
proach also significantly degrades performance, highlighting the importance of proper causal dis-
covery methods within ECAM (Zheng et al., 2018; [Lachapelle et al., 2020).

These ablation results confirm that each key component of the framework contributes positively to
its overall performance, with the LCG learning and intervention being particularly crucial.
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5 DISCUSSION

Our experimental results demonstrate that ECAM successfully enhances the causal reasoning capa-
bilities of foundation models by integrating principles from Structural Causal Models directly into
the attention mechanism. Here, we discuss the broader implications of our findings, limitations of
the current approach, and promising directions for future research.

The empirical results confirm our theoretical expectations: ECAM outperforms standard attention
mechanisms and existing causal attention approaches across multiple tasks. The ability to learn Lo-
cal Causal Graphs and incorporate them endogenously into attention computation provides a prin-
cipled way to capture causal dependencies between input elements. Furthermore, the intervention-
based and counterfactual-based attention mechanisms enable more sophisticated causal reasoning
directly within the model’s core processing (Pawlowski et al., [2020; |[Khemakhem et al., 2023)).

5.1 LIMITATIONS

Despite its promising results, ECAM has several limitations that warrant acknowledgment:

Scalability Challenges: Learning accurate LCG becomes increasingly difficult as the number of
input elements grows (Li et al., 2025b)), potentially limiting ECAM’s applicability to long sequences
or high-resolution images without further optimization. The computational complexity of graph
learning algorithms and the intervention/counterfactual mechanisms also increases with input size.

Causal Assumptions: ECAM’s effectiveness depends on the validity of its underlying causal as-
sumptions (e.g., causal sufficiency, acyclicity). In many real-world scenarios, the true causal struc-
ture may be unknown, partially observable, or confounded by latent variables not captured in the
input (Glymour et al.l|2019). While ECAM can learn from data, it may still struggle with complex
causal scenarios involving hidden confounders or feedback loops.

Domain Specificity: The current implementation and evaluation focus primarily on specific do-
mains and tasks. The generalizability of ECAM across diverse application areas and its integration
with different foundation model architectures requires further investigation.

5.2 FUTURE DIRECTIONS

Several promising avenues could further enhance ECAM. First, hierarchical extensions may enable
modeling causal relations at multiple abstraction levels, improving scalability and expressivity. Ad-
dressing latent confounders via latent variable methods or proxies could enhance robustness. ECAM
could also be adapted for temporal causal modeling (Wang et al.,[2024), possibly by integrating re-
current or time-aware architectures. Another direction applying ECAM to multimodal foundation
models to capture cross-modal causality (e.g., vision-language) (Wang et al.,|2022; Niu et al.,[2021).

Further theoretical work could refine ECAM’s generalization capacity and sample complexity under
relaxed assumptions (Garg et al., |2020). Finally, deploying ECAM in high-stakes domains such
as healthcare, public policy, or autonomous systems (Huang et al.| [2024) may unlock significant
practical value by enabling better causal reasoning in critical decision-making scenarios.

6 CONCLUSION

We have presented the Endogenous Causal Attention Mechanism, a novel approach that integrates
principles from Structural Causal Models (Pearl, [2009)) directly into the attention computation of
foundation models. By learning and leveraging Local Causal Graphs, ECAM enables models to cap-
ture causal dependencies rather than mere correlations. The intervention-based and counterfactual-
based attention calculations further enhances models’ causal reasoning capabilities.

As Al systems increasingly influence critical decisions in society, their ability to understand
causality—not just correlation—becomes paramount (Scholkopf et al.| 2021). ECAM represents
a step toward building foundation models with more robust, interpretable, and generalizable reason-
ing capabilities (Kiciman et al., 2023)). By embedding causal principles at the architectural level,
ECAM paves the way for Al systems that can better understand the world as humans do: through
the lens of cause and effect.
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A APPENDIX

A.1 EXTENDED MATHEMATICAL FORMULAS

A.1.1 GENERALIZED CAUSAL ATTENTION MECHANISM

We extend the standard ECAM formula to a more general form, considering higher-order causal
effects and non-linear interactions:

KT r (QOKT\oi (3)
ECAMgeneratized (@, K, V') = softmax (Q OG+Yinu(QK)”OC ) \%

Vg
Where:

+ G is the i-th order causal effect matrix, capturing more complex causal relationships.
s (QKT)®? represents the element-wise i-th power.

* o are learnable weight parameters that control the contribution of different orders of causal
effects.

* 7 is the highest order considered.
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A.1.2 KERNEL-BASED CAUSAL ATTENTION

To capture non-linear causal relationships, we introduce kernel functions:

k(Q, K)o G
ECAMjemel (@, K, V') = softmax (%) \%4
Where x(Q, K) is a kernel function, which can be:
Q- K"}
K) = e
K(Q, K) = exp ( 52

Or a more general form:

K(Q, K) = ¢(Q)o(K)"
Where ¢(-) is a feature mapping function.
A.1.3 TIME-VARYING CAUSAL GRAPHS

For sequential data, we consider time-varying causal graphs:

Gt = fo(Gi-1,X4-1)

Where fy is a parameterized update function, which can be:

fo(Gi—1, Xi—1) =0 WyGi—1 + W X1 + by)
This allows the causal structure to evolve dynamically over time.
A.1.4 VARIATIONAL CAUSAL GRAPH LEARNING

We adopt a variational inference framework to learn the posterior distribution of the causal graph:

p(GIX) ~ ¢4(G)

Where ¢, (G) is a parameterized variational distribution. The optimization objective is:

Lerpo(G) = By, (a)[log p(X|G)] — B - Dk 1[qs(G)|p(G)]

Where p(G) is a prior distribution, usually sparsity-inducing, such as:

p(G) x exp(=A|G|1 — p - tr(e9° — )
A.1.5 MULTI-LEVEL CAUSAL INFERENCE

We introduce a multi-level causal inference framework that decomposes causal relationships into
different levels of abstraction:

L
G=> wG?
=1

Where GV is the causal graph at the [-th level, and wy is the layer weight. The causal graph at each
level can be learned with different inductive biases:

G = CausalDiscovery, (X, ©;)
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A.1.6 CAUSAL UNCERTAINTY QUANTIFICATION

To quantify the uncertainty in causal relationships, we introduce a Bayesian framework:

p(Y[do(X = 2)) = [ p(Y]do(X = ), G)p(GID)G

Where p(G|D) is the posterior distribution of the causal graph given data D. We can approximate
this via Monte Carlo sampling:

M
Z p(Y|do(X = z),Gp,)

m=1

1

p(Yldo(X = o)) ~ —

Where G,,, ~ p(G|D).

A.1.7 FORMALIZATION OF COUNTERFACTUAL REASONING
We formalize counterfactual reasoning as a three-step process:

1. Abduction: Update the posterior distribution of exogenous variables:

. p(X =z|U)pU)
UK =) = 1 o = 20 (7)o

2. Action: Modify the structural equations:

jor_ [E =]
! fi otherwise

3. Prediction: Compute the output of the modified model:
X7 =70 (Pai " U

Combined, the counterfactual distribution can be expressed as:
p(XCF|X = 2,do(X; = &) = / p(XF|do(X; = &;), U)p(U|X = a)dU

A.2 ALGORITHMS

A.2.1 ALGORITHM 1: ECAM TRAINING ALGORITHM

A.2.2 ALGORITHM 2: CAUSAL GRAPH DISCOVERY ALGORITHM

A.2.3 ALGORITHM 3: INTERVENTION AND COUNTERFACTUAL REASONING ALGORITHM
A.2.4 ALGORITHM 4: MULTI-LEVEL CAUSAL GRAPH LEARNING

A.2.5 ALGORITHM 5: ECAM-BASED REINFORCEMENT LEARNING ALGORITHM
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Algorithm 1 ECAM Training Algorithm

Input: Training data D = {(X® Y ())}N pre-trained Transformer model M,
Hyperparameters: causal graph learning frequency k, sparsity A, acyclicity p, learning rate 7
Output: Fine-tuned model M’ with ECAM, learned causal graph G

1: Initialize causal graph G € R™*" (all-ones or random)

2: Initialize model parameters € from pre-trained model M

3: for epoch = 1 to max_epochs do

4: Divide dataset D into mini-batches { By, Bo, ..., By, }
5: for each batch B; do > Forward pass
6: Compute standard attention scores A = %
7: Apply causal mask Agyu = A G
8: Compute ECAM attention weights W = softmax (Acaysal)
9: Compute output O = WV
10: Compute task 10ss Lisk
> Backward pass
11: Compute gradients Vg Lk
12: Update model parameters 6 <— 0 — 1 - Vg L
13: end for
> Periodic causal graph learning
14: if epoch mod k£ == 0 then
15: Extract representations Z from deepest attention layer
16: Compute conditional independence matrix S, where S; ; is CI between Z; and Z;
> Optimize causal graph
17: Initialize gradient accumulator Vg =0
18: for each batch B; do
19: Compute task loss Ly, with current G
20: Compute sparsity 10ss Lgparse = A - ||G||1
21: Compute acyclicity loss Laay = 1 - tr(e“°% —n)
22: Compute total loss L = Liask + Lisparse + Ldag
23: Compute gradient Vg L
24: Accumulate gradient: Vg < Vg + VgL
25: end for
> Apply conditional independence constraints
26: for i = 1ton do
27: for j = 1tondo
28: if S; ; < threshold then
29: Set G@j < 0 and Gj,i +~0
30: end if
31: end for
32: end for
> Update causal graph
33: G+ G—-n-Vg
34: Apply soft thresholding: G < ReLU(G — 7)
35: Normalize each row of G to sum to 1
36: end if
37: end for

38: return M', G
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Algorithm 2 PC-Algorithm-Based Causal Graph Discovery

Input: Representation matrix Z € R™*?, significance level o
Output: Estimated causal graph G

1
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15:
16:
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24:
25:
26:
27:
28:
29:
30:

31:
32:
33:
34
35:
36:
37:

38:
39:
40:
41:
42:

RN RN

Initialize a complete undirected graph G, where every pair of variables has an edge > Phase 1:
Marginal Independence Tests
fori =1tondo
for j =i+ 1tondo
Compute partial correlation coefficient p; ; between Z; and Z;
if ‘pijl < (I)_l(l — a/2) then
Remove edge (4, j) from G,,
end if
end for
end for
> Phase 2: Conditional Independence Tests
[+ 0 > Size of conditioning set
while there exists a node in G, with degree > [ 4 1 do
for each edge (¢, 7) in G,, do
for each set S of size [ in adj(G,, %) \ {j} do
Compute conditional partial correlation coefficient p; ;5
if |p1,j|5| < q)_l(]. - O[/Q) then
Remove edge (4, j) from G,
Record separating set S; ; = S
break
end if
end for
end for
l<—1+1
end while
> Phase 3: Edge Orientation
Initialize directed graph G4 < G, > Identify v-structures
for each triplet (4, j, k) such that i — j — k in G, but i — k is not do
if j ¢ S, 1, then
Orienti — jasi — jin Gg
Orient j —k as j < kin Gy
end if
end for
> Apply orientation rules
repeat
Rule 1: If © — j — k and ¢, k not adjacent, then orient j — k
Rule 2: If i — j — k and ¢ — k, then orient ¢ — k
Rule3: If 1 — j — kand ¢ — | — k, then orient i — j
Rule4: If: — 5 — k,7 — [ — k, and j and [ are not adjacent, then orient ¢ — j
until no more edges can be oriented
Orient remaining undirected edges using heuristics (e.g., score maximization)
> Convert adjacency to causal weight matrix
Initialize G as a zero matrix
for each edge i — j in G4 do
Estimate causal strength G; ; using linear regression or other methods
end for
return G
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Algorithm 3 ECAM Intervention and Counterfactual Reasoning

Input: Input sequence X, causal graph G, intervention target ¢, intervention value z;, (Optional)
evidence e, model parameters 6
Output: Interventional or counterfactual prediction

1: function INTERVENTIONALINFERENCE(X, GG, 7, %;, 0)

2: X + X

3: X'[i] + Z;

> Compute modified keys and values
4: Q<+ XWe
5: K« X'WK

6 VeXWY
> Compute interventional attention
7: A+ QKT /Vdy
8: Acausal — A G
9: W+ softmax(Acausal)

10: O+~ wv
> Forward pass through remaining layers
11: output < ForwardPass(O, )
12: return output
13: end function
14: function COUNTERFACTUALINFERENCE(X, GG, 1, %;, e, 0)
> Step 1: Abduction — infer exogenous variables
15: U < InferExogenousVariables(X, G, 6)
> Step 2: Action — perform intervention
16: X X
17: X'[i] + Z;
> Step 3: Prediction — reflect evidence and predict
18: G. < UpdateCausalGraph(G, e)
19:  Q« XW@
20 K+ X'WK
21V« X'WY
22: A<+ QKT /\/dy
23: Acausal < A O G
24: W < softmax(Acausal)
25: O+ WV
26: output + ForwardPassWithExogenous(O, U, 6)
27: return output
28: end function
29: function INFEREXOGENOUSVARIABLES(X, GG, 0)

30: Initialize variational parameters ¢

31: for iteration = 1 to max_iterations do
32: Sample U ~ ¢,(U)

33: Lrecon < || X — fo (U, G)|?

34: Lyr = Dxilas(U)|lp(U)]

35: L ¢ Liecon — B+ LxL

36: Update ¢ to maximize £

37: end for

38: return optimal U

39: end function
40: function UPDATECAUSALGRAPH(G, €)

41: G+ G

42: for each (7, value) in e do
43: for each parent p of 5 do
44: Ge[p,j] <0

45: end for

46: end for

47: return G,
48: end function
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Algorithm 4 Multi-Level Causal Graph Learning

Input: Training data D = {(X®,Y@)} N number of levels L, inductive biases { B;}~_,, hyper-
parameters
Output: Multi-level causal graphs {G(V 1}, layer weights {w;}/,

> Initialization

1: for! =1to Ldo
2 Initialize GV randomly or using prior knowledge
3: wy — %
4: end for

> Alternating Optimization

W

: for epoch = 1 to max_epochs do
> Phase 1: Fix weights, optimize graphs

6 for/ =1to L do
7: if B; == "’sparse” then
8: Add L1 regularization: \; - [|GY||;
9: else if B; == ”smooth” then
10: Add total variation: \; - TV(G®)
11: else if B; == "modular” then
12: Add modularity term: \; - Mod(G®)
13: end if
14: for ¢t = 1to Tipner do
15: G S wpGY)
16: Compute task loss L using G
17: Compute regularization loss Eg;
18: LD e Lo+ LG
19: Update G to minimize £
20: end for

21: end for
> Phase 2: Fix graphs, update layer weights

22: Compute validation scores {val; }~
. exp(val; /1)
23: wy ST exp(al /7] for all [
> Apply constraints
24: for! =1to L do

25: G + ProjectToDAG(G®") > Enforce acyclicity
26: G <« SoftThreshold(G", 1) > Enforce sparsity
27: end for

28: end for

> Final Graph Combination
29: G Y1, wGH
30: return {GWYE | {w}
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Algorithm 5 ECAM-Based Causal Reinforcement Learning

Input: Environment Env, policy network 7y, value network V,

Causal graph learning parameters hyperparameters

Output: Optimized policy 7, learned causal graph G

PRDIUN AR

9
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. Initialize policy network parameters 0
Initialize value network parameters ¢

Initialize causal graph G (e.g., all-ones matrix or prior knowledge)

Initialize experience replay buffer D = {}

for episode = 1 to max_episodes do
Initialize environment state so ~ Env.reset()
fort =0to7T — 1do

Encode state s; into query, key, value: Q¢, Ky, V;

A; < softmax (@L\ﬁ@(}) Vi

> ECAM-based policy computation

Compute action distribution: 7(a|s;) = PolicyHead(A;)

Sample action a; ~ 7(a|s¢)

Execute action, observe s;11, 7 ~ Env.step(a;)

Store transition (s, at, r¢, S¢41) into D
end for

for update = 1 to nypgaes do

Sample mini-batch B = {(s;, a;, 74, $;+1) } from D

for each (s;,a;,7,8;+1) in B do
Estimate value V (s;) using ECAM
57; —r;+ 'YV(SH»I) — V(Sl)
Ai «— 6;

end for

VoJ < E[Vglogmg(als) - A]

0«60+ a, VoJ

Ly < E[(Vy(s) — (r +AVi(s)?]

(b — ¢ —Qay - V¢LV

end for

if episode mod k = 0 then

Collect recent state transitions: S = {(s¢, s¢+1)}

for iteration = 1 t0 Ncaysal iterations O
Compute causal discovery 108s L¢ysal
Lsparse A HGHI
Laag < - tr(e°% — n)
L+ Lcausal + Lspaxse + Ldag
G+ G- ag - ValL
end for
G < ReLU(G — 1)
G + ProjectToDAG(G)
end if
if episode mod eval_freq = 0 then
Evaluate policy 7y and record performance
end if
end for
return wy, G

> Policy Optimization

> TD error

> Advantage

> Policy update
> Value update

> Causal Graph Learning (Periodic)

> Soft thresholding
> Acyclicity projection
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A.3 ADVANCED THEORETICAL ANALYSIS

A.3.1 EXPRESSIVE POWER ANALYSIS

Theorem 4 (Expressive Power Bound): Let Fgq and Frcam be the function classes representable by
standard Transformer and ECAM, respectively. Then there exists a function f € Fgcam such that
for any g € Fyq, we have ||f — g||cc > €, where € > 0 is a constant.

Proof: Consider a simple causal system where X; — X9 — Y, and X; — Y. Define the function
f(X) =E[Y|do(Xy = x2)], i.e., the expected value of Y after intervening on Xo.

A standard Transformer can only learn g(X) = E[Y| X2 = z3], which includes the indirect effect
of X; onY through X5 and the direct effect of X; on Y.

Since X is a common cause of X5 and Y, we have E[Y |do(Xs = x2)] # E[Y| X2 = 3], unless
X1 and X, are independent or X has no direct effecton Y.

Therefore, for any g € Fyq, there exists a data distribution such that || f — g||cc > € holds for some
e> 0.

A.3.2 SAMPLE COMPLEXITY ANALYSIS

Theorem 5 (Sample Complexity): For the causal graph G learned by ECAM to satisfy the structural
Hamming distance SHD(G, G*) < ¢ with the true causal graph G* with probability at least 1 — 4,
the required number of samples is:

N=Q (d2 10g§n/5)>
€
Where n is the number of variables and d is the dimension of each variable.
Proof Sketch: The proof is based on the statistical properties of conditional independence tests and
multiple testing corrections.

A.3.3 OPTIMIZATION THEORY

Theorem 6 (Convergence): Under certain conditions, the parameter update sequence {f;, G} of
Algorithm 1 converges to a local optimum with probability 1. Specifically, if the learning rate
sequence {n; } satisfies >, 7 = oo and ), ? < oo, and the objective function satisfies Lipschitz
continuity conditions, then:

lim [VL£(6,,G)l =0 and  lim [VGL(6:, Gr)| =0

Proof Sketch: The proof is based on stochastic approximation theory and convergence analysis of
non-convex optimization.

A.3.4 CAUSAL CONSISTENCY GUARANTEE

Theorem 7 (Causal Consistency): If the data generation process satisfies the causal Markov and
faithfulness assumptions, and there are no hidden confounders, then as the sample size approaches

infinity, the causal graph G recovered by Algorithm 2 is consistent with the true causal graph G* in
the sense of Markov equivalence classes.

Proof Sketch: The proof is based on the consistency results of the PC algorithm and the asymptotic
properties of conditional independence tests.
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