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Abstract: Physical interactions can often help reveal information that is not readily
apparent. For example, we may tug at a table leg to evaluate whether it is built
well, or turn a water bottle upside down to check that it is watertight. We propose
to train robots to acquire such interactive behaviors automatically, for the purpose
of evaluating the result of an attempted robotic skill execution. These evaluations
in turn serve as “interactive reward functions” (IRFs) for training reinforcement
learning policies to perform the target skill, such as screwing the table leg tightly.
In addition, even after task policies are fully trained, IRFs can serve as verification
mechanisms that improve online task execution. For any given task, our IRFs can
be conveniently trained using only examples of successful outcomes, and no further
specification is needed to train the task policy thereafter. In our evaluations on door
locking and weighted block stacking in simulation, and screw tightening on a real
robot, IRFs enable large performance improvements, even outperforming baselines
with access to demonstrations or carefully engineered rewards. Project website:
https://sites.google.com/view/lirf-corl-2022/

1 Introduction

Consider a kitchen robot that must perform a large number of tasks, such as opening a refrigerator,
cutting vegetables, tightening a water bottle lid, or flipping a pancake. How might this robot acquire
these skills? Common skill acquisition approaches involve heavy engineering and expertise for each
skill, directed either towards developing model-based control policies, or towards specifying dense
reward functions for reinforcement learning (RL). These approaches do not scale well to the goal of
acquiring large numbers of skills. Consequently, there is growing interest in scalable approaches for
RL-based skill acquisition that permit easy task specification by non-experts.

A particularly promising task specification framework that we call exemplar rewards, involves
specifying tasks merely by showing the robot learner what the environment should look like after
a well-executed skill [1, 2, 3, 4, 5, 6, 7]. For example, to specify the task of opening a refrigerator
door, it would suffice to show the learner some images of open refrigerators. Then, once the skill is
specified, the robot performs RL with the aim of altering the environment to generate observations
similar to those examples. When this framework is successful, a human user teaching the robot does
not need technical expertise and does not need to even demonstrate full behaviors for task execution.
Instead, they need only capture images of the outcome.

Although this framework is appealing, many tasks cannot be specified by image observations of task
success, or any other fixed sensor setup. For example, consider the task of closing a water bottle, as
in Figure 1. What image might specify a successful execution of this skill? An image of a water
bottle with a slightly loose cap would look identical to one with a tight cap, but a bottle closing
policy that does not fully tighten the cap would be useless. Thus, in this setting, an observation of
the task success state from a camera constitutes only a partial observation and does not suffice to
specify the task. Specifically, when non-success states might look visually similar to success states,
image-based task specification and assessment fails. Figure 1 shows a few examples of this state
aliasing problem: Is the bottle cap tight? Is the door locked properly? Is the tower of objects with
unknown masses stable? There are many more: Is a screw tight? Is the leg of the table secured well?
Does the smoothie have the right consistency? None of these questions can be answered correctly
from passive image observations.
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Figure 1: In each of these three settings, task success / failure cannot be determined from passive
image observations, but is easily revealed through appropriate interactions.

The failures of passive image-based assessment in these settings preclude robotic skill learning from
image examples of task success. To fix this while retaining the versatility and user-friendliness of the
exemplar rewards framework, we propose an interactive approach for evaluating task success. As
motivation, consider how a human might turn a water bottle upside down to confirm that it does not
leak, and is therefore closed well. Here, the interaction reveals the key determinant of task success,
namely, whether or not the cap is watertight.

We design an approach to automatically learn such interaction behaviors to evaluate task success.
Our examples are no longer mere images, but instead real actionable physical instances. In the
water bottle setting, rather than image snapshots of closed water bottles, our approach receives actual
physical bottles with tightly closed caps. The robot can interact with these objects, such as by turning
them upside down, to discover what about them constitutes successful execution of the desired “bottle
closing” skill (i.e., the bottle does not leak) and how they behave differently from the outcomes of
unsuccessful execution (i.e., it leaks). In the other examples in Figure 1, a robot might try to pull the
door open or nudge the tower to evaluate whether the task is complete.

We make two key contributions. First, we propose an approach to train interactive reward functions,
which are policies that specify what it means to correctly perform a skill and thus drive the improve-
ment of the task policy learners in a reinforcement learning framework. Next, we show how those
same reward policies can be reused to enable in-the-loop introspective verification behaviors during
online skill execution, making robots more scrupulous and reliable. We evaluate these contributions
on three simulated and real robotic control settings, and show substantial improvements in task policy
learning and execution.

2 Background and Problem Setup
2.1 Classifier-Based Exemplar Rewards in fully observed MDPs

Reinforcement learning (RL) methods offer the promise of scalable data-driven synthesis of robot
controllers for arbitrary new tasks. Consider robotic task settings formalized as Markov decision
processes (MDPs), defined by the tuple (S, A, T, R, 11). At each time ¢, an agent selects an action
a; € Ain state s; € S, transitions to the next state s;;, with probability 7 (s¢1|st, at), and receives
reward r; = R(s¢, a, S¢+1). Thus, the agent emits actions into the environment and receives two
things in return: new state observations and rewards. Ignoring discounting, a good RL task policy
mr(at|st) selects actions to maximize the sum of rewards over time ) _, 7, starting at a state drawn
from an initial state distribution .

Thus, it is the reward function R that specifies what task to perform in a given environment, and RL
approaches in practice require expertise and effort for reward engineering [8] to specify each new
task, avoiding misspecification and guiding efficient learning. This often takes the form of tuned
weighted combinations of many carefully constructed heuristic terms in the RL reward objective [9,
10, 11, 12], or even privileged task-specific sensors added to the environment during training [13, 14].
To circumvent laborious manual reward design, many methods aim to learn rewards from data.
Inverse reinforcement learning methods [15, 16, 17, 18] learn task reward functions from optimal
demonstrations, but such demonstrations are typically expensive and may even be impossible to
obtain. Other methods train RL agents by learning rewards explicitly or implicitly from interactive
human feedback [19, 20, 21, 22, 23], but these have the drawback of requiring in-the-loop queryable
human teachers.



We build upon the popular “exemplar rewards” framework, which explores task specifications purely
through examples [1, 2, 3, 4, 5, 6, 7]. In classifier-based exemplar rewards approaches [1, 3], the

human teacher trains a classifier R(s) to label task outcomes as successes or failures, by gathering
some success examples manually, and then generating failure examples from the task policy as it
trains. Armed with this learned reward function R(s), the agent trains its task policy 77 (als) to
generate success outcomes and thereby maximize the estimated rewards. An appealing property of
this framework is that training a policy for each new task only requires a specification of the final
goal state that should be achieved, without any need to specify how to achieve it.

Our work extends this exemplar rewards framework: as motivated in Section 1, rather than relying on
passive observations, we will train interactive evaluation policies to evaluate task success, and these
evaluations will in turn serve as “interactive reward functions” for training task policies. This permits
applying exemplar rewards to “partially observed” settings that do not permit accurate task success
evaluation from images alone. We expand on the partial observability problem below.

2.2 Partial Observability, State Aliasing, and History-Based POMDP Policies

Why are classifier-based exemplar rewards approaches not suited to settings such as the door locking
task in Figure 1 (middle)? The root cause is “partial observability.” To solve this task, the robot
must push the door into the closed position and then rotate the latch into the locking position. It
only sees images from a fixed camera in front of the door. The latch, however, is occluded, and
the robot can only observe and act upon the four handles on the front of the door, which rotate the
latch through an axle mechanism. The handles are visually identical, so any visual configuration of
the handles corresponds to any one of four configurations of the latch behind the door. While this
setting is constructed as a pedagogical example to expose and study the state aliasing problem, it is
representative of several real-world settings, as discussed in Section 1 and Figure 1.

Such settings are modeled as partially observable MDPs, or POMDPs [24]. At each time, the agent
only partially observes the underlying latent task state s; (i.e. the latch configuration), through an
observation o; ~ O(o|s;), where the observation function O generates samples from the observation
space {2 (i.e, images of the handle configuration). The original task state s; is not directly observable.
Thus, the task POMDP is defined by (S, A, T, R, Q, O, u).

Several prior works deal with the question of how the task policy in a POMDP might map to good
actions despite only seeing partial observations at each time. The key to this is the assumption, very
often reasonable, that while individual observations are indeed incomplete, observation histories
contain much more information about the state. Then, a POMDP policy can perform well by relying
on a history of observations and actions, either directly [25, 26, 27, 28] as 7w (a¢|ot—pt, Gt—H—1:t—1),
or by first estimating a belief distribution by (s¢|0t— .+, @t— g —1.¢—1) over the state and then mapping
to actions [24, 29, 30, 31, 32], as wr(a¢|b;). In the door locking setting, the robot might observe
the latch position before closing the door. Therefore, even if the latch is occluded after the door is
closed, a history-based policy could still track its position. In other words, if trained well with the
right reward function, such history-based POMDP policies can still learn good task behaviors.

3 Exemplar Interactive Reward Functions

This brings us to the key question: how to specify reward functions R for training POMDP policies?
In particular, could we extend the appealing exemplar rewards framework to POMDPs?

First, note that partial observability has to do with what policies can see, not where rewards come
from. Therefore, it is feasible in theory to provide state-based exemplar rewards R(s) that are not
limited by partial observability. This implies relying on additional sensors for reward estimation
during training that are not available to the policy 77 that is being trained. In other words, while
the states s; are no longer observable to 7, it may still be possible to learn exemplar rewards R(s;)
through privileged instrumentation of the environment during training to allow the reward function
to observe the full state s,. For example, privileged thermal cameras could measure fluid levels
to train an RGB image-based fluid pouring policy [13]. However, such additional instrumentation
is labor-intensive and task-specific, and sacrifices the appealing scalability and ease of use of the
exemplar rewards framework.

How might we do this? Learning exemplar rewards I%(ot) based on the agent’s instantaneous
observations would suffer from state aliasing: in the door locking setting, such a reward function
would not be able to distinguish a correctly latched door from one in which the latch is off by a factor
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Figure 2: Method Overview. In a partially observable environment, (left) we first learn an initial
task policy 7% using passive classifier-based rewards. (middle) Then we train an IRF policy 7 to
distinguish between provided “actionable positive examples” and 7%-generated negative examples.
(right) Finally, we use g to provide the correct rewards for training a LIRF task policy 7.

of 90°! Nor does the exemplar reward learning framework permit relying on observation histories,
like the solution we described above for POMDP policies. To see this, recall that exemplar rewards
are trained from samples of successful task outcomes rather than full demonstrations, so there is no

observation-action history information available for training R(0;— 1., Gt— g —1.t—1)-

3.1 Actionable Examples and Interactive Reward Functions (IRFfs)

Our primary contribution is a solution to this conundrum: rather than presenting successful outcome
examples as singular pre-recorded observations, we propose to present them as “actionable examples”,
with which the robot can interact and generate new observations. In other words, to learn a reward
function for locking a door, the robot gets access to several physical instances of successfully locked
doors. Then, instead of training passive reward functions from image observations, we propose
learning “interactive reward functions” (IRF), which consist of robot action policies 7y that reveal
the task rewards. See the schematic in Figure 2. We expand upon this idea below.

First, we gather “actionable success examples” P = {crf' s s a?}} and “actionable failure examples”
N = {o7,...,0%}. P and N contain object or environment configurations: in Figure 1, each o+
might be a tight bottle cap, a well-locked door, a stable tower, and so on. Now, the IRF policy may be
seen as the solution to a new “IRF POMDP”. This is identical to the task POMDP, except for two
key differences. First, it is initialized to an actionable example state so = 0 ~ P U N. Next, its
reward function R is based on discovering the label of sy: was it drawn from P or from N? All other
elements (S, A, T, Q, O) of the task POMDP are retained. !

Algorithm 1 shows pseudocode for our “Learning from IRFs” (LIRF) approach. We point out three
key features here. (1) First, we bootstrap the task policy w7 by training against a single-observation-
based reward classifier D(o;). This corresponds to running prior exemplar reward approaches; we use
VICE [1]. (2) Next, in keeping with the exemplar rewards framework, we provide only the positive
examples P. Negative examples [V are instead generated by the above-initialized task policy. Thus,
the IRF policy 7y serves as a GAN-like adversarial critic [33, 18] for training the task policy 77. (3)
Finally, how could we discover the true task completion reward, i.e., the label P (corresponding to
positive reward) or the label NV (negative reward) at the end of IRF execution? For this, we could,
in theory, train a classifier from the full IRF trajectory history. Instead, we find that it suffices to
reuse the single-observation classifier D(o;) from (1) above, and apply it only to the final state after

executing 7. Intuitively, 7 learns to modify the environment state o —= s* such that 0o* ~ O(s*)
reveals whether o was drawn from P or N. For example, in door locking, 7 might learn to tug at
the door: if the door is correctly locked (P), it stays closed, and if it is not locked (/V), it opens. Thus,
a single post-IRF observation suffices to classify o. Figure 2 shows a schematic.

'In some experiments, we use different actions A for the IRF policy 7 x than for the task policy 7.



Algorithm 1 Learning from Interactive Reward Functions (LIRF) Framework

Require: a set P of positive actionable examples that specify successful task execution.
1: Following image-based exemplar rewards approaches such as VICE [1], train a single-observation reward
D(o) — LO, 1] and an initial task policy 7% in the task POMDP.
2: Rollout 74 for n times, collecting negative actionable outcomes in N.
3: Train an IRF policy 7r in the IRF POMDP, where the environment is initialized from state ¢ ~ P U N, to
maximize the classification reward:

B, {Et:log(l?(ot))} + E, {Z:log(l - D(ot))} )

4: Train the final LIRF task policy 77 in the task POMDP, modified to include the additional terminal state
reward R(or) = D(or) + AD(0"), where or is the observation for the terminal state s7, and o™ is

generated by the IRF policy r as st —= s*, 0* ~ O(s*). The final reward function uses the dense
single-observation reward for intermediate states, and the terminal state reward for the final state.

) {D(OT)+AD(0*) ift="T ®

Flon) = D(o¢) otherwise

3.2 IRFs as Verification Mechanisms for Introspective, Fault-Tolerant Behaviors

Next, we observe that IRFs 7 rely on no privileged information beyond the task policy 7m7’s own
observations. Thus, while their primary purpose is to provide reward functions for training task
policies, IRFs can also be deployed together with the task policies after training. We propose a
simple approach to use IRFs as verification mechanisms in-the-loop during task execution. Once
the task policy 7 is executed for a fixed episode length, we will run the IRF 7 to determine
whether the task is complete. If it is detected as incomplete, we will resume executing the task policy.
This perform-verify cycle continues until the IRF is satisfied that the task is complete (or timeout).
Appendix A.1 contains pseudocode for this procedure.

4 Other Related Work

LIREF trains task policies through rewards computed by an interactive reward function, which is itself
a robot policy trained from examples. While Section 2 extensively discussed connections to reward
design, exemplar rewards, and POMDP policy learning to set up our approach, we now position our
contributions against two other key related areas of prior work.

Adversarial Robot RL. Like LIRF, some prior works train a target task policy against another
“adversary” policy [34, 35, 36, 37]. Pinto et al. [37] train a grasping robot to select more stable grasps
by competing against an adversary robot that tugs at the grasped objects to dislodge them. Rather
than adversary policies that destabilize the task policy to increase robustness, we train adversary
policies that provide outcome-based rewards to train the task policy.

Interactive Perception and Verification. Our method draws on ideas from interactive percep-
tion [38], where agents in partially observed settings act to obtain information about the latent state.
Interactive task verification mechanisms (see [39] for a survey) employ human-specified interactive
perception behaviors to assess the state of a task. For example, a robot may use engineered motion
primitives or perturbations to detect and correct task failures in manipulation [40, 41]. In contrast,
we learn interactive verification behaviors from examples, and use them not only during task exe-
cution, but also to define the reward function for training task skill policies. One way to frame our
contribution here is as follows: in reinforcement learning, agents emit actions into the environment
and receive in return not just new states, but also fask rewards. To our knowledge, LIRF is the first
approach that employs interactive perception to directly estimate task rewards, rather than the state.

5 Experiments

We design various simulated and real-world experiments to evaluate LIRF for example-based task
specification in partially observable tasks that manifest the state aliasing issue. We aim to answer the
following questions: (1) Does our interactive reward learning framework enable us to learn policies to
solve partially observable tasks that alternative approaches cannot, with comparable or even greater
task supervision? (2) Does the learned IRF policy sensibly evaluate task completion and provide
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Figure 3: Our three tasks. For each pair of 2 images, we show the task initialization on the left, and
the goal state on the right. In the middle panel, the 3 blocks are visually identical but they differ in
weight. The heaviest block is green for visualization. In the right panel, we put a blue mark on the
valve for visualizing the orientation.

good rewards? (3) Can using the IRF policy in-the-loop for task verification improve task execution
performance?

Task Setups. We evaluate LIRF on 3 tasks, illustrated in Figure 3, and described below. See
Appendix A.2 for more details and the project website for experiment videos.

* Door Locking (Sim): We instantiate the door locking task from sections 2.2 and 3 with an Adroit
Hand using MuJoCo [42]. The robot has a fixed viewpoint in front of the door, and must close
the door and rotate the symmetric, four-handled doorknob to fully lock it (see Figure 3). The
observation space mimics perfect vision: it consists of the door orientation, the door frame position,
the aliased cross-handle orientation [0, 90°)? and the Adroit hand pose. The door is initialized as
open, and the position of the door frame and the orientation of the latch are randomized.

* Weighted Block Stacking (Sim): We further test our algorithm on a weighted block stacking
task based on the MuJoCo Fetch environment [43] as shown in Figure 3. The goal of this task is
to stack 3 visually identical blocks into a “stable” tower. One block significantly heavier than the
other two blocks, so the optimal strategy is to place it at the bottom. Again, the observation space
mimics perfect vision: only the unordered poses of blocks are observable. The weight of a block is
only revealed after it is picked up, to mimic physically plausible “hefting” behavior.

* Screw Tightening (Real): To examine the robustness and generality of our algorithm, we test it
on a real-robot screwing experiment using a D’Claw [44] that has 9 joints (Figure 3). The objective
of this task is to turn the 4-prong valve clock-wise for around 180° into the “tightened” state (white
line on the valve base). We engage a motor underneath the valve to mimic screw locking. Again,
the observation consists of the historical aliased valve angles, i.e. [0, 90°) and robot joint angles.

LIRF Implementation Details. We use the soft actor-critic (SAC) algorithm [45] to train both the
task policies and the IRF policies for each experiment and report results with mean and variance
over 5 seeds for each simulated task. The weight \ for the sparse IRF reward in Eq 1 needs to be
“large enough” (Appendix A.6) to have a substantial effect on LIRF training, but beyond this, the
algorithm is not very sensitive to \; we set A = 1000. All policies are trained until convergence,
which takes around 2M simulation steps for door locking and block stacking LIRF policies, 50k steps
for screwing LIRF policies (~ 10 hours on the real robot), and around 20k steps for all IRF policies.
More details in Appendix A.5. We will release all code and environments.

Baselines. For evaluating our LIRF algorithm, we compare against RL policies learned with
VICE exemplar rewards [1] and with ground truth state-based rewards (“GT State Reward”). In
addition, we compare against GAIfO [46], an imitation-from-observation algorithm that learns from
demonstrations. We provide as many demonstrations to GAIfO as the number of episodes with
positive examples provided to LIRF (namely, 250, 10k, and 100 for door locking, weighted block
stacking, and screwing respectively). Note that LIRF actually uses fewer positive examples than the
number of positive episodes, (110, 7K, and 1 actionable positive examples respectively) since the
same example can be reused across episodes if it is not destroyed. Finally, when feasible, we engineer
an interactive reward function policy (Manual IRF) that performs hand-coded actions to evaluate
the task: hand-coded unscrewing behavior for screwing, and a random poking action for the block

>The cross-handle is symmetrical and looks visually identical at 90°offsets, e.g. 10°, 100 °, 190 °, 280 °



Task Specification Door Locking ~ Block Stacking Screwing

VICE [1] Goal Examples 0.032 £0.015 0.310 £ 0.056 0.02
LIRF (Ours) Actionable Goal Examples ~ 0.640 + 0.053 0.846 + 0.027 0.82
LIRF+Verify (Ours)  Actionable Goal Examples  0.958 + 0.007 0.884 + 0.018 0.99
GAIfO [46] Demonstrations 0.112 4+ 0.024 0.275 £ 0.043 0.0
Manual IRF Human Engineering - 0.613 £ 0.058 0.85

GT State Reward State+Human Engineering  0.714 £0.047  0.956 + 0.021 0.87

Table 1: Task success rates of our method and baselines on the three tasks.
VICE Task Policy LIRF Task Policy

CAEAEAE

PRER

Figure 4: LIRF task policy rollouts (right), compared to VICE (left). Note row 2, where VICE builds
an unstable tower with the heavy block on top (visualized in green here, but this is not observable to
the agent). LIRF self-corrects mid-episode to build the tower with heavy block on bottom. See Supp
slides for more video examples.

Block Stacking Door Locking

Screwing

stacking.® To isolate the effect of reward functions, all methods share the same input observation
space for their policies. See Appendix A.4 for more details on the baselines. Note that GAIfO, GT
State Reward, and Manual IRF all involve more painstaking and comprehensive task specifications
than LIRF, but offer useful comparison points nevertheless.

5.1 Results

Does LIRF succeed in partially observable settings? Table 1 shows task success rates for our
approach and baselines. LIRF outperforms VICE across all tasks, showing that LIRF successfully
extends the exemplar reward framework into partially observable settings where prior exemplar
rewards methods like VICE fail. LIRF also performs on par or better than baselines that use
additional / more expensive forms of task supervision, such as demonstrations, human engineering,
and privileged sensing of ground truth state.

Qualitatively, LIRF policies show good task-solving behaviors for each task - they learn to lock the
door, construct towers with the heaviest block at the bottom, and fully tighten the screw (see Figure
4). LIRF even demonstrates sophisticated self-correction behavior in the block stacking task by
rebuilding the tower if the heavier block is incorrectly stacked on top of a lighter block.

Among baselines, VICE and GAIfO perform poorly due to state aliasing, and LIRF is competitive or
superior to Manual IRF, showing that learning an IRF policy with RL may yield better rewards for
training partially observable task policies.

Do the IRF policies 7 sensibly evaluate task completion? Task Accuracy
FlI:St, we evaluate the.s.uccess rate of the IRF policy 7y at d1st1p- Door Locking 0,992 & 0.006
guishing between positive and negative examples for each task in Block Stacking 0852 + 0.023
Table 2. IRF-based task success classification is highly accurate ' '
for all tasks. Figure 6 shows examples of learned reward function
policies. The IRF policies learn sensible strategies to separate Taple 2: IRF task success classifi-
visually indistinguishable positives and negatives. In the door ation accuracies.

locking task, IRF pulls the fixed handle; in stacking, it pokes

Screwing 0.98

3For Adroit hand door locking, the action space is too large to reasonably hand-code any IRF behavior.
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Figure 6: Running the IRF policy 7w on the success and failure actionable examples. Left (Door
Locking): mg grasps the door and pulls to verify locking. Middle (Block Stacking): mg checks for
tower stability by gently poking the bottom block. Right (Screwing): 7 attempts to lightly unscrew -
the screw in the top row rotates as it is not tight, whereas the bottom-row does not.

IRFs Evaluating Outcomes
Task Successes Task Failures

the bottom block; in screwing, it applies a small counterclockwise torque to unscrew the valve.
Finally, IRF policy learning is quite efficient in terms of the number of actionable positive examples
required. Door locking, screwing, and weighted block stacking need 110, 1, and 7k actionable
positive examples respectively (note that the same positive example can be reused for multiple IRF
training episodes, unless its “positiveness” is destroyed at the end of that episode). Block stacking is
the hardest, since distinguishing stable from unstable towers requires a finely tuned poking force and
motion, and even “stable” block tower examples are prone to toppling quite easily. See Appendix A.7
for more details.
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Can the IRF policy be used for in-the-loop verification?
As seen in Table 1, LIRF+Verify, which reuses the learned
IRF policy during task execution, outperforms all baselines,
even beating the ground truth reward baseline in door locking
and screwing. Figure 5 shows how LIRF+Verify improves per-
formance with more perform-verify iterations. LIRF+Verify
makes the biggest difference in door locking: here, plain LIRF 2 4 6 s 10
fails mainly because the policies operating on partial observa- Number of Perform-Verify Iterations
tions do not learn precisely how much to turn the latch without
the aid of 7 to declare task completion. This is also why GT
State Reward performs quite poorly on this task despite training
on the true state-based reward function (see also Appendix A.8). LIRF+Verify’s gains over LIRF are
smaller in block stacking and screwing, because LIRF failures here occur from low-level imprecision
in pick-and-place or valve-turning. Here, LIRF+Verify helps by allowing the task policy 7 to try
again when it fails. We show video examples on the project website.
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Figure 5: LIRF+Verify success
rates vs. perform-verify iterations.

6 Conclusions

We have presented LIRF, a framework for conveniently training example-based interactive robot
policies to evaluate robot task policies, in order both to provide rewards to train them, and to verify
their execution in partially observed tasks. While our results show substantial improvements over
baselines, LIRF currently has two drawbacks. LIRF is best applied to settings where the initial task
policies trained from single-image-based rewards fail most of the time. When this is not the case,
such as in fully observable settings, IRF policies yield marginal or no benefits over the initial policies
(Appendix A.9), and therefore may not be the most frugal algorithmic choice. Next, LIRF requires the
physical storage of “actionable outcomes” as positive examples. While the number of such examples
in some tasks may be small enough to not be a major concern (e.g., among our experiments, 1 for
screwing, 110 for door locking), in other cases, storing and presenting a large number of positive
example objects to train the IRF might be cumbersome (e.g., 7k for block stacking). We discuss
scalability in more detail in Appendix A.10. Future work overcoming these limitations could further
expand the domain of applicability of LIRF.
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