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ABSTRACT

To trust the predictions provided by deep neural networks we need to quantify
the uncertainty. This can be done with Bayesian neural networks. However, they
require a trade-off between exactness and effectiveness. This paper introduces a
new sampling framework: Adaptive Proposal Sampling (APS). APS is a mode
seeking sampler that adapts the proposal to match a posterior mode. When modes
overlap, APS will adapt to a new mode if it draws a sample that belongs to a new
mode. A variant of APS is the approximate Gaussian Proposal Sampler (a-GPS).
We show that it becomes a perfect sampler if it has the same score function as the
posterior. With a warm-start of a pretrained model, combined with stochastic gra-
dients it scales up to deep learning. Results show that a-GPS 1) proposes samples
that are proportional to a mode, 2) explores multi-modal landscapes, 3) has fast
computations, 4) scales to big data. Immediate results suggest that this framework
may be a step towards having both exactness and effectiveness.

1 INTRODUCTION

Deep learning has demonstrated remarkable advancements in safety-critical domains such as driv-
ing (Kendall & Gal, 2017; Mukhoti & Gal, 2019) and health prognosis (Kleppe et al., 2022). The
realization of the potential of deep learning in high-risk situations hinges on our ability to place trust
in the predictions generated by these models (Kendall & Gal, 2017). This trust, in turn, demands a
nuanced understanding of prediction uncertainty. As models grow in capability, there is a growing
focus on researching post-hoc methods for converting pretrained models into quantifiable uncer-
tainty models (Izmailov et al., 2019; Maddox et al., 2019; Daxberger et al., 2021; Kristiadi et al.,
2020; Jospin et al., 2022).

Existing models face limitations, constrained either by their Gaussian posterior approximation (Kris-
tiadi et al., 2020) or inefficient exploration (Welling & Teh, 2011) resulting in a low effective sample
size Nemeth & Fearnhead (2021). This paper introduces a novel sampler designed to swiftly gen-
erate a posterior approximation for any model. This sampler has the flexibility to be multimodal,
while ensuring a high effective sample size within modes.

1.1 RELATED WORK

Markov chain Monte Carlo (MCMC) methods use a pretrained model as a warm-start to generate
new models. However, classical MCMC demands substantial resources, as the Metropolis-Hastings
(MH) correction relies on the entire dataset (Metropolis et al., 1953; Hastings, 1970). This com-
putational inefficiency has encouraged the adoption of stochastic gradient MCMC (SG-MCMC)
(Welling & Teh, 2011; Ma et al., 2015; Nemeth & Fearnhead, 2021) and other approximations of
the MH correction (Zhang et al., 2020a; Bardenet et al., 2017; Zhang et al., 2020b).

Stochastic gradient Langevin dynamics (SGLD) (Welling & Teh, 2011) offers fast computations at
the expense of slow exploration (Gal, 2016; Girolami & Calderhead, 2011; M et al., 2017). The
demand for a computationally fast sampler, disregarding explorative efficiency, has motivated the
application of stochastic gradient descent as an SG-MCMC method (SGD-MC) (M et al., 2017). On
the other hand Hamiltonian Monte Carlo (HMC) achieves higher effective sample size (Neal, 1996a)
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but at an increased computational cost. Recent work by Izmailov et al. (2021) deployed full-gradient
HMC on deep learning, finding its performance comparable to the stochastic gradient version (Chen
et al., 2014). However, SG-MCMC methods rely on inefficient proposal dynamics that generates
few effective samples per epoch, even from a warm-start, making it expensive for deep learning
problems. There is a need for a framework addressing these challenges by self-adjusting towards
a perfect sampler, meaning that it must produce independent samples from the true distribution,
obviating the need for an MH correction.

Various frameworks aim to quantify uncertainty in pretrained models. Monte Carlo dropout (MC-
dropout) (Gal & Ghahramani, 2016) randomly drops neurons during training and inference, requires
an architecture with dropout layers. There is need for a model-agnostic method. The Laplace ap-
proximation (LA) (Daxberger et al., 2021) estimates a Gaussian posterior shape using the pretrained
weights as the mean, typically limited to the last layer. There is a need for an approach that can be
applied to all layers. Stochastic weight averaging (SWA) (Izmailov et al., 2019) and SWA-Gaussian
(SWAG) (Maddox et al., 2019) use the trajectory of SGD-MC inside a mode around the pretrained
weights. These methods restrict their posterior approximation to a Gaussian. There is a need for
a multi-modal posterior. MC-dropout, LA and SWA suffer limitations in terms of inexactness and
slow exploration, restrictions to a unimodal posterior, reliance on specific model architectures, or
computational inefficiency during inference. There is a need for a framework that overcomes these
limitations.

1.2 OUR CONTRIBUTIONS

In this paper, we introduce a novel sampling framework with distinct features.

• First, the method is self-adjusting towards a perfect sampler, meaning that it produces
independent samples from the true distribution, obviating the need for an MH correction.

• Second, unlike MC-Dropout, our approach is model-agnostic, ensuring versatility across
various models.

• Third, the proposed method can be applied to large models, thus overcoming the notable
memory weakness of LA.

• Fourth, the proposed method supports a multi-modal posterior, thus overcoming limita-
tions in methods like LA, SWA, and SWAG.

• Fifth, the proposed model demonstrates higher efficiency compared to SG-MCMC, SWA,
and SWAG. It has linear inference time with respect to the number of samples, in contrast
to SWA and SWAG. The method provides efficient exploration and computation, crucial
for dealing with large models and datasets.

Our method surpasses the limitations encountered by SG-MCMC, MC-dropout, LA, and SWA, pro-
viding a solution that mitigates computational demands during training/sampling, addressing issues
of inexactness and slow exploration, eliminating restrictions to a unimodal posterior, operating inde-
pendently of specific model architectures, and ensuring computational efficiency during inference,
thereby fulfilling the crucial need for a comprehensive framework. These contributions collectively
position our framework as a robust and versatile tool for Bayesian inference tasks.

2 ADAPTIVE PROPOSAL SAMPLING

The Adaptive Proposal Sampler (APS) is a framework designed to dynamically adjust the parameters
of a proposal distribution, aiming to replicate the local shape of the posterior distribution f . APS
operates under the assumption that modes share the same score function (∇ log f ) as the selected
proposal distribution q. This mode-seeking sampler adapts ∇ log q to align with the score function
of a posterior mode. In the case of overlapping modes, APS adjusts to a new mode when it draws a
sample belonging to a new mode. The primary objective of APS is to generate samples that faithfully
represent the true distribution, steering clear of inefficient random walk behavior. We posit that if
the sampler aligns with the score function, a Metropolis-Hastings correction becomes unnecessary.

A specific instance of APS is the Gaussian Proposal Sampler. We demonstrate that it converges to a
perfect sampler when it shares the same score function as the target. A perfect sampler q generates
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a sample θ with the exact probability of f(θ) (Propp & Wilson, 1996). We advocate for the use
of the Gaussian Proposal Sampler due to its effectiveness in handling multi-modal distributions. In
Appendix I we also propose parameter updates for a Beta and Gamma Proposal Sampler.

2.1 THE GAUSSIAN PROPOSAL SAMPLER (GPS)

Assuming the posterior has a density function

f(θ) = c exp g(θ) ∝ N (µ, σ2). (1)

To sequentially sample from the posterior, we assume access to θt and the score function
∇ log f(θt), the derivative of log f(θt) with respect to θt. As ∇ log f(θ) is independent of the
scalar c, we propose to approximate f(θ) with a Gaussian distribution q = N (µt+1, σ

2
t+1). We have

∇ log f(θ) ≈ ∇ log q(θ), (2a)

= − (θ − µt+1)

σ2
t+1

. (2b)

Setting these equal at θ = θt, we express the conditional update for µt+1 as

µt+1 | σ2
t+1 = θt + σ2

t+1 ×∇ log f(θt). (3)

For the update of σ2
t+1, we note that

∇2 log f(θ) ≈ ∇2 log q(θ) (4a)

=
−1
σ2
t+1

. (4b)

An approximation of ∇2 log f(θ) can be expressed as

∇2 log f(θ) ≈ ∇ log f(θ)−∇ log f(µt)

θ − µt
. (5)

Setting this equal at θ = θt, we get

∇2 log q(θt) = ∇2 log f(θt), (6a)
−1
σ2
t+1

=
∇ log f(θt)−∇ log f(µt)

θt − µt
. (6b)

Thus, the conditional update for σ2
t+1 is

σ2
t+1 | µt =

∣∣∣∣ θt − µt

∇ log f(θt)

∣∣∣∣ . (7)

These conditional parameter updates from Equations (3) and (7) provide a q that approximates the
score function of f . Refer to Appendix B for proof that q converges to match the score function
of any f ∝ N (µ, σ2) and becomes a perfect sampler. For θ ∈ Rd, the parameters are considered
independent, making the proposal a diagonal multivariate Gaussian q = Nd(µt+1, σ

2
t+1Id×d), where

µt+1 ∈ Rd and σ2
t+1 ∈ Rd. When f is an arbitrary density, the MH correction is typically needed

to ensure exactness in the sampler dynamics, so we provide an exact GPS algorithm in Appendix C.

For stability and efficiency, we introduce an upper variance limit λ. This hyperparameter limits
the potential risk of overestimating the underlying variance around saddle points or other flat areas,
or to ensure that samples remain sufficiently close to high density area (see Appendix E, for more
details). Although it can limit the exploration, if modes are far apart, to counter this the posterior
can be tempered (Neal, 1996b) to flatten the modes.
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Algorithm 1 Approximate Gaussian Pro-
posal Sampler

Input: Specify λ, µ0, σ0

θ1 ∼ N (µ0, σ
2
0)

for t = 1 to T samples do
σ2
t+1 ←

∣∣∣ θt−µt

∇ log f(θt)

∣∣∣
µt+1 ← θt + σ2

t+1 ×∇ log f(θt)√
σ2
t+1 = min(

√
σ2
t+1, λ)

θt+1 ∼ N (µt+1, σ
2
t+1)

end for Figure 1: Histograms of 1000 samples from a sin-
gle run with various methods for the target distri-
bution N (2, 4)

2.1.1 APPROXIMATE GAUSSIAN PROPOSAL SAMPLER (A-GPS)

We argue that we can ignore the Metropolis-Hastings (MH) correction without suffering from inef-
ficient sampling and slow exploration. This MH-free version of GPS is referred to as approximate
GPS (a-GPS). Consider the case of Equation (1); as the Gaussian proposal adapts its parameters

q(θ)→ d exp g(θ) ∝ f(θ), (8)

the MH acceptance rate α → 1 (see the Appendix B for proof). In the more general case of N
modes when

f(θ) =

N∑
i=1

fi(θ), (9)

where fi is a mode as:
fi(θ) = ci exp gi(θ) ∝ N (µi, σ

2
i ), (10)

then for a mode fi, we still have that if

q(θ)→ d exp g(θ) ∝ fi(θ), (11)

then the MH acceptance rate for the specific mode αi → 1, where αi is defined as:

αi(θ, θ∗) = min{1, fi(θ∗)q(θ|θ∗)
fi(θ)q(θ ∗ |θ)

}. (12)

To motivate the use of a mode-specific MH instead of global MH, consider that in deep learning
it is intractable to the explore all modes, as there are millions (Jospin et al., 2022). The predictive
performance benefits from exploring some different modes (Abe et al., 2022; Fort et al., 2021;
2020). Most of the modes are equally good (Keskar et al., 2017; LeCun et al., 2015). The modes are
assumed to be Gaussian (Daxberger et al., 2021; Maddox et al., 2019; Izmailov et al., 2019). The
differences between true gradient and stochastic gradient MCMC in deep learning are negligible
(Izmailov et al., 2021). Thus, it is not possible to explore all the modes in the true distribution,
though we want samples from some different modes. Since the modes can be approximated by a
Gaussian, we have the case of Equation (9), and since the modes are equally good the estimation
of mixing parameters ci are not important. What is important is to get samples from some modes,
which we can achieve with a mode specific MH. However, if the modes can be approximated with
a Gaussian, then with GPS the mode-specific MH αi → 1. Therefore we can use GPS without
the MH mode correction, which is the approximate GPS (pseudo code for a-GPS in Algorithm 1).
Finally, since stochastic gradients are sufficient, we propose to use a-GPS with stochastic gradients
for deep learning.
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Figure 2: Left: Histogram of the effective sample size on the unimodal example, replicated 100
times. Right: The samples of retrieved from one run with a-GPS, NUTS and MALA when the true
distribution is a multi-modal mixture model.

3 RESULTS AND DISCUSSION

The following results present a collection of experiments conducted on simulated data, CI-
FAR10/100 (Krizhevsky, 2009), and ImageNet (Deng et al., 2009). The employed methods in-
clude NUTS (Hoffman & Gelman, 2014), Langevin dynamics Roberts & Rosenthal (2001), Laplace
approximation (Daxberger et al., 2021), MC-dropout (Gal & Ghahramani, 2016) (Note: VGG-16
is the only architecture with dropout nodes), stochastic weight averaging (SWA) (Izmailov et al.,
2019), stochastic weight averaging Gaussian (SWAG) (Maddox et al., 2019), stochastic gradient de-
scent MCMC (SGD-MC) (M et al., 2017), and our method a-GPS. When addressing both SWA and
SWAG, we may use the notation SWA(G).

3.1 SIMULATED EXPERIMENTS

In this section, we compare a-GPS (ours) against the successful No-U-Turn sampler (NUTS) (Hoff-
man & Gelman, 2014). NUTS is a version of Hamiltonian Monte Carlo and is regarded as the gold
standard baseline. Additionally, we include the Metropolis-adjusted Langevin algorithm (MALA).
We test the sampler on a Gaussian target and a mixture of non-Gaussian distributions.

In the first example we have a Gaussian mode N (2, 4). For our method we set the initial values as
λ = 10, µ0 = 0 and σ0 = 1 and our initialisation is θ1 ∼ N (µ0, σ

2
0). Then a-GPS generates 1000

samples, without burn-in. We found that a-GPS converges towards a perfect sampler in just a few
steps so a dedicated burn-in period was unnecessary. For NUTS we used PyRo’s implementation
(Bingham et al., 2019), and their automatic tuning parameter schedule, the burn-in time was set to the
standard of 1000, then 1000 samples were generated. For MALA we used PyRo’s implementation of
HMC with stepsize and trajectory length set to 1, as Langevin dynamics is a special case of HMC.
We further set the targeted acceptance rate to 0.7 as this is optimal for MALA in 1D (Roberts &
Rosenthal, 2001). The samples are compared in Figure 1.

Among the methods, a-GPS demonstrates superior time efficiency (Table 1), requiring only 0.4
seconds compared to 4.6 for NUTS and 2.3 for MALA. This represents a substantial speedup for
a-GPS. The Effective Sample Size (ESS) metric, accounting for sample correlation, indicates the
quality of samples. Histograms of the effective sample sizes (ESS) are shown in Figure 2: a-GPS
significantly outperforms NUTS, yielding an ESS of 954 compared to 364 for NUTS. MALA lags
behind with an ESS of 74.9

In order to test our sampler on something where it is never proportional to a mode, we defined a
mixture model as f = lst(3, 0.2, 1) + Gumbel(1, 0.6) + Gumbel(5, 2) + lst(6, 1, 1), where lst
is the location-scale t-distribution. We use a-GPS with the initial values λ = 3, µ0 = 0, σ0 = 1
and θ1 ∼ N (µ0, σ

2
0). The setup for NUTS and MALA is the same as the unimodal example.

The samples from one run are shown in Figure 2 (Right). In the mixture scenario, a-GPS remains
highly time-efficient, requiring only 2.0 seconds per 1000 samples. This is significantly faster than
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Table 1: We report the average time (in seconds) for (burn-in + 1000 samples) and Effective Sample
Size (ESS) for 1000 samples over 100 replications. All runs were conducted on the same computer
configuration.

Method Unimodal (time) ↓ Unimodal ESS ↑ Mixture (time) ↓ Mixture ESS ↑
NUTS (HMC) 4.6 364 30.0 105.2
MALA (Langevin) 2.3 74.9 4.9 36.8
a-GPS 0.4 954 2.0 70.2

NUTS (30.0) and MALA (4.9). ESS assumes unimodality, thus its usefulness may be limited in the
multimodal setting. However, a-GPS maintains strong sampling quality even in the mixture setting,
achieving an ESS of 70.2. While NUTS exhibits a higher ESS (105.2), a-GPS remains competitive
and offers notable time savings.

3.2 DEEP LEARNING EXPERIMENTS

All methods utilize a single pretrained network as a warm start; refer to Section G for details on
obtaining pretrained models. In the main text, tables are vertically split into two sections: the
top section comprises methods involving a single forward pass, while the bottom section includes
methods that perform a Bayesian model average with multiple forward passes during inference. The
inference time (Inference ↓) is highlighted in bold for methods with multiple forward passes.

We adopt the setup from Daxberger et al. (2021) for the Laplace approximation (LA) and refer to
Maddox et al. (2019) for the configurations of MC-dropout, SWA, and SWAG. In the case of a-GPS,
we maintain the hyperparameters (i.e. batch size, weight decay) as in Maddox et al. (2019), with
the exception of replacing the stochastic gradient descent optimizer with our a-GPS method. We
set our hyperparameters to µ0 = θMAP , σ0 = λ and the variance limit λ, we experimented with
various values, namely λ = {1e−4, 1e−5, 1e−6, 1e−7} (refer to Appendix K for a comprehen-
sive table of results). The variance limit remains constant throughout the post-hoc training. Refer
to Appendices E and F for details on preventing divergence and the significance of a maximum
variance limit. All methods collected the same number of samples, totaling 20 samples for CI-
FAR10/100, CIFAR5/5, CIFAR50/50, and 45 samples for ImageNet. The experiments employed a
batch size of 256 and utilized cross-entropy loss. The evaluation metrics, including Accuracy (Acc),
Negative Log Likelihood (NLL), and Expected Calibration Error (ECE), are explained in detail in
Appendix H.3.1. These metrics were calculated using the results from a holdout test dataset. The
reported values represent the mean ± 1 standard deviation (STD) obtained from five independent
runs using pretrained models. For information on the pretrained models, please refer to Section G.

3.2.1 CIFAR10 AND CIFAR100 RESULTS

For CIFAR10, we present the results in Table 2 using the VGG16 architecture (Simonyan & Zisser-
man, 2015). All methods achieve similar accuracy. We report a-GPS with λ ∈ {1e − 4, 1e − 7}.
Among the methods with multiple forward-passes at inference MC-Dropout is fastest, likely due to
the rapidness of drawing a new sample every forward-pass, unlike SGD-MC and a-GPS that fetch
stored models in memory. However, MC-Dropout is limited to dropout architectures. We report
LA to be faster than MAP and hypothesize that this is due to the optimisation of LA happening just
before inference, thus all or some of the data may be in memory. To determine whether our sam-
pler explored multiple modes, we applied the SWAG model to the samples of a-GPS (denoted as
λ-SWA(G)). Since SWAG constructs a Gaussian approximation of the collected samples, it should
yield similar results if the samples are all from one mode. We observe that for a-GPS-7 and 7-
SWAG, the results are identical, suggesting that a-GPS-7 stayed in one mode. However, a-GPS-4
and 4-SWAG exhibit a noticeable discrepancy in accuracy and a significant difference in ECE and
NLL (Table 2). This suggests that a-GPS-4 has traversed different modes separated by relatively
high loss (low accuracy) areas.

In Table 3, we present the results for CIFAR100 obtained using the WideResNet28-10 architecture
(Zagoruyko & Komodakis, 2017). Once again, we observe indications that a-GPS-4 explored more
than just a single mode, as evidenced by the performance drop in 4-SWA(G). This exploration
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Table 2: Performance results for VGG16 on CIFAR10. Mean ± 1STD of 5 runs are reported. MAP
represents the performance of five pretrained models. MC-drop is the dropout method, and Laplace
(LA). a-GPS-λ-SWA(G) is abbreviated as λ-SWA(G). λ-SWA(G) is the result of building a SWA(G)
model with a-GPS samples. SGD-MC is stochastic gradient descent used as a sampler. Inference ↓
denotes the relative inference time to MAP.

Method Acc ↑ ECE ↓ NLL ↓ Inference ↓
MAP 93.02 ± 0.19 4.88 ± 0.26 0.34 ± 0.01 1.0
LA 93.04 ± 0.16 2.66 ± 0.23 0.25 ± 0.01 0.16
SWA 93.18 ± 0.16 4.18 ± 0.15 0.27 ± 0.01 1.09
7-SWA 93.06 ± 0.17 4.96 ± 0.22 0.35 ± 0.01 1.09
4-SWA 39.58 ± 18.62 60.3 ± 18.7 9.63 ± 3.01 1.09

MC-drop 93.02 ± 0.19 4.44 ± 0.26 0.31 ± 0.01 2.06
SGD-MC 93.22 ± 0.23 1.30 ± 0.24 0.21 ± 0.00 2.85
SWAG 93.20 ± 0.18 1.08 ± 0.24 0.21 ± 0.00 10.91
7-SWAG 93.04 ± 0.21 4.96 ± 0.22 0.35 ± 0.01 10.91
4-SWAG 45.06 ± 18.63 25.0 ± 5.72 2.08 ± 0.76 10.91
a-GPS-4 91.64 ± 0.12 43.6 ± 4.96 0.85 ± 0.10 2.85
a-GPS-7 93.04 ± 0.21 4.96 ± 0.22 0.35 ± 0.01 2.85

Table 3: CIFAR100 results with WideResNet28-10. a-GPS-4-SWA(G) is denoted as 4-SWA(G).
SGD-MC is used as a sampler for SWA(G).

Method Acc ↑ ECE ↓ NLL ↓ Inference ↓
MAP 79.50 ± 0.30 5.94 ± 0.27 0.89 ±0.01 1.0
LA 79.40 ± 0.35 18.52 ± 0.65 1.02 ± 0.02 17.93
SWA 80.64 ± 0.27 6.76 ± 0.08 0.77 ± 0.01 1.12
4-SWA 77.70 ± 0.28 9.56 ± 0.70 0.97 ± 0.02 1.12

SGD-MC 80.44 ± 0.24 9.34 ± 0.25 0.76 ± 0.01 2.89
SWAG 80.14 ± 0.21 4.80 ± 0.60 0.73 ± 0.01 10.80
4-SWAG 74.92 ± 0.15 46.76 ± 1.48 1.72 ± 0.05 10.80
a-GPS-4 78.64 ± 0.26 2.60 ± 0.33 0.78 ± 0.01 2.89
a-GPS-5 79.82 ± 0.31 3.92 ± 0.28 0.82 ± 0.01 2.89
a-GPS-7 79.86 ± 0.36 5.40 ± 0.19 0.86 ± 0.01 2.89

appears to have benefited a-GPS-4, as its Expected Calibration Error (ECE) is significantly lower
than that of the other methods.

3.2.2 IMAGENET RESULTS

For the ImageNet2012 classification dataset (Deng et al., 2009), we used PyTorch’s (Paszke et al.,
2019) recipe for ResNet-50-V11 (He et al., 2016). This training procedure was replicated five times
with five different seeds to obtain 5 different pretrained models. We followed Maddox et al. (2019)’s
procedure for obtaining the SWA(G) model on ImageNet. For a-GPS, we chose the variance limits
λ = {1e−4, 1e−5, 1e−6}. Since the CIFAR10/100 experiments suggested that a-GPS explored the
landscape, we also ran experiments with a-GPS for only one epoch, effectively decreasing training
time 10x (Train ↓ denotes the post-hoc training epochs).

In Table 4, LA suffers compared to MAP, especially with regards to ECE, suggesting that the mode
of MAP is non-Gaussian. SWAG also constructs a Gaussian, though it may have a smaller variance
than LA. The best is SGD-MC; the good performance may come from traversing around the top
of a mode, which may not be Gaussian. A-GPS performs well, even for a relatively large variance
limit. We do emphasize that a-GPS does not optimize a loss to achieve good performance, it draws
a random sample from the approximation of the landscape. Notice, however, that a-GPS-1-4 does
better than a-GPS-4; perhaps a-GPS-4 diverged slightly because of too much noise over time. In

1github.com/pytorch/vision/tree/main/references/classification
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Table 4: Metrics on ImageNet with the ResNet-50 architecture. The 1-λ denotes the results for when
a-GPS was only run for a single epoch instead of 10.

Method Acc ↑ ECE ↓ NLL ↓ Inference ↓ Train ↓
MAP 76.10 ± 0.06 3.34 ± 0.08 0.95 ± 0.004 1 -
LA 75.86 ± 0.10 15.32 ± 0.12 1.05 ± 0.004 28.69 1
SWA 76.45 ± 0.05 2.15 ± 0.05 0.93 ± 0.002 12.36 10
1-4-SWA 66.56 ± 0.85 6.86 ± 0.26 1.62 ± 0.053 12.36 1

SGD-MC 76.58 ± 0.13 1.88 ± 0.04 0.91 ± 0.004 14.31 10
SWAG 76.50 ± 0.10 5.05 ± 0.15 0.94 ± 0.001 370.01 10
a-GPS-4 70.74 ± 0.12 8.14 ± 0.15 1.25 ± 0.004 14.31 10
a-GPS-1-4 73.98 ± 0.10 5.04 ± 0.05 1.08 ± 0.006 14.31 1
a-GPS-6 76.14 ± 0.08 3.70 ± 0.09 0.95 ± 0.004 14.31 10
a-GPS-1-6 76.12 ± 0.07 3.60 ± 0.00 0.95 ± 0.004 14.31 1

Table 5: Predictive entropies for the CIFAR5-5
and WideResNet28-10, in (IND) and out (OOD)
of distribution. For IND, lower is better; for
OOD, higher is better.

Method IND ENT ↓ OOD ENT ↑
MAP 0.08 ± 0.003 0.67 ± 0.016
LA 0.12 ± 0.004 0.67 ± 0.016
SWA 0.08 ± 0.003 0.54 ± 0.008

SGD-MC 0.13 ± 0.059 0.85 ± 0.151
SWAG 0.12 ± 0.039 0.77 ± 0.186
a-GPS-4 0.08 ± 0.005 0.60 ± 0.016
a-GPS-5 0.07 ± 0.003 0.64 ± 0.012
a-GPS-6 0.07 ± 0.003 0.66 ± 0.012

Table 6: Predictive entropies for the
CIFAR50-50 and WideResNet28-10, in
(IND) and out (OOD) of distribution. For IND,
lower is better; for OOD, higher is better.

Method IND ENT ↓ OOD ENT ↑
MAP 0.98 ± 0.105 1.08 ± 0.011
LA 2.99 ± 0.060 1.91 ± 0.015
SWA 0.67 ± 0.045 3.42 ± 0.318

SGD-MC 1.38 ± 0.142 1.04 ± 0.022
SWAG 1.28 ± 0.171 3.17 ± 0.112
a-GPS-4 0.64 ± 0.058 2.28 ± 0.119
a-GPS-5 0.85 ± 0.060 2.38 ± 0.127
a-GPS-6 1.04 ± 0.102 2.95 ± 0.189

addition, a-GPS-1-4 may have explored different modes in a short amount of time since 1-4-SWA(G)
gets a significant decrease in performance. All results are reported in Appendix K.

The average inference time (Inference ↓) of the five runs shows that the inference time for big
datasets is an issue for SWA(G). The time of SWA is comparable to a-GPS, even though SWA only
does one forward pass, and a-GPS does 45. While SWAG only does 30 forward passes, a-GPS is
still 25-30x faster. For more information about why SWA(G) has such a slow inference time, see
Appendix H.

3.3 OUT-OF-DISTRIBUTION (OOD)

In order to construct an OOD test for the CIFAR10/100 datasets, the models were trained with
the exact same hyperparameters as in Section 3.2.1. However, the data was split class-wise into
two equally sized groups; (0, 1, 2, 8, 9) and (3, 4, 5, 6, 7) for CIFAR10 following Maddox et al.
(2019), and 0 → 49 and 50 → 99 for CIFAR100. This gives us two new datasets CIFAR5-5 and
CIFAR50-50. The models were only trained on half of the classes. We report the predictive entropy,
defined as

ENT = −
∑
D

f(Dx) log f(Dx). (13)

The validation set is also split in the same manner. To test the predictive entropy for in-distribution
data (IND ENT), we use the partition of the validation dataset with the same classes that were used
during training. For the predictive entropy on OOD (OOD ENT), we use the partition of classes
from the validation dataset that was not used during training. All experiments were replicated 5
times to provide the mean and standard deviation of the total predictive entropy for IND and OOD.
We report results for the WideResNet28-10 see Appendix K for more results.
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In Table 5, a-GPS-5 and a-GPS-6 are both certain about IND and are relatively uncertain about
OOD; this is desired behavior. The other methods also exhibit similar behavior, though SWA has a
smaller relative difference. SGD-MC is most uncertain for OOD.

From Table 6, we observe undesirable behavior from SGD-MC and LA as they exhibit higher uncer-
tainty for IND than OOD. SGD-MC relies on the inherent noise present in the data, and as a result,
fluctuations in the training set may lead to inconsistent uncertainty estimates. When the assumptions
of LA do not align with the true distribution, especially in complex and multimodal scenarios, LA
fails to accurately capture the underlying uncertainty. In the case of our experiments, both SGD-
MC and LA’s inconsistency in uncertainty estimates for in-distribution and out-of-distribution data
suggests a failure to adapt to the true data distribution. Once again, a-GPS demonstrates greater
certainty about IND and relatively higher uncertainty for OOD, though SWA exhibits the highest
uncertainty for OOD.

4 CONCLUSION

In conclusion, our study highlights the Adaptive Proposal Sampling framework, particularly through
the approximate Gaussian proposal sampler (a-GPS). A-GPS excels in unimodal scenarios, demon-
strating fast parameter updates and high-quality sampling. Even in the face of challenging mixture
distributions, it maintains a good balance between speed and effectiveness, positioning itself as a
versatile tool for Bayesian inference tasks.

A-GPS exhibits computational efficiency during training, rivaling SGD in speed, making it a feasible
option for time-sensitive tasks. Compared to established methods like HMC and Langevin dynamics,
a-GPS showcases superior computational speed while maintaining a substantial effective sample
size, especially within modes. In deep learning contexts, a-GPS achieves comparable results to
SWA, SWAG, and SGD-MC with significantly reduced training time, suggesting notable efficiency
gains. During inference, a-GPS demonstrates linear computational complexity with the number
of samples. Effectively scaling to large datasets, unlike SWA and SWAG, it maintains a balanced
trade-off between computational speed and model exploration.

The observed behaviors in methods like SGD-MC and LA underscore the need for a nuanced and
adaptive approach to uncertainty modeling. Unlike a-GPS, these conventional methods may lack the
flexibility required to navigate diverse data distributions and could oversimplify complex structures
inherent in real-world datasets. A-GPS, with its adaptability and exploration capabilities, emerges
as a promising alternative that aligns well with the intricacies of uncertainty in various scenarios.

While not surpassing standards universally, the model showcases competitiveness as a novel sam-
pler, swiftly generating a posterior approximation for any model. Its multimodal capability, coupled
with a high effective sample size within modes, underscores the need for further exploration and
elaboration.

In summary, a-GPS emerges not just as a solution to uncertainty modeling challenges but as a cat-
alyst for advancing the broader field of machine learning. Its adaptability, efficiency, and potential
for exploration position it as a promising alternative in the pursuit for robust Bayesian inference
methodologies.
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A BAYESIAN SETTING AND DEEP LEARNING

Bayesian methods aim to find the posterior distribution of the parameters vector θ:

p(θ|D) =
p(D|θ)p(θ)

p(D)
, (14)

where p(θ) is the prior, D represents the data, p(D|θ) is the likelihood, and p(D) is the normalizing
factor. Using the posterior, we can calculate the posterior predictive distribution for a new data point
x∗:

p(y∗|x∗, D) =

∫
p(y∗|x∗, θ)p(θ|D)dθ. (15)

While this integral is often intractable, it can be approximated with a Monte Carlo estimate:

p(y∗|x∗, D) ≈
∑
S

p(y∗|x∗, θs), (16)

where θs ∼ p(θ|D) is a sample from the posterior. Various Bayesian methods have their own
approaches to obtaining the posterior p(θ|D).

Score matching (Hyvärinen, 2005) utilizes the fact that the posterior p(θ|D) has a log gradient with
respect to the input θ that is independent of the normalizing factor p(D). The ∇ log p(θ|D) is re-
ferred to as the score function. Hyvärinen (2005) proposes optimizing a score matching objective to
find the parameters of interest. We suggest parameter updates such that a chosen proposal distribu-
tion q(θ) converges to match the score function of the posterior.

In the context of deep learning, the objective is to minimize a loss function with respect to the
parameters given the data,LDx,Dy

(θ), where Dx and Dy represent the data-label pairs of the dataset.
In the Bayesian perspective, the loss function is interpreted as the negative log likelihood, and L2-
regularization (||θ||) serves as a Gaussian prior. Thus, the posterior can be expressed as:

f(θ | Dx, Dy) ∝ exp(−LDx,Dy
(θ)) exp(−||θ||). (17)

This leads to:
log f(θ | Dx, Dy) = −(LDx,Dy

(θ) + ||θ||). (18)

B CONVERGENCE OF GAUSSIAN PROPOSAL

We can expand the update for µt+1 as

µt+1 | σ2
t+1 = θt + σ2

t+1 ×∇ log f(θt) (19a)

= θt +

∣∣∣∣ θt − µt

∇ log f(θt)

∣∣∣∣×∇ log f(θt) (19b)

= θt + sgn [∇f ]× |θt − µt| , (19c)

where sgn[∇f ] is the sign function of∇ log f(θt), and | · | is the absolute value.

In the case where f ∝ N (µ, σ2) (i.e. g(θ) = −(θ−µ)2

2σ2 ), we have that

σ2
t+1 = σ2

∣∣∣∣θt − µt

θt − µ

∣∣∣∣ , (20)

thus the variance estimate is unbiased whenever µt = µ. However, when µt ̸= µ the true variance
is likely to be underestimated as θt ∼ q = N (µt, σ

2
t ) likely is closer to the mean of the distribution

it was drawn from. It then follows that we are likely to underestimate the true variance

σ2
t+1 = σ2

∣∣∣∣θt − µt

θt − µ

∣∣∣∣ < σ2. (21)

When it comes to the update of µt+1, we have that

sgn[∇f ] = sgn

[
−θt − µ

σ2

]
= sgn[−θt + µ], (22)

13
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since we assume σ2 > 0. Thus the sign of the gradient sgn[∇f ] indicates to which side the true µ
lies in relation to our current sample θt,

sgn[∇f ] =


1 θt < µ

−1 θt > µ

0 θt = µ.

(23)

If sgn[∇f ] is the same as sgn[−(θt − µt)] = sgn[∇qt−1(θt)] (onward denoted as sgn[∇q]) then we
do not change our estimate of µ. For example if sgn[∇q] = sgn[∇f ] then

µt+1 = θt + sgn[∇q]|θt − µt| = µt. (24)

On the other hand if the direction of the true mean is different from our estimate, sgn[∇f ] =
−sgn[∇q], our estimate will then change to

µt+1 = θt − sqn[∇q]|θt + µt| ≠ µt. (25)

The case when sgn[∇f ] = −sgn[∇q] ̸= 0 only happens when we have sampled a θt that lies
between the true µ and the current estimate µt:

θt ∈
{
(µt, µ) θt > µt

(µ, µt) θt < µt.
(26)

It follows that
0 <

θt − µ

µt − µ
< 1. (27)

Where the probability to get as close or closer to µ is (in the case µt < µ)

P (|µt+1 − µ| ≤ |µt − µ|) =
∫ µ

µt

q(θ)dθ. (28)

In the edge cases when θt = µ then Equation (19) gives µt+1 = µ because sgn[∇f ] = 0, and also
if θt = µt then Equation (19) gives µt+1 = µt because |θt − µt| = 0. Thus, µt+1 will always be as
close or closer to µ.

This gives us convergence of both parameters as the estimate of µt+1
t−→∞−−−−→ µ, from Equation (7)

we also have a convergence of the variance

σ2
t+1 =

∣∣∣∣(θt − µt)×
1

∇ log f(θt)

∣∣∣∣ , (29a)

σ2
t→∞ =

∣∣∣∣(θt − µ)× σ2

−(θt − µ)
n

∣∣∣∣ (29b)

= σ2. (29c)

Thus the Gaussian proposal q converges to match the score function to any f ∝ N (µ, σ).

C EXACT GAUSSIAN PROPOSAL SAMPLER

The exact GPS uses the MH correction and it takes into consideration that the proposals are not
symmetric i.e. q(θ ∗ |θt) ̸= q(θt|θ∗). Proof of convergence can be found in Appendix D.

D CONVERGENCE

To ensure that the stationary distribution of the Markov chain is the target distribution, it needs to
be reversible with respect to the target (Metropolis et al., 1953; Hastings, 1970; Rosenthal, 2011):
f(i)p(j|i) = f(j)p(i|j). The probability of going from state i to state j can be deconstructed

14
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Algorithm 2 Exact Gaussian Proposal Sampler

Input:Variance limit= λ, µ0 = 0, σ0 = λ
θ1 ∼ N (µ0, σ

2
0)

for t = 1 to T samples do
σ2
t+1 ←

∣∣∣ (θt−µt)
∇ log f(θt)

∣∣∣
µt+1 ← θt + σ2

t+1 ×∇ log f(θt)√
σ2
t+1 = min(

√
σ2
t+1, λ)

θ∗ ∼ q(· | θt) = N (µt+1, σ
2
t+1)

σ2∗ ←
∣∣∣ (θ∗−µt+1)
∇ log f(θ∗)

∣∣∣
µ∗ ← θ∗ + σ2∗ ×∇ log f(θ∗)

√
σ2∗ = min(

√
σ2∗, λ)

q(· | θ∗) = N (µ∗, σ2∗)

Metropolis-Hastings correction:
Accept θt+1 = θ∗ with probability α(θt, θ

∗) = min{1, f(θ∗)q(θt|θ∗)
f(θt)q(θ∗|θt) } otherwise θt+1 = θt

end for

p(j|i) = q(j|i)α(i, j), where q(j|i) is probability of sampling j from state i, and α(j, i) is the
probability of accepting the proposed state j.

In our case it can happen that q(j|i) ̸= q(i|j), so the general Metropolis-Hastings acceptance rule
(Hastings, 1970) which can be written as

α(i, j) = min{1, f(j)q(i|j)
f(i)q(j|i)

}, (30)

has to be applied in order to guarantee reversibility,

Given this acceptance rule it follows that if α(i, j) < 1, then α(j, i) ≥ 1 so

f(i)p(j|i) = f(j)p(i|j) (31a)
f(i)q(j|i)α(i, j) = f(j)q(i|j)α(j, i) (31b)

f(i)q(j|i)f(j)q(i|j)
f(i)q(j|i)

= f(j)q(i|j). (31c)

Conversely, if α(i, j) ≥ 1, then α(j, i) < 1 so

f(i)p(j|i) = f(j)p(i|j) (32a)
f(i)q(j|i)α(i, j) = f(j)q(i|j)α(j, i) (32b)

f(i)q(j|i) = f(j)q(i|j) f(i)q(j|i)
f(j)q(i|j)

. (32c)

E HITTING MINIMA IN THE SEARCH FOR MAXIMA

Assuming the Gaussian form, there exist no minimum. However, the true target distribution may
consist of multiple modes, thus it has at least one minimum. Whenever, θt is close to a minimum,
the proposal distribution mimics a Gaussian that has its peak close to the minimum. This resulting
Gaussian may have a very high variance, and in order to limit this pitfall the authors suggest to set a

maximum limit λ on the proposed variance,
√

σ2
t+1 = min

(√
σ2
t+1, λ

)
. The choice of a variance

15
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limit λ may be specific to each problem, and this will of course limit the exploration if the true
distribution has a high variance. However, for deep learning it may be beneficial to have a more
conservative limit.

F CHOOSING THE VARIANCE LIMIT FOR DEEP LEARNING

In deep learning where there are millions of parameters, the amount of noise induced can be too
much and the sampler may diverge. In order to find a variance limit, we tried different limits and
observed the training loss for some batches. If the training loss diverged then the variance limit
was too high. In the other end if it is too low then it might not explore. In the end we chose a set
of variance limits λ = {1e−4, 1e−5, 1e−6, 1e−7} that did not diverge in training loss. For some
limits the training loss and accuracy increased compared to the pretrained starting point, other times
it decreased, but not too drastically.

G PRETRAINED MODELS CIFAR10 AND CIFAR100

In order to obtain pretrained models for both CIFAR10 and CIFAR100 (Krizhevsky, 2009) we
follow Maddox et al. (2019)’s setup for for training VGG16 (Simonyan & Zisserman, 2015) and
WideResNet28-10 (Zagoruyko & Komodakis, 2017). WideResNet28-10 was trained for 300 epochs
with stochastic gradient descent and an initial learning rate of 0.1, weight decay at 0.0005, batch
size 128 and momentum 0.9. Cross-entropy was used as the loss function. For VGG16 we followed
the same procedure, except a lower initial learning rate of 0.05, because of the absence of batch-
normalization. After 150 epochs, a learning rate schedule started so that it would decrease towards
0.0005 at epoch 270, then finish the last 30 epochs with the learning rate set to 0.0005, see (Maddox
et al., 2019; Izmailov et al., 2019) for more details. We also included ResNet-50(He et al., 2016)
and followed the same training setup as WideResNet28-10. These training runs were repeated five
times with five different seeds in order to get five different pretrained models, which will work as
the starting point for our post-hoc methods.

H POST-HOC METHOD SETUP

H.1 LAPLACE ESTIMATE

Since the Laplace approximation requires a MAP estimate we gave it our pretrained model (Ap-
pendix G). For the results we used Daxberger et al. (2021)’s Laplace PyTorch library, and followed
their recommendations. The Laplace approximation was applied to the last-layer in the pretrained
network, with KFAC estimation (Martens & Grosse, 2015) of the Hessian matrix. The Hessian
estimation was based on the whole training dataset. Then the prior precision was optimized in ac-
cordance to their recommendation, see (Daxberger et al., 2021) for more information. Due to the
O(n2) memory requirement of LA we experienced out-of-memory errors for the VGG-16 architec-
ture on CIFAR100, we had to deviate from the standard recommendations, by changing prediction
type to ’nn’ and link approximation to ’mc’

H.2 MC-DROPOUT

To get the MC-dropout estimate, we have to enable dropout at test-time (Gal & Ghahramani, 2016)
and computed the same number of forward passes as a-GPS (20 for CIFAR10/100 and 45 for Im-
ageNet). These forward passes were averaged to obtain the Bayesian model average that was used
at test time. The MC-dropout results are only presented together with VGG16, as it is the only
architecture that we tested that also has dropout-layers.

H.3 SWA AND SWAG

For SWA and SWAG we follow the procedure of (Maddox et al., 2019), for a pretrained network.
To collect the models for the CIFAR10/100 experiments, we used the MAP as a starting point. We
continue running the stochastic gradient descent for another 20 epochs, but changed the learning

16



Under review as a conference paper at ICLR 2024

rate to 0.02 as this was the default in their python library. The final SWA(G) model consists of a
the models collected at the end of every epoch, in addition to the initialization with the MAP model.
Finally, for the SWAG model a low rank covariance matrix was estimated using their suggested
rank=20. We also follow Maddox et al. (2019) for the ImageNet experiments: 11 epochs, collect 4
models per epoch. The SGD optimizer setup was momentum 0.9, learning rate 0.001 and weight
decay at 0.0005. For the SWA predictions the 20 models (CIFAR10/100) collected were averaged
to become the SWA model. Then a single forward pass produced the predictions. For the SWAG
prediction on CIFAR10/100 we had 20 forward passes.

For ImageNet we follow Maddox et al. (2019)’s procedure for obtaining the SWA(G) model using
stochastic gradient descent with a constant learning rate of 1e−3, rank K = 20, weight decay at 5e−4,
momentum 0.9, and batch size 256. Using our pretrained ResNet-50 model as the initialization,
additional models were collected 4 times per epoch. We did this for 11 epochs to collect a total of
45 models.

For best prediction accuracy Maddox et al. (2019) update the batch norm of ResNet-50 with a sample
of 10% of the training dataset for the SWA model.Maddox et al. (2019); Izmailov et al. (2019) point
out the SWA(G) model is only collected during the post-training and the batch norm parameters
need to be updated when this model is going to be used for inference, because the model has not
directly seen the data.

For SWAG Maddox et al. (2019) suggest to continually update the batch norm parameters with
10% of the training data for each sample. Because of the slow inference time we limited SWAG
to draw 30 samples from the SWAG distribution. It is also worth mentioning that for SWA(G) we
followed the batch-normalization boosting schedule that Maddox et al. (2019); Izmailov et al. (2019)
found to be very effective. By updating the batch-normalization parameters after sampling a new
set of weights with 10% of the training data (30 samples corresponds to 300% of training data, or 3
epochs). Maddox et al. (2019) show in their appendix D.4 that the negative log likelihood is halved
by this batch-norm boosting.

H.3.1 THE METRICS USED

Standard metrics reported in the results include the mean ± 1 standard deviation (STD) of five runs
from independent pretrained models (for details on our pretrained models, refer to Appendix G). The
metrics were computed using the holdout test dataset denoted as D∗, where (D∗

x, D
∗
y) represents a

data-label pair.

Accuracy (Acc): This metric measures the percentage of correct predictions:

Acc =
100

|D∗|
∑
D∗

1f(D∗
x)=D∗

y
. (33)

Negative Log Likelihood (NLL): Calculated as:

NLL = −
∑
D∗

log fD∗
y
(D∗

x). (34)

Expected Calibration Error (ECE): This metric involves partitioning the M classes into bins (Bm)
based on accuracy and predicted softmax score, called confidence. It quantifies the difference be-
tween the model’s accuracy for a class and its confidence (Conf):

ECE = −
M∑

m=1

|Bm|
n
|Acc(Bm)− Conf(Bm)|. (35)

I OTHER ADAPTIVE PROPOSAL SAMPLERS

This section provides parameter updates for different choices of proposal: Gamma and Beta. The
theoretical foundation for these methods are not as thorough as for the Gaussian Proposal Sampler.
Future research, may find a set of updates that provide convergence guarantees and a stability pa-
rameter like the Gaussian variance limit. However, we propose these APS updates for the Gamma
and Beta, in order to show that the APS framework is applicable to several cases.
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I.1 GAMMA PROPOSAL SAMPLER

Set the proposal distribution q = Gamma, and assume that the modes in the target distribution also
is Gamma. We have that

∇ log f(θt) = ∇ log q(θt) (36a)

=
αt+1 − 1

θ
− βt+1. (36b)

Using this information we propose the following updates:
αt+1 = |(∇ log f(θt) + βt) · θt + 1| (37a)

βt+1 = |αt − 1

θt
−∇ log f(θt)|. (37b)

In this case α and β does not interact, we can simply use this equation to extract the parameters and
we get the updates

Algorithm 3 Approximate Gamma Proposal
Sampler

Input: α0 = 1, β0 = 1,
θ0 ∼ Gamma(α0, β

2
0)

for t = 0 to T samples do
αt+1 ← |(∇ log f(θt) + βt) ∗ θt + 1|
βt+1 ← | −∇ log f(θt) +

(αt−1)
θt
|

θt+1 ∼ Gamma(αt+1, βt+1)
end for

Figure 3: Approximate Gamma Proposal
Sampler on when f = Gamma(2, 0.1).

Figure 4: Approximate Gamma Proposal
Sampler on Mixture of Gammas.

Figure 5: Approximate Gamma Proposal
Sampler on mixture of Gaussians

J BETA PROPOSAL SAMPLER

Set the proposal distribution q = Beta, and assume that the modes in the target distribution also is
Beta. We have that

∇ log f(θ) = ∇ log q(θ) (38a)

=
α− 1

θ
− β − 1

1− θ
. (38b)
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Using this information we propose the following updates:

αt+1 =

∣∣∣∣(∇ log f(θ) +
βt − 1

1− θ

)
θt + 1

∣∣∣∣ (39a)

βt+1 =

∣∣∣∣−(
∇ log f(θ)− αt − 1

θ

)
(1− θt) + 1

∣∣∣∣ . (39b)

Algorithm 4 Approximate Beta Proposal
Sampler

Input: α0 = 1,β0 = 1
θ0 = 0.5
for t = 0 to T samples do
αt+1 ← |(∇ log f(θt) +

(βt−1)
1−θt

)θ + 1|
βt+1 ← | − (∇ log f(θt) − αt−1

θt
)(1 −

θ) + 1|
θt+1 ∼ Beta(αt+1, βt+1)

end for
Figure 6: Approximate Beta proposal sam-
pler on a Beta(5,5) distribution.

Figure 7: Approximate Beta proposal sam-
pler on a mixture of Betas.

Figure 8: Approximate Beta proposal sam-
pler on a Beta(0.5,0.5) distribution

K RESULTS
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Table 7: CIFAR10 Metrics for three different architectures.

Model Method Acc ↑ ECE ↓ NLL ↓
ResNet-50 MAP 90.15 ± 0.21 7.00 ± 0.16 0.46 ± 0.011
ResNet-50 LA 90.15 ± 0.21 5.83 ± 0.19 0.39 ± 0.008
ResNet-50 a-GPS-4 89.82 ± 0.20 6.04 ± 0.22 0.48 ± 0.016
ResNet-50 a-GPS-4-SWA 89.62 ± 0.34 9.04 ± 0.30 0.88 ± 0.045
ResNet-50 a-GPS-4-SWAG 89.78 ± 0.17 3.98 ± 0.30 0.38 ± 0.009
ResNet-50 a-GPS-5 90.16 ± 0.35 7.62 ± 0.32 0.54 ± 0.012
ResNet-50 a-GPS-5-SWA 90.06 ± 0.36 8.06 ± 0.29 0.61 ± 0.015
ResNet-50 a-GPS-5-SWAG 90.12 ± 0.34 7.60 ± 0.30 0.54 ± 0.013
ResNet-50 a-GPS-6 90.12 ± 0.30 7.08 ± 0.25 0.47 ± 0.010
ResNet-50 a-GPS-6-SWA 90.10 ± 0.24 7.22 ± 0.23 0.48 ± 0.011
ResNet-50 a-GPS-6-SWAG 90.12 ± 0.30 7.14 ± 0.26 0.47 ± 0.010
ResNet-50 a-GPS-7 90.12 ± 0.29 6.96 ± 0.26 0.46 ± 0.010
ResNet-50 a-GPS-7-SWA 90.08 ± 0.23 7.08 ± 0.23 0.46 ± 0.011
ResNet-50 a-GPS-7-SWAG 90.16 ± 0.27 6.96 ± 0.25 0.46 ± 0.010
ResNet-50 SGD-MC 90.74 ± 0.21 3.24 ± 0.17 0.29 ± 0.003
ResNet-50 SWA 90.82 ± 0.19 4.22 ± 0.25 0.31 ± 0.007
ResNet-50 SWAG 90.64 ± 0.16 1.90 ± 0.23 0.29 ± 0.003
VGG16 MAP 93.02 ± 0.19 4.88 ± 0.26 0.34 ± 0.010
VGG16 MC-drop 93.02 ± 0.19 4.44 ± 0.26 0.31 ± 0.010
VGG16 LA 93.04 ± 0.16 2.66 ± 0.23 0.25 ± 0.006
VGG16 a-GPS-4 91.64 ± 0.12 43.60 ± 4.96 0.85 ± 0.103
VGG16 a-GPS-4-SWA 39.58 ± 18.62 60.34 ± 18.72 9.63 ± 3.010
VGG16 a-GPS-4-SWAG 45.06 ± 18.63 25.02 ± 5.72 2.08 ± 0.762
VGG16 a-GPS-5 92.42 ± 0.23 5.78 ± 0.29 0.48 ± 0.017
VGG16 a-GPS-5-SWA 92.48 ± 0.23 7.52 ± 0.23 1.20 ± 0.039
VGG16 a-GPS-5-SWAG 92.32 ± 0.20 2.16 ± 0.19 0.37 ± 0.031
VGG16 a-GPS-6 93.04 ± 0.15 6.08 ± 0.21 0.46 ± 0.015
VGG16 a-GPS-6-SWA 93.04 ± 0.15 6.38 ± 0.21 0.75 ± 0.030
VGG16 a-GPS-6-SWAG 93.06 ± 0.15 6.20 ± 0.20 0.45 ± 0.012
VGG16 a-GPS-7 93.04 ± 0.21 4.96 ± 0.22 0.35 ± 0.011
VGG16 a-GPS-7-SWA 93.06 ± 0.17 4.96 ± 0.22 0.35 ± 0.011
VGG16 a-GPS-7-SWAG 93.04 ± 0.21 4.96 ± 0.22 0.35 ± 0.011
VGG16 SGD-MC 93.22 ± 0.23 1.30 ± 0.24 0.21 ± 0.004
VGG16 SWA 93.18 ± 0.16 4.18 ± 0.15 0.27 ± 0.005
VGG16 SWAG 93.20 ± 0.18 1.08 ± 0.24 0.21 ± 0.003
WideResNet28-10 MAP 96.22 ± 0.21 2.08 ± 0.20 0.14 ± 0.009
WideResNet28-10 LA 96.20 ± 0.27 0.96 ± 0.14 0.13 ± 0.007
WideResNet28-10 a-GPS-4 95.08 ± 0.22 2.42 ± 0.17 0.17 ± 0.007
WideResNet28-10 a-GPS-4-SWA 94.94 ± 0.21 3.74 ± 0.19 0.27 ± 0.014
WideResNet28-10 a-GPS-4-SWAG 94.10 ± 0.18 11.22 ± 1.68 0.29 ± 0.020
WideResNet28-10 a-GPS-5 95.94 ± 0.10 2.12 ± 0.15 0.15 ± 0.008
WideResNet28-10 a-GPS-5-SWA 95.80 ± 0.18 2.56 ± 0.14 0.17 ± 0.008
WideResNet28-10 a-GPS-5-SWAG 95.78 ± 0.12 2.94 ± 0.16 0.17 ± 0.005
WideResNet28-10 a-GPS-6 96.20 ± 0.22 2.10 ± 0.17 0.15 ± 0.008
WideResNet28-10 a-GPS-6-SWA 96.18 ± 0.19 2.22 ± 0.15 0.15 ± 0.008
WideResNet28-10 a-GPS-6-SWAG 96.22 ± 0.18 2.12 ± 0.17 0.15 ± 0.008
WideResNet28-10 a-GPS-7 96.26 ± 0.26 2.04 ± 0.16 0.14 ± 0.008
WideResNet28-10 a-GPS-7-SWA 96.22 ± 0.26 2.16 ± 0.16 0.14 ± 0.008
WideResNet28-10 a-GPS-7-SWAG 96.22 ± 0.21 2.08 ± 0.19 0.14 ± 0.008
WideResNet28-10 SGD-MC 96.40 ± 0.18 3.40 ± 0.19 0.13 ± 0.003
WideResNet28-10 SWA 96.66 ± 0.12 1.82 ± 0.18 0.13 ± 0.006
WideResNet28-10 SWAG 96.26 ± 0.08 1.66 ± 0.22 0.12 ± 0.001
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Table 8: CIFAR10 prediction time relative to MAP.

Model Method Time ↓
ResNet-50 LA 0.26
ResNet-50 MAP 1.00
ResNet-50 SWA 1.19
ResNet-50 a-GPS 4.22
ResNet-50 SWAG 17.51
VGG16 LA 0.16
VGG16 MAP 1.00
VGG16 SWA 1.09
VGG16 MC-dropout 2.06
VGG16 a-GPS 2.85
VGG16 SWAG 10.91
WideResNet28-10 LA 0.52
WideResNet28-10 MAP 1.00
WideResNet28-10 SWA 1.67
WideResNet28-10 a-GPS 11.40
WideResNet28-10 SWAG 35.92
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Table 9: CIFAR100 for three different architectures. Laplace did get nan errors for VGG16.

Model Method Acc ↑ ECE ↓ NLL ↓
ResNet-50 MAP 58.45 ± 1.40 17.00 ± 0.52 1.84 ± 0.054
ResNet-50 LA 57.78 ± 1.34 12.88 ± 0.37 1.84 ± 0.055
ResNet-50 a-GPS-4 54.40 ± 1.62 28.40 ± 0.88 2.61 ± 0.083
ResNet-50 a-GPS-4-SWA 53.68 ± 1.59 42.80 ± 1.60 6.16 ± 0.273
ResNet-50 a-GPS-4-SWAG 54.76 ± 1.48 14.88 ± 1.74 2.24 ± 0.170
ResNet-50 a-GPS-5 57.18 ± 1.64 24.44 ± 0.94 2.17 ± 0.077
ResNet-50 a-GPS-5-SWA 57.06 ± 1.64 27.14 ± 1.09 2.47 ± 0.115
ResNet-50 a-GPS-5-SWAG 57.48 ± 1.60 19.80 ± 0.68 1.97 ± 0.067
ResNet-50 a-GPS-6 58.00 ± 1.63 18.18 ± 0.76 1.88 ± 0.061
ResNet-50 a-GPS-6-SWA 57.96 ± 1.64 18.46 ± 0.77 1.90 ± 0.062
ResNet-50 a-GPS-6-SWAG 58.06 ± 1.64 18.10 ± 0.79 1.88 ± 0.061
ResNet-50 a-GPS-7 58.02 ± 1.53 17.10 ± 0.52 1.86 ± 0.057
ResNet-50 a-GPS-7-SWA 57.82 ± 1.62 17.40 ± 0.61 1.87 ± 0.055
ResNet-50 a-GPS-7-SWAG 57.96 ± 1.56 17.10 ± 0.52 1.86 ± 0.055
ResNet-50 SGD-MC 59.78 ± 1.42 2.12 ± 0.35 1.56 ± 0.047
ResNet-50 SWA 59.26 ± 1.36 19.68 ± 1.07 1.84 ± 0.074
ResNet-50 SWAG 59.58 ± 1.26 2.00 ± 0.47 1.55 ± 0.047
VGG16 MAP 70.86 ± 0.37 20.74 ± 0.30 1.96 ± 0.017
VGG16 LA nan nan nan
VGG16 MC-drop 70.78 ± 0.35 16.74 ± 0.29 1.63 ± 0.010
VGG16 a-GPS-4 68.78 ± 0.19 44.50 ± 2.97 2.15 ± 0.151
VGG16 a-GPS-4-SWA 6.50 ± 4.32 11.32 ± 7.33 5.61 ± 0.972
VGG16 a-GPS-4-SWAG 28.28 ± 16.38 18.68 ± 10.97 3.90 ± 0.621
VGG16 a-GPS-5 69.46 ± 0.26 23.12 ± 0.24 2.56 ± 0.013
VGG16 a-GPS-5-SWA 69.32 ± 0.25 30.40 ± 0.26 4.81 ± 0.045
VGG16 a-GPS-5-SWAG 69.70 ± 0.17 19.40 ± 0.18 2.55 ± 0.021
VGG16 a-GPS-6 70.96 ± 0.42 22.28 ± 0.42 2.23 ± 0.017
VGG16 a-GPS-6-SWA 70.96 ± 0.42 22.46 ± 0.40 2.32 ± 0.019
VGG16 a-GPS-6-SWAG 70.92 ± 0.44 22.38 ± 0.42 2.28 ± 0.021
VGG16 a-GPS-7 70.84 ± 0.36 20.90 ± 0.28 1.98 ± 0.014
VGG16 a-GPS-7-SWA 70.84 ± 0.36 20.92 ± 0.29 1.98 ± 0.014
VGG16 a-GPS-7-SWAG 70.84 ± 0.36 20.90 ± 0.30 1.98 ± 0.014
VGG16 SGD-MC 72.58 ± 0.22 1.32 ± 0.10 1.02 ± 0.012
VGG16 SWA 71.98 ± 0.32 16.48 ± 0.28 1.40 ± 0.032
VGG16 SWAG 72.32 ± 0.23 1.42 ± 0.31 1.03 ± 0.017
WRN28-10 MAP 79.50 ± 0.30 5.94 ± 0.27 0.89 ± 0.013
WRN28-10 LA 79.40 ± 0.35 18.52 ± 0.65 1.02 ± 0.015
WRN28-10 a-GPS-4 78.64 ± 0.26 2.60 ± 0.33 0.78 ± 0.013
WRN28-10 a-GPS-4-SWA 77.70 ± 0.28 9.56 ± 0.70 0.97 ± 0.024
WRN28-10 a-GPS-4-SWAG 74.92 ± 0.15 46.76 ± 1.48 1.72 ± 0.050
WRN28-10 a-GPS-5 79.82 ± 0.31 3.92 ± 0.28 0.82 ± 0.013
WRN28-10 a-GPS-5-SWA 79.64 ± 0.37 4.82 ± 0.22 0.84 ± 0.014
WRN28-10 a-GPS-5-SWAG 79.90 ± 0.22 5.08 ± 0.27 0.83 ± 0.014
WRN28-10 a-GPS-6 79.64 ± 0.33 6.30 ± 0.36 0.88 ± 0.016
WRN28-10 a-GPS-6-SWA 79.68 ± 0.35 7.28 ± 0.45 0.91 ± 0.016
WRN28-10 a-GPS-6-SWAG 79.72 ± 0.26 7.28 ± 0.37 0.90 ± 0.016
WRN28-10 a-GPS-7 79.86 ± 0.36 5.40 ± 0.19 0.86 ± 0.014
WRN28-10 a-GPS-7-SWA 79.76 ± 0.30 6.14 ± 0.35 0.88 ± 0.015
WRN28-10 a-GPS-7-SWAG 79.84 ± 0.29 6.12 ± 0.32 0.87 ± 0.014
WRN28-10 SGD-MC 80.44 ± 0.24 9.34 ± 0.25 0.76 ± 0.007
WRN28-10 SWA 80.64 ± 0.27 6.76 ± 0.08 0.77 ± 0.011
WRN28-10 SWAG 80.14 ± 0.21 4.80 ± 0.60 0.73 ± 0.007
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Table 10: CIFAR100 prediction time relative to MAP.

Model Method Time ↓
ResNet-50 MAP 1.00
ResNet-50 SWA 1.20
ResNet-50 LA 3.01
ResNet-50 a-GPS 4.30
ResNet-50 SWAG 17.07
VGG16 MAP 1.00
VGG16 SWA 1.12
VGG16 MC-dropout 2.16
VGG16 a-GPS 2.89
VGG16 SWAG 10.80
VGG16 LA nan
WideResNet28-10 MAP 1.00
WideResNet28-10 SWA 1.50
WideResNet28-10 a-GPS 10.42
WideResNet28-10 LA 17.93
WideResNet28-10 SWAG 32.24

23



Under review as a conference paper at ICLR 2024

Table 11: Predictive entropies for the CIFAR5-5 in (IND) and out (OOD) of distribution. For IND
lower is better, for OOD higher is better.

Model Method IND ENT ↓ OOD ENT ↑
ResNet-50 MAP 0.13 ± 0.006 0.46 ± 0.007
ResNet-50 LA 0.18 ± 0.004 0.46 ± 0.007
ResNet-50 a-GPS-4 0.11 ± 0.006 0.41 ± 0.021
ResNet-50 a-GPS-4-SWA 0.04 ± 0.003 0.09 ± 0.010
ResNet-50 a-GPS-4-SWAG 0.35 ± 0.013 0.71 ± 0.011
ResNet-50 a-GPS-5 0.09 ± 0.004 0.34 ± 0.012
ResNet-50 a-GPS-5-SWA 0.08 ± 0.004 0.18 ± 0.008
ResNet-50 a-GPS-5-SWAG 0.09 ± 0.003 0.24 ± 0.010
ResNet-50 a-GPS-6 0.12 ± 0.005 0.43 ± 0.010
ResNet-50 a-GPS-6-SWA 0.12 ± 0.005 0.25 ± 0.004
ResNet-50 a-GPS-6-SWAG 0.12 ± 0.005 0.26 ± 0.004
ResNet-50 a-GPS-7 0.13 ± 0.005 0.45 ± 0.010
ResNet-50 a-GPS-7-SWA 0.12 ± 0.005 0.26 ± 0.005
ResNet-50 a-GPS-7-SWAG 0.13 ± 0.005 0.27 ± 0.004
ResNet-50 SGD-MC 0.43 ± 0.009 1.18 ± 0.013
ResNet-50 SWA 0.19 ± 0.004 0.36 ± 0.005
ResNet-50 SWAG 0.38 ± 0.008 0.99 ± 0.016
VGG16 MAP 0.10 ± 0.003 0.53 ± 0.022
VGG16 MC-drop 0.11 ± 0.003 0.61 ± 0.023
VGG16 LA 0.35 ± 0.010 0.53 ± 0.022
VGG16 a-GPS-4 0.13 ± 0.009 0.61 ± 0.058
VGG16 a-GPS-4-SWA nan ± nan nan ± nan
VGG16 a-GPS-5 0.06 ± 0.003 0.26 ± 0.014
VGG16 a-GPS-5-SWA nan ± nan nan ± nan
VGG16 a-GPS-6 0.05 ± 0.002 0.27 ± 0.014
VGG16 a-GPS-6-SWA 0.04 ± 0.002 0.20 ± 0.012
VGG16 a-GPS-6-SWAG 0.04 ± 0.002 0.25 ± 0.013
VGG16 a-GPS-7 0.09 ± 0.003 0.50 ± 0.021
VGG16 a-GPS-7-SWA 0.09 ± 0.003 0.50 ± 0.021
VGG16 a-GPS-7-SWAG 0.09 ± 0.003 0.50 ± 0.021
VGG16 SGD-MC 0.29 ± 0.004 1.13 ± 0.027
VGG16 SWA 0.11 ± 0.004 0.59 ± 0.023
VGG16 SWAG 0.29 ± 0.006 1.12 ± 0.037
WideResNet28-10 MAP 0.08 ± 0.003 0.67 ± 0.016
WideResNet28-10 LA 0.12 ± 0.004 0.67 ± 0.016
WideResNet28-10 a-GPS-4 0.08 ± 0.005 0.60 ± 0.016
WideResNet28-10 a-GPS-4-SWA 0.04 ± 0.002 0.26 ± 0.004
WideResNet28-10 a-GPS-4-SWAG 0.40 ± 0.008 0.98 ± 0.021
WideResNet28-10 a-GPS-5 0.07 ± 0.003 0.64 ± 0.012
WideResNet28-10 a-GPS-5-SWA 0.07 ± 0.003 0.46 ± 0.006
WideResNet28-10 a-GPS-5-SWAG 0.19 ± 0.013 0.67 ± 0.012
WideResNet28-10 a-GPS-6 0.07 ± 0.003 0.66 ± 0.012
WideResNet28-10 a-GPS-6-SWA 0.07 ± 0.003 0.52 ± 0.006
WideResNet28-10 a-GPS-6-SWAG 0.08 ± 0.003 0.53 ± 0.006
WideResNet28-10 a-GPS-7 0.08 ± 0.003 0.68 ± 0.018
WideResNet28-10 a-GPS-7-SWA 0.08 ± 0.003 0.54 ± 0.007
WideResNet28-10 a-GPS-7-SWAG 0.08 ± 0.003 0.54 ± 0.007
WideResNet28-10 SGD-MC 0.13 ± 0.059 0.85 ± 0.151
WideResNet28-10 SWA 0.08 ± 0.003 0.54 ± 0.008
WideResNet28-10 SWAG 0.12 ± 0.039 0.77 ± 0.186
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Table 12: Predictive entropies for the CIFAR50-50 in (IND) and out (OOD) of distribution. For IND
lower is better, for OOD higher is better.

Model Method IND ENT ↓ OOD ENT ↑
ResNet-50 MAP 1.01 ± 0.120 1.98 ± 0.164
ResNet-50 LA 3.91 ± 0.092 2.21 ± 0.159
ResNet-50 a-GPS-4 0.50 ± 0.034 0.91 ± 0.044
ResNet-50 a-GPS-4-SWA 0.15 ± 0.016 0.22 ± 0.017
ResNet-50 a-GPS-4-SWAG 0.95 ± 0.061 1.66 ± 0.060
ResNet-50 a-GPS-5 0.67 ± 0.068 1.36 ± 0.099
ResNet-50 a-GPS-5-SWA 0.58 ± 0.060 0.87 ± 0.027
ResNet-50 a-GPS-5-SWAG 0.72 ± 0.076 1.13 ± 0.045
ResNet-50 a-GPS-6 0.96 ± 0.104 1.89 ± 0.144
ResNet-50 a-GPS-6-SWA 0.94 ± 0.100 1.43 ± 0.060
ResNet-50 a-GPS-6-SWAG 0.96 ± 0.106 1.46 ± 0.057
ResNet-50 a-GPS-7 1.02 ± 0.111 1.99 ± 0.150
ResNet-50 a-GPS-7-SWA 1.01 ± 0.108 1.54 ± 0.068
ResNet-50 a-GPS-7-SWAG 1.03 ± 0.112 1.56 ± 0.064
ResNet-50 SGD-MC 1.31 ± 0.132 2.38 ± 0.140
ResNet-50 SWA 1.06 ± 0.131 1.59 ± 0.100
ResNet-50 SWAG 1.31 ± 0.119 2.03 ± 0.204
VGG16 MAP nan ± nan 0.85 ± 0.008
VGG16 MC-drop 0.46 ± 0.006 1.17 ± 0.012
VGG16 a-GPS-4 nan ± nan 0.83 ± 0.008
VGG16 a-GPS-4-SWA nan ± nan 0.83 ± 0.008
VGG16 a-GPS-5 nan ± nan nan ± nan
VGG16 a-GPS-5-SWA nan ± nan 0.39 ± 0.009
VGG16 a-GPS-6 nan ± nan 0.94 ± 0.010
VGG16 a-GPS-6-SWA nan ± nan 0.67 ± 0.007
VGG16 a-GPS-7 nan ± nan nan ± nan
VGG16 a-GPS-7-SWA nan ± nan 0.83 ± 0.008
VGG16 SGD 0.91 ± 0.004 1.03 ± 0.410
VGG16 SWA nan ± nan nan ± nan
VGG16 SWAG 0.85 ± 0.011 2.00 ± 0.017
WideResNet28-10 MAP 0.98 ± 0.105 1.08 ± 0.011
WideResNet28-10 LA 2.99 ± 0.060 1.91 ± 0.015
WideResNet28-10 a-GPS-4 0.64 ± 0.058 2.28 ± 0.119
WideResNet28-10 a-GPS-4-SWA 0.30 ± 0.010 2.26 ± 0.129
WideResNet28-10 a-GPS-4-SWAG 2.38 ± 0.355 1.82 ± 0.108
WideResNet28-10 a-GPS-5 0.85 ± 0.060 2.38 ± 0.127
WideResNet28-10 a-GPS-5-SWA 0.77 ± 0.053 2.38 ± 0.141
WideResNet28-10 a-GPS-5-SWAG 0.86 ± 0.055 2.69 ± 0.113
WideResNet28-10 a-GPS-6 1.04 ± 0.102 2.95 ± 0.189
WideResNet28-10 a-GPS-6-SWA 1.04 ± 0.107 3.07 ± 0.182
WideResNet28-10 a-GPS-6-SWAG 1.05 ± 0.105 3.08 ± 0.189
WideResNet28-10 a-GPS-7 1.00 ± 0.100 2.11 ± 0.108
WideResNet28-10 a-GPS-7-SWA 1.02 ± 0.107 2.31 ± 0.131
WideResNet28-10 a-GPS-7-SWAG 1.02 ± 0.104 3.02 ± 0.192
WideResNet28-10 SGD-MC 1.38 ± 0.142 1.04 ± 0.022
WideResNet28-10 SWA 0.67 ± 0.045 3.42 ± 0.318
WideResNet28-10 SWAG 1.28 ± 0.171 3.17 ± 0.112
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Table 13: Results Imagenet with ResNet-50 architecture.

Method Acc ↑ ECE ↓ NLL ↓
MAP 76.10 ± 0.06 3.34 ± 0.08 0.95 ± 0.004
LA 75.86 ± 0.10 15.32 ± 0.12 1.05 ± 0.004
a-GPS-4 70.74 ± 0.12 8.14 ± 0.15 1.25 ± 0.004
a-GPS-1-4 73.98 ± 0.10 5.04 ± 0.05 1.08 ± 0.006
a-GPS-1-4-SWA 66.56 ± 0.85 6.86 ± 0.26 1.62 ± 0.053
a-GPS-1-4-SWAG 62.42 ± 0.37 42.82 ± 0.36 2.53 ± 0.015
a-GPS-5 75.76 ± 0.10 3.82 ± 0.07 0.98 ± 0.004
a-GPS-1-5 76.02 ± 0.10 4.54 ± 0.05 0.97 ± 0.004
a-GPS-1-5-SWA 75.94 ± 0.08 5.46 ± 0.05 0.99 ± 0.004
a-GPS-1-5-SWAG 76.00 ± 0.10 3.73 ± 0.11 0.96 ± 0.004
a-GPS-6 76.14 ± 0.08 3.70 ± 0.09 0.95 ± 0.004
a-GPS-1-6 76.12 ± 0.07 3.60 ± 0.00 0.95 ± 0.004
a-GPS-1-6-SWA 76.10 ± 0.11 3.66 ± 0.05 0.95 ± 0.004
a-GPS-1-6-SWAG 76.07 ± 0.04 3.68 ± 0.04 0.95 ± 0.004
SGD-MC 76.58 ± 0.13 1.88 ± 0.04 0.91 ± 0.004
SWA 76.45 ± 0.05 2.15 ± 0.05 0.93 ± 0.002
SWAG 76.50 ± 0.10 5.05 ± 0.15 0.94 ± 0.001
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