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Abstract

Graph neural networks (GNNs) have increasingly adopted transformer ar-
chitectures to capture long-range dependencies. However, integrating struc-
tural information into graph transformers remains challenging, often neces-
sitating complex positional encodings or masking strategies. In this paper,
we propose the Moiré Graph Transformer (MoiréGT), which introduces a
novel focused attention mechanism that eliminates the need for explicit
graph positional encodings. Our model effectively captures structural con-
text without additional encodings or masks by adjusting attention scores
based on a learnable focus function of node distances. We theoretically
demonstrate that multiple attention heads with different focus parameters
can implicitly encode positional information akin to moiré patterns. Exper-
iments on 3D molecular graphs show that MoiréGT achieves significant per-
formance gains over state-of-the-art models on the QM9 and PCQM4Mv2
datasets. Additionally, our model achieves competitive results on 2D graph
tasks, highlighting its versatility and effectiveness.

1 Introduction

Graph neural networks (GNNs) have incorporated the transformer architecture, leverag-
ing its success in other domains (Ying et al., 2021). Graph transformers (GTs) demonstrate
strong performance on tasks involving node relationships (Dwivedi & Bresson, 2020), primar-
ily due to their global attention mechanism. In graph contexts, the permutation invariance
of attention is advantageous, as graphs are concerned with topological relationships and are
invariant under the SE(3) group (Bronstein et al., 2021).
However, GTs that rely solely on global attention without incorporating structural adjust-
ments often perform poorly (Kreuzer et al., 2021). This is similar to how fully connected
layers can fail when lacking inductive biases. Incorporating graph structural information is
crucial for effective learning. While positional encodings have been employed to inject struc-
tural information (Dwivedi et al., 2021), designing encodings that uniquely and meaningfully
represent topological positions while preserving invariance properties is challenging.
Masking techniques can hide irrelevant nodes and implicitly convey structural information,
but it’s limiting the global receptive field of attention mechanisms. This leads us to ask: Can
we develop a method that leverages attention while preserving structural context, effectively
combining the benefits of positional encoding and masking?
We introduce the Moiré Graph Transformer (MoiréGT), a graph transformer with a
focused attention mechanism. This allows the model to focus on specific ranges of nodes
relative to nodes of interest by adjusting attention scores within the self-attention layer. We
use a non-linear focus function with two learnable parameters—shift and width—to empha-
size nodes within the focus area while filtering out others. Our theoretical analysis shows
that moiré patterns with phase distortions can effectively encode positional information.
Experimentally, we demonstrate significant performance gains on 3D graphs—QM9
and PCQM4Mv2—and we also tested our model on 2D graphs to show its versatility.
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Our key contributions are as follows:

• We introduce the focus mechanism, an explicit filtering mechanism based on spatial
relationships, providing a strong inductive bias for graph learning tasks.

• Our model eliminates the need for a virtual node, reducing computational overhead.
• Extensive experiments demonstrate the efficiency and effectiveness of our model,

achieving state-of-the-art results on challenging benchmarks with fewer parameters
than competing models.

2 Related Works

Graphormer (Ying et al., 2021) adds centrality encoding into node features and employs
learnable spatial and edge encodings to adjust attention values. Unlike Graphormer, we
filter and emphasize node features solely based on topological distance, providing a simpler
and more distinguishable method for each node.
GraphGPS and TokenGT (Rampášek et al., 2022; Kim et al., 2022) utilize orthonor-
mal graph Laplacian eigenvectors to represent nodes’ topological locations, which is not
suitable for transductive graph learning tasks due to the need for eigen decomposition of
the adjacency matrix and large input feature dimensions. Our method does not require
eigendecomposition and can use any node features.
GRPE (Park et al., 2022) employs learnable positional encodings derived from the shortest
path distance to adjust attention scores, a subset of the approach used in Transformer-M.
Transformer-M (Luo et al., 2022) incorporates degree encodings and sums of 3D distance
encodings added to the input node features. It also uses shortest path distance, edge, and
3D distance encodings within attention. Despite their complex structure, they did not use
this information for filtering as we do, leading to larger parameter numbers without clear
performance gains from each component.
EGT (Hussain et al., 2022) adjusts global attention using edge embeddings, effectively infer-
ring edge data. However, without filtering, their global attention lacked sufficient inductive
bias, resulting in models 5 to 10 times larger than others and requiring clipping to stabilize
training.
Moreover, these models often require a virtual node to make predictions, adding compu-
tational overhead due to its global connectivity. In contrast, our model does not require a
virtual node.

3 Method

3.1 Focused Attention Mechanism

The standard attention mechanism with global attention is formulated as follows:

Attention(Q, K, V ) = softmax
󰀕

QKT

√
dk

󰀖
V, (1)

where Q, K, V are the query, key, and value matrices derived from the node features, and dk

is the dimension of the key vectors. While this global attention allows the model to capture
relationships between any pair of nodes, it lacks inherent structural information about the
graph topology, as it treats all nodes equally without considering their structural proximity.
To incorporate structural information, we propose a novel focused attention mecha-
nism (equation 2) that adjusts the attention scores based on the distances between nodes.

Attention(Q, K, V ) = softmax
󰀕

QKT

√
dk

󰀖
f(D, µ, σ)V (2)
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Where f(D, µ, σ) is a learnable focus function that emphasizes nodes within a certain dis-
tance range relative to each node of interest. The focus function depends on the distance
matrix D and has two learnable parameters—shift (µ) and width (σ)—which allow the
model to dynamically adjust its focus on the graph structure.
Our focus mechanism serves as a learnable filter on the attention scores, enabling the model
to selectively emphasize or mask certain nodes based on their structural distance. This
adjustment effectively incorporates structural information without the need for explicit po-
sitional encoding or an additional learnable projection matrix.
We compute and use a distance matrix D when the dataset allows it. Each element dij =
󰀂ci − cj󰀂2, where ci and cj are the coordinates of nodes i and j, respectively.
Each focus function has two learnable parameters: width (σ) and shift (µ). The width
parameter controls the spread or range of the focus function, adjusting how narrowly or
broadly the model attends to nodes around µ. The shift parameter adjusts the center of the
focus function, effectively shifting the function along the distance axis.
To explore the effectiveness of our focus mechanism, we experimented with five different
focus functions: Gaussian, Laplacian, Cauchy, Triangle, and MirroredSigmoid. Each function
offers unique characteristics in how it adjusts the attention scores based on the distances
between nodes. Figure 1 shows each focus function varies in form with different widths.

Gaussian: Defined as f(d) = exp
󰀓

− (d−µ)2

σ

󰀔
, it provides a smooth, bell-shaped curve cen-

tered around µ, emphasizing nodes at distances close to µ.

Laplacian: Defined as f(d) = exp
󰀓

− |d−µ|
σ

󰀔
, it emphasizes nodes near µ with a sharper

peak and heavier tails compared to the Gaussian.
Cauchy: Defined as f(d) = 1

1+( d−µ
σ )2 , it peaks at d = µ and decreases inversely with the

square of the distance from µ, maintaining attention to nodes even at larger distances.

Triangle: Defined as f(d) = max
󰀓

1 − |d−µ|
σ , 0

󰀔
, it creates a linear decrease in attention

from µ, reaching zero at d = µ ± σ.
MirroredSigmoid: Defined as f(d) = 1

1+exp
󰀃

(d−µ)
σ

󰀄 , it produces an S-shaped curve, effec-

tively modeling scenarios where attention is needed for nodes closer than µ.

Figure 1: Visualization of different focus functions. Each function adjusts attention scores
based on node distances, with unique characteristics influencing the attention distribution.
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3.2 Computational Considerations

We make several adjustments to implement the focus mechanism efficiently and ensure stable
learning. The equation 3 shows an updated formulation. We will explain the adjustments in
the following.

FocusedAttention(Q, K, V, D′) = softmax
󰀕

QKT

√
dk

+ log (f (D′, µ′, σ)) + WselfI

󰀖
V (3)

Logarithmic Transformation: Adding log(f(Dij)) inside the softmax is equivalent to
multiplying f(Dij) outside the softmax, as shown in Equation equation 4. This allows us to
incorporate the focus mechanism into the attention scores using logarithms:

softmax
󰀕

QKT

√
dk

+ log(f(D))
󰀖

=
f(D) · exp

󰀓
QKT

√
dk

󰀔

󰁓
f(D) · exp

󰀓
QKT
√

dk

󰀔 . (4)

Using the log of the focus function prevents numerical instabilities that could arise from
very small values of f(Dij), allowing for more stable computation and smoother gradients
during backpropagation.
Adding Self-loop: To prevent the focus function from diminishing self-attention, especially
when µ is large, we add an identity matrix scaled by a learnable weight to the distance
matrix, as D′ = D + WselfI. This ensures that each node maintains a significant attention
score for itself.
Masking to Prevent Unintended Global Nodes: Zero-padded nodes might uninten-
tionally create global nodes when padding graphs to create uniform batch sizes. To mitigate
this, we implement masking that prevents attention and feed-forward network computations
to and from these padded nodes.
Masking Incorrect Distances: In an adjacency matrix context, zero typically indicates
no connection, making zero-padding a natural choice. However, this can lead to incorrect
focusing values if the focus function interprets these zeros as valid distances. To address this
issue, we assign a very large value (e.g., 106) to padded nodes’ distances in the matrix D,
preventing any unintended influence from padded elements.
Clamping µ: To ensure numerical stability and meaningful focusing behavior, we clamp
µ to values greater than a minimum threshold µ′ = max(µmin, µ), where µmin = 0.5. This
prevents the focus function from becoming undefined or overly narrowed.

3.3 MoiréGT Architecture

The Moiré Graph Transformer (MoiréGT) architecture consists of multiple Moiré Layers
that implement the focus mechanism (Figure 2).
Input and Output Fully Connected Layers: MoiréGT incorporates fully connected
layers at both the input and output sides. The input layers preprocess raw node features,
while the output layers map the transformed features to the desired output space. We also
employed max pooling for the graph-level inference tasks to make embedding tensor before
the output FC layers.
Moiré Layer: Each Moiré Layer consists of the focused attention mechanism integrated
within the self-attention framework. The layer begins by projecting the input node features
X into query, key, and value matrices. The focused attention is computed using the adjusted
attention scores, incorporating the focus function as described in Equation equation 2. This
allows the model to emphasize nodes within certain distance ranges dynamically.
Feed-Forward Network and Residual Connections: Following the attention mecha-
nism, each layer includes a feed-forward network (FFN). Residual connections are employed
around both the attention and FFN sublayers to prevent over-smoothing problems.
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Overall Architecture: Multiple Moiré Layers are stacked to form the full MoiréGT model,
allowing for hierarchical representation learning over the graph. Each layer can have multi-
ple attention heads with different focus parameters, enabling the model to capture diverse
structural patterns akin to the formation of moiré patterns.

Figure 2: (a) Overview of the MoiréGT architecture, and (b) Detailed structure of a Moiré
Layer with the focused attention mechanism.

3.4 Theoretical Foundation and Analysis

The Moiré Graph Transformer (MoiréGT) is inspired by moiré patterns, which arise when
overlapping patterns with slight differences create complex interference. By integrating
distance-based focus functions into the attention mechanism, MoiréGT implicitly encodes
positional information, capturing complex graph structures without explicit positional en-
codings. The overlapping of multiple attention heads with varying focus parameters enables
the model to capture local and global structural information effectively. For a detailed the-
oretical analysis, please refer to the Appendix.

4 Experiments and Results

We conducted a series of experiments to evaluate the performance and effectiveness of our
MoiréGT model across various graph-based tasks and datasets. Our evaluation includes both
inductive learning scenarios, covering 3D molecular graphs and 2D graph datasets.

4.1 Experimental Settings

We tested our model on several datasets, each with unique characteristics. We optimized the
model’s hyperparameters for each dataset, including the number of Moiré Layers, hidden

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

dimensions, attention heads, and learning rate. All experiments used the Gaussian focus
function. The specific settings for each dataset are provided in Table 1.
QM9: A dataset of 134,000 small molecules with 3D geometric information, used for pre-
dicting molecular properties (Ramakrishnan et al., 2014).
PCQM4Mv2: A large-scale quantum chemistry dataset from the Open Graph Benchmark
(OGB) containing over 3 million molecules with 3D structures (Hu et al., 2021).
MNIST Superpixel: A graph version of the MNIST dataset, where images are represented
as graphs based on superpixels (Dwivedi et al., 2023).

Table 1: Hyperparameters for experimental datasets

Dataset Moiré Layers Hidden Dim. Heads Learning Rate
PCQM4Mv2 8 512 16 2 × 10−4

QM9 13 256 32 5 × 10−4

MNIST Superpixel 5 256 32 5 × 10−4

4.2 Performance on 3D Graphs

Our first set of experiments focused on inductive learning tasks where the physical locations
of nodes are provided, allowing us to calculate the adjacency matrix using actual physical
distances between nodes. This is particularly relevant for molecular datasets like QM9 and
PCQM4Mv2, where the 3D structures of molecules provide rich spatial information.
On the QM9 dataset, MoiréGT achieved a Mean Absolute Error (MAE) of 2.58 meV, sig-
nificantly outperforming previous state-of-the-art models (Table 2). This demonstrates the
model’s effectiveness in capturing complex spatial relationships within molecular graphs
without relying on explicit positional encodings.

Table 2: Results on QM9.

Model MAE (meV) ↓
N-GramRF1 10.37
GROVER (large)2 9.86
GROVER (base)2 9.84
N-GramXGB1 9.64
D-MPNN3 9.22
PretrainGNN4 9.22
ChemRL-GEM5 8.14
Uni-Mol6 4.67
MoiréGT (Ours) 2.58

Bold indicates the best, and underline indicates the second-best.
1Liu et al. (2019), 2Rong et al. (2020), 3Yang et al. (2019),
4Hu et al. (2019), 5Fang et al. (2022), 6Zhou et al. (2023)

Similarly, on the large-scale PCQM4Mv2 dataset, MoiréGT achieved an MAE of 46.3 meV
on the validation set and 46.4 meV on the test-dev set (Table 3), surpassing all previous
models, including those utilizing additional information from RDKit. This highlights the
scalability and robustness of our approach to large and complex datasets.

4.3 Performance on 2D Graphs

To assess the generality of our approach, we evaluated MoiréGT on the MNIST Superpixel
dataset, where node coordinates are provided in 2D space. We experimented with two set-
tings: one where the distance matrix D is computed using the Euclidean distances between
nodes (MNIST-dist), and another where D is based on the shortest path distances in the
graph (MNIST-SPD).

6
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Table 3: Results on PCQM4Mv2.

Val. MAE ↓ Test-dev MAE ↓
Model #Params (meV) (meV)
GINE1-VN14 13.2M 116.7 -
GCN2-VN14 4.9M 115.3 115.2
GIN3-VN14 6.7M 108.3 108.4
DeeperGCN4-VN14 25.5M 102.1 -
TokenGT5 48.5M 91.0 91.9
GRPE6 118.3M 86.7 87.6
Graphormer7 47.1M 86.4 -
EGT9 89.3M 85.7 86.2
GraphGPS8 13.8M 85.2 86.2
Transformer-M11 69M 77.2 78.2
GPS++12 44.3M 77.8 72.0
TGT-At15 203M 68.6 69.8
*Models below use RDKit
GEM-210 32.1M 79.3 80.6
Uni-Mol+13 77M 69.3 70.5
EGT9 (2 Stage) 189M 69.0 -
TGT15 203M 67.1 68.3
MoiréGT (Ours) 13.1M 46.3 46.4

1Brossard et al. (2020), 2Kipf & Welling (2016), 3Xu et al. (2018),4Li et al. (2020),
5Kim et al. (2022), 6Park et al. (2022), 7Ying et al. (2021),8Rampášek et al. (2022),

9Hussain et al. (2022), 10Liu et al. (2022),11Luo et al. (2022), 12Masters et al. (2022),
13Lu et al. (2023),14Gilmer et al. (2017), 15Hussain et al. (2024)

Our model achieved competitive results on MNIST-dist, with an accuracy of 97.79%, closely
matching other state-of-the-art models (Table 4). However, the performance on MNIST-SPD
was lower, with an accuracy of 94.72%.

Table 4: Results on MNIST Superpixel.

MNIST
Model Accuracy (%) ↑
GCN1 90.71
GIN2 96.49
Graphormer3 97.91
EGT4 98.17
GraphGPS5 98.05
MoiréGT-dist (Ours) 97.79
MoiréGT-SPD (Ours) 94.72

1Kipf & Welling (2016), 2Xu et al. (2018), 3Ying et al. (2021),
4Hussain et al. (2022), 5Rampášek et al. (2022)

The results indicate that MoiréGT effectively leverages physical node coordinates when
available, as seen in the MNIST-dist setting. The reduced performance in the MNIST-SPD
setting suggests that the model is less effective when relying solely on topological distances
without explicit spatial coordinates.

4.4 Ablation Study

We conducted an ablation study to evaluate the impact of different focus functions on
MoiréGT’s performance. The study tested Gaussian, Laplacian, Cauchy, Triangle, and Mir-
roredSigmoid functions and a baseline model without any focus function.
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As shown in Figure 3, the Gaussian focus function achieved the best performance on the QM9
dataset, with an MAE of 2.58 meV. The model without any focus function performed signif-
icantly worse, with an MAE of 29.12 meV, underscoring the importance of the focus mech-
anism. The Laplacian focus function failed to converge, suggesting that non-differentiable
points in the Laplacian focus function may hinder training.

Figure 3: MAE of different focus functions on the QM9 dataset. Gaussian achieved the best
MAE (2.58 meV), while the model without a focus function performed significantly worse.
*The Laplacian function failed to converge, resulting in a high MAE (40.56 meV).

The ablation study highlights the effectiveness of the Gaussian focus function in capturing
spatial relationships within the graph. The superior performance suggests that the smooth,
bell-shaped curve of the Gaussian function provides an optimal balance between focusing
on relevant nodes and maintaining gradient stability during training.

4.5 Qualitative Analysis of Focus Mechanism

To further understand the behavior of the focus mechanism, we analyzed the learned shift
(µ) and width (σ) parameters during training. Figure 4 shows how these parameters evolve
over time.

Figure 4: Evolution of mean shift (µ) and width (σ) parameters during training. The dynamic
adjustment of these parameters indicates the model’s ability to adapt its focus to capture
relevant structural information at different stages of learning.

The shifts and widths exhibit dynamic changes, indicating that the model adjusts its focus
range and center as training progresses. This adaptability allows MoiréGT to capture varying
scales of structural information, contributing to its strong performance on graph tasks.

5 Conclusion

We have introduced MoiréGT, a novel graph transformer architecture that eliminates the
need for explicit positional encodings by leveraging a focused attention mechanism inspired
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by moiré patterns. Our approach removes the reliance on global node tricks and complex
positional encodings to infer graph-level properties and node positions, respectively.
By integrating self-loops and carefully designed focus functions, we stabilize the attention
mechanism and gradients while effectively capturing structural information through implicit
positional encoding. Our theoretical analysis demonstrates how the superposition of multiple
focus functions can encode complex graph structures akin to the formation of moiré patterns.
Our experiments on 3D molecular datasets show that MoiréGT achieves state-of-the-art
results, significantly outperforming existing models in predicting molecular properties. The
model also demonstrates promising performance on 2D graphs.
While MoiréGT excels in tasks where physical node locations or meaningful distance mea-
sures are available, it underperforms in settings where such information is absent. This
suggests that the current focus mechanism relies heavily on distance information, which
may not be suitable for all types of graph data.
Future work could explore extending the focus mechanism to incorporate topological features
or integrating effective positional encoding methods in these settings. We believe that further
research can extend MoiréGT’s applicability to a wider range of graph learning tasks.
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A Appendix

A.1 Detailed Theoretical Foundation and Analysis

In this appendix, we provide a detailed theoretical foundation for the Moiré Graph Trans-
former (MoiréGT), demonstrating its mathematical superiority in encoding graph structural
information without explicit positional encodings. We present two key proofs:

1. Prove 1: Optimal encoding of any given space can be achieved through a series of
wavefunctions with different phase distortions. This encoding is analogous to the
superposition of functions related to prime numbers and the Riemann Zeta function.

2. Prove 2: When focusing on local regions, any function can be approximated using
Gaussian or other focus functions employed in our model.

A.1.1 Prove 1: Optimal Encoding via Superposition of Wavefunctions

Background on Wavefunction Superposition In quantum mechanics and signal pro-
cessing, any complex function can be represented as a superposition (sum) of simpler wave-
functions, such as sine and cosine functions with varying frequencies and phases. This prin-
ciple is formalized in Fourier analysis, where a function f(x) can be decomposed into its
frequency components:

f(x) =
󰁝 ∞

−∞
A(ω)eiωx, dω, (5)

where A(ω) is the amplitude of the frequency component ω, and i is the imaginary unit.

Encoding Space with Phase-Distorted Wavefunctions Consider a graph where
nodes are embedded in a continuous space. We aim to encode the positional relationships
between nodes optimally. By employing a series of wavefunctions with different phase dis-
tortions, we can create interference patterns that uniquely encode spatial information.
Let ψn(x) be a set of wavefunctions defined as:

ψn(x) = ei(knx+φn), (6)

where kn is the wavevector (related to frequency), and φn is the phase distortion for the
n-th wavefunction.
By superimposing these wavefunctions, we obtain:

Ψ(x) =
N󰁛

n=1
anψn(x) =

N󰁛

n=1
anei(knx+φn), (7)

where an are amplitude coefficients.

Connection to Moiré Patterns Moiré patterns emerge when two or more patterns with
slight differences are overlaid, resulting in new patterns due to interference. In our context,
the superposition of wavefunctions with different kn and φn values leads to interference
patterns that can capture complex spatial relationships within the graph.

Optimal Encoding and Prime Numbers The distribution of prime numbers is con-
nected to the zeros of the Riemann Zeta function ζ(s). The Riemann Zeta function can be
expressed as an infinite series and has a deep connection with Fourier analysis through its
Euler product representation:

ζ(s) =
󰁜

p,prime

󰀕
1 − 1

ps

󰀖−1
. (8)
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While the direct application of the Riemann Zeta function to graph encoding is non-trivial,
we can draw an analogy by considering that the prime frequencies (analogous to prime
numbers) in our wavefunction superposition contribute uniquely to the encoding, enhancing
the distinctiveness of the positional representation.

Proof of Optimal Encoding To prove that the superposition of wavefunctions with dif-
ferent phase distortions provides an optimal encoding, we rely on the completeness property
of the Fourier basis. Any square-integrable function f(x) can be approximated arbitrarily
closely by a sum of wavefunctions:

f(x) ≈
N󰁛

n=1
anei(knx+φn), (9)

where the coefficients an, frequencies kn, and phases φn are chosen based on the function
f(x).
In our model, each attention head corresponds to a wavefunction with specific focus pa-
rameters (analogous to kn and φn). By combining multiple attention heads, we effectively
perform a superposition of focus functions, allowing us to approximate any desired encoding
function over the node distances.

Implications for MoiréGT The focused attention mechanism in MoiréGT, with multi-
ple heads having different focus parameters, creates interference patterns similar to moiré
patterns. This mechanism enables the model to implicitly encode positional information
optimally, capturing both local and global structural patterns in the graph without explicit
positional encodings.

A.1.2 Prove 2: Local Approximation Using Gaussian Focus Functions

Localization Property of Gaussian Functions Gaussian functions are widely used in
signal processing and probability due to their localization properties. A Gaussian function
centered at µ with width (standard deviation) σ is defined as:

f(d) = exp
󰀕

− (d − µ)2

2σ2

󰀖
. (10)

This function peaks at d = µ and decays rapidly as d moves away from µ. The localization
property allows Gaussians to approximate functions that are significant in a local region.

Approximation of Local Functions Consider a smooth function g(d) that is significant
within a local region around d = µ. We can approximate g(d) using a Gaussian function by
matching the function’s value and derivatives at d = µ.

Taylor Series Expansion Let us expand g(d) around d = µ using a Taylor series:

g(d) = g(µ) + g′(µ)(d − µ) + 1
2g′′(µ)(d − µ)2 + · · · . (11)

For small (d − µ), higher-order terms become negligible, and the function can be approxi-
mated by a quadratic form.

Gaussian Approximation The Gaussian function inherently possesses a quadratic ex-
ponent, making it suitable for approximating functions locally. By adjusting the parameters
µ and σ, the Gaussian function can be tuned to closely match g(d) within the local region.
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Application in Focused Attention In the focused attention mechanism, we adjust the
attention scores based on the distance between nodes using the Gaussian focus function:

log(f(d)) = − (d − µ)2

2σ2 . (12)

By incorporating this into the attention mechanism, we effectively emphasize nodes within
a local region around d = µ and diminish the influence of nodes outside this region.

Proof of Local Approximation Given that any smooth function can be locally approx-
imated by a quadratic function, and the Gaussian function provides a quadratic form in its
exponent, we can conclude that:

g(d) ≈ A exp
󰀕

− (d − µ)2

2σ2

󰀖
, (13)

where A is a scaling factor determined by g(µ).

Implications for MoiréGT By employing Gaussian focus functions with learnable pa-
rameters µ and σ, MoiréGT can adaptively focus on relevant local structures within the
graph. This allows the model to approximate any local function of node distances, effectively
capturing local patterns and enhancing the expressive power of the attention mechanism.

A.1.3 Combining Multiple Focus Functions

Superposition Principle By using multiple attention heads, each with its own focus
function parameters (µh, σh), we can combine the effects of different local approximations
to capture more complex structures.

Combined Focus =
H󰁛

h=1
αhfh(d), (14)

where αh are weighting coefficients, and H is the number of attention heads.

Universal Approximation The universal approximation theorem states that a suffi-
ciently large weighted sum of activation functions can approximate any continuous function
on a compact domain. Similarly, the superposition of multiple Gaussian functions with ap-
propriate parameters can approximate any function over the node distances.

Proof of Universal Approximation Given any continuous function g(d) defined on a
compact interval [a, b], for any 󰂃 > 0, there exists a finite sum of Gaussian functions such
that:

󰀏󰀏󰀏󰀏󰀏g(d) −
H󰁛

h=1
αh exp

󰀕
− (d − µh)2

2σ2
h

󰀖󰀏󰀏󰀏󰀏󰀏 < 󰂃, ∀d ∈ [a, b]. (15)

This result follows from the properties of radial basis functions and their use in function
approximation.

Implications for MoiréGT By utilizing multiple attention heads with different Gaus-
sian focus functions, MoiréGT can approximate complex positional encodings and capture
intricate structural patterns in the graph. This capability contributes to the model’s mathe-
matical superiority in representing and learning from graph data without explicit positional
encodings.
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A.2 Stability and Efficiency Considerations

Numerical Stability In our implementation, we use the logarithm of the focus function
inside the attention mechanism to maintain numerical stability:

Attention(Q, K, V ) = softmax
󰀕

QK⊤
√

dk

+ log(f(D))
󰀖

V. (16)

This formulation prevents issues with very small values of f(D) that could lead to numerical
underflow.

Computational Efficiency The focused attention mechanism avoids the need for explicit
positional encodings or masking strategies, reducing computational overhead. By adjusting
attention scores based on precomputed distance matrices and learnable focus parameters,
we maintain the efficiency of the standard attention mechanism while enhancing its expres-
siveness.

A.3 Conclusion of Theoretical Analysis

The theoretical proofs provided demonstrate that the Moiré Graph Transformer leverages
fundamental principles from Fourier analysis and function approximation to achieve optimal
encoding of graph structures. By employing a focused attention mechanism with multiple
heads and learnable focus functions, the model captures both local and global structural
information effectively.
These mathematical foundations underpin the model’s superior performance in experiments,
validating the design choices and highlighting the advantages of eliminating explicit posi-
tional encodings in favor of implicit, learnable mechanisms.
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